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ABSTRACT

Class imbalance remains a significant challenge in machine learning, leading to
biased models that favor the majority class while failing to accurately classify
minority instances. Traditional oversampling methods, such as Synthetic Minority
Over-sampling Technique (SMOTE) and its variants, often struggle with class
overlap, poor decision boundary representation, and noise accumulation. To address
these limitations, this study introduces ClusterDEBO, a novel hybrid oversampling
method that integrates K-Means clustering with differential evolution (DE) to
generate synthetic samples in a more structured and adaptive manner. The proposed
method first partitions the minority class into clusters using the silhouette score to
determine the optimal number of clusters. Within each cluster, DE-based mutation
and crossover operations are applied to generate diverse and well-distributed
synthetic samples while preserving the underlying data distribution. Additionally, a
selective sampling and noise reduction mechanism is employed to filter out
low-impact synthetic samples based on their contribution to classification
performance. The effectiveness of ClusterDEBO is evaluated on 44 benchmark
datasets using k-Nearest Neighbors (kNN), decision tree (DT), and support vector
machines (SVM) as classifiers. The results demonstrate that ClusterDEBO
consistently outperforms existing oversampling techniques, leading to improved
class separability and enhanced classifier robustness. Moreover, statistical validation
using the Friedman test confirms the significance of the improvements, ensuring that
the observed gains are not due to random variations. The findings highlight the
potential of cluster-assisted differential evolution as a powerful strategy for handling
imbalanced datasets.

Subjects Algorithms and Analysis of Algorithms, Computer Education, Data Mining and Machine
Learning, Data Science

Keywords Imbalanced datasets, Oversampling, Differential evolution, K-Means clustering,
Synthetic sample generation

INTRODUCTION

Class imbalance is a pervasive issue in machine learning, significantly affecting the
performance of classification models by biasing predictions toward the majority class while
neglecting the minority class (Haixiang et al., 2017). This challenge is particularly critical

How to cite this article Karabiyik MA, Turkoglu B, Asuroglu T. 2025. A cluster-assisted differential evolution-based hybrid oversampling
method for imbalanced datasets. Peer] Comput. Sci. 11:e3177 DOI 10.7717/peerj-cs.3177


http://dx.doi.org/10.7717/peerj-cs.3177
mailto:tunc.�asuroglu@�tuni.�fi
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.3177
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

PeerJ Computer Science

in high-impact applications such as medical diagnosis, fraud detection, cybersecurity, and
industrial fault detection, where accurate recognition of rare instances is essential
(Karaaslan et al., 20245 Sun et al., 2020; Zareapoor & Yang, 2017). Traditional approaches
to handling imbalanced datasets can be broadly categorized into algorithmic-level
modifications and data-level resampling techniques (Liu, Fan ¢ Wu, 2019). While
algorithmic solutions attempt to adjust decision thresholds or incorporate

cost-sensitive learning strategies, data-level solutions—particularly oversampling
methods—remain the most widely used due to their direct impact on training data
representation (Lopez et al., 2013).

Among oversampling methods, the Synthetic Minority Oversampling Technique
(SMOTE) and its variants have been extensively utilized to generate synthetic samples for
the minority class. These methods create interpolated samples between existing minority
instances, increasing their representation without discarding majority class data. However,
SMOTE-based methods often suffer from significant limitations, such as generating
synthetic samples in sparse or overlapping regions, leading to class overlap and noise
accumulation. Moreover, traditional oversampling techniques typically ignore the
distributional characteristics of minority class instances, treating all minority samples
equally without prioritizing the most informative ones (Chawla et al., 2008; Tao, Wang &
Zhang, 2019).

These methods are particularly prone to generating synthetic samples in sparsely
populated or overlapping regions, which often leads to decision boundary distortion and
noise accumulation. Such behavior can severely degrade classification performance,
especially when minority instances exhibit non-linear or complex boundary structures.
This motivates the need for a more adaptive and structure-aware oversampling strategy
that can effectively handle sparse distributions while preserving class separability (Uymaz
et al., 2024).

In parallel with clustering-assisted oversampling approaches, recent research has
explored the use of Dempster—Shafer theory to address uncertainty and class ambiguity in
imbalanced learning. These methods assign belief masses to instances or clusters and
utilize evidence fusion strategies to guide the oversampling process more reliably,
particularly in unsupervised or noise-prone settings (Lin ¢ Leony, 2024; Tian et al., 2024).
While conceptually distinct from optimization-based techniques, Dempster—Shafer based
models have proven valuable in modeling soft cluster boundaries and handling class
overlap, thereby enriching the landscape of data level solutions for imbalanced
classification.

To address these limitations, cluster-based oversampling methods have been proposed,
where minority class samples are first grouped into clusters before synthetic samples are
generated within each cluster. This structured approach helps preserve local data
distributions, ensuring that newly generated samples better reflect the actual minority class
structure. Additionally, evolutionary optimization techniques, particularly differential
evolution (DE) (Storn ¢ Price, 1997), have demonstrated remarkable potential in
improving oversampling effectiveness by introducing controlled perturbations and
generating diverse yet meaningful synthetic instances. Despite these advancements, a
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fundamental challenge remains existing oversampling methods lack an integrated
framework that combines clustering-based sample distribution analysis with an adaptive,
evolution-driven oversampling mechanism.

In this study, we introduce ClusterDEBO, a novel hybrid oversampling method that
integrates K-Means (Ahmed, Seraj ¢ Islam, 2020) clustering with DE-based synthetic
sample generation to enhance the robustness of imbalanced learning. Cluster DEBO
leverages K-Means clustering to segment the minority class into subgroups, ensuring that
synthetic samples are generated in a manner that preserves the natural distribution of data.
This clustering step prevents excessive sample generation in sparse regions and ensures
that the new samples contribute effectively to classifier performance. After clustering, a
DE-based perturbation strategy is applied to generate synthetic samples that maintain
intra-cluster diversity while avoiding redundant or misleading samples. The generated
synthetic samples are then subjected to noise reduction and selective sampling
mechanisms, where only those instances that positively impact classification performance,
measured using area under curve (AUC) based impact assessment, are retained.

