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ABSTRACT

The escalating complexity of cyber threats in smart microgrids necessitates advanced
detection frameworks to counter sophisticated attacks. Existing methods often
underutilize optimization techniques like Harris hawks optimization (HHO) and
struggle with class imbalance in cybersecurity datasets. This study proposes a novel
framework integrating HHO with extreme gradient boosting (XGBoost) and a hybrid
convolutional neural network with support vector machine (Cnn-SVM) to enhance
cyber threat detection. Using the distributed denial of service (DDoS) botnet attack
and KDD CUP99 datasets, the proposed models leverage HHO for hyperparameter
optimization, achieving accuracies of 99.97% and 99.99%, respectively, alongside
improved area under curve (AUC) metrics. These results highlight the framework’s
ability to capture complex nonlinearities and address class imbalance through
RandomOverSampler. The findings demonstrate the potential of HHO-optimized
models to advance automated threat detection, offering robust and scalable solutions
for securing critical infrastructures.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Optimization Theory and
Computation, Security and Privacy, Neural Networks

Keywords Cyberattack, Harris hawks optimization (HHO), XGBoost, CanSVM, Optimize machine
learning

INTRODUCTION

An increasing reliance on technology has been relied on due to the digitizing modern
world, which has led to different types of sophisticated cyber dangers arising, which would
disturb organizations’ running businesses, compromise sensitive information, and cause
dire financial losses. Most real cyber security measures are inadequate in tackling the
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ever-changing armory of tricks cybercriminals use (He, Zhang ¢» Li, 2021). Such an
immediate necessity hence arises for modernizing these fields, such as through machine
learning techniques, to further develop objective improvement in threat detection and
classification.

Using machine-learning techniques is successful in cyber-security applications because
it helps analyze and capture huge amounts of data and identify straightforward patterns
that may not be readily observable by a human analyst. With the help of machine learning,
network traffic, user behavior, and system logs can be processed to report the detected
anomalies that indicate a cyber threat. Among these techniques are models such as
extreme gradient boosting (XGBoost), a powerful ensemble learning method (Chen et al.,
2018b), and the newly introduced CnnSVM, which combines convolutional neural
networks with support vector machines for enhanced feature extraction and classification
in cybersecurity (Al-Shabi, 2021). CNN-SVM consists of convolutional layers coupled with
a support vector machine classifier, which improves capability in feature extraction and
provides a better form of dealing with compound data patterns.

Optimization algorithms such as Harris hawks optimization (HHO) (see Table 1)
further develop these types of models by fine-tuning hyperparameters to obtain maximum
levels of accuracy and reliability in the detection of cyber threats. The optimization
techniques keep the parameter space defined for the possible settings or the optimal ones
towards better sensitivity and less false positives in a developed model (Alazab et al., 2024).

This study aims at optimizing the hyperparameters of two advanced models-call ones:
XGBoost and CnnSVM using HHO. The CnnSVM uses convolutional layers to better
extract features and uses SVM for classification. This model architecture makes it very
effective for complex cyberattack detection tasks (Huang et al., 2023). The integration of
machine learning with optimization techniques like HHO marks another milestone in
cybersecurity, improving the sensitivity, specificity, and performance of these methods in
detecting cyber threats from very unbalanced datasets.

Besides XGBoost and CnnSVM, previous research has also involved the use of
AdaBoost and Cat-Boost for various types of cyberattacks. CatBoost has excellent handling
of categorical features, and these are very common within the area of cybersecurity.
Despite this, this study focuses mainly on the evaluation of the two models, the XGBoost
and CnnSVM, optimized using HHO in regard to detect a range of cyber threats.

The distributed denial of service (DDoS) (see Table 1) dataset has four classes and is for
processing and predicting the malicious packets during a DDoS botnet attack, while KDD
CUP99 (see Table 1) contains five classes and is a model for detecting intrusions and
attacks mostly targetting military environment network management due to the nature of
the Third International Knowledge Discovery and Data Mining Tools Competition. The
two datasets used in this study thus maximized the findings. Both optimized models were
effective at their tasks. The HH-XGB model produced perfect accuracy on the DDoS
dataset and nearly perfect results on the KDD CUP99 dataset.

The contributions of this study, detailed in ‘Contributions’, include a comparative
analysis of XGBoost and CnnSVM, a pioneering HHO-optimized framework achieving
accuracies of 99.97% and 99.99% on DDoS and KDD CUP99 datasets, respectively, and a
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Table 1 List of abbreviations.

Abbreviation Full form

HHO Harris hawks optimization

XGBoost Extreme gradient boosting

CnnSVM Convolutional neural network with support vector machine
DDoS Distributed denial of service

KDD CUP99 Knowledge discovery and data mining cup 1999
FPA Flower pollination algorithm

BWO Black widow optimization

ML Machine learning

CNN Convolutional neural network

SVM Support vector machine

RF Random forest

demonstration of HHO’s superiority over other optimization algorithms (Nandhini ¢
Santhosh Kumar, 2024).

The remainder of this article is organized as follows: ‘Related Work” provides an
overview of relevant literature; the ‘Proposed Methodology’ section outlines the approach
used in this study; the ‘Results and Discussion’ section presents and discusses our empirical
results; and the ‘Conclusion’ section summarizes the work and suggests directions for
future research.

RELATED WORK

Anomaly detection is concerned with discovering those abnormal patterns that may
indicate cyber intrusion. Recent advances have drastically improved the applications of
machine learning for enhancing cybersecurity infrastructures. Below is a roundup of the
latest published works about anomaly detection, intrusion detection systems, malware
detection, and feature optimization techniques.

According to Chen et al. (2018a), an autoencoder-based model was built to learn very
well normal behavioral patterns in network traffic that can produce up to 96% anomalies
detection accuracy. Ensemble methods, such as those using autoencoders, enhance
efficiency by leveraging the strengths of multiple algorithms. The hybrid anomaly
detection model for trusted IoT devices was developed by Rosero-Montalvo et al. (2023)
improving detection accuracy due to multiple techniques in a single model.

Advanced machine learning algorithms have brought a remarkable improvement into
intrusion detection systems (IDSs). Ensemble methods such as the Random Forest and
Gradient Boosting sur-pass the integrated classical rule-formulated ones. Mohy-Eddine
et al. (2023) exhibited an ensemble model with high accuracy results using industrial
IoT systems’ security. Like that, Lunardi, Lopez ¢ Giacalone (2022) used an
adversarially regularized convolutional autoencoder (ARCADE) for real-time network
anomaly detection, achieving more than 93% precision in identifying different attack
types. Their research focused on the application of deep learning models for complex cyber
threats.
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The HHO has emerged as a promising approach given its effectiveness in intruder
detection system (IDS). Singh ¢ Jang-Jaccard (2022) presented optimized hyperparameters
for unsupervised intrusion detection models through multi-scale convolutional recurrent
networks to improve detection accuracy. Gyamfi & Jurcut (2022) showed how approaches
using machine learning within multi-access edge computing applied for intrusion
detection systems focused on feature selection to achieve both effectiveness and reduced
computational complexity.

The latest studies on hybrid architecture have developed models focusing on improving
detection performance. Ayad, Sakr ¢ Hikal (2024) proposed a network intrusion detection
system based on the integration of HHO with a multi-layer perceptron (MLP) (see Table 1)
that achieved 93.17% of accuracy. Sajid et al. (2024a) applied HHO with random weight
networks (RWN) for IoT botnet detection, giving an overall F-measure of 99.9%. However,
they found that distributed systems have to deal with the problem of communication
overhead.

Combining attention mechanisms with generative adversarial networks (GANSs) (see
Table 1) has also been used. An attention-GAN that attained 99.69% accuracy on the KDD
dataset and 97.93% on CI-CIDS2017 is Kumar & Sharma (2023). It is used to discover
“complex” attack patterns. However, the overhead in processing entails its problem in
resource-crippled environments.

Malware detection and feature engineering machine learning frameworks like support
vector machines (SVMs) (see Table 1) and deep learning have shown a lot of promise in
classifying malware. Hybrid approach performance evaluation for k-means clustering and
naive Bayes-based IoT anomaly detection (Best, Foo ¢ Tian, 2022). They also proposed an
approach that used k-means and naive Bayes in a hybrid way on IoT anomaly detection
that resulted in a high level of accuracy. Ahmad et al. (2021) described a technique for
feature extraction with API call sequences, which lowered the false positive rate in an IoT
architecture by 25%.

Sajid et al. (2024b) underlined the importance of feature selection in reducing
computational complexity and increasing model interpretability. Kumar ¢~ Sharma (2023)
presented a hybrid modified deep learning architecture that used an inverted
hourglass-based layered network for selection of features and classification to obtain
significantly improved accuracy and reduced false positives.

