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ABSTRACT

This study presents deep learning models that are frequently used in the literature for
the detection and classification of damage types in wind turbines and a new deep
learning model (SatNET) that offers computational efficiency and rapid inference.
Wind turbines, which are critical components of renewable energy systems, are
sensitive to various damages (paint damage, erosion, serration, vortex, and vortex
damage) that may endanger their operational efficiency and lifespan. The dataset
consists of 1,794 high-resolution images taken under different weather conditions
and angles, including damage and types. The images were increased by four times to
7,176 images using data augmentation techniques. Damage and types were detected
using the developed SatNET deep learning model, 11 deep learning models, and the
Faster Region-based Convulational Neural Network (R-CNN) object detection
algorithm. Each of the models was evaluated with average sensitivity. Accordingly,
SatNET achieved avarage precision (AP) values of 55.7% for paint damage, 76.7% for
erosion, 95.2% for serration, 66.1% for vortex, and 27.3% for vortex damage. It
demonstrated superior performance when compared to deep learning models
frequently used in the literature, such as ResNet50 and VGG19. In addition, it has
been shown that the model requires less computational cost than other models, with
a memory requirement of 192 MB. The results show that SatNET’s computational
efficiency and accuracy are competitive with other models. The model is suitable for
systems with limited memory and computational capacity, which require real-time
operation, and for systems with resource constraints. The results obtained can
contribute to sustainability in renewable energy production by providing low-cost
monitoring of damage and types in wind turbines.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Computer Vision, Neural
Networks

Keywords Object detection, Wind turbine damage, Deep learning, Renewable energy, Detection of
damage, Faster R-CNN

INTRODUCTION

Renewable energy sources, such as solar, wind, hydro, and geothermal, play a crucial role
in addressing the global energy crisis and combating climate change. Unlike fossil fuels,
which are finite and emit greenhouse gases, renewable energy sources are sustainable and
have a minimal environmental impact (Bhuiyan, 2022). Renewable energy reduces
dependency on imported fuels, enhances energy security, and creates jobs in emerging
green technologies. Furthermore, transitioning to renewable energy contributes to cleaner
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air and water, improving public health and quality of life. As the world seeks to meet rising
energy demands while mitigating climate change effects, investing in renewable energy is
essential for a sustainable future (Haines et al., 2007).

Wind turbines provide a clean and sustainable alternative to fossil fuels. However, they
are susceptible to various damages that can significantly impact their efficiency and
lifespan. Key types include paint damage, which leads to corrosion and increases
maintenance costs; erosion, which reduces aerodynamic efficiency and energy output;
serration, which causes vibrations that can hinder performance; vortex, where airflow
disruptions decrease energy generation; and vortex damage, which can result in structural
harm to the blades. Regular monitoring and maintenance of wind turbines are essential to
detect these issues early, ensuring optimal performance and extending their operational life
while maintaining energy sustainability (Gonzdlez-Salcedo et al., 2020; Katsaprakakis,
Papadakis ¢» Ntintakis, 2021). Detecting damage and contamination in wind turbines is
essential for maintaining their efficiency and extending their lifespan. If damage and
contamination are not identified in time, significant energy production losses can occur,
and maintenance costs may rise. Blade wear, paint damage, and erosion substantially
degrade of turbines, leading to energy losses. Therefore, modern wind turbines are
regularly monitored using visual inspections, drone-based assessments, and sensor-based
monitoring systems. Early detection of damage enables the optimization of scheduled
maintenance processes, extends the turbine’s operational life, and minimizes downtime
caused by failures. These approaches help reduce operational costs while ensuring the
stability of sustainable energy production (Matani, 2021; Taraglio et al., 2024).

Image processing technology and deep learning play a crucial role in the detection and
analysis of damage in wind turbines and other industrial systems. Advanced image
processing techniques can analyze high-resolution images or video data collected from
turbines to detect surface defects like erosion, cracks, or paint damage. Deep learning
algorithms, especially convolutional neural networks (CNNs), can automatically classify
and detect these damages with high accuracy, even in challenging environments. By
training these models on large datasets of turbine images, they can identify subtle signs of
wear or contamination that may be missed during manual inspections. The integration of
image processing and deep learning not only increases the speed and accuracy of damage
detection but also reduces the need for costly and time-consuming manual inspections,
improving maintenance efficiency and operational reliability (Guo et al., 2021; Wang et al.,
2022).

