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ABSTRACT
With the rapid development of the furniture industry, automatic classification of
furniture images has become an important research area. However, this task faces
several challenges, including complex image backgrounds, diverse furniture types,
and varying forms. To address these issues, we propose a novel furniture image
classification method, MobileNetNAK, based on the MobileNetV3 network. First, the
method integrates a non-local attention module to capture non-local dependencies
within images, significantly enhancing the model’s ability to extract key information.
Second, the Adamax optimizer is employed to train the model. By adaptively
adjusting the learning rate, it accelerates convergence and reduces the risk of
overfitting. Third, the Kolmogorov–Arnold networks method is incorporated to
decompose complex convolution operations into multiple simpler ones, thereby
improving computational efficiency and feature extraction capabilities. Experimental
results demonstrate that MobileNetNAK significantly improves classification
performance in furniture image tasks. On Dataset 1, the model achieves
improvements of 6.7%, 6.6%, 6.6%, and 6.6% in accuracy, precision, recall, and
F1-score, respectively, compared to the baseline. On Dataset 2, the corresponding
improvements are 2.7%, 2.4%, 2.7%, and 2.9%. Additionally, the model maintains a
high inference speed of 147.80 fps, balancing performance with computational
efficiency. These results highlight the strong adaptability and deployment potential of
MobileNetNAK in multi-category and fine-grained furniture image classification
tasks, offering a novel and effective solution for this domain.

Subjects Artificial Intelligence, Computer Vision, Data Mining and Machine Learning, Graphics
Keywords Furniture image classification, MobileNetV3, Adamax, Kolmogorov-arnold networks,
Non-local attention module

INTRODUCTION
Image classification, a fundamental and essential task in computer vision, seeks to precisely
recognize and categorize the elements within an image using algorithmic models (Binder,
Müller & Kawanabe, 2012). As technology continues to evolve, this technique has found
extensive applications across numerous domains, significantly contributing to the
advancement of intelligent systems (Chen et al., 2021). In the home furnishing industry,
furniture classification, as an important part of promoting intelligent transformation, has
become increasingly prominent in the context of growing personalized and customized
needs. Visual data of furniture, as a rich and insightful medium, not only conveys essential
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details about the design, materials, and aesthetics but also encapsulates valuable insights
into market trends, consumer tastes, and innovative design. Precise extraction and
strategic application of this information are crucial for enhancing the design workflow,
boosting manufacturing efficiency, and precisely aligning with market needs. Therefore,
exploring efficient and accurate furniture image classification technology has become the
key to promoting the intelligent upgrading of the home furnishing industry and achieving
high-quality development (Ye et al., 2022).

The critical role of furniture image categorization in the smart home sector is growing
increasingly vital, driven by the rising consumer desire for customized and high-quality
living spaces. Although furniture image data, as an important source of visual data,
provides a rich information base for accurate classification and personalized
recommendation of furniture, this process also faces many complexity and technical
problems. The variety of furniture, with its wide array of shapes, intertwines design
elements, materials, and styles, resulting in highly diverse and complex imagery (Hu et al.,
2017). Secondly, the quality and clarity of furniture images are frequently compromised by
various elements, including the perspective from which they are captured, the lighting
during photography, and disruptions in the background. These aspects significantly
complicate the process of categorizing such images. Moreover, for the classification of
furniture imagery, it is crucial to balance both precision and speed. This means that while
maintaining high standards of accuracy, the system must also be capable of swiftly
delivering results to meet the demands of online home goods retailers and physical stores
(Manavis et al., 2024). Consequently, addressing these technical hurdles and achieving a
streamlined, precise classification of furniture images is pivotal for advancing the
industry’s intelligence and improving customer satisfaction.

In the field of home design and manufacturing, furniture image classification is a basic
and crucial task. It not only helps designers and manufacturers to better understand and
organize products, but also provides consumers with a more accurate and personalized
shopping experience. With the continuous development of technology, furniture image
classification methods have also evolved from traditional methods to deep learning
methods.

Conventional approaches to classifying furniture images predominantly hinge on
manually crafted features and classification algorithms. This process typically encompasses
two primary phases: the extraction of features and the categorization itself. During the
feature extraction phase, experts apply their specialized knowledge and techniques to distill
essential attributes like color, texture, and form from the images. These extracted
characteristics then serve as the foundation for the classifiers, which are tasked with
identifying the type of furniture. Among the frequently utilized classifiers are k-nearest
neighbors (k-NN) (Abeywickrama, Cheema & Taniar, 2016), support vector machines
(SVM) (Cortes, 1995), and random forests (RF) (Mitchell & Mitchell, 1997). In literature
(Chao & Li, 2022), K-NN distance entropy was used to screen remote sensing images. In
literature (Adugna, Xu & Fan, 2022), the performance of RF and SVM algorithms in large
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area land cover mapping in some areas of Africa was tested by using coarse resolution
images, and good classification results were obtained. Although these methods have
achieved certain results in some scenarios, they rely heavily on the characteristics of
artificial design, which not only requires rich professional knowledge, but also may not
fully capture the complexity and diversity of furniture images.

Over the past few years, the swift advancement in deep learning, particularly with the
emergence of sophisticated models like convolutional neural networks (CNNs)
(Krizhevsky, Sutskever & Hinton, 2012), has led to significant progress in the classification
of furniture images. Reference Kilic et al. (2023) proposed a novel 2D CNN architecture
with fewer convolutional layers to achieve high accuracy and excellent performance in
wood tree species classification. Reference Dong et al. (2022) used CNN to achieve a good
classification of hyperspectral images. The deep learning method can automatically learn
and extract advanced features from the original data without manual intervention. This
approach enhances both the precision and speed of categorization while also lessening the
reliance on specialized expertise. In the field of furniture image classification, deep learning
models such as AlexNet (Krizhevsky, Sutskever & Hinton, 2012), Visual Geometry Group
(VGG) (Simonyan & Zisserman, 2014), Residual Network (ResNet) (He et al., 2016) have
been widely used and achieved significant performance improvement. These models can
gradually extract the deep features of furniture images by stacking convolution layer,
pooling layer and fully connected layer, so as to achieve more accurate classification.
Compared with traditional algorithms, deep learning algorithms have significantly
improved the accuracy and efficiency of classification in furniture image classification tasks
by automatically learning advanced features, effective computation, robust adaptability,
and the potential to significantly enhance performance when integrated with various
technologies, leading to groundbreaking advancements in furniture image categorization.