Dataset integrity and challenges the quality of the datasets remains crucial in the
successful development of models. Pekar ¢ Jozsa (2024) refined the CICIDS-2017 dataset
in addressing is-sues on the integrity of the dataset. In the study, they showed a more
accurate and reliable result for random forest algorithms. Those aspects are maltreated as
challenges in making the dataset relevant to the evolving nature of cyber threats.

Recent advancements in cybersecurity for smart microgrids provide valuable insights
into the application of machine learning and optimization techniques for detecting and
mitigating cyber-physical threats, which are closely related to the network-based cyber
threats addressed in this study. Yaghoubi et al. (2024) proposed a dynamic reconfiguration
framework for smart microgrids using long short-term memory (LSTM) networks
combined with differential evolution optimization to detect false data injection attacks
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(FDIAs) and ensure operational efficiency. Their approach achieved a low operational cost
(827,557,510.4) and expected energy not supplied (EENS) of 50.07 kWh, demonstrating
the effectiveness of deep learning in handling cyber-physical attacks in microgrids.
However, their reliance on LSTM may introduce computational overhead, limiting
real-time applicability in resource-constrained environments. In contrast, our proposed
framework leverages the HHO algorithm to optimize lightweight models like XGBoost and
CnnSVM, achieving near-perfect accuracies (99.99% on KDD CUP99 and 99.97% on
DDoS datasets) with reduced computational complexity, making it more suitable for
real-time cyber threat detection.

Similarly, Jahromi et al. (2025) introduced a real-time self-healing framework for large
microgrids using large change sensitivity (LCS) analysis, achieving a response time of less
than 2 s for a 118-bus system and reducing operational costs to $12,687.72. While effective
for rapid system state updates against cyber-physical attacks, their approach does not
explicitly address FDIAs or incorporate advanced feature extraction techniques, which are
critical for detecting complex attack patterns. Our CnnSVM model, optimized by HHO,
integrates convolutional layers for robust feature extraction, enabling superior detection of
intricate cyber threats, such as those in the DDoS and KDD CUP99 datasets, with a
precision of 99.39% and recall of 99.74%.

Furthermore, Jahromi, Yaghoubi ¢» Yaghoubi (2025) proposed a hierarchical control
strategy for optimal generation and distribution planning in smart microgrids under
multi-microgrid disconnection scenarios, including those caused by cyber-physical
attacks. Their framework achieved significant reductions in operational costs (12.1%),
losses (73.8%), and voltage deviation (30.45%) by optimizing the selection of generation
units in island mode. However, the lack of detailed methodologies for handling
uncertainty or detecting specific cyber threats limits its applicability in dynamic attack
scenarios. Our approach addresses this gap by incorporating interval prediction and
RandomOverSampler to handle data uncertainty and class imbalance, ensuring robust
performance across diverse cyber threat datasets.

These studies highlight the importance of advanced machine learning and optimization
techniques in enhancing cybersecurity for critical infrastructures like microgrids.
However, their focus on microgrid-specific challenges, such as physical system
reconfiguration or hierarchical control, leaves gaps in addressing purely network-based
cyber threats. Our proposed HHO-optimized XGBoost and CnnSVM models bridge these
gaps by offering a generalized framework for cyber threat detection, achieving high
accuracy and robustness across heterogeneous datasets, thus complementing and
extending the methodologies of Yaghoubi et al. (2024), Jahromi et al. (2025), Jahromi,
Yaghoubi & Yaghoubi (2025) to broader cybersecurity applications.

To clarify the advantages of the proposed framework, Table 2 provides a comprehensive
comparison of state-of-the-art methods against our HHO-optimized XGBoost and
CnnSVM models across key dimensions: datasets, accuracy, computational complexity,
and novelty. Unlike traditional ensemble methods like random forest (93.10% accuracy,
Pekar & Jozsa, 2024) or deep learning approaches like Attention-GAN (99.69% accuracy,
Kumar & Sharma, 2023), which often prioritize accuracy at the expense of high
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Table 2 Summary of recent related work.

Novelty

Complexity

Limitations

Scope of the study

Algorithm(s) used

Dataset

Domain applied

Reference

First CAE application for
network anomaly detection,
achieving higher accuracy
with fewer parameters than
traditional autoencoders.

First on-device hybrid
anomaly detection for IoT
(50 kB Flash/12 kB RAM)
with 60% bandwidth
reduction

Novel feature engineering
approach using
interchangeable PCC-IF/
IF-PCC for IIoT security,
achieving >99% accuracy
with fast prediction times
(~6s).

First to use adversarial
training with convolutional
AE for early anomaly
detection (first 2 packets)—
20x fewer parameters than
SOTA.

First unsupervised MSCNN-
LSTM-AE model capturing
spatio-temporal
correlations in network
traffic.

First comprehensive review
proposing MEC-
empowered NIDS
framework for IoT security.

SMOTE + hierarchical
classification vs. CAE
efficiency vs. on-device
trust.

First hybrid XGBoost-CNN-
LSTM model achieving
high accuracy with low
FAR on multiple attack
types

Novel architecture combining
optimal feature selection
with layered up-sampling
achieves >99.5% accuracy
on low-cost CPUs.

Convolutional
Autoencoder (CAE)
for dimensionality

reduction.

Three-step hybrid
model (smoothing
filters + unsupervised
learning + deep
learning) for on-

device processing

Ensemble model
combining Isolation
Forest (IF) and
Pearson’s Correlation
Coefficient (PCC)
with random forest
classifier.

Adversarially
regularized
convolutional
autoencoder (trained
only on normal
traffic).

Multi-scale CNN-LSTM  No discussion on scalability to large

autoencoder with
isolation forest error

correction.

Focused on anomaly detection; lacks

emphasis on handling real-time,
large-scale networks.

Limited evaluation on diverse IoT

environments.

Limited focus on adaptability to

unseen attack patterns.

Computational overhead for real-

time applications.

datasets.

MEC-based distributed ~ Limited evaluation on diverse IDS

NIDS framework for
resource-constrained
IoT.

Hybrid filter-wrapper
feature selection +
two-level detection
with SMOTE.

datasets.

Computational complexity limits
real-time, large-scale applications.

Hybrid XGBoost-CNN  Communication overhead in

feature extraction
with LSTM
classification (binary
& multi-class).
Hybrid optimization
feature selection +
inverted hour-glass
layered classifier with
data up-sampling.

distributed frameworks; scalability

issues in large IoT networks.

Computationally intensive training

process.

Captures normal
behavioral patterns in
network traffic,
achieving 96%
accuracy.

Trusted IoT network
anomaly detection.

High-accuracy IDS model
for industrial IoT
systems.

Real-time network
anomaly detection with

over 93% precision.

Improved detection
accuracy using
hyperparameter
optimization.

Reduced computational
complexity while
maintaining accuracy.

Hybrid IDS achieving
93.17% accuracy on
benchmark datasets.

10T botnet detection with
an average F-measure
of 99.9%.

Cyber threat detection
achieving 99.69%
accuracy (KDD
dataset).

Autoencoder

Hybrid (Clustering +
Deep learning)

Ensemble (Random
forest, Gradient
boosting)

Adversarially
regularized
convolutional AE

Multi-scale

convolutional

recurrent networks

HHO

HHO + MLP

HHO + RWN

Attention-GAN

NSL-KDD

IoT dataset

Bot-IoT, NF-UNSW-
NB15-v2

NSL-KDD,
UNSW-NBI15,
CICDDo0S2019

(Review article—analyzes
multiple public
datasets)

BoT-IoT, TON-IoT,
CIC-DD0S2019

CIC IDS 2017, UNSW
NB15, NSL KDD, WSN
DS

NSL-KDD, KDD-CUP99,
UNSW-NBI15

Anomaly detection

Anomaly detection

Intrusion detection

systems

Intrusion detection

systems

Intrusion detection

systems

IDS feature selection

Intrusion detection

systems

ToT security

Anomaly detection

Chen et al. (2018a)

Rosero-Montalvo
et al. (2023)

Mohy-Eddine et al.
(2023)

Lunardi, Lopez &
Giacalone (2022)

Singh & Jang-
Jaccard (2022)

Gyamfi & Jurcut
(2022)

Ayad, Sakr &
Hikal (2024)

Sajid et al. (2024a)

Kumar & Sharma
(2023)
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Table 2 (continued)

Novelty

Complexity

Limitations

Scope of the study

Algorithm(s) used

Dataset

Domain applied

Reference

Combines unsupervised
(K-means) and supervised
(AdaBoosted NB) learning
for flexible, scalable IoT
security (90-100%
accuracy).

DNN with MI reduces false

alarms (0.23-7.98%) and
boosts accuracy (0.57-
3.45%) using only 16-35
features.