The detection of damage and contamination in wind turbines using traditional methods
is typically conducted through manual inspections, periodic audits, and physical
examinations. These processes require maintenance teams to stop the turbines and visually
inspect them, particularly the blades and other critical components. In traditional
methods, technical personnel attempt to identify paint damage, erosion, cracks, and other
types of contamination on the turbine blades using cranes, drones, or telescopic cameras.
However, these methods can be time-consuming, labor-intensive, and costly. Furthermore,
these inspections are often limited by the constraints of human eyesight and experience,

Dogan et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3163 2/25


http://dx.doi.org/10.7717/peerj-cs.3163
https://peerj.com/computer-science/

PeerJ Computer Science

which can result in small damages or early-stage wear being overlooked (Zhang ¢ Shu,
2024).

Deep learning models have demonstrated significant successes in the detection of
damage and contamination in wind turbines, revolutionizing traditional inspection
methods. These models, particularly CNNs, have been trained on large datasets of turbine
images, enabling them to recognize intricate patterns associated with various types of
damage, such as erosion, paint damage, cracks, and dirt accumulation. The high accuracy
and reliability of these models allow for early detection of issues that might otherwise go
unnoticed in manual inspections (Liu, Hajj & Bao, 2022).

One notable achievement is the ability of deep learning models to analyze images
captured by drones or fixed cameras in real time, providing immediate feedback to
maintenance teams. This capability enhances decision-making processes regarding
necessary repairs and maintenance schedules, ultimately leading to reduced downtime and
operational costs. Moreover, deep learning models can adapt and improve over time by
incorporating new data, making them increasingly effective at identifying emerging
damage types and trends (Ren et al.,, 2021).

Additionally, the application of deep learning in damage detection contributes to safer
working conditions for inspection teams, as it reduces the need for personnel to perform
inspections at great heights or in hazardous environments. Overall, the advancements in
deep learning models not only improve the efficiency and accuracy of damage detection in
wind turbines but also support the goal of maintaining high energy production reliability
in renewable energy systems (Shihavuddin et al., 2021).

The use of artificial intelligence-based CNNs and deep learning models to detect
damages in wind turbines has emerged as a groundbreaking approach in predictive
maintenance. These advanced models leverage vast amounts of data from various sources,
including images captured by drones and surveillance cameras, to identify and analyze
potential damage such as erosion, paint wear, cracks, and contamination on turbine blades
(Memari et al., 2024).

This study aims to detect damage and its types in wind turbines, renewable energy
sources, using deep learning techniques and the model we developed. By leveraging a
dataset of approximately 1,794 segmented images, including turbine blades and towers
with documented damages and contamination, we strived to ensure that our model
produces results comparable to or superior to existing models. The training process
utilized 80% of the dataset, with 10% allocated for validation and the remaining 10% for
testing, ensuring a robust evaluation of the model’s performance. Through rigorous testing
and assessment metrics, we aim to create a new deep learning model that effectively
identifies damage types in wind turbines and contributes to enhancing the efficiency and
reliability of renewable energy systems.

Among the CNN-based architectures, models such as AlexNet, VGG, ResNet, and
Inception have shown significant effectiveness in image classification and object detection
problems. However, these models have high computational cost. They are not optimized
for embedded systems or resource-constrained systems such as drones used in wind
turbine inspections. Moreover, their general-purpose designs may not capture the
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fine-grained features specific to wind turbine surface damages. Considering these
limitations, we propose SatNET, which is specifically designed to provide an accurate
solution with low computational cost to detect various damage types in wind turbine
images.

LITERATURE REVIEW

Detecting pollution and damage in wind turbines using three main approaches: classical
methods, traditional image processing techniques, and deep learning approaches. Classical
methods rely on traditional techniques such as visual inspection, vibration analysis,
acoustic emission monitoring, and oil analysis. Visual inspections identify surface
contamination, corrosion, and structural damage on turbine components, while vibration
analysis detects imbalances, misalignments, or defects in rotating machinery like gearboxes
and bearings by monitoring changes in vibration patterns (Du et al., 2020). Acoustic
emission monitoring captures high-frequency sounds generated by crack growth, friction,
or other internal damage, which is especially useful for inaccessible components
(Tchakoua et al., 2014). Oil analysis examines lubricating oil for contaminants, wear
particles, and chemical degradation, providing insights into the condition of gearboxes and
bearings (Tiboni et al., 2022). These classical approaches are reliable but are often
labor-intensive and influenced by environmental conditions.