Despite the progress achieved in furniture image classification, several critical challenges
remain insufficiently addressed. First, most existing approaches primarily focus on
coarse-grained category or style recognition, while lacking effective modeling of
fine-grained features such as wear patterns, aging traces, and structural details. Second,
although lightweight network architectures offer advantages in computational efficiency,
they often involve a trade-off in classification accuracy, particularly when dealing with
multi-class, style-diverse furniture datasets. Furthermore, there is a noticeable lack of
systematic exploration and integration of attention mechanisms, optimization strategies,
and nonlinear feature modeling techniques within current methods. Therefore, this study
aims to bridge the gap in improving fine-grained classification accuracy of lightweight
models by addressing key limitations in feature attention, training stability, and nonlinear
representation learning.

To address the challenges in furniture image classification—namely insufficient feature
extraction, limited model stability, and inadequate representation of complex visual
patterns—this article proposes a lightweight deep learning model, MobileNetNAK, based
on the MobileNetV3 architecture and integrated with Normalization-based Attention
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Module (NAM), Adamax, and Kolmogorov-Arnold Networks (KANs) modules. While
maintaining model efficiency, MobileNetNAK significantly improves classification
performance. The main contributions of this work are as follows:

(1) Integration of a Normalization-based Attention Module (NAM) to enhance the
model’s sensitivity to key regions in furniture images, such as wear traces, local aging
textures, and structural details. NAM combines both channel and spatial attention
mechanisms with batch normalization scaling factors, guiding the model to focus on
discriminative regions and effectively mitigating the representational limitations of
traditional lightweight models in handling fine-grained features.

(2) Adoption of the Adamax optimizer to improve training stability and convergence
efficiency. In light of the challenges posed by imbalanced class distributions and
high-dimensional feature noise in complex furniture scenes, Adamax leverages the
infinity norm to estimate the second moment of gradients, thereby stabilizing learning
rates and enhancing the model’s robustness and generalization capability under
complex conditions.

(3) Incorporation of the Kolmogorov-Arnold Network (KAN) to strengthen the model’s
ability to capture complex nonlinear features. Unlike traditional linear convolutions,
KANs employ learnable one-dimensional spline mappings to replace fixed activation
functions, effectively enhancing the model’s expressiveness in capturing high-level
semantic variations such as style, material, and structural changes in furniture images,
thus further improving classification accuracy.

By integrating these three key techniques, MobileNetNAK achieves superior
performance in extracting discriminative information from furniture images and
demonstrates state-of-the-art accuracy on two challenging benchmark datasets, offering a
high-precision and cost-effective solution for intelligent visual recognition in the furniture
industry.

The remainder of this article is structured in the following manner. ‘Related Work’
delves into the relevant literature, while ‘Framework’ provides an in-depth overview of the
MobileNetNAK architecture. ‘Experiments’ presents the specifics of the experiments
conducted and their outcomes. The article concludes with a summary of the findings in
‘Conclusions’.

RELATED WORK
Overview of traditional furniture image classification methods
The initial phase of conventional approaches in categorizing furniture images involves the
extraction of key attributes. This process is designed to distill distinctive and informative
elements from the images, enabling the following classification steps to be more precise.
Typically, this includes analyzing color, texture, and form as the primary means to capture
these essential characteristics (Mingqiang, Kidiyo & Joseph, 2008).

Color attributes primarily rely on statistical elements, such as the color histogram and
color moment of furniture images, for classification. These elements can illustrate the
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distribution and variation of colors within furniture images, which is crucial for
differentiating furniture with distinct color styles (Chen, Liu & Chen, 2010). For texture
attributes, methods like the Gray-Level Co-occurrence Matrix (GLCM) (Dhingra &
Bansal, 2020) and Local Binary Pattern (LBP) (Haralick, Shanmugam & Dinstein, 1973)
are employed to extract the surface texture information of furniture. These attributes can
capture the fine details and texture variations on the furniture surface, playing a key role in
distinguishing furniture that has similar colors but different textures (Ojala, Pietikainen &
Maenpaa, 2002). Shape attributes, on the other hand, are derived through techniques such
as edge detection and contour extraction, providing measurements like perimeter, area,
and compactness. These features can reflect the overall shape and contour information of
furniture, and play an important role in distinguishing furniture with different shapes and
structures (Kas, Ruichek & Messoussi, 2021).

Following the extraction of features, conventional approaches necessitate the creation of
suitable classifiers for categorization. SVM, rooted in statistical learning theory, transforms
furniture feature vectors into a high-dimensional space to facilitate classification through
the use of support vectors and kernel functions. While SVM boasts high accuracy and
robust generalization, it can encounter significant computational complexity with large
datasets. Decision trees and random forests leverage decision tree structures to build
classification models, enhancing performance through ensemble learning. Decision trees
are straightforward and quick, but they can be prone to overfitting. Random forests, by
aggregating multiple decision trees and using a voting mechanism, enhance both the
stability and precision of classifications. K-NN classifies based on the proximity of
furniture feature vectors in the feature space, offering simplicity and ease of understanding
without the need for training. However, K-NN can be computationally intensive with large
datasets and may not perform well with high-dimensional data.

Although traditional methods have achieved certain results in furniture image
classification tasks, feature extraction is highly dependent on the experience and expertise
of researchers, which may lead to incomplete or biased feature selection. This will affect the
classification performance and accuracy of subsequent classifiers. Secondly, the traditional
classifier has limited generalization ability in the face of complex and changeable furniture
images. Traditional classifiers are often designed and optimized based on specific
assumptions and models, which are difficult to adapt to large-scale data sets and complex
and changeable furniture images.

Overview of deep learning furniture image classification methods
The technology for categorizing furniture images has long been a critical area of study
within the home furnishings sector. Conventional methods have been utilized for many
years, offering a basic approach to organizing and searching for furniture. However, these
methods often fall short in terms of precision and sophistication. The advent of advanced
artificial intelligence, particularly the surge in deep learning, has opened up fresh
possibilities for this domain. Deep learning algorithms can autonomously derive intricate
features from extensive datasets of furniture images, enabling highly accurate and
intelligent classification.
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On the one hand, classical CNN architectures such as AlexNet, VGG, ResNet are widely
used, and their multi-layer convolution and pooling operations can automatically extract
image features for accurate classification. Reference Wan et al. (2024) introduced a
one-dimensional convolutional neural network that integrates near-infrared spectroscopy
with deep learning methods to identify different types of wood. In Hu et al. (2017), an
improved furniture image automatic classification model DGOVGG16 was proposed by
combining deep grouping over-parametric convolution and VGG16 model, with an
average accuracy of 95.51%.