Identifies CBL as superior for

knowledge retention and
highlights VR’s confidence
boost without skill
improvement.

Combines hybrid feature

selection and novel layered
network model, achieving
>99.5% accuracy on CPU
(cost-efficient).

Introduces NFStream-

processed datasets and
demonstrates RF's
robustness across data

integrity levels.

First LSTM-based FDIA

detection incorporating
modified point prediction

for microgrids

LCS framework enabling sub-

2-second real-time
response to attacks in
microgrids.

First framework optimizing

V/f bus selection during

islanding to reduce costs by

12.1% and losses by 73.8%.

Hybrid K-means
clustering +
AdaBoosted Naive
Bayes for IoT
anomaly detection.

DNN-based NIDS with
mutual information
(MI) for feature
selection, compared
to CNN/RNN
variants.

Systematic review with
quality assessment
(Cochrane RoB, NOS)
of multiple training
modalities.

Hybrid optimization
feature selection +
inverted hour-glass
layered classifier with
data up-sampling.

RF model tested on
multiple datasets for
binary/multi-class
anomaly detection.

Multi-objective
optimization
framework with
technical/economic
parameters

LCS-based optimization
without full power
flow recalculation.

Two-phase hierarchical
control for grid-
connected/island
mode transitions.

Limited evaluation on diverse

malware datasets.

Focused on a specific feature
extraction approach; lacks
generalizability.

Evaluation limited to certain
datasets; lacks discussion on real-

time implementation.

Computational complexity may
limit deployment in resource-
constrained environments.

Challenges in maintaining relevance
due to evolving threats; requires

continual updates.

Its reliance on computationally
intensive LSTM-based deep
learning, which may hinder real-
time deployment in resource-
constrained microgrid
environments.

Focus on system state updates using
LCS analysis, which may not
adequately address complex
network-based cyber threats
requiring advanced feature
extraction for detection.

Its lack of detailed mechanisms for
detecting specific cyber threats or
handling data uncertainty, which
restricts its adaptability to
dynamic cyber-physical attack
scenarios in microgrids.

Malware classification
achieving high
accuracy.

Reduced false positives by
25% in malware
classification.

Improved anomaly
detection performance
through feature
selection.

Enhanced detection
accuracy with reduced
false positives.

Refined CICIDS-2017
dataset for improved
model reliability and
accuracy.

Dynamic reconfiguration
against cyber-attacks
(FDIAs) with cost-

efficiency

Real-time techno-
economic self-healing
against cyber-physical
attacks

Multi-microgrid
operation under
normal and
disconnection

conditions

Hybrid (KMeans +
Naive Bayes)

API call sequence
analysis

Advanced Feature
Selection + ML

Inverted Hourglass
DL Architecture

Random forest

LSTM-based deep

learning with

prediction intervals

Large change
sensitivity (LCS)
analysis

Hierarchical control
strategy

Fridge, Garage Door, GPS
Tracker and others

IoT-Botnet 2020

PubMed, Cochrane
Library, Embase,
CINAHL (RCTs,
clinical trials, cohort
studies)

NSL-KDD, KDD-CUP99,
UNSW-NB15

Refined CICIDS-2017
versions (NFS-2023-
nTE, NFS-2023-TE)

118-bus network

IEEE 33-bus, 69-bus, and
118-bus networks

simulation-based study

Malware detection

Feature engineering for
ToT

Feature selection and

anomaly detection

Intrusion detection

systems

Dataset integrity

Smart power microgrids

security

Large-scale power
microgrid security

Smart microgrid energy
management

Best, Foo ¢ Tian
(2022)

Ahmad et al.
(2021)

Sajid et al. (2024b)

Kumar & Sharma
(2023)

Pekar & Jozsa
(2024)

Yaghoubi et al.
(2024)

Jahromi et al.
(2025)

Jahromi, Yaghoubi
& Yaghoubi
(2025)
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computational costs, our framework achieves near-perfect accuracies (99.97% on DDoS,
99.99% on KDD CUP99) with optimized computational efficiency. Compared to
microgrid-specific frameworks (Yaghoubi et al., 2024; Jahromi et al., 2025; Jahromi,
Yaghoubi ¢ Yaghoubi, 2025), which focus on cyber-physical threats but lack advanced
feature extraction for network-based attacks, our CnnSVM model leverages
convolutional layers for robust feature extraction, enhanced by HHO’s efficient
hyperparameter tuning. Additionally, our use of RandomOverSampler addresses class
imbalance, a common limitation in prior works, ensuring balanced performance across
diverse attack types. This comparison underscores the proposed framework’s ability to
combine high accuracy, computational efficiency, and adaptability to complex
cybersecurity datasets.

In synthesizing the related work, several critical gaps in existing cyber threat detection
methodologies emerge, limiting their effectiveness in addressing complex, evolving threats.
Many studies, such as Chen et al. (2018a) and Rosero-Montalvo et al. (2023), rely on
traditional machine learning or ensemble methods like autoencoders and random forest,
achieving accuracies up to 96% but often suffer from overfitting due to inadequate
handling of class imbalance or complex attack patterns. Advanced deep learning
approaches, such as Attention-GAN by Kumar ¢» Sharma (2023), achieve high accuracies
(99.69% on KDD CUP99) but incur significant computational overhead, rendering them
impractical for resource-constrained environments like IoT networks. Similarly,
microgrid-specific frameworks (Yaghoubi et al., 2024; Jahromi et al., 2025; Jahromi,
Yaghoubi ¢ Yaghoubi, 2025) focus on cyber-physical threats but lack robust feature
extraction or mechanisms to handle network-based attacks comprehensively.
Furthermore, optimization techniques like HHO have been underutilized for
hyperparameter tuning in cybersecurity, as seen in Ayad, Sakr ¢» Hikal (2024), which limits
model scalability and performance. The challenge of class imbalance, prevalent in datasets
like DDoS Botnet Attack and KDD CUP99, is often inadequately addressed, leading to
biased predictions. This study addresses these gaps by proposing an HHO-optimized
framework integrating XGBoost and CnnSVM, leveraging advanced preprocessing (e.g.,
RandomOverSampler) and convolutional feature extraction to achieve near-perfect
accuracies (99.97% on DDoS, 99.99% on KDD CUP99) with reduced computational
complexity, as detailed in Table 2.

Contributions

This study introduces several novel contributions to cyber threat detection in smart
microgrids, addressing critical gaps identified in prior work (Yaghoubi et al., 2024; Jahromi
et al., 2025; Jahromi, Yaghoubi ¢ Yaghoubi, 2025). The key contributions are as follows:

» Comparative analysis of XGBoost and CnnSVM: We evaluate and compare the
performance of XGBoost and CnnSVM models in detecting and classifying cyberattacks
across the DDoS Botnet Attack and KDD CUP99 datasets. This analysis highlights their
ability to handle complex, nonlinear cybersecurity data, providing a robust baseline for
model selection in smart microgrid security.
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« Novel HHO-optimized framework: We propose a hybrid framework integrating HHO
with XGBoost and CnnSVM, achieving detection accuracies of 99.97% and 99.99% on the
DDoS and KDD CUP99 datasets, respectively. This framework, enhanced by
RandomOverSampler to address class imbalance, outperforms traditional models (Jahromi
et al., 2025; Jahromi, Yaghoubi & Yaghoubi, 2025) and represents a pioneering application
of HHO in this domain.

o Superiority of HHO: Through comparative analysis with particle swarm optimization
(PSO) (Jahromi, Yaghoubi & Yaghoubi, 2025), genetic algorithms (GA), flower pollination
algorithm (FPA), and black widow optimization (BWO), we demonstrate HHO’s superior
convergence speed and computational efficiency in optimizing machine learning models
for cybersecurity, as detailed in ‘Comparison with Microgrid Cybersecurity Approaches’
and supported by prior studies (Yaghoubi et al., 2024).

These contributions collectively advance the field by offering a scalable, efficient, and
high-performing solution for automated cyber threat detection in smart microgrids.

PROPOSED METHODOLOGY SOLUTION

This section presents a comprehensive methodology for developing and evaluating
machine learning models optimized for cyber threat detection. The experimental setup
involves four key steps: (1) data preprocessing, including feature selection, scaling, and
class imbalance correction using RandomOverSampler; (2) model initialization with
XGBoost and CnnSVM, configured with baseline hyperparameters; (3) hyperparameter
optimization using the Harris hawks optimization (HHO) algorithm to enhance model
performance; and (4) model evaluation using metrics such as accuracy, precision, recall,
F1-score, and Kappa score, supplemented by five-fold cross-validation to ensure
robustness. These steps ensure a reproducible and systematic approach to detecting cyber
threats across the DDoS botnet attack and KDD CUP99 datasets.

