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ABSTRACT
Autonomous driving highly depends on depth information for safe driving. Recently,
major improvements have been taken towards improving both supervised and self-
supervisedmethods for depth reconstruction.However,most of the current approaches
focus on single frame depth estimation, where quality limit is hard to beat due to
limitations of supervised learning of deep neural networks in general. One of the
way to improve quality of existing methods is to utilize temporal information from
frame sequences. In this paper, we study intelligent ways of integrating recurrent
block in common supervised depth estimation pipeline. We propose a novel method,
which takes advantage of the convolutional gated recurrent unit (convGRU) and
convolutional long short-term memory (convLSTM). We compare use of convGRU
and convLSTM blocks and determine the best model for real-time depth estimation
task. We carefully study training strategy and provide new deep neural networks
architectures for the task of depth estimation frommonocular video using information
from past frames based on attention mechanism. We demonstrate the efficiency of
exploiting temporal information by comparing our best recurrentmethod with existing
image-based and video-based solutions for monocular depth reconstruction.

Subjects Artificial Intelligence, Autonomous Systems, Computer Vision, Data Mining and
Machine Learning
Keywords Computer Vision, Depth Reconstruction, Autonomous Vehicles, Augmented Reality,
Deep Convolutional Neural Networks, Recurrent Neural Networks, Computer Science Methods

INTRODUCTION
Recently, advances in deep learning and computer vision have greatly influenced such
rapidly growing fields as robotics, augmented reality and self-driving cars. A major
progress have been made in depth estimation field playing important role in safety and
vision systems. Originally stated as a supervised learning problem of depth estimation
from RGB images, a lot of improvements were presented over the past five years, which
boosted depth prediction accuracy (Saxena, Sun & Ng, 2007; Eigen, Puhrsch & Fergus, 2014;
Eigen & Fergus, 2015; Laina et al., 2016; Fu et al., 2018). Recently, self-supervised depth
estimation methods, which rely on the camera motion, have also been improved (Zou, Luo
& Huang, 2018; Godard et al., 2019; Zhou et al., 2017; Yin & Shi, 2018). In addition, depth
completion based on sparse depth information, produced by a LiDAR sensor or SLAM,
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has also improved its robustness and accuracy of depth estimation (Mal & Karaman, 2018;
Ma, Cavalheiro & Karaman, 2018; Uhrig et al., 2017; Van Gansbeke et al., 2019).

Despite the huge progress in all three directions, it seems that there is still room to
grow. In particular, it is necessary to mention some of the disadvantages of three settings.
The depth completion setting is sensitive to lighting conditions, the self-supervised depth
estimation setting does not rely on ground truth depth and partly utilize the ego-motion
information but still has not beat the state-of-the-art supervised methods; the supervised
depth estimation from RGB images is highly dependant on accurate ground truth, but at
the same time is an affordable solution considering the costs.

Current depth estimation methods, based on using just a single image, are inherently
ambiguous and unreliable. These methods are not robust enough and are sensitive to
noise. In order to make this methods more precise, it is necessary to provide new ideas of
exploiting additional information to make predictions applicable for the monocular vision
setting.

If we consider the mobile robot applications, which perceive the world as a video stream,
the necessity for the method, which could utilize the temporal dependency across frames, is
very high. Looking at the self-supervised methods, one can see, that they already use video
in the training stage for computing the view-synthesis loss across nearby frames (Godard
et al., 2019; Zhou et al., 2017), but they still do not utilize temporal information at testing
stage. Recently, several works were conducted on unsupervised video depth estimation
methods, which removed the need for supervised information (Mahjourian, Wicke &
Angelova, 2018;Wang et al., 2018).

Considering the sequence-to-sequence tasks, an attention mechanism was proposed
in Bahdanau, Cho & Bengio (2014) which evolved in transformer architectures showing
state-of-the-art results in the tasks such as machine translation (Vaswani et al., 2017).
Back to the video depth estimation, these methods work with frame sequences; hence,
it is interesting whether and how much integration of the attention mechanism in the
recurrent-based pipeline can improve depth estimation.

In this work, we first implement a supervised depth estimation method and then
consider it as a baseline for next experiments, which include architecture modifications
and different training strategies. Further, we integrate the encoder–decoder network with
recurrent block, which can be a convolutional LSTM(convLSTM) and a convolutionalGRU
(convGRU). The usage of the recurrent block increases the accuracy of depth estimation
by leveraging the temporal information across frames. We propose a novel architecture
integrated with attentionmechanism, which outperforms current best supervised recurrent
depth estimation methods. We report results of our study on the KITTI Dataset (Geiger et
al., 2013), which contains outdoor depth and RGB data. Our method trains and tests on
time series of data.