To evaluate the effectiveness of ClusterDEBO, extensive experiments are conducted on
44 benchmark datasets (Alcald-Fdez et al., 2009), comparing it against widely used
oversampling methods, including Borderline-SMOTE1 (Han, Wang ¢ Mao, 2005),
Borderline-SMOTE2 (Han, Wang ¢ Mao, 2005), Safe-Level-SMOTE (Bunkhumpornpat,
Sinapiromsaran ¢ Lursinsap, 2009), SMOTE-edited nearest neighbors (S-ENN) (Wilson,
1972), Adaptive-SMOTE (ADASYN) (He et al., 2008), S-RSB (Ramentol et al., 2012),
SMOTE-Tomek Links (Tomek, 1976), and differential evolution algorithm for highly
imbalanced datasets (DEBOHID) (Kaya et al., 2021). The classification performance is
assessed using support vector machine (SVM), decision tree (DT), and k-nearest neighbor
(kNN), with area under the curve (AUC) (Myerson, Green ¢ Warusawitharana, 2001)
serving as the primary evaluation metrics. Furthermore, Friedman statistical testing is
performed to validate the robustness of the results, ensuring that improvements are
consistent and not due to random variations (Gibbons, 1993).

By incorporating distribution-aware clustering assisted evolutionary-inspired synthetic
sample generation, ClusterDEBO addresses key challenges in imbalanced learning,
providing a more adaptive, noise-resilient, and structurally coherent oversampling
framework. The results demonstrate that ClusterDEBO significantly enhances classifier
robustness, reduces class overlap, and improves minority class recognition, offering a
powerful and computationally efficient solution for handling highly imbalanced datasets.

The remainder of this article is organized as follows: ‘Materials and Methods’ provides a
detailed explanation of the materials and methods, including the proposed ClusterDEBO
approach, the integration of K-Means clustering, and the DE-based synthetic data
generation process. ‘Experimental Setup’ presents the experimental setup, describing the
datasets, evaluation metrics, and baseline comparisons used to assess the effectiveness of
ClusterDEBO. ‘Results’ reports the results obtained from comparative evaluations, while
‘Discussion’ discusses the implications of these results, including performance insights and
methodological advantages. Finally, ‘Conclusions and Future Works’ concludes the study,
summarizing key contributions and outlining potential directions for future research.
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MATERIALS AND METHODS

Imbalanced datasets represent a critical challenge in machine learning that significantly
undermines the performance of classification algorithms. While numerous oversampling
techniques have been developed to enhance the representational capacity of minority
classes, these methods typically rely on simplistic strategies such as random interpolation
or basic replication approaches.

This research introduces ClusterDEBO, a novel methodology that integrates K-Means
clustering with DE to generate a more sophisticated and decision boundary-aware
oversampling process. The proposed approach distinguishes itself through a
comprehensive framework comprising cluster-based sampling, hybrid synthetic data
generation using DE, noise reduction techniques, and selective sampling mechanisms.

The methodology addresses the fundamental limitations of existing oversampling
strategies by leveraging advanced computational intelligence techniques. By dynamically
adapting to the underlying data distribution, ClusterDEBO aims to mitigate the
representational disparities inherent in imbalanced datasets, thereby improving the
generalizability and predictive performance of machine learning models.

K-means clustering algorithm

The K-Means algorithm is a popular clustering method that divides data into a certain
number of clusters based on their similarities (Ahmed, Seraj ¢ Islam, 2020). It is
particularly well-suited for large-scale datasets due to its efficient use of computing
resources. Within the scope of the ClusterDEBO method, the K-Means algorithm is
utilized to categories minority class examples into subgroups. This approach ensures that
each cluster exhibits a more homogeneous distribution, thereby enhancing the sensitivity
of synthetic data generation to intra-cluster features.

The K-Means algorithm commences with the selection of an initial number of centers
(k), specified. Subsequently, each data point is allocated to a cluster based on the proximity
to the nearest center point. Subsequent to this assignment process, the new center point for
each cluster is updated by taking the average of the data belonging to the cluster. The
centroid of each cluster is computed using the mean of all data points assigned to that
cluster, as defined in Eq. (1).

1

¢ = ‘—Zx (1)

j‘XGSJ‘

Here, S; represents the set of data points in the j-th cluster. Once the new centroids are

computed, the data points are reassigned to their nearest centroid, updating the clusters
accordingly. The algorithm terminates when the centroid positions remain unchanged or
when the predefined iteration limit is reached.

The success of the K-Means algorithm largely depends on determining the appropriate
number of clusters. In the ClusterDEBO framework, the silhouette score method is used to
determine the optimal number of clusters. The silhouette score helps assess the quality of
clustering by measuring both intra-cluster consistency and inter-cluster separation. It is
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calculated using a normalized formula that considers the average distance of a data point to
other points within the same cluster (a) and the average distance to the nearest
neighboring cluster (b). The clustering quality is then assessed using the silhouette
score, calculated via Eq. (2), which captures intra-cluster cohesion and inter-cluster

separation.
b—a
= —FFF . 2
S max(a, b) @

Here, the S score ranges between —1 and 1. A S = 1 value indicates that the data point is well
clustered, S = 0 suggests that the point lies on the boundary between clusters, and S < 0
signifies that the point has been incorrectly clustered. A high silhouette score indicates a
well-structured clustering where data points are correctly assigned to their respective
clusters. Accurately determining the number of clusters ensures a more balanced synthetic
data generation process. The ClusterDEBO method utilizes K-Means clustering to segment
the minority class into subgroups, thereby increasing the sensitivity of generated synthetic
data to decision boundaries.

Differential evolution algorithm
DE is a population-based metaheuristic optimization algorithm designed to solve
continuous optimization problems. It operates through four main stages: initialization,
mutation, crossover, and selection. Each candidate solution (also referred to as a vector) in
the population is represented in a D-dimensional search space.