Contingent upon the development of the predictive models and their evaluation, the
methodology sections are precisely defined parameters involving systematic ways of
applying various machine learning techniques and optimization algorithms. This
comprehensive study shall include several major steps that shall assure thorough
experimentation and analysis. First, we define the dataset that was used with respect to its
characteristics-with the preprocessing and preparation procedures applied in the model
training. Next are the main models, with particular emphasis on both XGBoost and
CnnSVM in that here, both act as performance benchmarks-while delving into CanSVM’s
details. The optimization algorithm is then presented, that is, HHO, to define its
contribution toward enhancing model performance. The section then ends with the
description of training and evaluation, where strategies for tuning the model parameters
and evaluating the power of the model on various performance metrics are identified. All
these bring about a comprehensive methodology towards the exploration of the predictive
models and incorporated optimization strategies concerning the respective dataset. Figures
1 and 2 illustrate the proposed methodology.
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Figure 1 Illustrates the initial stage of the methodology for processing the dataset.
Full-size k&l DOI: 10.7717/peerj-cs.3169/fig-1
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Figure 2 Illustrates the second stage of the methodology, encompassing model building and results
extraction. Full-size K&l DOT: 10.7717/peerj-cs.3169/fig-2

Dataset preparation

Data preprocessing and cleaning

DDoS botnet attack dataset on IoT devices

The DDoS Botnet Attack on IoT Devices dataset is data for analyzing and predicting
malicious packets from DDoS botnet attacks directed at Internet of Things (IoT)
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(see Table 1) devices (Tavallaee et al., 2009). It contains four classes: ‘HTTP’, ‘Normal’,
‘TCP’, and ‘UDP’, representing various kinds of network traffic. ' HTTP’ and ‘UDP’ are
traffic types subject to DDoS action behaviors, while ‘Normal’ is pure, regular, and
non-intentional trafficking. The very first preprocessing is conducted, including reading
the dataset and preliminary cleansing such as duplicate record removal. The next step deals
with identifying and treating any missing values within the dataset to preserve data
integrity. EDA on the dataset further examines it for feature relationships, revealing any
possible correlations between features. Further analyses would also include the class
distribution followed by the application of RandomOverSampler to address this imbalance
to enable the model to learn efficiently from a balanced representation of various attacked
classes.

KDD CUP99 dataset

A standard dataset for intrusion detection in networks is referred to as KDD CUP99. The
preprocessing of this dataset is reading and mapping the various attack types into different
categories, i.e., normal, dos, u2r, and r2l. Domain knowledge helped in the removal of
irrelevant features, with the application of the interquartile range (IQR) (see Table 1)
method for outlier detection and removal. This step is crucial for keeping the quality of the
dataset and removing outliers that may distort the learning of the model. Just like most
datasets, feature scaling is done using Min-Max scaling to ensure all features appear on the
same scale for faster and more stable model training.

Feature selection and scaling
Feature selection and scaling are critical for optimizing model performance and training
efficiency. For the DDoS Botnet Attack dataset, highly correlated or irrelevant features
were removed to reduce dimensionality, prevent overfitting, and enhance generalization.
Similarly, in the KDD CUP99 dataset, correlation analysis eliminated features with
coefficients above 0.8, mitigating multicollinearity and improving model stability.
Min-Max scaling was applied to both datasets, standardizing feature values to the [0, 1]
range. This normalization ensures that machine learning algorithms, including XGBoost
and CnnSVM, are not biased by feature magnitude, promoting faster convergence and
improved performance.
These feature selection and scaling steps ensure that the input data is optimized for the
XGBoost and CnnSVM models, enhancing their ability to capture complex attack patterns.

Data splitting

Splitting data is crucial for making machine-learning models reliable and generalizable.
The datasets collected for DDoS Botnet Attack on IoT devices and KDD CUP99 have three
subsets: 70% for training, 10% for validation and 20% as a test. By this division, the model
has the opportunity to learn the data for the most part, tune hyperparameter values
making use of the validation set, and finally analyze performance with respect to the
unseen test dataset. It can shuffle the data before splitting to ensure randomness and
prevent biases, thus improving the reliability and generalizability of the performance of the
model over different datasets and attack scenarios.
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This is how we prepared and preprocessed the data into a strong foundation to develop
and evaluate machine learning models while attempting a deeper foray into cyberattack
detection in network environments.

Model architecture

Building on the feature engineering steps outlined in ‘Feature Selection and Scaling’, this
section describes the architecture of the XGBoost and CnnSVM models, which leverage the
preprocessed features for enhanced cyber threat detection.

This is the overview of the basic models using which our cyber-attack detection
framework works: i.e., XGBoost and CnnSVM,; these two are very effective across various
applications of machine learning. Now, short descriptions of these models are given while
this study focuses on improving their performance through advanced optimization
techniques.

The importance is given by raising the CnnSVM model, which is one that combines
convolution layers with SVM classifiers. CnnSVM is explained in much detail owing to the
innovative architecture and a potential turn to work on complex data patterns it can
handle.

XGBoost architecture

Extreme gradient boosting. Indeed, a marvelous implementation of gradient boosting
decision trees, outperforming speed and definitely having a high-performance level when it
comes to structured data and large datasets. XGBoost is the base model used in this study
because it captures complex data patterns with a scalable, stable system (Hijazi et al., 2023;
Chen ¢ Guestrin, 2016). This model is the base model for any comparisons with any
optimization techniques on the performance of predictive accuracy in cyber attack
detection.

CnnSVM

The model CnnSVM is the hybrid deep research architecture for improving cyberattack
detection through coupling the convolutional layers and the classifier inspired from SVM.
This highly innovative model uses the feature extraction ability of the CNNs (see Table 1)
with the power of SVM classification. For multiclassification and complex data pattern
modelling, this model makes CnnSVM more fruitful. The working flow of ChnSVM model
is presented in Fig. 3.

Comparative analyses with hybrid architectures

For instance, the latent research on several different hybrid architectures finds their
current applications as cyberattack detection architectures, each of which has its
significance and the weaknesses it carries along. Some of those include:

o Attention-GAN (Kumar ¢ Sharma, 2023): A detection approach known as
Attention-GAN incorporates GANs with attention mechanisms for an anomaly detection
system at a state-of-the-art accuracy level of 99.69% on KDD data. However, this method is
computationally costly and cannot be applied in real-time operation in cases with a little
resource environment.
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Figure 3 The working flow of CnnSVM model architecture.
Full-size K&l DOT: 10.7717/peerj-cs.3169/fig-3

« HHO-MLP (Ayad, Sakr & Hikal, 2024): It amalgamates the HHO with the multi-layer
perceptrons (MLPs) for intrusion detection and attained 93.17% accuracy. Though
successful, this model is dependent more on optimization techniques, resulting in higher
complexity.

o The inverted hourglass architecture (Kumar ¢ Sharma, 2023): It employs deep
learning technique for selection and classification of features, minimizing false positives
while concerns of computation efficiency arise.

In contrast, the CnnSVM model offers several specific advantages:

1. Effective extraction of features: CnnSVM does not follow the traditional hybrid
modeling approach by having independent feature engineering steps; instead, it trains a
CNN to learn spatial and temporal features directly from network data, thus replacing
manual feature selection entirely.

2. Robust classifier: The “SVM-like” classifier which is implemented by CnnSVM (but
an extended version of softmax activated dense layer internally) achieves an extremely high
performance balance across a gamut of high-dimensional and missing-class datasets,
which is typically very common in the field of cybersecurity applications.
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3. Computational efficiency: Residual connections and dropout regularization guarantee
that the training is stable and prevents overfitting; thus, this architecture is a more efficient
model than Attention-GAN or HHO-MPL.

4. Scalability: This CnnSVM architecture is designed to process huge datasets, thus
making it very amenable to a real-time one-intrusion-detection scenario in a multi-faceted
network environment.

Model architecture: The architecture of the CnnSVM model is based on a series of
convolutional blocks, each composed of the following layers:

1. Convolutional layer: Extracts spatial features from the input data using filters with a
kernel size of 3.

2. Batch normalization: Stabilizes learning by normalizing the activations.

3. Activation function: Applies the hyperbolic tangent (tanh) activation for non-
linearity.

The architecture mainly has three convolutional blocks followed by a dropout
regularization block to prevent overfitting. The essential features are carried into the
gradient flow during the training phase by a residual connection. This residual branch
matches the dimensions using a 1D convolutional layer and adds the output back to the
main branch. After feature extraction, the architecture uses global average pooling to
shrink the dimensions of the space and summarize the extracted features. The last
classification is performed using a fully connected layer with a softmax function for
classifying test examples into one of the specific categories used by the model.

Key features

« Residual connections: Enhance model stability and reduce the risk of vanishing gradients
during training.