To summarize, our main contributions are as follows:
1. We propose a novel recurrent network, integrated with attention mechanism, which

takes advantage of convGRU or convLSTM to leverage temporal information in the
depth estimation task;
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Figure 1 Illustration of our method. First, image is passed through encoder, then encoder bottleneck
features are passed to recurrent block. At final, in order to get depth prediction, the hidden state is passed
to decoder. Road images and ground truth depth maps credit: Geiger et al. (2013).

Full-size DOI: 10.7717/peerjcs.317/fig-1

2. We design an effective training strategy for the recurrent-based solutions in dense
depth prediction tasks as shown in Fig. 1;

3. We provide a result of extensive experiments and ablation studies. These experiments
show that our recurrent method based on convGRU or convLSTM outperforms the
current state-of-the-art methods.

RELATED WORKS
In this section, we first overview supervised depth estimation methods. Next, we discuss
advances in the self-supervised based approaches. Finally, we consider the video estimation
methods which are of great importance for our work.

Supervised depth estimation
Depth estimation from a single image is classified as an ill-posed problem, as long as one
input image can be projected to multiple plausible depths (across sensors and methods
of acquisition). Recently, many depth estimation methods, which are based on the deep
learning, have achieved great results.

In Xie, Girshick & Farhadi (2016), shortcut connections were used in network in order
to fuse low-level and high-level features. In Eigen, Puhrsch & Fergus (2014), authors
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used a multi-scale neural network with two components in order to generate coarse
estimations globally and refine the corresponding results locally. Another view on the
depth estimation problem was introduced in Cao, Wu & Shen (2018), where authors
formulated a classification problem instead of a regression problem.

Further improvements required new ideas for loss functions. In Laina et al. (2016),
authors employed a reverse Huber loss to estimate depth distributions, while in Yin et al.
(2019) authors implemented the loss term that enforces geometric constraints. Same time,
perceptual loss, which was introduced in Johnson, Alahi & Fei-Fei (2016), was successfully
used in the dense depth estimation task (Wang et al., 2018a; Makarov et al., 2017). To
further boost performance, some works have integrated continuous CRFs in their DL
framework (Liu et al., 2015).

One of the ways to enhance performance of the methods, which predict depth from RGB
images, is to use additional information from other sources. One such example of a source
is sparse depth, which could be extracted from SLAM systems (Mal & Karaman, 2018). A
LiDAR sensor can also serve as a sparse depth input (Liao et al., 2017). Model based on
the semi-dense depth interpolation was presented inMakarov, Aliev & Gerasimova (2017),
where authors proposed an end-to-end learnable residual convolutional neural network
architecture, that achieved fast interpolation of semi-dense depth maps. The suggested
approach was later improved for fast depth estimation from sparse (Makarov, Korinevskaya
& Aliev, 2018a; Makarov, Korinevskaya & Aliev, 2018b) and low resolution (Korinevskaya
& Makarov, 2018) depth values.

Recently, excellent performancewas achieved in Fu et al. (2018), where authors proposed
a SID policy and ordinal regression loss. Although, the results are great, this method can
not be used in the mobile robotics platforms, due to complex network architecture, thus,
it can not be applied in real-time for video processing.

In general, the problem of encoder–decoder architectures or GANs for the supervised
depth estimation lies either in current limitations for error improvement or slow
performance making approaches inapplicable for real-world scenarios on constraint
resources.

Self-supervised depth estimation
Acquiring the ground truth depth is quite a challenging task. That is why the alternative
methods rise, where image reconstruction is used as a supervisory signal. Mainly, there are
two types of methods: one use stereo pairs for the training, while another use monocular
sequences. Thus, this type of models are trained via minimizing the image reconstruction
error, where depth for certain image is projected in nearby views.

For the methods, which use stereo pairs as input, the pixel disparities between the
synchronized stereo pair are predicted during training. Authors from (Xie, Girshick
& Farhadi, 2016) introduced a model with discretized depth in context of the novel
view synthesis problem. In Godard, Mac Aodha & Brostow (2017), authors enhanced
performance by using left–right view consistency as the supervisory signal, while in Garg
et al. (2016) performance was improved by predicting continuous disparity values.
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Using monocular sequences as input leads to slightly different methods, as long as
camera pose estimation between frames plays a crucial role in the whole training pipeline.
Estimation of the camera pose is quite challenging, due to the object motion, but it only
requires during training stage. Great progress has beenmade in this field, starting fromZhou
et al. (2017), where separate pose network was trained along depth estimation network,
to Godard, Mac Aodha & Brostow (2017), where a novel multi-scale sample method and an
auto-masking loss were introduced.