Let the population consist of N individuals, where each individual is a vector
X = [Xi,laXi,b e ,Xi,D], fori=1,2,...,N. The initialization step generates these

individuals randomly within specified bounds using:
Xij = Min; + rand(0,1) x (Max; — Min;) Vj € {1,2,...,D}. (3)

Here:

Xij : the value of the jth dimension of the i" individual,

Min; and Max;: the lower and upper bounds for dimension j,

rand(0, 1): a uniformly distributed random number between 0 and 1.

Once initialized, DE proceeds with the mutation step, where a donor vector V; is
generated by combining three distinct individuals X;1, X;», X;3, randomly selected from the
current population (r1 # r2 # r3 # i). Mutation is performed according to the standard
DE/rand/1 scheme, as shown in Eq. (4).

Vi=Xu+F- (X —Xp3). (4)
Here, F € [0, 2] is the scaling factor that controls the amplification of the differential
variation.
The crossover step creates a trial vector T; = [Ti,h Tizy...,s T,-’D] by mixing the donor

vector V_i and the original individual X _i according to the crossover rate CR € [0, 1]. The
crossover mechanism is defined formally in Eq. (5), ensuring at least one component is
inherited from the donor.
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7. — | Vijsif rand(0,1) < CRor j = jrand (5)
Y Xy, otherwise

where:
jrand € {1,...,D} is a randomly chosen index to ensure that at least one component

comes from V;,

rand(0, 1): a uniformly distributed random number.

Finally, the selection step compares the trial vector T; with the original individual X;. If
T; yields a better value for the objective function, it replaces X; in the next generation.
Otherwise, X; is retained.

In this study, DE is adapted for synthetic data generation inspired by the DE/rand/1
scheme, where new minority class instances are created by evolving existing minority
samples using the operations described above. This controlled yet stochastic generation
mechanism ensures both diversity and fidelity to the underlying data structure.

In the context of synthetic sample generation via DE, the choice of DE strategy and its
associated control parameters, mutation factor (F) and crossover rate (CR) plays a crucial
role in determining the quality and diversity of the generated instances. To ensure that our
proposed method builds on a robust and empirically validated foundation, we adopted the
DE variant identified as DSt1, which corresponds to the DE/rand/1 scheme. This decision
was grounded in the findings of Korkmaz et al. (2021), who conducted a comprehensive
evaluation of 16 DE-based oversampling strategies on 44 imbalanced datasets using three
different classifiers (SVM, kNN, DT). Their study demonstrated that DSt1 achieved the
best or near-best AUC and G-Mean performance across most datasets, indicating its
superior ability to balance exploration and exploitation in the context of imbalanced
learning. By incorporating this well-performing DE variant into ClusterDEBO, we aim to
leverage an already optimized parameter configuration and direct our methodological
focus toward enhancing sample distribution and boundary fidelity through clustering and
selective sampling mechanisms. This ensures that our contribution remains focused and
does not duplicate well-established findings on DE strategy comparisons.

Furthermore, although dataset-specific hyperparameter tuning could potentially yield
marginal performance gains, such a step was not repeated in this study to avoid
confounding the effects of clustering integration and DE-based oversampling.
Nonetheless, we acknowledge this direction as a valuable avenue for future research and
discuss it in the conclusion section.

Proposed method: clusterDEBO

The ClusterDEBO method is a structured oversampling approach designed to enhance the
representation of minority class instances in imbalanced datasets. The methodology
follows a systematic data processing and model development pipeline, consisting of dataset
preparation, partitioning into training and test sets, synthetic data generation using the
ClusterDEBO approach, model training, and performance evaluation. The overall
workflow of these stages is illustrated in Fig. 1.
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Figure 1 The overall workflow of the stages.
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The ClusterDEBO method combines the K-Means clustering algorithm with the
DE-based DEBOHID method, allowing synthetic data to be generated in a more balanced
and structurally appropriate manner in the data space.

This process includes the steps of clustering minority class samples, determining
appropriate data points in each cluster, creating synthetic samples with the DE
mechanism, and selective sampling with noise reduction in the final stage. The pseudo
code of the ClusterDEBO method is Algorithm 1.

Determination of minority and majority classes

The first step of the proposed method is to identify the minority and majority classes in the
dataset. Minority class instances are usually limited in number and dominated by the
majority class. Therefore, it is important to understand the structure of the dataset and
identify the imbalance. Figure 2 shows examples of minority (red) and majority (grey)
classes in the dataset.

Separating minority class into subsets with k-means algorithm

In the second step of ClusterDEBO, minority class samples are divided into a certain
number of clusters using the K-Means clustering method. The number of clusters is
determined by optimizing with the silhouette score method (Shahapure & Nicholas, 2020).
Clustered minority class samples allow the determination of the centroids for each cluster,
and these centroids are used as reference points in synthetic data generation. However, to
prevent instability in clustering when the minority class has very few instances, a threshold
mechanism is applied. If the silhouette score falls below 0.25, clustering is bypassed by
setting the number of clusters to 1, thereby avoiding artificial or noisy cluster formations
(Lovmar et al., 2005). This fallback approach ensures robustness and effectively reverts the
system to the behavior of the original DEBOHID method in such low-sample scenarios.
Figure 3 illustrates the distribution of the dataset after the subsetting process.

Karabiyik et al. (2025), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.3177 7/32


http://dx.doi.org/10.7717/peerj-cs.3177/fig-1
http://dx.doi.org/10.7717/peerj-cs.3177
https://peerj.com/computer-science/

PeerJ Computer Science

Algorithm 1 ClusterDEBO.