Traditional image processing methods have enhanced wind turbine monitoring by
utilizing computer vision algorithms to analyze images captured by cameras or drones.
Edge detection techniques, such as Sobel, Canny, and Prewitt, identify boundaries of cracks
or scratches, while thresholding techniques segment images based on pixel intensity to
isolate defects or contaminants (Elforjani ¢» Bechhoefer, 2018). Template matching
compares real-time images with reference templates to detect specific damage types, such
as bolt loosening or debris accumulation (Sharma, Ansari & Kumar, 2017). Morphological
operations, including dilation, erosion, opening, and closing, refine image features to
highlight cracks, corrosion, or surface defects (Abd Elaziz, Bhattacharyya & Lu, 2019),
while color segmentation using models like RGB and HSV differentiates between clean and
polluted turbine surfaces (Nagata et al., 2019). Although these methods are effective, their
performance can be influenced by image quality, lighting, and environmental factors,
limiting their robustness under varying conditions.

Deep learning techniques, particularly CNNs, have revolutionized defect detection in
wind turbines by automating the process and improving accuracy. CNNs are employed for
tasks such as image classification, object detection, and semantic segmentation. Pre-trained
networks like VGG, ResNet, and AlexNet are fine-tuned to classify turbine components as
“damaged” or “undamaged,” leveraging labeled datasets to identify various defects,
including cracks and corrosion (Chanda, 2008). Object detection frameworks such as You
Only Look Once (YOLO) and Faster Region-based Convulational Neural Network (R-
CNN) detect specific defects by drawing bounding boxes around areas of interest (Jain ¢
Laxmi, 2018), while segmentation models like U-Net and SegNet classify image pixels for
detailed analysis of defect shapes and sizes (Choeda ¢ Pruthi, 2022). Transfer learning
enhances model performance when labeled datasets are limited, using weights from
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Table 1 Comparison of the performance of different deep learning models used for detecting pollution and damage in wind turbines, based on
key metrics such as accuracy, precision, recall, and computational complexity.

Model Task Accuracy Precision Recall Computational Strengths Weaknesses
(%) (%) (%) complexity

ResNet (Choeda ¢ Image 90-95 88-94 87-92 High (Deep High accuracy, can handle Requires large datasets and
Pruthi, 2022) classification architecture) complex patterns computational power

YOLOV5 Object detection 85-92 83-90 82-89 Moderate (Real- Fast detection, suitable for May miss small or subtle
(Khanam et al., time detection) real-time applications defects
2024)

Mask R-CNN Instance 87-93 85-92 84-90 High (Region- Pixel-level segmentation, Slower compared to YOLO
(Adhikari et al., segmentation based network) detailed defect detection  due to segmentation
2024) complexity

LSTM (Liu et al,  Time-series 80-88 78-85 79-87 Moderate Effective for temporal Limited to time-series
2021) anomaly (Sequential data data, capture time analysis, requires

detection processing) dependencies preprocessed data

U-Net (Hao et al, Semantic 88-94 86-91 85-93 Moderate High accuracy in Sensitive to noise and small
2023) segmentation (Encoder- segmentation tasks dataset size

decoder
architecture)

GAN + CNN Synthetic data ~ 85-93 83-90 84-91 High (Generative + Data augmentation Requires substantial
(Hybrid) (Hao generation + discriminative) improves model training time
et al., 2023) detection performance

DeepLabV3+ Semantic 89-95 87-93 86-94 High (Atrous Accurate segmentation Computationally
(Ascenso et al, segmentation convolution) with multi-scale feature ~ expensive, memory-
2020) extraction intensive

Autoencoder Anomaly 75-85 72-82 73-84 Low (Feature Unsupervised learning Lower accuracy than
(Nassif et al, detection extraction & detects unknown defect  supervised methods

2021)

reconstruction)

types

Note:

Accuracy: The proportion of correctly identified instances (both true positives and true negatives). Precision: The proportion of true positives among all instances
identified as positive. Recall: The proportion of true positives among all actual positives. Computational Complexity: Refers to the amount of computational resources
required, based on network depth, architecture, and processing requirements.

pre-trained networks on larger datasets like ImageNet (Khanam et al., 2024). Additionally,
anomaly detection techniques, including autoencoders, identify defects by learning normal
image features and highlighting deviations through reconstruction errors (Hafiz ¢ Bhat,
2020). Advanced architectures like ResNet, DenseNet, and Inception handle variations in
lighting, angles, and backgrounds, improving accuracy in diverse conditions (Adhikari
et al., 2024). Furthermore, deep learning models such as recurrent neural networks (RNNs)
and long short-term memories (LSTMs) analyze time-series sensor data to detect
anomalies indicative of damage, while generative adversarial networks (GANs) augment
training datasets with synthetic defect images, addressing data scarcity challenges (Liu

et al., 2021). Despite requiring substantial computational resources and large labeled
datasets, deep learning methods offer superior accuracy, robustness, and automation,
making them highly effective for detecting complex defect patterns in wind turbines.
Table 1 gives a comparison of the performance of different deep learning models used for
detecting pollution and damage in wind turbines, based on key metrics such as accuracy,
precision, recall, and computational complexity.
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Table 2 Object classes and numbers in the dataset.

Class Number of objects
Paint damage 851

Erosion 581

Serration 1,232

Vortex 221

Vortex damage 718

These models show varying strengths depending on the specific detection task, such as
image classification, object detection, or segmentation. The choice of the model should be
based on the accuracy and speed requirements, availability of labeled data, and
computational resources.

MATERIAL AND METHOD

Detection of damages in wind turbines from renewable energy sources is important for the
life span of wind turbines. The detection of potential faults in turbines is essential for
ensuring their optimal operation of turbines and predictive fault detection. In the study, a
new method is presented for detection with deep learning models based on image
processing. The results obtained with existing deep learning models are compared with the
results obtained from the proposed deep learning model. The architectural structure of the
proposed model, the dataset used, image collection processes, damage detection process,
and object detection algorithm were clarified in this section.

Dataset and pre-treatment

The Zeliha-04 dataset (GTEK, 2024) was utilized, containing a total of 1,883 images. These
images include objects belonging to five classes: paint damage, erosion, serration, vortex,
and vortex damage. In the dataset, the coordinates of each object are provided in a
rectangular format. However, certain classes in the dataset included polygon-shaped
coordinates, which were excluded from the dataset.

As a result, the number of images used in this study was reduced to 1,794. The classes
and the number of objects in each class are presented in the accompanying table. The
dataset consists of high-resolution images, each with dimensions of 1,080 x 1,920 pixels.
Table 2 provides information on the types and numbers of damage in the images in the
dataset.

Images belonging to the classes mentioned above were used within the study’s scope.
The number of objects in the classes provided sufficient diversity for the study and a
suitable data set to test the models’ success. The large number of classes in the data set was
an important criterion for selection.

The images that make up the dataset were obtained with the DJI Matrice 300 RTK
drone, an unmanned aerial vehicle. The specified unmanned aerial vehicle is an advanced
drone model used especially in industrial and professional applications. It provides
high-precision location determination. It is especially important in applications such as
mapping and geographic information systems. Offering high-resolution camera
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integration, this drone provides detailed images. It is widely used in industrial inspection,
search and rescue operations, and research projects.

Data augmentation techniques were applied to improve model generalization and
prevent overfitting due to the limited size of the dataset. Specifically, three augmentation
strategies were used: (i) horizontal flip, (ii) vertical flip, and (iii) combined horizontal and
vertical flip. Thus, the total number of images was increased by a factor of 4. These
transformations support the model to learn damage features more robustly under various
input perspectives by considering different camera angles and environmental conditions.
The 1,794 images in the original dataset reached 7,176 images after data augmentation
processes. During the data augmentation process, the following operations were performed
on the images:

i. reflection on the horizontal axis,
ii. reflection on the vertical axis,

iii. reflection on both horizontal and vertical axes.

The dataset was augmented using horizontal reflection, vertical reflection, and
combined reflections to enhance model robustness. Images were resized from 1,080 x
1,920 pixels to 840 x 840 pixels for consistency.