Although the sequential video frames are used in view-synthesis loss, the spatiotemporal
data at longer range is still missing.

Video depth estimation
One of the earliest work in this field was Karsch, Liu & Kang (2014), in which authors
improved depth estimation by using local motion cues and secured temporal depth
consistency via optical flow. However, this method is offline, which is not suitable for our
online setting. In Ranftl et al. (2016), consecutive frame information was used for optical
flow segmentation and depth estimation via geometry reconstruction. In Xu et al. (2017),
depth estimation based on multi-scale convolutional neural networks with continuous
Conditional Random Fields (CRFs) refinement was proposed. The authors used either
cascade of multiple CRFs, or unified graphical model. Later, several works were presented,
which focused on unsupervised video depth estimation methods (Mahjourian, Wicke &
Angelova, 2018;Wang et al., 2018b).

Recently, convLSTM was proposed for the weather forecasting task (Xingjian et al.,
2015) and convGRU was introduced for solving both human action recognition and
video captioning tasks (Ballas et al., 2015). Recently, convLSTM was successfully used in
the real-time video depth estimation task (Zhang et al., 2019), in which authors boosted
performance with temporal consistency loss and generative adversarial learning scheme.
In Vaishakh et al. (2020), authors have also exploited convLSTM in the real-time depth
estimation task, however, they focused mostly on self-supervised setting and training
strategy, which involved pre-training of the initial hidden states.

Thus, according to our knowledge, still there were no works, which integrated the
convGRU block in real-time depth estimation pipeline for videos and, hence, there were
no comparison between convGRU and convLSTM in this online setting. As we know, GRU
is yet another gated architecture. In Chung et al. (2014), authors showed, that GRU has
similar performance in comparison with LSTM. Also, reduced number of gates leads to
fewer parameters in model, which reduces complexity of the whole pipeline and that is a
crucial point for online mobile robot applications. That is why we compare both recurrent
blocks: convGRU and convLSTM as a part of the real-time depth estimation task.

Integration of the recurrent block in pipeline already leads to depth estimation accuracy
improvement. Moreover, this pipeline can be further enhanced by explicitly exploiting
previous frames information, particularly by using attentionmechanism as we show below.
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METHOD
In this section, we first summarise the supervised depth prediction pipeline, which will be
used as a baseline in our work. Then we describe two recurrent blocks: convLSTM and
convGRU. Next, we describe the common recurrent depth estimation pipeline and role
of convLSTM and convGRU in it. In the end of this section, we provide description of
possible architecture modifications, which explicitly exploit previous frames information.
Particularly, we propose the attention based modification, which aggregates information
from previous frames.

Here we also define certain notations to simplify description of the following methods.
Let us denote X ∈ Rm×n as input RGB image, Y ∈ Rm×n as ground truth depth, where n
denotes height and m denotes width. Since we work with sequences, it is also important to
denote by t a timestamp of data time series 1,2,3...,T , where T equals the length of frame
sequence. The image and depth data are considered to be synchronized and for timestamp
t denotes as Xt and Yt , respectively.

Supervised depth estimation
We formulate the depth estimation task as a regression problem: The task is to learn
function f : X→Y , where X is an input RGB image and Ŷ is a predicted depth, where
Ŷ minimizes loss function L(Ŷ ,Y ), where Y correspond to ground truth depth. We
follow the common architecture for the depth estimation network and represent it as
encoder–decoder (following notations of Vaishakh et al. (2020)). Thus, it takes the next
form:

Z = fenc(X), Ŷ = fdec(Z ), (1)

where Z correspond to encoder bottleneck features.
Another subject to consider is the choice of a loss function. The common loss functions

are: L1,L2 and Reversed Huber loss (denoted as berHu), which was introduced in Owen
(2007). According to Makarov, Aliev & Gerasimova (2017), L2 loss function tends to give
oversmoothed results and often has poor perceptual quality. Same time, Mal & Karaman
(2018) showed that using L1 loss leads to better results comparedwith berHu loss. Following
mentioned above considerations, we decided to use L1 loss in our work. Following (Mal
& Karaman, 2018), we apply a binary mask Mi,j of dimensions m×n, where Mi,j = 1 for
valid values of the ground truth depth map Ŷ . Same as in Godard, Mac Aodha & Brostow
(2017), we add an edge-aware smoothing loss term, which can be introduced as:

Lsmooth= |∂x Ŷ ∗|e ||−∂xX ||+|∂y Ŷ ∗|e ||−∂yX ||, (2)

where Ŷ ∗= Ŷ / ˆ̄Y is mean normalized inverse depth from Wang et al. (2018b) to prevent
shrinking of the estimated depth.