Input: Imbalanced dataset (X, y), Number of clusters (k),
Differential Evolution parameters (F, CR, Number of generations)
Output: Balanced dataset (X_new, y_new)

# Step 1: Identify minority class samples
X_min = ]
for each sample x in X:

if y[x] == minority_class:

O 0 NI O U1 v W N

X_min.append(x)

— =
—_— O

# Step 2: Perform K-Means clustering on minority class samples

Ju—
\8}

clusters = k_means(X_min, k)

—_
=W

# Step 3: Generate synthetic samples using Differential Evolution
for each cluster in clusters:

—_ =
A

center = compute_cluster_center(cluster)

—_ =
[ IR

for i in range(len(cluster)):

—
s}

# Select three random samples from the cluster

S}
o

x_rl, x_r2, x_r3 = select_random_samples(cluster, 3)

NN
N =

# Apply Differential Evolution mutation

[\
W

vi=xrl+F*(xr2-xr3)

NN
SN

# Perform crossover operation

[\®}
@)}

u_i = crossover (v_i, x_rl, CR)

NN
[o=BERN|

# Validate and add the synthetic sample
if is_valid_sample(u_i):

W N
[=>I\e]

X_new.append(u_i)

W W
N =

# Step 4: Outlier detection and removal based on cluster centers

W
W

for each sample x in X_new:

34  if is_outlier(x, clusters):

35 X_new.remove(x)

36

37 # Step 5: Noise reduction and selective sampling
38 for each sample x in X_new:

39  if evaluate_auc_impact(x, model) < threshold:
40 X_new.remove(x)

41 return X_new, y_new
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Figure 2 Examples of minority (red) and majority (grey) classes in the dataset.
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Figure 4 Data generated with DEBOHID. Full-size K&l DOT: 10.7717/peerj-cs.3177/fig-4

Synthetic data generation with DE

After the K-Means clustering process is completed, synthetic data are generated for each
cluster using the DE based DEBOHID method. The generated synthetic data are added in a
balanced way to show a more homogeneous distribution around the cluster centres. With
the addition of synthetic data, the clustering process is repeated and the cluster centres are
updated. Figure 4 shows the data generated with DEBOHID.

Noise reduction and selective sampling

The generation of synthetic data in ClusterDEBO is bounded by the spatial limits of each
cluster to ensure local coherence and avoid the creation of unrealistic or outlier instances.
Specifically, each synthetic sample is evaluated based on its distance from the
corresponding cluster center and is accepted only if it falls within the maximum radius
observed among the real minority samples in that cluster. If a valid sample cannot be
generated within this boundary after a predefined number of attempts (e.g., 10 trials), the
last generated sample is rescaled toward the cluster center so that it fits within the radius.
This mechanism not only ensures the structural integrity of the generated data but also
prevents the risk of infinite loops during sample generation. Thus, the method integrates a
boundary-aware control mechanism that preserves class locality while maintaining
generation stability. Figure 5 provides a visual summary of this controlled sampling and
noise limiting process.
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Figure 5 A visual representation of the noise reduction and data selection process.
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Final balanced dataset

When the ClusterDEBO method is complete, the minority class instances have been
increased in a balanced way and are more aligned with the majority class. Figure 6 shows
the final balanced dataset and the synthetic data produced.

Compared to the classical DEBOHID method, the ClusterDEBO method aims to
increase the generalisation success of the model by making the synthetic data generation
process more controlled by clustering. The clustering process prevents the occurrence of
extreme outliers by better adapting to the natural distribution of minority class samples.
The DE algorithm ensures that the synthetic data produced is more realistic by taking into
account intra-cluster variations. Noise reduction and selective sampling steps guarantee
the selection of the most appropriate data by evaluating the contribution of synthetic
samples added to the dataset to the model performance. Thus, the ClusterDEBO method
offers an oversampling strategy that both better represents decision boundaries and
improves classification performance.

Experimental setup

To assess the effectiveness of the proposed ClusterDEBO method, extensive experiments
were conducted on 44 publicly available benchmark datasets from the KEEL repository
(Alcala-Fdez et al., 2009). These datasets are widely recognized as standard benchmarks in
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Figure 6 The final balanced dataset and the synthetic data produced.
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the literature for evaluating imbalanced classification techniques (Alcald-Fdez et al., 2015;
Triguero et al., 2017). They encompass a diverse range of real-world applications, including
medical diagnostics, fraud detection, cybersecurity, fault prediction, and text classification.
The inclusion of datasets from multiple domains ensures that the proposed method is
tested across various levels of class imbalance and feature complexity, providing a rigorous
and comprehensive evaluation framework.

Table 1 presents an overview of the datasets used in this study, detailing key
characteristics such as the total number of instances, feature dimensions, the proportion of
minority class samples, and the imbalance ratio (IR). The imbalance ratio, defined as the
ratio of majority to minority class instances, serves as a critical indicator of dataset
imbalance severity, where higher values signify a more challenging classification task
(Thabtah et al., 2020). By incorporating datasets with varying levels of class skewness, this
study ensures a thorough and robust assessment of the Cluster DEBO method against state-
of-the-art oversampling techniques.

All experiments were conducted following the five-fold cross-validation protocol, as
defined in the KEEL repository. Each dataset was randomly divided into five equal folds,
where four folds were used for training and the remaining fold for testing. This process was
repeated five times to ensure that each fold served as the test set once. The final
performance metrics were reported as the average of all five runs, minimizing the impact of
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Table 1 The properties of datasets used in the experiments.