In the field of furniture image classification, the techniques for feature extraction and
fusion play a crucial role. The use of multi-modal feature extraction has gained significant
attention. Besides conventional visual attributes, multi-modal feature vectors are now
being created by integrating physical properties such as material composition and
dimensions. By employing deep learning models for fusion, a more thorough
representation of furniture characteristics can be achieved, thereby enhancing
classification accuracy. In one study (Yang et al., 2022), micro-CT technology was utilized
to capture detailed images of cross, radial, and tangential sections of 24 Pterocarpus
species. This approach, combined with an extreme learning machine, enabled highly
effective and precise classification of these wood types. Another research (Li et al., 2022)
introduced a multi-level feature extraction framework designed to boost the descriptive
power of point cloud data, resulting in superior classification and semantic segmentation
on various standard datasets.

Data augmentation techniques play a crucial role in addressing the limited size of
furniture image datasets. Conventional approaches to data augmentation encompass a
variety of transformations, such as random cropping, rotation, flipping, and scaling. These
modifications help to diversify the dataset and boost the generalization capabilities of deep
learning models. For instance, by randomly rotating and flipping furniture images, the
model can learn to recognize features from multiple angles, thereby enhancing its
classification accuracy across different viewpoints. Moreover, Generative Adversarial
Networks (GANs) (Goodfellow et al., 2020) have become increasingly popular for data
augmentation. A study (Suh et al., 2021) introduced a classification-enhanced GAN
designed to improve performance in scenarios with imbalanced data. This framework
consists of three distinct networks: a generator, a discriminator, and a classifier, which
collectively outperform standard data augmentation methods in unbalanced conditions.
Another research (Yu & Liu, 2021) presented a novel GAN specifically for augmenting and
enhancing wafer images, tackling issues related to class imbalance and insufficient labeled
data. This GAN can produce synthetic images that closely resemble real furniture, thus
expanding the dataset. By integrating these synthetic images with actual ones during
training, the model’s performance is significantly enhanced, enabling it to better classify
various types of furniture, including different styles and materials.

Model optimization and compression technology have promoted the development of
deep learning models in furniture image classification. Numerous algorithms have been
developed to enhance the speed and precision of model training processes. Variables such
as stochastic gradient descent (SGD) (Duchi, Hazan & Singer, 2011), adaptive gradient

Zhang et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3178 6/29

http://dx.doi.org/10.7717/peerj-cs.3178
https://peerj.com/computer-science/


algorithm (Adagrad), Adadelta, root mean square propagation (RMSProp) and adaptive
moment estimation (Adam) (Kingma, 2014) can adaptively adjust the learning rate to
speed up the convergence. Algorithms that leverage second-order derivatives, like the
Newton and quasi-Newton methods, can refine parameters with greater precision, thereby
enhancing overall performance. In Xue, Tong & Neri (2022), an integrated algorithm of
differential evolution and Adam was proposed to improve the global and local search
ability by parallel evolution of two subpopulations. Experiments show that the algorithm
not only has strong search ability, but also has fast convergence speed.

Shi (2023) proposed an improved bilinear convolutional neural network model that
incorporates a spatial attention mechanism and dual pooling operations to achieve
fine-grained recognition of furniture image styles. The model achieved a recognition
accuracy of 76.4% on the FashionStyle14 dataset, representing a 2-percentage-point
improvement over the original model while significantly reducing the number of
parameters and computational complexity. Tian, Zhao & Li (2025) developed an efficient
automatic furniture image classification model based on an enhanced VGG16 architecture,
integrated with depthwise group over-parameterized convolution (DGOPC). By
introducing Rectified Linear Unit (ReLU) and Leaky-ReLU activation functions, the model
optimized the training process and improved classification performance.

In the field of visual attention, several advanced attention-based networks have recently
emerged to further enhance feature representation capabilities. Cascaded Visual Attention
Network (CVANet) (Zhang et al., 2024) employs a cascade of multiple attention modules,
significantly improving pixel-level detail reconstruction and achieving notable
performance gains in image super-resolution tasks. In addition, Generate Adversarial-
driven Cross-Aware Network (GACNet) (Zhang et al., 2023) integrates a semi-supervised
generative adversarial framework with cross-perception attention modules, enabling joint
attention to spectral, spatial, and textural features, and has demonstrated superior
performance in recognition tasks.

Deep learning has obvious advantages in furniture image classification tasks. First, it can
automatically learn the high-level feature representation of furniture images, overcome the
subjectivity and incompleteness of traditional feature extraction methods, and have
stronger adaptability and robustness in the face of complex and changeable furniture
images. Secondly, the deep learning model exhibits robust generalization capabilities. Once
trained on extensive datasets, it can effectively capture the overarching feature
representations and classification principles of various furniture types. This allows it to
precisely categorize and recognize new furniture images that it has not encountered before.

FRAMEWORK
As a lightweight convolutional neural network model launched by Google, MobileNetV3 is
designed for mobile devices and embedded systems (Howard et al., 2019). The overall
structure of MobileNetV3 is shown in Fig. 1. It inherits the core idea of the MobileNet
series—deep separable convolution. This convolution technique substantially decreases the
computational load and the quantity of model parameters, enabling the model to
sustain high performance while drastically cutting down on computational demands and
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memory usage. Furthermore, MobileNetV3 has incorporated innovative design
approaches, including the integration of the Squeeze-and-Excitation module from
Squeeze-and-Excitation Network (SENet) and the introduction of updated activation
functions like h-swish. These enhancements allow for dynamic adjustment of the
importance of each channel in the feature map, boosting the network’s representational
power. This, in turn, facilitates more efficient information propagation during the training
phase, leading to faster convergence and improved generalization.

Because of its high efficiency, light weight and high precision, MobileNetV3 has become
an ideal choice for furniture image classification tasks, which meets the requirements of
real-time, accuracy and portability. The application of MobileNetV3 in furniture image
classification is expected to promote technological progress and application development,
and support the intelligence and automation of the furniture industry.

Based on the MobileNetV3 algorithm, we innovatively propose a new furniture image
classification algorithm MobileNetNAK by skillfully combining advanced technical means
such as NAM, Adamax and KANs. The algorithm not only inherits the advantages of
MobileNetV3, such as high efficiency, lightweight and high precision, but also further
enhances the capture ability and classification accuracy of the model for furniture image
features. Figure 2 shows the overall framework of MobileNetNAK algorithm, which clearly
shows the collaborative work between modules and jointly promotes the performance
improvement of furniture image classification tasks.