In the next section we describe two recurrent blocks: convGRU and convLSTM, which
will be integrated between encoder and decoder modules.

Recurrent blocks: convLSTM and convGRU
Recently, LSTMs achieved great results in various sequence-to-sequence tasks, for example
in speech recognition (Graves, rahman Mohamed & Hinton, 2013) andmachine translation
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(Parmar & Devi, 2018). Long and short term temporal dependencies can be captured by
utilizing the memory cell mechanism. Still, standard LSTM uses one dimensional input,
that is why we can not directly apply it to image sequences. Xingjian et al. (2015) overcame
this problem by introducing the convLSTM mechanism, which allowed to handle two-
dimensional feature maps. In this case it ,ft ,ot gates, cell outputs Ct , and hidden states Ht

are 3D tensors, which last two dimensions are spatial dimensions.
The original structure of the convLSTM cell did not work properly in our experiments,

that is why we used the cell structure, described in Zhang et al. (2019). The key equations
are shown below in ??, where ∗ denotes convolutional operator and Wxk,Whk , and bk ,
k ∈ {f ,i,o,c}, denotes the kernel and bias terms for the corresponding convolutional
layers:

ft = σ (Wxf ∗Xt +Whf ∗Ht−1+bf ),

it = σ (Wxi ∗Xt +Whi ∗Ht−1+bi),

ot = σ (Wxo ∗Xt +Who ∗Ht−1+bo), (3)

C̃t = tanh(Wxc ∗Xt +Whc ∗Ht−1+bc),

Ct = ft ◦Ct−1it ◦ C̃t ,

Ht = ot ◦ tanh(Ct )

GRU follows the same gated principal as LSTM, but with a little simpler architecture.
It has reduced number of gates thus fewer parameters (Chung et al., 2014). The ConvGRU
was first introduced in Ballas et al. (2015) for the video captioning task. It also performed
well in the video segmentation task, as shown in Siam et al. (2017). Equation (4) describe
mathematicalmodel of the ConvGRU,where * is a convolutional operator, zt ,rt correspond
to gates, Ht correspond to a hidden state, Wxk,Whk , and bk , k ∈ {z,r,h} correspond to
kernel and bias terms, respectively:

zt = σ (Wxz ∗Xt +Whz ∗Ht−1+bz),

rt = σ (Wxr ∗Xt +Whr ∗Ht−1+br ), (4)

h̃t = tanh(Wx ∗Xt +Wh ∗ (rt ◦Ht−1)+bh),

Ht = (1−zt )(◦Ht−1+z ◦ h̃t )

Figure 2 shows architectures of both convLSTM (A) and convGRU blocks (B).
In the next section, we will declare the recurrent depth estimation pipeline and

demonstrate the role of recurrent blocks described above in it.

Supervised recurrent depth prediction
In ‘Supervised depth estimation’ we described a baseline encoder–decoder architecture,
which estimates depth for a single frame separately from other frames, which leads to
loss of the spatiotemporal information across sequence. In this section we formulate the
recurrent depth estimation problem and formalize the convGRU and the convLSTM role
in recurrent pipeline.

The problem is formulated as follows: at timestamp t , given the encoder representationZt

for image Xt and given previous hidden states of the recurrent block (Ht−1,Ht−2,..,Ht−n),
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Figure 2 convLSTM (A) and convGRU (B) blocks with feature maps as inputs.
Full-size DOI: 10.7717/peerjcs.317/fig-2

we need to estimate depth map Ŷt :

Ŷt = argmin
Ỹt

P(Ỹt |Zt ,Ht−1,Ht−2,..,Ht−n), (5)

where n equals to the number of frames from the beginning of the sequence.
So, after adding the recurrent block, which can be either a convGRU or a convLSTM,

the basic supervised depth estimation pipeline looks like this: at time t , we pass image Xt

through the encoder Zt = fenc(Xt ), then we pass Zt through convLSTM

Ht ,Ct = fconvLSTM (Zt ,Ht−1,Ct−1), (6)
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Figure 3 Recurrent Depth Estimation Pipeline with ConvLSTM as recurrent block. Road images and
ground truth depth maps credit: Geiger et al. (2013).