No Dataset name Total samples Features Minority class % Majority class % Imbalance ratio
1 ecoli0137vs26 281 7 2.49 97.51 39.15
2 shuttleOvs4 1,829 9 6.72 93.28 13.87
3 yeastB1lvs7 459 7 6.53 93.47 14.3
4 shuttle2vs4 129 9 4.65 95.35 20.5
5 glass016vs2 192 9 8.85 91.15 10.29
6 glass016vs5 184 9 4.89 95.11 19.44
7 pageblocks13vs4 472 10 5.93 94.07 15.85
8 yeast05679vs4 528 8 9.66 90.34 9.35
9 yeast1289vs7 947 8 3.16 96.84 30.5
10 yeast1458vs7 693 8 4.33 95.67 22.1
11 yeast2vs4 514 8 9.92 90.08 9.08
12 Ecoli4 336 7 6.74 93.26 13.84
13 Yeast4 1,484 8 3.43 96.57 28.41
14 Vowel0 988 13 9.01 90.99 10.1
15 Yeast2vs8 482 8 4.15 95.85 23.1
16 Glass4 214 9 6.07 93.93 15.47
17 Glass5 214 9 42 95.8 22.81
18 Glass2 214 9 7.94 92.06 11.59
19 Yeast5 1,484 8 2.96 97.04 32.78
20 Yeast6 1,484 8 2.49 97.51 39.16
21 abalonel9 4,174 8 0.77 99.23 128.87
22 abalone918 731 8 5.75 94.25 16.4
23 clevelandOvs4 177 13 7.34 92.66 12.61
24 ecoli01vs235 244 7 2.86 97.14 9.16
25 ecoli0lvs5 240 7 291 97.09 11
26 ecoli0146vs5 280 7 2.5 97.5 13
27 ecoli0147vs2356 336 7 2.08 97.92 10.58
28 ecoli0147vs56 332 7 2.1 97.9 12.28
29 ecoli0234vs5 202 7 3.46 96.54 9.1
30 ecoli0267vs35 224 7 3.12 96.88 9.18
31 ecoli034vs5 300 7 2.33 97.67 9
32 ecoli0346vs5 205 7 341 96.59 9.25
33 ecoli0347vs56 257 7 2.72 97.28 9.28
34 ecoli046vs5 203 7 3.44 96.56 9.15
35 ecoli067vs35 222 7 3.15 96.85 9.09
36 ecoli067vs5 220 7 3.18 96.82 10
37 glass0146vs2 205 9 4.39 95.61 11.05
38 glass015vs2 172 9 5.23 94.77 9.11
39 glass04vs5 92 9 9.78 90.22 9.22
40 glass06vs5 108 9 8.33 91.67 11
41 led7digit02456789vs1 443 7 1.58 98.42 10.97
(Continued)
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Table 1 (continued)

No Dataset name Total samples Features Minority class % Majority class % Imbalance ratio
42 yeast0359vs78 506 8 9.8 90.2 9.12
43 yeast0256vs3789 1,004 8 9.86 90.14 9.14
44 yeast02579vs368 1,004 8 9.86 90.14 9.14

random fluctuations in data splits. This robust validation strategy ensures the reliability
and consistency of the evaluation results, providing an unbiased assessment of the
proposed method.

In this study, the performance of ClusterDEBO was compared against several widely
used oversampling techniques to ensure a comprehensive evaluation. The baseline for
comparison was the original dataset without any oversampling. Among the resampling
techniques, SMOTE was included as a fundamental benchmark due to its widespread
adoption in imbalanced learning. Additionally, Borderline-SMOTE in two variations
(Borderline-SMOTEI and Borderline-SMOTE2) was considered, as these methods focus
on generating synthetic samples near the decision boundary to improve classification
accuracy. To further strengthen the evaluation, SMOTE-Tomek Links (S-TL) and
SMOTE-edited nearest neighbors (S-ENN) were incorporated, combining SMOTE-based
oversampling with noise reduction techniques to refine the synthetic sample set. Safe-
Level-SMOTE was also included to examine its adaptive approach, which prioritizes
generating synthetic samples in safe sample regions. Adaptive Synthetic Sampling
(ADASYN) was evaluated as a dynamic resampling technique that adjusts the number of
generated samples based on the density of the minority class. Additionally, S-RSB, which
employs refined synthetic balancing strategies to enhance minority class representation,
was included. Lastly, DEBOHID, an evolutionary algorithm-based oversampling method
designed to improve the diversity and spatial distribution of synthetic samples, was tested.

Evaluating classification performance on imbalanced datasets presents unique
challenges, as traditional accuracy metrics often fail to provide meaningful insights. In
such cases, the area under the curve (AUC) is widely recognized as a robust and reliable
measure for assessing a classifier’s ability to distinguish between classes.

AUC quantifies the trade-off between the true positive rate (TPR) and false positive rate
(FPR) across varying classification thresholds. It is computed using the standard
formulation in Eq. (6), where TPR and FPR are defined in Eq. (7).

1+ TPR — FPR
AUC = LT IER TR (6)
2
where
Fp
TPR = ——— FPR = —— 7
TP + FN’ FP + TN )

AUC values range from 0.5 (equivalent to random guessing) to 1.0 (indicating a perfect
classifier). Higher AUC values signify better discrimination ability, ensuring that the
classifier is effectively distinguishing between the minority and majority classes. This
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characteristic makes AUC particularly well-suited for imbalanced learning tasks, where
minimizing bias towards the majority class is critical for real-world applications.

By leveraging AUC as the primary evaluation metric in this study, we provide an
objective and consistent comparison of classification performance across different
resampling methods, ensuring that improvements are not merely driven by class
distribution shifts but by genuine enhancement in predictive capability.

In line with prior research on oversampling, we evaluated the proposed method using
classical classifiers kNN, DT, and SVM, which are widely used as standard benchmarks in
the field. These models offer a transparent view into the influence of data-level
interventions without conflating results with model-specific architectures or
hyperparameters. Importantly, our goal was not to maximize classification accuracy per se,
but to assess whether enhancing the training data via ClusterDEBO could yield meaningful
improvements even with simpler classifiers. This approach reflects the Garbage In,
Garbage Out principle, underscoring that the effectiveness of any classifier, even a deep
neural network, depends critically on the quality of the input data. Accordingly, our focus
remains on improving data balance and representativeness at the preprocessing stage
(Cinar, 2025; Kaya et al., 2021; Korkmaz, 2025).

RESULTS

In this section, we present a comprehensive analysis of the experimental results obtained
using ClusterDEBO and other benchmark oversampling techniques across multiple
datasets. The evaluation is performed using three different classifiers: kNN, DT and SVM,
ensuring a thorough assessment of the proposed method’s performance. First, we provide a
comparative analysis of AUC scores across different datasets and classifiers to highlight the
effectiveness of ClusterDEBO in handling class imbalance. Next, we conduct a statistical
evaluation using the Friedman rank test, demonstrating the statistical significance of the
observed performance improvements. In addition to numerical evaluations, visual
representations of the datasets before and after applying ClusterDEBO were analyzed to
demonstrate the distributional changes introduced by the synthetic data generation
process. In this section, we elaborate on key insights and observations from the
experimental results, including the advantages of ClusterDEBO, its adaptability across
datasets, and its limitations. This analysis provides a holistic understanding of the impact
of ClusterDEBO on imbalanced learning tasks.