NAM
The Normalization-based Attention Module (NAM) (Liu et al., 2021) is an innovative
attention mechanism design. By introducing normalization operations, it aims to allocate
attention weights more effectively, thereby improving the model’s ability to extract and
utilize key features of input data (such as images, texts, etc.). The primary goal is to address
the challenges that arise during feature selection and data integration in conventional
attention mechanisms. NAM integrates channel attention with spatial attention to achieve
this, and uses the scaling factor of batch normalization (BN) (Ioffe, 2015) to measure the
importance of channels and pixels, so as to achieve effective recognition and utilization of
features.

The key aspect of NAM lies in its distinctive attention computation, which leverages
normalization and integrates both channel and spatial attention. Unlike conventional

Figure 1 MobileNetV3 overall structure diagram. Full-size DOI: 10.7717/peerj-cs.3178/fig-1
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attention methods, NAM refrains from employing fully connected and convolutional
layers, thereby enhancing computational efficiency. Furthermore, NAM enforces a sparsity
constraint on the attention weights, diminishing less important weights through a
regularization term in the loss function. This approach bolsters the model’s generalization
and efficiency. By merging two sub-modules that address channel and pixel-level features,
NAM can more effectively capture a wide range of feature information, leading to
improved accuracy in feature extraction and classification.

The channel attention sub-module is shown in Fig. 3, a is the scale factor of each
channel, the weight wi is shown in Formula (1), and the output feature Mc is shown in
Formula (2).

wi ¼ aiP
j¼0 aj

(1)

Mc ¼ sigmoid Wa BN F1ð Þð Þð Þ: (2)

Figure 2 MobileNetNAK overall structure diagram. Full-size DOI: 10.7717/peerj-cs.3178/fig-2

Figure 3 Channel attention sub-module. Full-size DOI: 10.7717/peerj-cs.3178/fig-3
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The spatial attention sub-module is shown in Fig. 4, l is the scale factor, the weight wi is
shown in Formula (3), and the output feature Ms is shown in Formula (4).

wi ¼ giP
j¼0 gj

(3)

Ms ¼ sigmoid Wg BN F2ð Þð Þ� �
: (4)

With its high efficiency, accuracy and unique attention mechanism, NAM has become
the preferred technology in furniture image classification tasks. Not only does it
substantially boost the precision of classification and strengthen the model’s resilience, but
it also diminishes the computational expenses and simplifies integration and scalability.
Therefore, we choose to use NAM to bring more efficient and accurate solutions to
furniture image classification tasks through its advantages.

In furniture image classification, NAM enables the model to more accurately capture
key features such as texture, color, and shape. This method improves the model’s ability to
identify essential characteristics, thereby enhancing classification accuracy. It substantially
elevates the accuracy of classification, strengthens the model’s resilience, and
simultaneously decreases computational expenses. Additionally, it is straightforward to
integrate and scale. Therefore, we choose to use NAM to bring more efficient and accurate
solutions to furniture image classification tasks through its advantages.

Adamax optimizer
The Adam algorithm is equivalent to introducing the temporary gradient idea of the
Nestrov momentum method into the adaptive moment estimation algorithm. In each
calculation of the gradient, a temporary update of the parameter is obtained first. After the
parameter is temporarily updated, the temporary gradient is calculated. The initial
momentum and the subsequent momentum are gauged using a provisional gradient. The
provisional values of the initial and subsequent momentums are then utilized to determine
the parameter adjustments.

The Adamax optimizer is an advanced version of the Adam optimization algorithm.
Adam integrates the benefits of the Nesterov momentum technique and the RMSProp
method, adapting the learning rate for each parameter through the computation of the first
and second moment estimates of the gradient. Adamax builds upon this by specifically
refining the handling of the learning rate’s upper limit.

Figure 4 Spatial attention sub-module. Full-size DOI: 10.7717/peerj-cs.3178/fig-4
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The essence of the Adamax optimizer lies in altering the learning rate adjustment
mechanism within the Adam algorithm. The detailed Adam algorithm can be found in
Kingma (2014). Adamax uses an infinite norm to estimate the second moment
(i.e., variance) of the gradient, thus obtaining a more conservative (i.e., not too fast)
learning rate update strategy.

Vt and qt are the first moment (mean) and the second moment (non-central variance)
estimates of the gradient, respectively. We use ht to denote the infinite norm constrained
qt :

ht ¼ f12 qt�1 þ 1� f12
� �

stj j1: (5)

Substitute it into the Adam update Eq. (2) and replace it with ht to get the Adamax
update rule as shown in Type 3:

#tþ1 ¼ #t � gffiffiffiffiffiffiffiffiffiffiffiffi
q̂t þ e

p V̂t (6)

#tþ1 ¼ #t � g
ht
V̂t: (7)

The characteristics and advantages of the Adamax optimizer are that it uses the infinite
norm for second-order moment estimation, thereby achieving effective control of the
upper bound of the learning rate and avoiding the problem of training stagnation caused
by too fast reduction of the learning rate. In contrast to Adam and other optimization
methods, Adamax demonstrates greater reliability during training, particularly when
handling extensive datasets and intricate models. In addition, the sensitivity of Adamax to
hyperparameters (such as learning rate, decay rate, etc.) is relatively low, which enables it to
maintain strong applicability in different tasks and models, and provides an efficient and
reliable optimization method for deep learning model training.

We utilize the Adamax optimizer for the furniture image classification, which
substantially enhances the stability and efficiency of the training. It effectively addresses
issues such as slow convergence and the tendency to get stuck in local optima during the
training process. By dynamically adjusting the learning rate for each parameter, Adamax
can speed up model convergence and mitigate the risk of settling into suboptimal
solutions. In addition, the low sensitivity of Adamax to hyperparameters also makes it
more robust in furniture image classification tasks, and can maintain stable performance
under different data sets and model architectures. Therefore, the use of Adamax optimizer
can further improve the accuracy and generalization ability of furniture image
classification tasks.

Kolmogorov-arnold networks
KANs is inspired by the Kolmogorov-Arnold theorem, which states that if f is a
multivariate continuous function on a bounded domain, then f can be written as a finite
combination of univariate continuous function addition binary operations. This
representation theorem provides a solid theoretical basis for the structural design of neural
networks, indicating that complex multivariable functions can be represented by a
combination of univariate functions.
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Similar to Multi-Layer Perceptron (MLP), KANs also have a fully connected structure.
However, the main difference between them is the application location of the activation
function. In MLP, activation functions are placed on nodes (neurons), while in KANs,
activation functions are placed on edges (weights), and these activation functions are
learnable. Therefore, the KANs network has no linear weight matrix at all, and each weight
parameter is replaced by a learnable one-dimensional spline function. Specifically, the
nodes of KANs only sum the input signals without any nonlinear processing. Each weight
parameter (i.e., the edge) is represented by a learnable one-dimensional spline function
that maps the input directly to the output without the need for intermediate weighted sum
and subsequent universal activation. The KANs structure diagram is shown in Fig. 5.