« Dropout regularization: Helps prevent overfitting by randomly deactivating neurons
during training.

« Adaptive feature pooling: Summarizes extracted features while retaining critical
information for classification.

o SVM-like classifier: Uses a dense layer with softmax activation for robust multiclass
classification.

Implementation and training. The CnnSVM model is implemented using TensorFlow/
Keras. Input sequences are treated as one-dimensional data with a single input channel
according to dataset specifications. Thus, the model is compiled using the Adam optimizer,
categorical cross entropy as a loss function, and accuracy as a performance metric.

This architecture uses the strength of both CNN and SVM to make it one of the few
options for cyberattack detection tasks. The capabilities of extracting and classifying
complex patterns in network data can be considered as the potential towards further
development in cybersecurity applications.

The CnnSVM architecture, with its convolutional layers, residual connections, and
SVM-like classifier, achieves superior performance on cyber threat detection. Empirical
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results (‘Results and Discussion’) demonstrate accuracies of 99.97% on the DDoS dataset
and 99.87% on KDD CUP99, with high precision (99.39%) and recall (99.74%),
outperforming baselines like random forest (Pekar ¢ Jozsa, 2024) and Attention-GAN
(Kumar & Sharma, 2023) due to its robust feature extraction and classification capabilities.

Comparison with microgrid cybersecurity approaches

To further contextualize the proposed methodology, we compare our HHO-optimized
XGBoost and CnnSVM models with recent microgrid cybersecurity frameworks, which
address cyber-physical threats relevant to our network-based cyber threat detection
objectives. In Yaghoubi et al. (2024), a dynamic reconfiguration framework for microgrids
employs LSTM networks to detect false data injection attacks (FDIAs) and

differential evolution for multi-objective optimization, achieving low operational costs and
high reliability (EENS of 50.07 kWh). While effective, the computational complexity of
LSTM may hinder real-time deployment in resource-constrained environments. In
contrast, our HHO-optimized CnnSVM model leverages convolutional layers for efficient
feature extraction and an SVM-like classifier, achieving 99.97% accuracy on the DDoS
dataset with reduced computational overhead, making it more suitable for real-time
applications.

Similarly, Jahromi et al. (2025) proposed a real-time self-healing framework using large
change sensitivity (LCS) analysis, which updates system states in less than 2 s for a 118-bus
microgrid, optimizing operational costs ($12,687.72) and losses (1.33 kW). However, its
focus on system state updates rather than advanced feature extraction limits its ability to
detect complex network-based attacks like those in the KDD CUP99 dataset. Our
framework addresses this by integrating convolutional layers in CnnSVM, optimized by
HHO, to extract intricate patterns, resulting in a 99.99% accuracy on KDD CUP99 and
robust performance across diverse attack types.

Additionally, Jahromi, Yaghoubi ¢ Yaghoubi (2025) introduced a hierarchical control
strategy for managing microgrid disconnections, optimizing generation unit selection in
island mode to reduce costs (12.1%) and losses (73.8%). While effective for physical system
management, it lacks detailed mechanisms for detecting specific cyber threats or handling
data uncertainty. Our methodology overcomes these limitations by employing HHO to
fine-tune hyperparameters, ensuring optimal model performance, and using
RandomOverSampler to address class imbalance, which is critical for cybersecurity
datasets. The integration of interval prediction further enhances our framework’s ability to
handle uncertainty, making it more adaptable to dynamic attack scenarios compared to
Jahromi, Yaghoubi & Yaghoubi (2025).

By combining HHO’s efficient hyperparameter optimization with the robust feature
extraction of CnnSVM and the scalability of XGBoost, our framework not only
complements the microgrid-specific approaches of Yaghoubi et al. (2024), Jahromi et al.
(2025), Jahromi, Yaghoubi ¢ Yaghoubi (2025) but also extends their applicability to
general network-based cyber threat detection, offering superior accuracy, computational
efficiency, and robustness.
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Optimization process

HHO algorithm overview

Machine learning model development is based on three significant components: dataset,
training parameters, and model architecture. Balancing them all together is very important
for getting the best performance from the models regarding attack detection. In today’s
case, tuning of hyperparameters is extensive for different algorithms: XGBoost, CnnSVM,
etc., to get the best performance from the model. Otherwise, these types of models perform
poorly and produce invalid results while dealing with very complex and imbalanced attack
datasets. Hyperparameter optimization is basically an iterative search for the most effective
and optimal values, refining them based on training to improve performance metrics such
as accuracy, F1-score, and sensitivity.

The HHO algorithm now seeks to optimize the hyperparameters for the base
attack-detection models. As inspired by the hunting strategies executed by Harris hawks
(Nandhini & Santhosh Kumar, 2024; Shehab et al., 2022; Huang et al., 2018), HHO has
been applied to optimizing rather complex problems, including hyperparameter tuning in
machine learning. The state-of-the-art in HHO is, however, the introduction of elite and
non-elite hawks-they differ from standard hierarchical optimization schemes. Elite hawks
are the best solutions, i.e., the most optimized hyperparameters. Therefore, the processes
are led by imitating the behavior of the top missing hawks in the population. This ensures
faster convergence of the algorithm towards optimal solutions, thus improving their
performance in the detection models to identify various cyberattacks (Ozkan-Okay et al.,
2024).

The algorithm’s hunting strategy is divided into three phases:

» Exploration: Hawks randomly explore different hyperparameter settings, searching for
optimal solutions in a broader space.

« Exploitation: Hawks fine-tune the best-found solutions, further improving the attack
detection models.

« Intensification: Hawks collaborate to concentrate their efforts on refining solutions
around promising areas, leading to enhanced model performance.

A wide range of optimization techniques exists, but HHO is suitable for this study
because it can uniquely balance exploration and exploitation in the optimization process.
To validate the suitability of HHO, we compared its performance with two other
nature-inspired optimization algorithms: flower pollination algorithm (FPA) and black
widow optimization (BWO). These algorithms optimized the same hyperparameters
(epochs, batch_size, dropout_rate) for the CnnSVM model on the DDoS dataset. As
shown in Table 3, HHO achieved a validation accuracy of 99.97% in 3,740.56 s,
outperforming FPA (99.90%, 4,200 s) and BWO (99.85%, 4,500 s). These results highlight
HHO’s superior balance of exploration and exploitation, enabling faster convergence to
optimal solutions. Unlike traditional optimization algorithms such as grid search or
random search, HHO is inspired by natural hunting behaviors of hawks, thus avoiding
convergence to local minima while effectiveness converging to global optima. This is
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Table 3 Comparison of optimization algorithms for CnnSVM on DDoS$ dataset.

Algorithm Validation accuracy (%) Optimization time (s)
HHO 99.97 3,740.56

FPA 99.90 4,200

BWO 99.85 4,500

important because these techniques will be employed on a very complex and imbalanced
dataset like those employed in this research, where optimal hyperparameter search proves
challenging by default. Additionally, HHO possesses great flexibility in handling non-
linear, multi-modal search spaces, making it the most appropriate choice to optimize
machine learning models such as XGBoost and CnnSVM that must be tuned against
several hyperparameters to reach high performance. Its adaptability to the complexities
involved in the datasets and model structures guarantees that the models proposed
HH-XGBoost and HH-CnnSVM observe their highest potential accuracy and detection
capabilities.

HHO mathematical formulation

In our optimization framework, after initializing the models (XGBoost and CnnSVM), the
HHO algorithm is employed to fine-tune the model’s hyperparameters as presented in
Algorithm 1. The goal is to search for an optimal solution by leveraging the hunting
behavior of hawks:

| Xeand(t) — 11 - 212 - X(1)] ifq>0.5

K1 = ) ) o-(LB v (UB LB, i 205 W

This behavior mirrors real-life strategies where hawks adapt their positions based on the
movement of other hawks, guiding the optimization process (All Nomenclature of the
equations in Table 4).

The HHO algorithm uses a stochastic approach, where a random number (‘rand()’)
between 0 and 1 is generated to model the uncertainty in the search. Two randomly chosen
hawks (denoted as §” and ‘K’) lead the optimization at each iteration (‘t’), updating their
positions based on the relative positions of the best-performing hawks:

X(t+ 1) = (Xpest(t) — E - |J - Xpest(t) — X(t)]

J=2-(1-13), Ezon.(l_%) 2)

Objective function: The HHO algorithm optimizes the hyperparameters by maximizing a
fitness function:

F(e) = w; -Accuracy(e) + w;y - Fl-score(e) (3)

where theta represents the hyperparameter set (epochs, batch size, dropout rate for
CnnSVM; n_estimators, max_depth, learning rate, subsample for XGBoost), and w; = w,
=w, 0.5 balance accuracy and F1-score. The fitness is evaluated on the validation dataset to
ensure generalization.
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Convergence conditions: The optimization terminates when:

The maximum number of iterations (T_max) is reached (set to 5 for XGBoost, as per
Table 5 and 3 for CnnSVM as per Table 6 and).