Table 2 presents the AUC performance results of various oversampling techniques
evaluated using the kNN classifier across 44 imbalanced benchmark datasets. The findings
reveal that ClusterDEBO achieves the highest average AUC score of 0.8723, outperforming
all competing methods. Notably, ClusterDEBO ranks as the best-performing technique in
31 out of 44 datasets, indicating its superior ability to generate well-distributed synthetic
samples that enhance classifier performance while preserving class separability.

The baseline model, which utilizes the original dataset without any oversampling,
exhibits the lowest mean AUC score of 0.7389, reinforcing the well-documented challenge
of class imbalance in machine learning. Traditional oversampling methods such as
SMOTE (0.8449), S-TL (0.8383), and S-ENN (0.8467) show moderate improvements but
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lack the adaptive mechanisms necessary to optimize sample placement effectively.
Borderline-SMOTE variants, which prioritize synthetic sample generation near decision
boundaries, yield slightly lower AUC values (0.8232 for Borderline-SMOTEI1 and 0.8156
for Borderline-SMOTE2), suggesting that decision-boundary-focused approaches alone
may not be sufficient to fully mitigate class overlap and noise accumulation.

Compared to traditional interpolation-based methods, evolutionary oversampling
strategies such as DEBOHID (0.8476) demonstrate stronger performance, benefiting from
the dynamic optimization of synthetic instances. However, ClusterDEBO surpasses
DEBOHID and all other evolutionary approaches by incorporating K-Means clustering,
ensuring that synthetic samples are generated in well-defined regions while preventing
excessive overlap with the majority class. This targeted sample generation process results
in improved classifier robustness and enhanced decision-boundary representation.

Another critical advantage of ClusterDEBO is its stability across datasets, as indicated
by its relatively low standard deviation in AUC scores. This consistency can be attributed
to its noise reduction and selective sampling mechanisms, which effectively filter out
low-quality synthetic instances that may degrade classifier performance. By dynamically
adjusting the distribution of generated samples based on intra-cluster relationships,
ClusterDEBO prevents synthetic instances from being placed in misleading or ambiguous
regions, thereby improving overall classification reliability.

A concrete example illustrating the limitations of SMOTE is observed in the yeast6
dataset. This dataset presents a complex and sparse distribution of the minority class. Here,
SMOTE achieves a relatively low AUC of 0.7387 using the kNN classifier, likely due to
generating synthetic instances in poorly supported regions that overlap with the majority
class. In contrast, ClusterDEBO significantly improves the AUC to 0.8857 by leveraging
clustering to localize minority regions and employing DE-based sampling to generate
structurally coherent synthetic instances. This example underscores the importance of
considering local distribution characteristics and validates the effectiveness of our
proposed method in challenging data scenarios.

Table 3 presents the AUC performance of various oversampling methods evaluated
using the DT classifier across 44 benchmark datasets. The results demonstrate that
ClusterDEBO achieves the highest average AUC score of 0.8286, outperforming all other
techniques. Notably, ClusterDEBO is the best-performing method in 16 out of 44 datasets,
highlighting its robustness in enhancing minority class classification under the DT model.

The baseline model, which does not apply any oversampling, yields the lowest mean
AUC score of 0.7783, further confirming that imbalanced datasets significantly hinder
classification performance. While conventional oversampling techniques, such as SMOTE
(0.7984) and its derivatives (SMOTE-Tomek Links: 0.8111, SMOTE-ENN: 0.8136), offer
moderate improvements, their reliance on linear interpolation limits their ability to
generate well-placed synthetic samples, often leading to class overlap and noise
accumulation. Similarly, Borderline-SMOTE variants (0.7852 for Borderline-SMOTE1
and 0.7924 for Borderline-SMOTE2) demonstrate inconsistent performance, suggesting
that decision boundary-focused approaches alone may not be sufficient for improving
classifier robustness.
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Evolutionary oversampling techniques, such as DEBOHID (0.8194) and S-RSB
(0.8147), exhibit stronger performance compared to traditional resampling methods,
benefiting from more adaptive sample placement strategies. However, ClusterDEBO
surpasses all existing methods by incorporating K-Means clustering prior to DE-based
sample generation, ensuring that synthetic samples are distributed in regions that enhance
class separability while minimizing redundancy. This approach results in more precise
decision boundary reinforcement, ultimately improving classification accuracy and model
generalization.

Another critical aspect of ClusterDEBO is its stability across different datasets, as
reflected by its relatively low standard deviation in AUC scores. Unlike conventional
oversampling techniques that generate synthetic instances indiscriminately, Cluster DEBO
applies noise reduction and selective sampling strategies, preventing the addition of
misleading synthetic samples that could degrade classifier performance. This adaptive
sample refinement ensures that only informative instances contribute to model learning,
thereby enhancing the overall effectiveness of Decision Tree classifiers.

Table 4 presents the AUC performance results of different oversampling methods
across 44 benchmark datasets, demonstrating their impact on classification performance.
The ClusterDEBO method achieves the highest overall mean AUC score of 0.8595,
significantly outperforming all other approaches. Notably, ClusterDEBO emerges as the
best-performing method in 26 out of 44 datasets, reinforcing its effectiveness in handling
class imbalance and improving classification robustness.

The original dataset (without any oversampling) yields the lowest average AUC score of
0.6942, emphasizing the necessity of oversampling techniques to enhance classifier
performance on imbalanced data. Traditional methods such as SMOTE (0.8293) and
SMOTE-ENN (0.8261) offer moderate improvements; however, their reliance on random
interpolation often results in overlapping synthetic samples, thereby failing to optimally
address decision boundary disparities. Borderline-SMOTE variants (Borderline-SMOTEL1:
0.8279 and Borderline-SMOTE2: 0.8238) perform slightly better, but their decision
boundary-focused sampling can still introduce noise in certain datasets.

More advanced techniques, such as DEBOHID (0.8412) and S-RSB (0.8329), leverage
evolutionary and selective sampling mechanisms to further enhance classification
performance. However, ClusterDEBO outperforms these approaches by incorporating a
more structured oversampling process through K-Means clustering and DE-based
synthetic sample generation. This ensures that synthetic samples are strategically
positioned within well-defined clusters, minimizing the risk of noise accumulation while
maintaining a clear distinction between minority and majority class distributions.