Full-size DOI: 10.7717/peerjcs.317/fig-3

or through convGRU

Ht = fconvGRU (Zt ,Ht−1), (7)

where Ht and Ct correspond to hidden and cell states, respectively. Finally, in order to get
a depth estimation Ŷt , a hidden representationHt is passed through decoder Ŷt = fdec(Ht ).
Figure 3 demonstrates the basic recurrent depth estimation pipeline with convLSTM as
recurrent block.

Thus, the integration of recurrent block in our pipeline helps us to capture and exploit
the spatiotemporal information across frame sequence. In our work, we get boost in the
performance, in comparison with the non-recurrent approach. We explain it by ability
of the recurrent block to capture motions of visual components via transitional kernels,
whereas we consider a hidden state as a hidden representation of visual structure according
to Xingjian et al. (2015).

Integration of the recurrent block in the non-recurrent based architecture, already
gives us improvements in the depth prediction accuracy. However, there are still ways to
improve current architecture, by exploiting previous frames information for current frame
depth prediction. In the next section, we propose yet simple, but quite efficient architecture
modifications.
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Exploiting previous frames information
Recently, there were few works, which focused on exploiting the temporal information via
concatenation of multiple frames at input, such as Sun et al. (2015) and Diba et al. (2019).
The problem of these approaches lies in inability to scale well on long sequences. Same
time, the explicit injection of previous frame information can benefit in predicting the
depth for current frame was suggested inKaneko & Yamamoto (2017). Thus, in this section,
we propose three modifications to the recurrent depth estimation pipeline, which utilize
previous frames information.

One of straightforward methods is the explicit injection of just one previous frame,
which can be described as follows:

Ŷt = fdec(g (Ht ,Ht−1)), (8)

where function g refers to either concatenation or fusion. Although, the explicit injection
can be useful, it can not give significant boost in the performance, due to a little difference
between adjacent frames. Hence, we propose a third attention-based modification, which
aggregates information from previous k frames hidden representations.

First, let us denote fRecBlock1, fRecBlock2 as Layer 1 and Layer 2 of the recurrent block
respectively, where recurrent block can be either a convGRU or a convLSTM. Let us
refer to H1t ,H1t−1,...,H1t−k and H2t ,H2t−1,...,H2t−k as hidden states at timestamps
t ,t−1,...,t−k for the Layer 1 and the Layer 2 respectively. The idea is to form the context
vector, which preserve information from k previous frames. We propose an attention
mechanism, which is based on relevance between two hidden states.

Let us define an alignment score between hidden state s and v as:

score(Hs,Hv)=HT
s Hv , (9)

which is a scalar product between two vectors. The alignment weights for the previous k
frames are obtained by the following formula:

αt (s)=
score(H1t ,H1t−s)∑k
s̀=1 score(H1t ,H1t−s̀)

, (10)

where s∈ 1,2..,k.
To get the context vector for the current timestamp t , we do weighted average on k

previous hidden states from Layer 2:

ut =
k∑

s=1

αt (s)H2t−s (11)

Thus, we obtain attention scores from Layer 1 hidden states and construct context vector
from Layer 2 hidden states. For the final step, we concatenate the context vector and the
hidden state for timestamp t and pass it to decoder:

Ŷt = fdec(H2t ⊕ut ), (12)

Figure 4 contains illustrations for all three modifications. While first two modifications
(A) are rather simple and can not give significant enhance in depth prediction accuracy,
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Figure 4 Architecture modifications.Modifications 1 and 2 exploit previous frame hidden state via con-
catenation/fusion with current frame hidden state (A). Modification 3 utilize attention mechanism (B).

Full-size DOI: 10.7717/peerjcs.317/fig-4

due to exploiting information only from the previous frame, the third one (B) is more
complex and provide an accuracy improvement, by utilizing attention-based mechanism.
In section ‘Experiment with model modifications’ we analyze the benefits of the proposed
modifications in comparison with baseline non-recurrent and recurrent pipelines.

It is important to note few things:

• Before constructing the context vector, all hidden representations are reshaped from
3-dimensional to 1 dimensional vector;
• Due to high dimensionality of hidden states, it is impossible to implement the classical
softmax attention mechanism, as long as it contains exponent step.
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TRAINING FRAMEWORK
In this section we first describe the data used in the course of work. Then we provide the
training details and the baseline architecture implementation details. Then we discuss the
training strategy and provide system configuration details.