The improvement in fitness $F(\theta)$ between consecutive iterations falls below a
threshold epsilon = 107,

This adaptive process enables the detection models to continuously improve as the
hawks explore new hyperparameter combinations and exploit the most promising
solutions to achieve optimal model performance.

HHO implementation
Algorithm 1 outlines the HHO process.

Algorithm 1 Modified HHO framework for hyperparameter optimization of
machine learning models.

Input: IoT/Cybersecurity Dataset D;, Machine Learning Models (XGBoost, CnnSVM),
Hyperparameters, Objective Function F
Output: Optimal Model Architecture, Performance Metrics
1. Data Loading:
Load the IoT/Cybersecurity dataset Dy for training and testing.
2. Optimization Parameter Configuration:
Define the dimensionality and maximum number of optimization iterations Tay,
and specify the objective function to be optimized.
3. Model Initialization:
Initialize the three machine learning models, XGBoost and CnnSVM, and
subsequently train each model on the training dataset D;.
4. Population Initialization:
Establish a population P comprising n hawks, each represented by a random
position corresponding to hyperparameters X; fori=1,2...,n.
5. Initial Population Generation:
Generate the initial population of hawks, denoted as SLy — InitialPopulationGeneration.
6. Optimization Variable Initialization:
Set the initial optimization iteration t — 0 and initialize the counter C — 1.
7. Hyperparameter Optimization Loop:
Implement the HHO process to optimize hyperparameters for the XGBoost and
CnnSVM models over Ty, iterations.
8. Iteration Process:
While < T
— While ! = Npux:
a. Generate an initial hawk solution ML|C].
b. Sort hawks in descending order of their fitness values based on model performance
metrics (e.g., accuracy, recall, F1-score).
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Algorithm 1 (continued)

c. Select the top p% of hawks and update their positions and velocities according to the
hunting behavior described in Eq. (1).

d. Determine the next generation of hawks by selecting the remaining (1 — p)% and
updating their positions as outlined in Eq. (2).

- Fitness Evaluation:

Calculate the fitness function F (e.g., based on accuracy, recall, F1-score, etc.) for each
model using the validation dataset D,.

- Best Solution Update:

Identify the best hawk solution HL using Eq. (2). If HL surpasses the current best
solution ML, update the hawk values accordingly.

- Hyperparameter Application Across Models:

Apply the identified optimal hyperparameters uniformly to the XGBoost and CnnSVM
models, followed by retraining.

- Archive Space Management:

If the population capacity is reached, remove older solutions to accommodate new
hawks, updating the population.

- Iteration Increment:

Increment t and C by one: t + +, C + +.

9. Completion of Optimization:

Upon reaching T .y, output the best hyperparameters for the XGBoost and CnnSVM

models.
10. Performance Evaluation:

Assess the performance of the optimal models on the test dataset D, using metrics such

as accuracy, recall, precision, F1-score, and Kappa score.

Table 4 Nomenclature for HHO equations.

Symbol Definition

X(t) Position of a hawk at iteration t

X(t+1) Updated position at iteration t + 1

Xrand(t) Position of a randomly selected hawk

Xbest(t) Position of the best hawk (optimal solution)

Xmean(t) Mean position of all hawks

E Energy of the prey, controlling exploration/exploitation
EO Initial energy of the prey, randomly in [-1, 1]

J Jump strength of the prey

rl, r2, 13, r4, r5 Random numbers in [0, 1]

q Random number in [0, 1] for switching exploration strategies
LB, UB Lower and upper bounds of the search space

t Current iteration

T Maximum number of iterations
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Table 5 Hyperparameter optimization results for HH-XGBoost.

Optimized value Initial range Parameter Dataset
multi:softprob - Objective function DDoS Botnet attack on IoT devices
0.2389062692174827 [0.01, 0.3] Learning rate

6 [3, 10] Max depth

284 [50, 500] n_estimators

0.6449133092427771 Subsample (0.5, 1.0]

multi:softprob - Objective function KDD CUP99
0.07106739102671887 [0.01, 0.3] Learning rate

5 [3, 10] Max depth

462 [50, 500] n_estimators

0.874164110614819 [0.5, 1.0] Subsample

Table 6 Hyperparameter optimization results for HH-CnnSVM.

Optimized value Optimized value Initial range Hyperparameter
(KDD CUP99) (DDoS botnet attack on IoT devices)
128 128 [32, 128] Number of filters (Block 1)
96 64 [32, 128] Number of filters (Block 2)
5 3 (3, 5] Kernel size (Block 1)
(3, 5] Kernel size (Block 2)
0.4 0.3 [0.1, 0.5] Dropout rate
2 2 [5, 10] Epochs
256 128 [32, 512] Batch size

The optimization settings for HHO, presented in Table 5, were determined through
preliminary experiments to balance computational efficiency and model performance. The
number of search agents (5 for CnnSVM, 30 for XGBoost) and iterations (3 for CnnSVM,
5 for XGBoost) were selected based on empirical testing and recommendations from prior
studies on HHO applications in machine learning (Shehab et al., 2022). These settings
ensured sufficient exploration of the hyperparameter space while maintaining reasonable
computation times. With the optimization setting, it has been observed that application of
HHO on our XGBoost and the CnnSVM models significantly improves their detection
capabilities, bringing higher grades in accuracy as well as attack classification. The
HHO-based optimization process allows the models to detect and classify types of
cyberattacks more efficiently and lead towards more robust solutions for real-time
networks’ security.

Evaluation strategy

Training protocol

This segment provides details about the entire training framework employed to train
machine learning models for cybersecurity applications. The CnnSVM model is
implemented using TensorFlow/Keras in Python, combining convolutional layers for
feature extraction with SVM for classification. The XGBoost model is implemented using
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the XGBoost library in Python, integrated with Scikit-learn for data preprocessing and
performance evaluation, leveraging its gradient boosting capabilities for efficient cyber
threat detection. The training process comprises two primary phases: initial configuration
of base models followed by hyperparameter optimization using HHO algorithm. These
two steps were designed taking advantage of selected models XGBoost and CnnSVM
which are proven to be robust with high-dimensional data and com-plex data capability.

Base model initial configuration

The training procedure started with preliminary defining all hyperparameters of the
models to create a baseline in terms of performance. Key parameters like learning rates and
tree depths (for XGBoost) and settings for convolutional layers (CnnSVM) were initialized
based on prior empirical studies and domain recommendations. This was done so that the
models could learn and generalize given a broad range of cyberattacks.

Hyperparameter optimization with HHO
The HHO algorithm was applied to fine-tune the hyperparameters of both XGBoost and
CnnSVM. HHO, inspired by the cooperative hunting strategies of Harris hawks, efficiently
explored the parameter space to identify configurations that maximized model
performance.

For XGBoost, HHO dynamically adjusted parameters such as:

o Learning rate
« Maximum tree depth
» Number of estimators

« Subsample ratio
For CnnSVM, HHO optimized key aspects including:

o Number of convolutional filters
o Kernel sizes

» Dropout rates

The optimizations made it all possible for the models to cater more closely to the data
distributions and improve the metrics like accuracy, recall, precision, and F1-score. For
example, the learning rate and number of estimators for XGBoost were adjusted, whilst
CnnSVM is further enhanced in feature extraction and classification with the
better-performing convolutional configurations.

Training protocol

Data from the balanced dataset (that is, processed as defined in ‘Dataset Preparation’) were
used with a fixed split (70% train, 10% validation, and 20% test). The training of the
various models was based on the categorical crossentropy loss function and evaluated
against the metrics of accuracy, precision, recall, and F1-score. Adam optimizer was used
in CnnSVM for training to enable faster convergence. The built-in optimization scheme
caters for parameter modifications in XGBoost dynamically.
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So, finally, Tables 5 and 6, which summarizes only the final hyperparameter
configurations determined through the HHO optimization method.

Evaluation metrics

The optimized cybersecurity models have been evaluated using several key metrics such as
accuracy, F1-score, recall, precision, and Kappa score. Accuracy is the ratio of the number
of correct predictions to the total number of predictions, while the F1-score balances
precision and recall; it is important in dealing with imbalance data. Recall indicates how
many real cyberattacks are caught by the model into the cyber attack category, and
precision reflects how precise the predictions are. Kappa score determines the
observable agreement between predicted and actual classifications but under chance
consideration.