In KANs, the initial input vector is fed into the network, after which every input variable
is distributed to each neuron within the hidden layer. Each of these neurons in the hidden
layer computes the individual function output for all the input variables it receives and
aggregates these outputs. A univariate activation function is then utilized to introduce
nonlinearity. Subsequently, the outputs from all the hidden layer neurons are combined
through a weighted sum to produce the final output. The resultant output for the
shallow KANs model is detailed in Eq. (8), while the deep KANs model’s output is
provided in Eq. (8).

h xð Þ ¼ h x1;…; xnð Þ ¼
X2nþ1

m¼1

f
Xn
v¼1

fm;v xvð Þ
 !

: (8)

The above formula is for smooth h : 0; 1½ �n ! R, where [m;v : 0; 1½ � and
KAN xð Þ ¼ fI�1

�fI�2
� . . . �f1

�f0ð Þx (9)

where �i is the function matrix corresponding to the layer i KAN, the general KAN
network is a combination of layer I, given an input vector x0 2 Rn0 .

Figure 5 KANs structure diagram. Full-size DOI: 10.7717/peerj-cs.3178/fig-5
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KANs are introduced to further enhance the feature extraction ability of MobileNetV3,
especially when dealing with complex image data. KANs can solve the problem that
traditional convolution operations may have insufficient feature extraction capabilities
when dealing with complex image data. By introducing new convolution operations or
network structures, KANs can learn richer feature representations, thereby improving the
classification performance of the model. At the same time, KANs may also help the model
maintain high recognition performance when dealing with furniture images with complex
texture, shape or color changes.

EXPERIMENTS
Datasets and evaluation metrics
The furniture image classification task in this study involves two datasets. Dataset 1
includes furniture of varying ages, categorized into three classes as shown in Fig. 6: (A)
nearlyNewFurniture, with 317 images; (B) newFurniture, with 325 images; and (C)
oldFurniture, with 303 images. The new furniture images were primarily sourced from
brand-new furniture stores and online retailers, with the selected images featuring
furniture without any signs of use. The nearly new furniture images were collected from
the second-hand market, focusing on items with a freshness rating of over 90%, showing
slight signs of use but no visible damage. The old furniture images were obtained from
waste disposal stations and second-hand furniture markets, showcasing items with
significant signs of use and visible damage. Dataset 2 is the Bonn Furniture Style dataset

Figure 6 Data set example diagram. Full-size DOI: 10.7717/peerj-cs.3178/fig-6
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(Aggarwal et al., 2018), as shown in Fig. 6D, which includes six types of furniture: bed,
chair, vanity, lamp, sofa, and table, and encompasses 17 different furniture styles. For the
experimental dataset, approximately 1,000 images were randomly selected from each of the
17 styles, resulting in a total of 6,592 images.

The two datasets were divided into training, testing, and validation sets in an 8:1:1 ratio,
with the validation set used during training and the testing set for model evaluation. The
datasets exhibit a relatively balanced distribution of samples across categories, and the
images cover a wide variety of furniture styles and designs. This ensures stability and
fairness during the training and evaluation process, while also providing a rich and reliable
data foundation for model validation experiments.

The proposed MobileNetNAK algorithm was comprehensively evaluated
through comparisons with a variety of baseline methods to validate its performance
in the task of furniture image classification. The baseline models include Locally Adaptive
Network-based Support Vector Machine (LA-NSVM), Vision Restoration Transformer
(VRT), Spatial Uncertainty Network (SUNet), Semantic Knowledge Distillation (SKD),
Residual Attention Network (RAN), ResNet18, Lzy University of North Carolina at Charlotte
(LzyUNCC), M-Net, MobileNetV3, and Self-Interaction Network (SINet), covering
traditional methods, lightweight networks, and mainstream deep learning architectures.

In addition, to further assess the generalization and effectiveness of the proposed
improvements, we integrated the three core components of the NAK module into three
widely adopted backbone architectures—Xception, ResNet18, and EfficientNet—resulting
in the XceptionNAK, ResNet18NAK, and EfficientNetNAK models, respectively. A
comparative analysis was then conducted between these models and MobileNetNAK. The
performance changes before and after the integration of the NAK module across different
architectures further demonstrate the adaptability and efficacy of the proposed
MobileNetNAK method in furniture image classification tasks.

In this experiment, we use a variety of evaluation indicators to comprehensively
evaluate the performance of each algorithm for the furniture image classification task.
These indicators include accuracy, precision, recall and F1-score. These indicators are used
to measure the consistency between the predicted results of the classification model and
the actual labels, as well as the comprehensive performance of the model in the furniture
image classification task.

Accuracy is an important index to measure the consistency between the prediction
results of the classification model and the actual labels, which aims to reflect the proportion
of the correctly predicted samples in the total samples. Its calculation formula is:

Accuracy ¼ TP þ TN
TP þ FP þ TN þ FN

: (10)

Among them, TP represents the sample that is predicted to be true and is actually true,
FP represents the sample that is predicted to be true and is actually false, TN represents the
sample that is predicted to be false and is actually false, FN represents the sample that is
predicted to be false and is actually true. In the task of furniture image classification, the
accuracy rate reflects the overall classification ability of the model for all categories of
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furniture images, and is the basic index to evaluate the performance of the model. For
example, if the model has a high accuracy in classifying furniture such as chairs, tables and
sofas, it shows that the model can better identify these furniture categories.

The precision rate is a measure of the proportion of the model that is actually positive in
the samples that are predicted to be positive. It reflects the Precision of the model to predict
the positive class, and avoids misjudging the negative class samples as the positive class. Its
calculation formula is:

Precision ¼ TP
TP þ FP

: (11)

In the classification of furniture images, the precision rate is particularly suitable for
scenes that focus on reducing false positives. For example, when classifying chairs,
the high precision rate means that the model rarely misjudges the table or sofa as a chair.
This is very important to ensure the reliability of the classification results, especially in
application scenarios that require high precision, such as furniture recommendation
systems.

Recall rate is a measure of the proportion of models that are correctly predicted to be
positive in samples that are actually positive. It reflects the model’s ability to identify
positive samples and avoid false negatives. Its calculation formula is:

Recall ¼ TP
TP þ FN

: (12)

In furniture image classification, the recall rate is especially suitable for scenes that focus
on reducing underreporting. For example, when classifying tables, the high recall rate
means that the model can identify most of the samples that are actually tables and avoid
missing important classification results. This is very important to ensure the integrity of
the classification results, especially in application scenarios that require full coverage, such
as furniture inventory management systems.