Dataset
In our work, we report results on KITTI Dataset (Geiger et al., 2013). This dataset contains
61 outdoor video scenes captured by cameras and depth sensors, fixed on a driving car. The
initial resolution of the videos is 375x1242. Training on frame sequences is quite challenging
task, considering the GPU RAM issues. Hence, in order to decrease memory costs, in all
our experiments we resize images to a resolution of 192× 640. Works Vaishakh et al.
(2020) and Godard et al. (2019) use the same resolution, which leads to fair comparison
with their results. We use Eigen split, defined in Eigen & Fergus (2015), which separates
32 monocular sequences for training and 29 sequences for testing. 697 specific samples
from test sequences are used as a standard evaluation test set (Vaishakh et al., 2020; Godard
et al., 2019) for the non-recurrent based experiments. Considering the recurrent-based
experiments, we split 32 sequences into 27 for training and 5 for validation. We divide
sequences into small sub-sequences of 10 frames long. This sub-sequences are used as
training samples. During test phase we evaluate on complete video sequences. We cap the
maximum predictions to 80 m.

Training Details
For non-recurrent based experiments we use the batch size of 24; while for recurrent based
experiments we use the batch size of 6, due to GPU RAM limitations, as long as we use
sequences as training samples. We resize all images to a resolution of 192×640, due to GPU
RAM limitations. We choose the Adam optimizer and the learning rate of 10−4. We apply
exponential decay for learning rate with the decay rate 0.96. For the smooth loss term, we
use weight 0.001. To achieve competitive results, we follow Vaishakh et al. (2020), Godard
et al. (2019) and Luo et al. (2018) and use pretrained ImageNet (Krizhevsky, Sutskever &
Hinton, 2017) weights for the encoder. Additionally, we apply following augmentations:

• color and depths are both horizontally flipped with a 50% chance;
• brightness, contrast, saturation and hue jitter with respective ranges of ±0.2, ±0.2,
±0.2 and ±0.1.

For the attention modification, we look at previous 3 frames. We train both recurrent-
based and non-recurrent based architectures for 20 epochs.

Baseline architecture
For the baseline approach, we follow the U-net work (Ronneberger, Fischer & Brox, 2015)
and use the encoder–decoder architecture with skip connections, where ResNet-18 (He et
al., 2016) performs the role of an encoder. As for the decoder, we apply upconvolutional
blocks same as in DispNet work by Mayer et al. (2016). At the final step, we get the depth
prediction via inverse transformation of disparity output: Ŷ = 1/(aσ +b), where a and b
are selected to limit depth Ŷ from 0.1 to 100 m.
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The basic approach is expanded to recurrent, by adding a recurrent module between
the encoder and decoder, either convGRU presented in Ballas et al. (2015) or convLSTM
preented inXingjian et al. (2015), such that encoder output is passed to this module. Details
are provided in ‘Supervised recurrent depth prediction’.

Training strategy
There are several important aspects to consider when we design the training strategy for
the recurrent depth estimation pipeline.

The first one is about the impact of the initial hidden state of a recurrent block. As we
know, in a vanilla LSTM and in a vanilla GRU, the latter are initialized by zeros. This is
a common practice, taking into account the tasks in which those blocks are applied (for
example, Machine Translation or Time Series Analysis). It works fine in these type of tasks
for several reasons: length of sequences is relatively long compared to the size of hidden
state and the impact of initial hidden state is trivial. However, when we deal withmonocular
videos, we have some restrictions on memory resources, which leads to shortening the
length of sequences at training stage. Thus, the impact of the initial hidden state becomes
crucial. Following work (Vaishakh et al., 2020), we divide our training process in two stages:
at the first stage, we consider the initial hidden state as learnable parameter, then, at the
second stage, the trained initial hidden state is used at the start of every frame sequence.

The second aspect concerns the impact of the pretrained encoder and the pretrained
decoder on the training process of the recurrent pipeline. As we know, the common way
is to train architecture in end-to-end manner, however, we can let the recurrent block to
adapt to sequence faster, by preloading weights, which were obtained as a result of training
in the supervised baseline approach. Thus, we perform a finetuning of architecture with
additional recurrent block on monocular video sequences.

System configuration
All models were implemented with Pytorch Paszke et al., 2017. All experiments were carried
out with the RTX6000 GPU, Intel(R) Xeon(R) CPU and 32 Gb RAM. The operating system
is Ubuntu 18.04. All process was performed using free and open-source distribution
Anaconda with python version 3.7.4.

EXPERIMENTS
In this section we analyze results of conducted experiments and compare our best result
with current state-of-the-art methods.

Experiment with model modifications
The experiments are carried out in the following order: At first, we train a non-recurrent
architecture (Table 1 Baseline row). Then we add a recurrent block between encoder and
decoder modules and train in end-to-end manner. We test both convGRU and convLSTM
(Table 1 convGRU and convLSTM rows). After that, we preload encoder and decoder
weights, received from the first experiment, and train in same manner (Table 1 recurrent
Block+weights rows). Thenwe test all the architecturemodifications: concatenation/fusion
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Table 1 Results for supervised depth prediction in conducted experiments. Bold corresponds to the
best metric.