A key advantage of ClusterDEBO is its consistency across datasets, as demonstrated by
its high success rate (26/44 wins) and relatively low standard deviation in performance.
Unlike other methods that struggle with dataset-specific characteristics, ClusterDEBO’s
clustering-driven approach dynamically adapts to underlying data distributions, allowing
it to generate well-distributed synthetic samples that align with the natural structure of the
dataset.
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Table 5 The overall results of all methods.
Original SMOTE S-TL S-ENN Borderl Border2 Safelevel ADASYN S-RSB DEBOHID ClusterDEBO

kNN AUC Average 0.7389 0.8449 0.8383 0.8467 0.8232  0.8156  0.8240 0.8324 0.8387 0.8476 0.8723
Winner/Total 1/44 2/44 3/44 5/44 5/44 3/44 1/44 1/44 3/44 5/44 31/44
Mean rank 9.8409 4.8864 59886 4.9432 6.8977 72386  7.7159 6.8977 5.5455 4.0795 1.9659
Final rank 11 3 6 4 8 9 10 7 5 2 1
p-value 6.7322e-33

DT AUC  Average 0.7783 0.7984 0.8111 0.8136 0.7852  0.7924  0.7987 0.7951 0.8147 0.9194 0.8286
Winner/Total 2/44 3/44 5/44 5/44 4/44 3/44 0/44 1/44 7/44 10/44 16/44
Mean rank 7.8636 6.7045  5.1932 4.5455 7.7955  6.7500  6.6705 6.5455 5.2500 4.4091 4.2727
Final rank 11 8 4 3 10 9 7 6 5 2 1
p-value 4.4626e-11

SVM AUC Average 0.6942 0.8243  0.8296 0.8261 0.8279  0.8238  0.8260 0.8072 0.8329 0.8412 0.8595
Winner/Total 2/44 1/44 1/44  2/44 8/44 4/44 0/44 0/44 3/44 10/44 26/44
Mean rank 8.9886 55909 6.4432 5.5795 5.4432  6.1705  5.9659 8.5795 5.4659 4.6023 3.1705
Final rank 11 6 9 5 3 8 7 10 4 2 1
p-value 8.7678e-19

Note:

Bold highlights the best value(s) within each column. For average AUC and Winner/Total, higher is better; for mean rank, lower is better. Ties are bolded.

The Friedman rank test is a non-parametric statistical test used to detect differences in
the performance of multiple algorithms across multiple datasets (Liu ¢» Xu, 2022;
Zimmerman ¢ Zumbo, 1993). It ranks each method for every dataset and then computes
the mean rank to determine which method performs better overall. A lower rank indicates
a superior method, while a higher rank signifies relatively weaker performance. The p-
value obtained from the Friedman test evaluates the statistical significance of the observed
differences. If the p-value is below a predefined threshold (e.g., 0.05), it suggests that the
performance differences among the methods are statistically significant.

Table 5 presents the Friedman ranking results for all oversampling methods evaluated
across three different classifiers: kNN, DT, and SVM. The table includes the mean AUC
scores, the number of datasets where each method achieved the best performance
(Winner/Total), the mean rank assigned by the Friedman test, and the final ranking based
on these scores.

For the kNN classifier, ClusterDEBO achieves the best overall performance with an
average AUC of 0.8723 and a mean rank of 1.9659, significantly outperforming other
methods. The p-value of 6.73 x 107> confirms that the observed differences among
methods are statistically significant. Traditional oversampling methods such as SMOTE
(4.8864 rank), S-ENN (4.9432 rank), and DEBOHID (4.0795 rank) exhibit competitive
performance but fall short of ClusterDEBO. The original dataset without oversampling
ranks the lowest (rank 9.8409), highlighting the need for effective balancing techniques.

For the Decision Tree (DT) classifier, ClusterDEBO again emerges as the
best-performing method, achieving the highest mean AUC (0.8286) and the lowest
rank (4.2727), making it the top-ranked method. DEBOHID (4.4091 rank) and
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Figure 7 The comparison of AUC scores for the original datasets and their balanced versions generated by ClusterDEBO, evaluated using the
kNN classifier. Full-size K&] DOT: 10.7717/peerj-cs.3177/fig-7
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Figure 8 The comparison of AUC scores for the original datasets and their balanced versions generated by ClusterDEBO, evaluated using the
DT classifier. Full-size &) DOTI: 10.7717/peerj-cs.3177/fig-8
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Figure 9 The comparison of AUC scores for the original datasets and their balanced versions generated by ClusterDEBO, evaluated using the
SVM classifier. Full-size K&] DOT: 10.7717/peerj-cs.3177/fig-9

S-ENN (4.5455 rank) also show competitive results, suggesting that evolutionary-based
techniques provide significant improvements over traditional approaches. The p-value
(4.46 x 10™'") further confirms that the performance variations across methods are
statistically significant.

For the SVM classifier, ClusterDEBO continues to outperform all other methods,
ranking first (3.1705 rank) with the highest average AUC (0.8595). DEBOHID
(4.6023 rank) and S-RSB (5.4659 rank) also achieve notable performance. The p-value
(8.76 x 10™"°) indicates that the differences among methods are statistically significant.
Traditional oversampling techniques such as SMOTE (5.5909 rank) and
Borderline-SMOTE (5.4432 rank) provide moderate improvements but do not reach the
effectiveness of ClusterDEBO.

The results of the Friedman rank test demonstrate that ClusterDEBO consistently
outperforms traditional and evolutionary-based oversampling methods across all three
classifiers. It achieves the highest AUC scores and the lowest rank values, confirming its
effectiveness in handling imbalanced datasets. The statistically significant p-values across
all experiments indicate that the observed performance improvements are not due to
random variation but are a result of the superior data balancing capability of
ClusterDEBO. These findings underscore the potential of integrating clustering and DE
strategies for improving classification performance on imbalanced datasets.
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Figures 7, 8, and 9 present the comparison of AUC scores for the original datasets and
their balanced versions generated by ClusterDEBO, evaluated using the kNN, DT, and
SVM classifiers, respectively.