F1-score is the harmonic mean of precision and recall, which is used to comprehensively
evaluate the performance of the model. It strikes a balance between precision and recall to
avoid the one-sidedness of a single indicator. Its calculation formula is:

F1-score ¼ 2� Precision� Recall
Precisionþ Recall

: (13)

In the task of furniture image classification, F1-score is suitable for scenes that need to
focus on both precision and recall. For example, when classifying sofas, a high F1-score
means that the model performs well in reducing both false positives and false negatives,
balancing the accuracy and completeness of the classification. This is very important for
application scenarios that require comprehensive performance, such as the user search
experience in furniture classification applications. In addition, to evaluate the
computational efficiency of the model, we introduce frames per second (FPS) as an
evaluation metric.

Our experiment is completed in the Windows11 system. The algorithm is implemented
in Python language on the PyCharm 2022 platform.
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Experimental environment and settings
The experiments were conducted on a Windows 11 operating system using the PyCharm
2022 environment and implemented in Python 3.9. The hardware platform consisted of a
computer equipped with an Intel(R) Core(TM) i7-7500U CPU @ 2.70 GHz and 8 GB of
RAM, without GPU acceleration. The deep learning framework used was PyTorch 1.13.1,
with key dependencies including NumPy 1.24.2, torchvision 0.14.1, matplotlib 3.7.0,
seaborn 0.12.2, and tqdm 4.65.0. To ensure reproducibility, a fixed random seed of 42 was
used, and Xavier uniform initialization was applied to all model parameters.

The model architecture was based on MobileNetV3-Large. During the experiments, we
loaded MobileNetV3 pretrained weights from the ImageNet dataset and applied a transfer
learning strategy. Specifically, the original feature extraction structure was retained, while
the classification head was restructured, and the entire network was fine-tuned end-to-end.
The parameters of the feature extraction part were not entirely frozen, allowing them to
participate in backpropagation to improve adaptability to the target task.

All input images in the training, validation, and testing phases were preprocessed
consistently using resizing (256 × 256) and center cropping (224 × 224), without applying
any random data augmentation strategies. During training, confusion matrices were used
to compute per-class accuracy, precision, recall, and F1-score, providing a comprehensive
evaluation of model performance. The final evaluation was performed using the model that
achieved the highest validation accuracy, ensuring the reliability and stability of the
experimental results.

Comparative experiments
Figures 7 and 8 present the comparative experimental results on Dataset 1 and Dataset 2,
respectively, using point-line plots to visualize the performance of different algorithms
across four evaluation metrics: accuracy, precision, recall, and F1-score. The horizontal
axis represents the compared algorithms, while the vertical axis denotes the metric values,
ranging from 0.60 to 0.95.

As shown in Fig. 7, with the continuous evolution of model architectures, all four
metrics demonstrate a consistent upward trend. Traditional methods such as LA-NSVM
and VRT show relatively low performance, with F1-scores of 0.643 and 0.648, respectively.
In contrast, deep learning-based models like ResNet18, MobileNetV3, and SINet exhibit
substantial improvements. Upon integrating the proposed NAK modules, models such as
ResNet18NAK, XceptionNAK, EfficientNetNAK, and especially MobileNetNAK achieve
further enhancements. Among them, MobileNetNAK records the highest performance
across all four metrics (Accuracy = 0.904, F1-score = 0.901), indicating the strong
compatibility between the proposed improvements and the lightweight backbone
architecture.

Figure 8 illustrates the results on Dataset 2, which involves more categories and greater
stylistic variation, thereby posing a more challenging classification task. It can be observed
that traditional methods still fall significantly behind deep learning models, while
lightweight or efficient architectures such as MobileNetV3 and SINet achieve relatively
strong performance. With the integration of the NAK modules, most models exhibit
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noticeable performance gains. In particular, MobileNetNAK achieves the best overall
performance with accuracy and F1-score reaching 0.948, markedly surpassing other
models. These results highlight the synergistic effectiveness of the NAM attention
mechanism, Adamax optimizer, and KANs architecture in handling complex visual tasks,
significantly enhancing the model’s ability to perceive fine-grained multi-class features and
improving classification precision.

Tables 1 and 2 present the comparative experimental results of multiple models on the
Furniture Age Classification Dataset (Dataset 1) and the Bonn Furniture Style Dataset
(Dataset 2), respectively.

On Dataset 1, traditional models such as LA-NSVM and VRT show limited
performance, with F1-scores of only 0.643 and 0.648, respectively. In contrast, deep
convolutional models like ResNet18 and M-Net achieve substantial improvements,
reaching F1-scores of 0.779 and 0.802. As a lightweight backbone network, MobileNetV3
further improves performance with an F1-score of 0.835. Upon integrating the proposed
NAK modules, several mainstream networks such as XceptionNAK and EfficientNetNAK
exhibit varying degrees of performance enhancement. Among them, MobileNetNAK
achieves the best results with an accuracy of 0.904, outperforming all other compared
models. This confirms the high compatibility between the proposed method and the
MobileNetV3 architecture.

Figure 7 Performance comparison of different methods on Dataset 1.
Full-size DOI: 10.7717/peerj-cs.3178/fig-7
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Figure 8 Performance comparison of different methods on Dataset 2.
Full-size DOI: 10.7717/peerj-cs.3178/fig-8

Table 1 Method comparison on Dataset 1 (Furniture age classification dataset).

Models/Metrics Accuracy Precision Recall F1-score

LA-NSVM 0.662 0.651 0.634 0.643

VRT 0.672 0.661 0.648 0.648

SUNet 0.711 0.701 0.689 0.696

SKD 0.740 0.730 0.718 0.719

RAN 0.775 0.765 0.757 0.760

ResNet18 0.798 0.788 0.782 0.779

LzyUNCC 0.803 0.793 0.790 0.791

M-Net 0.808 0.807 0.803 0.802

MobileNetV3 0.839 0.838 0.837 0.835

SINet 0.866 0.865 0.864 0.862

XceptionNAK 0.891 0.874 0.869 0.871

ResNet18NAK 0.842 0.839 0.830 0.827

EfficientNetNAK 0.889 0.870 0.865 0.882

MobileNetNAK 0.904 0.902 0.900 0.901
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On the more challenging Dataset 2, the baseline MobileNetV3 already demonstrates
strong performance with an accuracy of 0.869 and an F1-score of 0.868. After
incorporating the NAK modules, XceptionNAK and EfficientNetNAK achieve further
improvements, reaching F1-scores of 0.914 and 0.907, respectively. Notably, the proposed
MobileNetNAK model again achieves the highest performance with an accuracy and
F1-score of 0.948, demonstrating robust and stable performance in the multi-class
furniture style recognition task.