Method ↓ RMSE

Baseline 4.397
convLSTM 4.536
convLSTM + weights 4.181
convLSTM + weights + mod. 1 4.203
convLSTM + weights + mod. 2 4.205
convLSTM + weights + mod. 3 4.168
convGRU 4.437
convGRU + weights 4.188
convGRU + weights + mod. 1 4.210
convGRU + weights + mod. 2 4.211
convGRU + weights + mod. 3 4.196
convGRU + weights + mod. 3 + ELU 4.104

of previous frame hidden state with current frame hidden state and modification based
on attention mechanism. Following (Vaishakh et al., 2020), we experiment with activation
function: Tanh activation function is replaced with ELU activation function (Table 1
last row). We conduct this change only with convGRU architecture, because activation
function change in convLSTM cell leads to worse results.

The results of these experiments are presented in Table 1. As we can see, the recurrent-
based architectures, which use preloaded weights from the non-recurrent based model,
outperforms the baseline supervised model (4.181 against 4.397 RMSE). Moreover, we
see an improvement by 8% in comparison with the model, trained from scratch, both for
convLSTM, convGRU, which confirms the correct use of preloaded weights for encoder,
decoder blocks. As we can see, convLSTM slightly outperforms convGRU (by 0.007 RMSE),
however the difference is not that great. By using the attention modification, the results are
improved even further. First two modifications, which utilize previous frame information
by doing concatenation/fusion with current frame hidden state, only make results worse.
This happens due to little difference between adjacent frames.

It is important to note, that the attention modification works better with convLSTM
(4.168 RMSE). At last, the change of Tanh activation function to ELU activation function
in convGRU cell, leads to even better results (4.104 RMSE). We see an improvement,
comparing with Tanh activation function, because, in this case we match the scale with
the output of encoder. Summing up, the attention-based recurrent architecture showed
an improvement in comparison with baseline non-recurrent architecture by 0.293 RMSE,
which demonstrates the effectiveness of proposed method.

Comparison with state-of-the-art models
Table 2 contains results from previous state-of-the-art works and result of our best
recurrent-based architecture. By comparing results of our best supervised-based approach
with other supervised approaches, we see a significant improvement. Fu et al. (2018)
method still outperforms our method, however, their method is not suitable for real-time
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Table 2 Comparison with state-of-the-art methods. First column classifies methods as ‘s’ (supervised), ‘u’ (self-supervised/unsupervised), ‘v’
(video based).

Method ↓ RMSE ↓ RMSE(log) ↓ Abs Rel Diff ↓ Sq Rel Diff ↑ δ< 1.25 ↑ δ< 1.252 ↑ δ< 1.253

s Eigen, Puhrsch & Fergus (2014) 7.156 0.270 0.215 1.515 0.692 0.899 0.967
s Wang, Pizer & Frahm (2019) 5.106 0.211 0.128 0.908 0.647 0.882 0.961
s Kuznietsov, Stckler & Leibe (2017) 4.621 0.189 0.113 0.741 0.862 0.960 0.986
s Guo et al. (2018) 4.422 0.183 0.105 0.717 0.874 0.959 0.983
s Yang et al. (2018) 4.442 0.187 0.097 0.734 0.888 0.958 0.980
s Liu et al. (2015) 6.986 0.289 0.217 1.841 0.647 0.882 0.961
s Fu et al. (2018) 2.727 0.120 0.072 0.307 0.932 0.984 0.994
u Casser et al. (2018) 4.750 0.187 0.109 0.825 0.874 0.958 0.982
u Godard et al. (2019) 4.863 0.193 0.115 0.903 0.877 0.959 0.981
v Zhang et al. (2019) 4.137 – 0.101 – 0.890 0.970 0.989
v Vaishakh et al. (2020) 4.148 0.172 0.102 0.655 0.884 0.966 0.987
v The method in this study 4.104 0.170 0.101 0.707 0.887 0.964 0.986

Notes.
Best results in real-time and not real-time are marked as bold and as bold & underlined, respectively.

Table 3 Processing speed of different methods measure in rames per second (fps).

Approach Time (ms per frame) Speed (fps)

Baseline 14.2±0.9 70±4
convGRU 15.7±0.8 64±4
convGRU + Attention 17.4±0.8 58±4
convLSTM 15.9±0.7 64±4
convLSTM + Attention 17.6±0.6 57±4
DORN (Fu et al., 2018) 69.2±0.6 15±3

depth estimation task (autonomous driving), due to complex network architecture; also
it provides poorer results in terms of visual perception compared to our approach. The
results of speed tests on Nvidia GTX-1060 with MAX-Q Design GPU are shown in
Table 3.