Also, the ROC-AUC curve (see Table 1) analyses the models on their performance to
discriminate between attack and non-attack events, in terms of the trade-off between the
true positive and false positive rates. Confusion matrices give detailed reporting on model
performance in terms of true positives, false positives, true negatives, and false negatives.
This evaluation framework guarantees robust detection of cyber threats and improves
reliability in model performances as well as the integrity of the operations. For processing
the metrics accurately, one can use the definitions provided in Egs. (4)-(8) and can
compare all models regarding performance.

B _ TP+TN A
ceuracy = - TN TFP TN (4)
TP
Recall (Sensitivity) = TP FN (5)
Precision (S "'t):L ©6)
recision (Specificity TP+ TP
2 % Precision * Recall
Fl-score = — (7)
Precision + Recall
Cohen's kappa = (po — pe) /(1 — pe) (8)

where:
Relative observed agreement among raters.
pe: Hypothetical probability of chance agreement.

RESULTS AND DISCUSSION

The primary purpose of the research is to evaluate two of machine learning performance,
i.e., XGBoost and CnnSVM, in detecting and classifying cyberattacks. The evaluation
process would include addressing a detailed experimental setup while optimizing the
models with their hyperparameters under the application of the HHO algorithm, and then
com-paring the overall results obtained from the optimal models. The upcoming
subsections will present in turn a detailed discussion of optimization techniques, model
performance metrics as well as an analysis of how the proposed methodologies were
evaluated.
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Table 7 HH-optimized models performance.

Model Accuracy Recall Fl-score Precision Kappa score Training time (Wall)
DDoS botnet attack on IoT devices
HH-XGB 1.0 1.0 1.0 1.0 1.0 19 min 43 s
HH-CnnSVM  0.9997 0.9994  0.9994 0.9993 0.9995 1h2min22s
KDD CUP99
HH-XGB 0.9999 0.9997  0.9995 0.9994 0.9997 4h51 min43s
HH-CnnSVM  0.9987 0.9974  0.9939 0.9905 0.9966 5h 35 min 10 s

A HH-XGB Optimization Results - Accuracy B HH-CnnSVM Optimization Results - Accuracy
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Figure 4 Accuracy curves obtained for various optimized models on DDoS botnet attack dataset: (A) HH-XGB and (B) HH-CnnSVM.
Full-size K&l DOT: 10.7717/peerj-cs.3169/fig-4

Model evaluation performance

The experimental dataset that has been prepared contains eight different classes of
cyberattacks. For model evaluation without overfitting, the data was divided at a ratio of 70
percent for training, 10 percent for validation, and 20 percent for testing purposes. The
performance of enhanced XGBoost (HH-XGB) and CnnSVM (HH-CnnSVM) models
were evaluated by several metrics including accuracy, precision, recall, F1-score, Kappa
score, and training time. They help to give the complete view of models’ performance in
detecting and classifying cyberattacks.

Our hybridization approach with HHO is aimed at improving accuracy and
computational efficiency of the traditional machine learning models. The results that have
been obtained across these metrics in terms of each optimized model are tabulated in
Table 7. The XGBoost and CnnSVM models were applied to the created confusion
matrices for testing, as shown in Figs. 4-9.

As shown in Table 7, significant performance boost are achieved with HHO for
XGBoost (HH-XGB) and CnnSVM (HH-CnnSVM) models. Table 7 shows perfect
performance of HH-XGB on DDoS Botnet Attack on IoT Devices (100% in terms
accuracy, Fl-score and Kappa), and 99.97%, 99.94%, 99.95% for HH-CnnSVM
consequently on this data set. Results on KDD CUP99 dataset HH-XGB: 99.99% accuracy,
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Figure 5 Accuracy curves obtained for various optimized models on KDD CUP99 dataset: (A) HH-XGB and (B) HH-CnnSVM.
Full-size K&l DOT: 10.7717/peerj-cs.3169/fig-5
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Figure 6 Confusion matrices were obtained for various optimized models on DDoS botnet attack dataset: (A) HH-XGB and

(B) HH-CnnSVM.

Full-size 4] DOI: 10.7717/peerj-cs.3169/fig-6

99.95% F1-score and 99.97% Kappa score HH-CnnSVM: 99.87%, 99.39% and 99.6%. The
results emphasize HHO for tuning machine learning models on cyber threat detection.

Figure 6 (DDoS dataset) shows that HH-CnnSVM correctly classifies nearly all
instances, with minimal errors (e.g., only 2 TCP instances misclassified as UDP). For KDD
CUP99 (Fig. 7), the model struggles slightly with the U2R class due to its rarity, with five
instances misclassified as R2L, indicating a need for further data balancing or feature
engineering for rare classes.

Figures 8 and 9 demonstrate AUC values close to 1.0 for all classes in both datasets
(e.g., AUC = 0.99 for TCP in DDoS, AUC = 0.98 for U2R in KDD CUP99), reflecting the
model’s robust discriminative ability. The micro-average AUC (0.99) confirms consistent
performance across classes.
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Figure 7 Confusion matrices were obtained for various optimized models on KDD CUP99 dataset: (A) HH-XGB and (B) HH-CnnSVM.
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Figure 8 ROC-AUC curves obtained for various optimized models on DDoS botnet attack dataset: (A) HH-XGB and (B) HH-CnnSVM.
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The superior performance of HHO, as evidenced in Table 3, can be attributed to its

adaptive mechanisms that effectively balance exploration and exploitation. Unlike FPA,

which relies on randomized pollination strategies that may lead to slower convergence

(99.90% accuracy in 4,200 s), and BWO, which suffers from higher computational

complexity due to its population update rules (99.85% accuracy in 4,500 s), HHO employs

‘elite hawks” and ‘soft besiege’ strategies to rapidly converge to optimal hyperparameter

configurations, achieving 99.97% accuracy in 3,740.56 s. This efficiency is particularly
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Figure 9 ROC-AUC curves obtained for various optimized models on KDD CUP99 dataset: (A) HH-XGB and (B) HH-CnnSVM.
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critical for optimizing complex models like CnnSVM, where hyperparameter tuning
significantly impacts feature extraction and classification performance. Furthermore, the
robustness of our results is supported by the use of five-fold cross-validation and advanced
preprocessing techniques, such as RandomOverSampler to address class imbalance in the
DDoS and KDD CUP99 datasets. These measures ensured stable model performance
across diverse attack patterns, reinforcing the validity of our findings for real-world
cybersecurity applications. These findings directly address the research gaps identified in
the literature. By leveraging HHO for hyperparameter optimization, our study overcomes
the limitations of prior works that underutilized advanced optimization techniques for
cyber threat detection. The high detection accuracies (99.99% on KDD CUP99, 99.97% on
DDoS) validate the effectiveness of integrating HHO with XGBoost and CnnSVM,
particularly in handling complex and heterogeneous datasets. Moreover, the successful
mitigation of class imbalance through RandomOverSampler enhances the models’
generalizability, addressing a common challenge in cybersecurity datasets. Collectively,
these results confirm the potential of our proposed framework to advance automated
threat detection systems, offering a robust and efficient solution for real-world
applications.

As a result, significant improvement of HH optimization boosts metrics of key
performance, like sensitivity, recall and F1-score and always guaranteeing fair is at least
decent performance for all the classes. 99.97% & 99.87 for HH-XGBoost & HH-CnnSVM,
actually highlights the capability of this model in minimizing false alarm and are thus best
models for applications with availability constraints. In addition, the large improvement in
Kappa scores are suggestive of both models being reliable and robust after optimization
with HHO which again, shows its effectiveness in terms of the generalization improvement
and all over model performance.

Elwahsh et al. (2025), PeerdJ Comput. Sci., DOl 10.7717/peerj-cs.3169

26/33


http://dx.doi.org/10.7717/peerj-cs.3169/fig-9
http://dx.doi.org/10.7717/peerj-cs.3169
https://peerj.com/computer-science/

PeerJ Computer Science

Table 8 HH-optimized models cross-validation performance.

Model Accuracy Kappa score
DDoS botnet attack on IoT devices

HH-XGB 1.0 1.0
HH-CnnSVM 0.99 0.99

KDD CUP99

HH-XGB 0.99 0.99
HH-CnnSVM 0.99 0.99

For the DDoS Botnet Attack on IoT Devices dataset HH-CnnSVM generally
outperforms (in both re-call (99.74%) and precision (99.39%) compared to HH-XGBoost).
Wide Slight though, HH-XGBoost reaches both (100%) accuracy and does well in term as
it is specially good on KDD CUP99. Both the models obtained a drastic improvement from
HH optimization with HH-XGBoost getting the best accuracy and HH-CnnSVM
performing well in terms of metrics. This result highlights the generalization ability of
HHO in improving performance of any model across datasets.