Taken together, the results from both datasets indicate that the proposed modules offer
complementary advantages: enhancing the model’s ability to focus on key visual regions,
stabilizing the training process, and improving nonlinear feature representation. These
enhancements significantly boost the model’s effectiveness in fine-grained furniture image
classification and demonstrate strong adaptability and generalization across different task
settings.

Ablation experiments
Figure 9 illustrates the impact of different module combinations on classification accuracy
on the Furniture Age Classification Dataset (Dataset 1). The x-axis represents four model
configurations: MobileNetV3, MobileNetV3-NAM, MobileNetV3-NAM-Adamax, and
the final model MobileNetNAK. As shown, model performance improves progressively
with the integration of each proposed component. The baseline MobileNetV3 model
achieves an accuracy of 0.837. With the addition of the NAM module, accuracy
significantly increases to 0.874, indicating that NAM effectively enhances the model’s
ability to focus on critical features such as wear and aging patterns. Incorporating the

Table 2 Method comparison on Dataset 2 (Bonn furniture style dataset).

Models/Metrics Accuracy Precision Recall F1-score

LA-NSVM 0.702 0.691 0.688 0.687

VRT 0.711 0.705 0.689 0.700

SUNet 0.747 0.738 0.729 0.732

SKD 0.768 0.759 0.754 0.749

RAN 0.800 0.797 0.788 0.790

ResNet18 0.822 0.816 0.810 0.812

LzyUNCC 0.828 0.811 0.818 0.819

M-Net 0.835 0.830 0.827 0.828

MobileNetV3 0.869 0.868 0.867 0.868

SINet 0.890 0.888 0.887 0.886

XceptionNAK 0.922 0.915 0.913 0.914

ResNet18NAK 0.871 0.868 0.863 0.864

EfficientNetNAK 0.918 0.910 0.908 0.907

MobileNetNAK 0.948 0.947 0.949 0.948
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Adamax optimizer further improves the accuracy to 0.893, demonstrating its effectiveness
in stabilizing the training process and accelerating convergence. Finally, the integration of
the KANs module leads to the highest accuracy of 0.904, validating the synergistic effect of
the three modules in modeling complex visual patterns.

To ensure the reliability of the results, each configuration was evaluated over three
independent runs, and the average performance metrics were reported. Furthermore,
paired t-tests were conducted to assess statistical significance. The results show that the
performance improvements of MobileNetNAK over the baseline MobileNetV3 in terms of
both accuracy and F1-score are statistically significant (p < 0.01), indicating that the
enhancements are not due to random variation.

Figure 10 presents the ablation study on the Bonn Furniture Style Dataset (Dataset 2),
which involves a more complex classification task with a greater number of categories and
more pronounced stylistic differences. On this dataset, the baseline MobileNetV3 achieves
an accuracy of 0.921. After incorporating all three modules, the proposed MobileNetNAK
model reaches the highest accuracy of 0.948. Results obtained from repeated experiments
confirm that the three proposed techniques—NAM, Adamax, and KANs—exhibit strong
generalization capability and complementary advantages in recognizing fine-grained
features across diverse furniture styles. Their integration significantly enhances the model’s
classification accuracy and stability, particularly under complex and visually challenging
scenarios.

Figure 9 Ablation study results on Dataset 1. Full-size DOI: 10.7717/peerj-cs.3178/fig-9
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Tables 3 and 4 present the ablation results conducted on two different datasets: the
Furniture Age Classification Dataset (Dataset 1) and the Bonn Furniture Style Dataset
(Dataset 2). The experiments focus on evaluating the performance impact of three key
improvement modules proposed in this article: the NAM, the adaptive optimizer

Figure 10 Ablation study results on Dataset 2. Full-size DOI: 10.7717/peerj-cs.3178/fig-10

Table 3 Ablation results on Dataset 1 (Furniture age classification dataset).

NAM Adamax KANs Accuracy Precision Recall F1-score FPS

× × × 0.837 0.836 0.834 0.835 213.54

✓ × × 0.874 0.871 0.869 0.870 119.98

✓ ✓ × 0.893 0.891 0.890 0.890 159.64

✓ ✓ ✓ 0.904 0.902 0.900 0.901 147.80

Table 4 Ablation results on Dataset 2 (Bonn furniture style dataset).

NAM Adamax KANs Accuracy Precision Recall F1-score FPS

× × × 0.921 0.923 0.922 0.919 213.54

✓ × × 0.932 0.933 0.933 0.931 119.98

✓ ✓ × 0.933 0.932 0.934 0.932 159.64

✓ ✓ ✓ 0.948 0.947 0.949 0.948 147.80

Zhang et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3178 21/29

http://dx.doi.org/10.7717/peerj-cs.3178/fig-10
http://dx.doi.org/10.7717/peerj-cs.3178
https://peerj.com/computer-science/


(Adamax), and the KAN. Different combinations of these modules are used to assess their
effect on model performance. A “×” indicates the module is not used, while a “✓” indicates
it is applied. Performance metrics include accuracy, precision, recall, and F1-score.

As shown in Tables 3 and 4, for Dataset 1, the baseline model achieves significant
improvement after integrating the NAM module, with accuracy increasing to 0.874. This
indicates that the NAM module can effectively enhance the model’s ability to
capture key features such as wear and usage traces. With the further addition of the
Adamax optimizer, accuracy increases to 0.893, verifying its advantages in training
stability and convergence efficiency. The final MobileNetNAK model achieves an accuracy
of 0.904 and an F1-score of 0.901. Compared with the baseline model, the overall
performance improves significantly, demonstrating the synergistic optimization effect of
the three modules.

For Dataset 2, a more challenging furniture style classification task, the accuracy of the
baseline model rises to 0.932 after incorporating the NAM module. With the addition of
the Adamax optimizer, accuracy slightly improves to 0.933. When all three improvements
are applied, the accuracy reaches 0.948. Although the performance improvement is smaller
than that in Dataset 1, it still shows good gains in the recognition of six furniture categories
with 17 complex styles, further validating the generalization ability and stability of the
proposed method across different task contexts.

The ablation results on both datasets fully demonstrate that: the NAM module
significantly improves the model’s ability to extract key features; the Adamax optimizer
enhances training stability and convergence speed; and the KANs module strengthens the
modeling of nonlinear features. The MobileNetNAK model, which integrates all three
modules, performs excellently under various data distributions and task difficulties,
verifying the generality and effectiveness of the proposed method.