Our method, based on convGRU and attention mechanism, shows better results, than
methods, based on convLSTM in Zhang et al. (2019) and Vaishakh et al. (2020), which
proves efficiency of attention-based modification together with online performance.

DISCUSSION
Attention-based module improves quality over straightforward recurrent based approach
(convGRU / convLSTM). The explicit injection of past frame information directly benefits
to depth estimation, for example, in cases, when self-driving car makes a turn on the street
and focusing on past few frames (forming the attention-based context vector) helps to
improve depth prediction on certain areas of image.Whenwe are working with featuremap
sequences, we can not apply GRU/LSTM/Attention in a straightforward way. Previously,
authors used attention in works, focused on the depth estimation. For example, in Xu et al.
(2018), authors implemented a structured attention model which automatically regulates
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Figure 5 Visual results of depth estimation for different approaches on KITTI dataset. A, B, C corre-
spond to RGB images. D, E, F correspond to depth output, produced by Baseline model. G, H, I corre-
spond to depth output, produced by model with ConvGRU block. J, K, L correspond to depth output,
produced by model with ConvGRU and attention blocks. M, N, O correspond to error maps. Brighter
colors on error maps mean higher errors. Road images and ground truth depth maps credit: Geiger et al.
(2013).

Full-size DOI: 10.7717/peerjcs.317/fig-5

the amount of information transferred between corresponding features at different scales,
and in Chen, Zhao & Hu (2019), authors integrated the self-attention module to mitigate
grid artifacts. Yet, there were no works on the video depth estimation, which focused on
integrating the attention mechanism with the recurrent block (convGRU/convLSTM).

In our architecture, we utilize an attention mechanism, applied to feature maps
sequences, and it is the first article to provide solid proof of successful SOTA
outperformance for depth estimation in online setting using attention-based mechanism.
Unfortunately, comparison withVaishakh et al. (2020) is not possible due to irreproducible
results from the paper, following which we obtained much worse results compared to the
reported in the paper (recurrent depth estimation pipeline with convolutional LSTM). On
the contrary, we provide reproducible results with rigorously extended approaches and
aim to publish code accompanying paper.

We used one dataset (KITTI) to match the evaluation benchmarks, mentioned in other
papers. To provide fair comparison results, we follow a unified approach of train/test split
and evaluation presented in studies on video-depth estimation.
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Overall, we present a novel architecture for the task, which outperforms other approaches
in online depth estimation setting. The visual results are presented in Fig. 5, it also contains
error maps for our best method. From the error maps we can see, that error is large in the
far areas with high depth variance.

CONCLUSION AND FUTURE WORK
In this work we introduced a novel method for estimating time-series of dense depth maps,
based on convGRU module and attention mechanism. A recurrent framework has been
developed for supervised depth prediction task. Our method demonstrates improvement
on KITTI dataset, in comparison with other state-of-the-art methods. Our framework is
able to execute in real-time for mobile robot applications.

An interesting direction of future work will be to adapt our current framework for
self-supervised depth prediction task. The recurrent pipeline can strongly benefit self-
supervised learning, which already uses idea of using information from video to provide
temporally coherent depth predictions.

It is also interesting to mention that unsupervised and self-supervised frameworks may
achieve great performance while being combined with segmentation and pose estimation
guidance. In simple words, if you have robust self-supervised model and a place in image,
in which you can reconstruct ground truth depth, then you can reconstruct dense depth
map with high precision leading to much less efforts on high-precision depth sensors or
necessity to label data for various environment conditions. To find such places, different
SLAM algorithms and anchor-less detectors may be of great use.

Another interesting area of further research direction is to investigate the performance of
our framework in indoor environment. The framework may benefit from smaller variance
of depth values and lead to better performance for indoor stable camera movement.

Finally, as mentioned by one of the reviewers, using Lidars providing high precision
low-res depth map may benefit depth completion problem. The problem is that Lidar
sensors are dependent on lighting conditions of the scene, hence using just input from
the Lidar can decrease robustness and become a serious issue when deploying to UAV.
Nevertheless, comparing the performance of the current framework on different inputs
(RGB, sparse depth, RGBd) is an interesting area of further research direction. We have
already tested semi-dense depth interpolation (Makarov et al., 2019), however, fusion of
sparse depth and hi-res RGB image is still a challenging task for real-time systems. We refer
these directions for the future work.
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