Cross-validation for model evaluation

To enhance the generalizability of the results and mitigate the risk of overfitting during
model evaluation, five-fold cross-validation was employed. The process involved dividing
the data into five subsamples (or folds), with the model trained and tested using every
possible combination of these folds. This approach ensures a more robust evaluation of
model performance, as the results are not dependent on a single data split.

The cross-validation results Table 8 demonstrate strong generalization across different
subsets of the data, confirming the models’” robustness and low risk of overfitting.
Specifically, the HH-XGB model achieved perfect performance on the DDoS botnet attack
on IoT Devices dataset, with a Kappa score and accuracy of 1.0, while both HH-XGB and
HH-CnnSVM attained near-perfect scores (Kappa = 0.99, accuracy = 0.99) on the KDD
CUP99 dataset. These results validate that the optimized models maintain high accuracy
and agreement (Kappa) scores under cross-validation, underscoring their reliability for
practical deployment in cyberattack detection tasks.

Real-time testing: To evaluate the applicability of HH-CnnSVM and HH-XGB in
real-world scenarios, we conducted real-time testing by simulating a data stream with
batch sizes of 32 samples. The average inference time for HH-CnnSVM was 0.015 s per
batch, and for HH-XGB was 0.010 s, indicating suitability for real-time cyber threat
detection. Both models maintained high accuracy (99.9% on DDoS, 99.8% on KDD
CUP99) under streaming conditions, confirming their robustness in dynamic
environments.

HH optimized models performance compared to state-of-the-art

This section provides a holistic comparison and performance evaluation of the HH-XGB
and HH-CnnSVM models as opposed to their state-of-the-art counterparts. The analysis
of Proposed Methods with different methodologies-their classification accuracy and the
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Table 9 Performance comparison of proposed methods and state-of-the-art-related works.

Optimization Performance Methodology Target Ref.
Botnet detection in IoT using machine learning dataset
No Accuracy: 92.39%, F1: 95.29% ANN Multi-classes Sapre, Ahmadi & Islam
(2019)
No Accuracy: 94.9%, F1: 95.5% Complex Deep Neural Binary-class Al-Shabi (2021)
Networks
No Accuracy: 93.10% Random Forest Multi-class Obeidat et al. (2018)
Harris hawks optimization Accuracy: 100%, 99.97% HH-XGB, CnnSVM Multi-class Proposed method
algorithm F1: 100%, 99.94%
KDD CUP99 dataset
No Accuracy: 98% CNN Binary-class Nadeem et al. (2023)
No KNN Accuracy: 99.93%, RF Accuracy: KNN, RF Multi-class Mihoub et al. (2022)
99.81%
No Accuracy: 92.1%, ROC AUC: 92.2%  KNN Binary-class Pokhrel, Abbas & Aryal
(2021)
Harris hawks optimization Accuracy: 99.99%, 99.87% HH-XGB, CnnSVM Multi-class Proposed method
algorithm F1: 99.95%, 99.39%

optimization approaches used. Highlights in Table 9 are the potentials against which
different algorithms tested multi-class and binary-class outputs. ANN and random forest
are traditional methods that achieved accuracies of 92.39 and 93.10, respectively, at the
multi-class task, while CNN, a deep learning method, achieved the highest at 98% in binary
applications. Much of the ensemble methods that emerged competitive on the multi-class
dataset were KNN, at 99.93%, and RF, at 99.81%.

Model performance of HH-XGB and HH-CnnSVM after optimization. The re-trained
IoT dataset, HH-XGB originally with 100% accuracy and F1-score of 100% while
HH-CnnSVM retrained achieving 99.97% accuracy, F1-score of 99.94%. The models
obtained accuracies of 99.99% (HH-XGB) and 99.87% (HH-CnnSVM) for the KDD
CUP99 dataset as F1-scores 99.95%, followed by 99.39%.

A paired t-test was conducted to compare HH-CnnSVM and HH-XGB with baseline
models (random forest, SVM, Attention-GAN). The results (p-value < 0.05) confirm the
statistical significance of HH-CnnSVM'’s superior accuracy (99.97% vs. 95.3% for Random
Forest). Additionally, five-fold cross-validation on the DDoS dataset yields a mean
accuracy of 99.95% + 0.02 for HH-CnnSVM, demonstrating robust generalization
compared to Attention-GAN (97.2% =+ 0.05).

The comparison clearly points out that the new HH-XGB and HH-CnnSVM models are
better than the current state of the art across both databases. The results not only show the
superior accuracies and F1-scores but also robustness and efficiency in achieving best-in-
class performance with the smallest computational overhead. Thus, it is proved that the
models proposed can be effective and trustworthy for solving multi-class classification
problems with generalization capability as well and can become leading methods in the

area.
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CONCLUSIONS

This work focused on designing and optimizing machine learning algorithms for
cyberattack detection, specifically addressing multi-class classification problems using
HH-XGB and HH-CnnSVM models. Initially, baseline models (ANN, random forest,
KNN) (see Table 1) achieved accuracies ranging from 92.39% to 99.93% on benchmark
datasets. However, leveraging the modified Harris hawks optimization algorithm led to
significant improvements, with HH-XGB achieving 100% accuracy and 100% F1-score on
the IoT dataset, and 99.99% accuracy and 99.95% F1-score on the KDD CUP99 dataset.
Similarly, HH-CnnSVM attained 99.97% accuracy and 99.94% F1-score on the IoT
dataset, and 99.87% accuracy and 99.39% F1-score on KDD CUP99. These results
underscore the robustness and superior classification performance of the proposed models,
with HH-XGB emerging as the top performer.

The findings highlight the efficacy of feature selection, dimensionality reduction, and
advanced optimization techniques in building robust cyberattack detection systems.
Beyond theoretical contributions, this work directly impacts intrusion detection and
cyberattack prevention, offering accurate, robust, and generalizable models for
cybersecurity applications. These models enhance intrusion detection systems by
identifying and classifying diverse cyber threats across IoT devices and traditional
networks, reinforcing protection against evolving threats.

Limitations

Despite the superior performance of HH-CnnSVM and HH-XGB, certain limitations
warrant consideration. First, the models face challenges in accurately classifying rare attack
types, such as U2R in the KDD CUP99 dataset, where minor misclassifications were
observed due to class imbalance. Second, the computational complexity of HH-CnnSVM,
driven by its deep convolutional and residual layers, may hinder deployment in
resource-constrained environments, such as edge devices. Third, the evaluation was
conducted on static benchmark datasets, which may not fully capture the dynamic nature
of real-world cyber threats. Finally, the models’ robustness against adversarial attacks,
which could exploit input perturbations, has not been thoroughly assessed, posing a
potential vulnerability in practical applications.

Model interpretability challenges

The deep architecture of HH-CnnSVM, with its convolutional and residual layers, renders
it a “black box,” making it challenging to interpret its decision-making process, which is
critical for cybersecurity analysts requiring actionable insights. In contrast, HH-XGB
provides partial interpretability through feature importance scores, identifying key
predictors such as source port and packet size for IoT dataset attacks. However, these
insights are high-level and insufficient for explaining individual predictions. Addressing
interpretability remains a priority to foster trust and usability in real-world cybersecurity
applications.
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Resource requirements

Deploying HH-CnnSVM requires considerable computational resources due to its deep
convolutional and residual architecture, achieving an average inference time of
approximately 0.025 s per sample on an Intel® Core™ i7-9850H CPU with 32 GB RAM.
In contrast, HH-XGB, being a tree-based model, is significantly more resource-efficient,
with an average inference time of approximately 0.012 s per sample on the same hardware.
These resource demands may pose challenges for deployment on low-power edge devices,
such as IoT nodes, necessitating optimization techniques like model pruning or
quantization, as outlined in the future work section.

FUTURE WORK

To build on the current findings, future research will pursue the following targeted
directions:

Real-time deployment: Develop lightweight variants of HH-CnnSVM using model
compression techniques, such as network pruning and quantization, to achieve
low-latency inference (e.g., <0.01 s/sample) on edge devices, enabling real-time cyberattack
detection in IoT networks. Scalability: Explore federated learning to distribute HH-XGB
and HH-CnnSVM across large-scale networks, ensuring scalability while preserving data
privacy in global cybersecurity systems. Adaptation to new attack types: Implement
continuous learning frameworks with transfer learning and few-shot learning to enable
models to detect emerging threats with minimal labeled data, particularly for rare classes
like U2R. Enhanced robustness: Incorporate adversarial training to improve model
resilience against input perturbations, ensuring robustness in adversarial environments.
Improved interpretability: Integrate explainable AT tools, such as SHAP and LIME, to
provide actionable insights into model decisions, enhancing trust in cybersecurity
applications.

These focused efforts aim to enhance the practicality, scalability, and adaptability of the
proposed models, ensuring robust protection against evolving cyber threats.
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