In the experiments, to further evaluate the computational efficiency of the model during
inference, we conducted five independent inference tests for each model configuration
after training was completed. The average inference speed was calculated to obtain a stable
FPS value. As shown in the results, the baseline MobileNetV3 achieved the highest
inference speed, with an average of 213.54 fps, demonstrating the efficiency of its
lightweight architecture. After integrating the NAMmodule, the inference speed decreased
to 119.98 fps. With the addition of the Adamax optimizer, the FPS increased to 159.64.
Finally, after incorporating the KANs module, the MobileNetNAK model achieved an
average FPS of 147.80, still maintaining a high inference efficiency and effectively
balancing accuracy with computational performance.

Although the proposed modules introduced a slight increase in computational
overhead, they significantly improved classification performance while
maintaining favorable real-time inference speed, indicating strong potential for practical
deployment.

Experimental results
Figure 11 illustrates the confusion matrix results on Dataset 1, comparing the classification
accuracy and misclassification patterns across three categories: “new,” “nearly new,” and
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“old.” In the baseline MobileNetV3 model, the diagonal values corresponding to correct
classifications are 31, 28, and 19, respectively. This indicates a noticeably lower accuracy in
recognizing the “old” category, suggesting considerable confusion between similar classes.

With the introduction of the NAMmodule, the model’s ability to classify “old” furniture
improves significantly, increasing the number of correctly classified samples from 19 to 24.
This improvement is attributed to the normalized attention mechanism embedded in
NAM, which enhances the model’s focus on critical regions—particularly those exhibiting
usage traces and localized damage—thus improving the distinction between “nearly new”
and “old” items.

Figure 11 Confusion matrix performance under different improvement strategies. Full-size DOI: 10.7717/peerj-cs.3178/fig-11
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Building on this, the incorporation of the Adamax optimizer further increases the
correct predictions for the “old” class to 26. This confirms Adamax’s effectiveness in
stabilizing the training process and mitigating gradient oscillations, allowing the model to
better capture fine-grained differences between categories and enhancing its generalization
capability.

Finally, with the integration of the KANs module, the MobileNetNAK model achieves
correct classification counts of 29, 30, and 25 for the “new,” “nearly new,” and “old”
categories, respectively, demonstrating improved overall balance. By employing learnable
univariate spline functions, KANs enhance the model’s nonlinear representation capacity,
particularly for subtle visual cues such as aging textures and wear patterns, which are
crucial for fine-grained classification. Through the combined use of NAM, Adamax, and
KANs, MobileNetNAK exhibits significantly improved class discrimination and overall
robustness in furniture image classification tasks, especially in differentiating between
visually similar categories.

Figure 12 illustrates the confusion matrix results on Dataset 2 under various model
enhancement strategies, aiming to analyze the strengths and limitations of each model in
multi-class furniture image recognition tasks.

In the baseline MobileNetV3 model, substantial misclassification is observed for the
“chairs” category: only 81 samples are correctly classified, while 17 samples are erroneously
predicted as “sofas” and 4 as “tables”. This indicates a clear challenge in distinguishing
between classes with similar structural or stylistic features. With the integration of the
NAM, the model’s recognition performance is significantly improved for categories such as
“dressers”, “beds”, and “sofas”. Specifically, the classification accuracy for “chairs”
increases from 81 to 93, and for “dressers” from 104 to 105. NAM enhances the model’s
ability to focus on key structural regions within an image by combining channel and spatial
attention mechanisms. Leveraging the sparsity of batch normalization scaling factors, the
module improves feature selectivity and reduces misclassification among categories with
similar textures.

Building upon this, the inclusion of the Adamax optimizer further enhances the
model’s performance, particularly for the “tables” category, where the number of
correctly classified samples rises to 97. Moreover, non-diagonal entries for “chairs”
and “dressers” become noticeably sparser. By employing the infinity norm for
estimating the second moment of gradients, Adamax improves training stability and
convergence speed, thereby enhancing generalization, especially under imbalanced class
distributions.

Finally, the MobileNetNAK model, incorporating all three enhancements—NAM,
Adamax, and KANs—achieves the most concentrated diagonal values across all
categories. The model exhibits substantially improved discrimination for visually
similar classes such as “chairs”, “tables”, and “sofas”, with the respective correct
classification counts increasing to 94, 95, and above 95. The integration of KANs
introduces learnable univariate spline mappings to replace traditional linear weights, thus
enhancing the model’s nonlinear representation capacity. This is particularly effective in
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capturing complex textures, contour variations, and fine-grained structural details in
furniture images.

In summary, the three proposed modules—NAM, Adamax, and KANs—jointly
contribute to a complementary synergy in visual attention, training optimization, and
nonlinear feature modeling. Their integration not only significantly reduces cross-category
misclassification in challenging cases but also improves the overall performance and
stability of the model in fine-grained furniture image recognition tasks. These results
comprehensively validate the effectiveness and generalizability of the proposed
MobileNetNAK framework.

Figure 12 Confusion matrix performance under different improvement strategies. Full-size DOI: 10.7717/peerj-cs.3178/fig-12
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CONCLUSIONS
This article deeply studies the task of furniture image classification, aiming to improve the
classification performance by introducing innovative technical means. Based on the full
investigation and analysis of the existing algorithms, this article proposes an improved
algorithmMobileNetNAK based on MobileNetv3. The algorithm combines NAMmodule,
Adamax optimizer and KANs, so that the model can capture the key features in the image
more accurately, which not only accelerates the convergence speed of the model, but also
improves the stability and classification performance of the training. It can further enrich
the feature representation ability of the model, which can capture more subtle and complex
feature information in the image, thereby further improving the classification effect. The
joint application of these techniques significantly enhances the feature extraction ability
and classification performance of the model. Through detailed experimental verification,
the MobileNetNAK algorithm has achieved significant performance improvement in the
furniture image classification task, which verifies the effectiveness of each technical means
and the synergy between them. MobileNetNAK not only performs well in overall
classification accuracy, but also has significant advantages in accurate identification of
positive cases, comprehensive recall and comprehensive balance. Moreover, while
maintaining high classification accuracy, MobileNetNAK achieves an inference speed of
147.80 FPS, demonstrating excellent computational efficiency and real-time
responsiveness. The proposed method is not only suitable for academic evaluation
scenarios but also exhibits strong deployment potential in practical applications within the
furniture industry, particularly in scenarios such as intelligent quality inspection,
automatic categorization, and online recommendation, where both real-time performance
and accuracy are crucial. The research in this article not only provides a new solution for
furniture image classification, but also provides a useful reference for image classification
tasks in other related fields, showing its application potential and promotion value in
complex image classification tasks.
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