The figure results clearly demonstrate the efficacy of ClusterDEBO in enhancing
classification performance across a wide range of datasets.

DISCUSSION

The results clearly demonstrate that ClusterDEBO is an effective and consistent
oversampling method for handling class imbalance across various datasets and classifiers.
Its superior performance can be attributed to its structured sample generation strategy that
combines K-Means clustering with DE. This integration ensures that synthetic samples are
placed in well-defined, informative regions of the feature space, minimizing noise and class
overlap.

Unlike traditional methods such as SMOTE and its variants, which rely on random or
boundary-based interpolation and often generate samples in ambiguous regions,
ClusterDEBO leverages intra-cluster structure to produce cleaner and more meaningful
instances. The poor performance of SMOTE in the yeast6 dataset exemplifies this issue,
where random interpolation led to overlapping regions. In contrast, ClusterDEBO
localized minority regions and generated coherent synthetic samples, dramatically
improving AUC.

Furthermore, the method’s stability across datasets demonstrated by low standard
deviations in performance highlights its adaptability. It effectively filters low-quality
samples via selective sampling and noise reduction, making it robust against overfitting
and performance degradation, a common problem in high-dimensional or noisy
imbalanced data.

The results from the Friedman test provide compelling statistical evidence that the
observed improvements are not due to chance. Across all three classifiers, Cluster DEBO
achieves the lowest ranks and highest AUCs, underscoring its general superiority.

Although recent studies have introduced GAN-based and attention-driven
oversampling techniques, many of these methods are not yet integrated into open-source
benchmarking libraries that support batch-level evaluations on standardized tabular
datasets (Niu et al., 2023). For instance, while I-GAN (Pan et al., 2024) provides valuable
insights and visualizations, its current implementation does not align with the modular
and dataset-agnostic framework required for comparative benchmarking across multiple
datasets. In contrast, the SMOTE-variants library offers a comprehensive and
well-maintained suite of 86 oversampling techniques, enabling transparent, reproducible,
and statistically robust evaluations (Kovdcs, 2019). Accordingly, our selection of nine
representative methods from this library ensures a meaningful and fair assessment of
ClusterDEBO’s performance.

By combining structured clustering, adaptive optimization, and careful experimental
design, ClusterDEBO presents itself as a practical and statistically validated solution for
real-world imbalanced learning scenarios. These findings suggest that further exploration
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of hybrid strategies, particularly those that integrate structural learning and evolutionary
processes, holds strong potential for advancing the field of imbalanced classification.

CONCLUSIONS AND FUTURE WORKS

This study introduced ClusterDEBO, a novel oversampling approach that integrates
K-Means clustering with DE-based synthetic data generation to address class

imbalance in machine learning tasks. By leveraging the clustering step, ClusterDEBO
ensures that synthetic samples are generated within meaningful regions of the feature
space, while the evolutionary optimization enhances the diversity and representativeness
of these samples.

The experimental evaluation, conducted on multiple benchmark datasets across
different classifiers (kNN, DT, and SVM), demonstrated that ClusterDEBO significantly
improves classification performance compared to traditional and state-of-the-art
oversampling techniques. The Friedman rank test results confirmed the statistical
superiority of ClusterDEBO, achieving the highest AUC scores and consistently
outperforming competing methods. The statistically significant p-values across all
classifiers further validate its effectiveness, ensuring that the observed improvements are
not due to random variation but stem from the robustness of the proposed method.

Furthermore, ClusterDEBO showed superior generalization capabilities, particularly in
cases where conventional resampling methods struggled to maintain class boundary
integrity. Its ability to adaptively generate synthetic samples that better represent the
minority class while preserving decision boundaries offers a promising advancement in
imbalanced learning.

Despite its strong performance, several avenues for future research remain open. First,
while ClusterDEBO effectively balances imbalanced datasets, its computational complexity
may be further optimized by exploring alternative clustering methods or reducing the
number of synthetic samples required for improved performance. Hybrid models
incorporating deep learning-based feature extraction before applying ClusterDEBO could
also be investigated to enhance its adaptability to high-dimensional datasets.

Second, extending ClusterDEBO beyond binary classification to multi-class imbalance
scenarios presents an exciting direction for future research. Multi-class settings often
involve complex relationships between multiple minority classes, requiring advanced
techniques to maintain inter-class boundaries. Developing an adaptive version of
ClusterDEBO that dynamically adjusts to varying levels of imbalance across multiple
classes would further extend its applicability.

Moreover, although this study fixed the DE parameters and employed the DE/rand/1
(DSt1) strategy, this decision was based on a prior comprehensive study in which 16
DE-based oversampling variants were systematically benchmarked across 44 imbalanced
datasets using kNN, DT, and SVM classifiers. That analysis revealed DSt1 as the most
effective variant in terms of AUC and G-Mean scores, justifying its direct use in
ClusterDEBO without further tuning. Nevertheless, future research could explore
dataset-specific or dynamically adaptive tuning of DE parameters, such as mutation factor
and crossover rate, through automated search techniques like Bayesian Optimization or
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reinforcement learning. Such strategies may yield further improvements by tailoring the
synthetic data generation process to the specific distributional characteristics of each
dataset, thereby enhancing both performance and flexibility.

Additionally, integrating automated hyperparameter tuning strategies using Bayesian
optimization or reinforcement learning could improve the selection of optimal
clustering parameters and mutation strategies in DE, ensuring optimal oversampling
configurations for diverse datasets. Finally, the practical deployment of ClusterDEBO in
real-world applications such as fraud detection, medical diagnosis, and cybersecurity will
be an essential next step. Conducting further evaluations on large-scale industrial datasets
and integrating ClusterDEBO into end-to-end machine learning pipelines will help assess
its real-world utility and scalability. Moreover, belief-based uncertainty modeling
approaches such as those grounded in Dempster—Shafer theory may provide
complementary mechanisms for identifying reliable regions in the feature space, and their
integration with evolutionary oversampling frameworks like ClusterDEBO could be
explored to further enhance robustness under high uncertainty.
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