A specific transformation process was applied to make the coordinates of the objects in
the images compatible. In this process, the coordinates were rearranged using the following
equation: An equation that accounts for how a bounding box gave the coordinates of an
object as x_min, y_min, X_max, y_max were arranged in a resized image when the image
size changes are as follows. These transformations ensured that object bounding boxes
remained proportional after resizing the images. The images describing this situation are
given in Fig. 1. The original figure and the reproduced figures are given.

/

X =xx (1)
w
h/
/
_ L 2
Y=y (2)

x,y: coordinates in the original image,

w,h: width and height of the original image,
xy": new coordinates in the resized image,
w’h'": width and height of the resized image.

/ /

/ /
min? ymin’ xmax7ymax‘

Bounding box: it beconmes x

To adjust the object coordinates for the resized image dimensions, we used scaling
factors based on the ratio of the new size to the original size. For the x-coordinate, we
multiplied the original value by (840/1,920), and for the y-coordinate, we used (840/1,080).
For instance, an object at (960, 540) in the original image is mapped to (420, 420) in the
resized image.

The categorical distribution and object numbers of the dataset after data augmentation

are summarized in the table below. These pre-processing steps made the dataset more
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K L

Figure 1 Original images in the dataset and images obtained after data augmentation. (A), (E), (I) the
original images; (B), (F), (J) the reflections on the horizontal axis; (C), (G), (K) the reflections on the
vertical axis; (D), (H), (L) the reflections on the horizontal and vertical axes.

Full-size K&] DOT: 10.7717/peerj-cs.3163/fig-1

suitable for deep learning models and increased the accuracy of the analysis process.
Table 3 gives the number of objects belonging to each class after data augmentation.

Some images in the dataset and some images of the labeled coordinates in these images
are shown in Fig. 2.

To ensure unbiased distribution of samples across training, validation, and test sets, a
random sampling method was employed. This approach helps to prevent systematic
selection bias by ensuring that images from different damage types and conditions are
proportionally and randomly assigned to each subset. Additionally, to reduce the risk of
overfitting and improve generalizability, a 5-fold cross-validation strategy was applied.

Deep learning models

This article presents, 11 different deep learning models have been employed alongside the
Faster R-CNN object detection algorithm to leverage their strengths and improve the
overall detection process. Each of these deep learning models contributes in different ways,
such as improving feature extraction, classification accuracy, or computational efficiency.
For example, some models might be better suited for detecting specific types of objects,
while others excel in handling large-scale datasets or real-time processing. By combining
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Table 3 Numbers of damage types in the dataset after data augmentation.

Class Number of objects
Paint damage 3,404

Erosion 2,324

Serration 4,928

Vortex 884

Vortex damage 2,872

Figure 2 Pattern examples in the dataset. Full-size K&] DOT: 10.7717/peerj-cs.3163/fig-2

Faster R-CNN with these models, the goal is to achieve better detection accuracy, faster
processing times, and higher robustness in diverse environments.

AlexNet

AlexNet (Krizhevsky, Sutskever ¢ Hinton, 2012), which has five convolutional layers, three
fully connected layers, and eight depths, consists of a total of 25 layers. This deep learning
model is one of the pioneering deep learning models. It has become an important model
with the different filters used and its single-branch structure. It consists of approximately
60 million parameters and 650 thousand neurons. Rectified Linear Unit (ReLU) activation
function and Dropout layers were used for the first time in this model. It was selected due
to its simple architecture and rapid training/testing capabilities.

VGG16 ve VGG19
VGG16 (Simonyan & Zisserman, 2014) consists of 41 layers with 13 convolutional layers,
three fully connected layers and a depth of 16. The VGG19 (Simonyan & Zisserman, 2014)
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model has 19 depths, 16 convolutions, and three fully connected layers. It consists of 47
layers in total. There are 3 x 3 convolution filters in both models. It has an understandable
model structure with its simple and deep structure. It is one of the most frequently used
models in the literature. It is a model that is frequently preferred especially in image
classification problems. It produced better results by extracting deeper features compared
to AlexNet. It was selectede for this study due to its simplicity, fast training, efficient testing
performance, strong feature extraction and being more successful in image classification
processes.

GoogleNet (InceptionV1)

This model has a depth of 22 and consists of a total of 144 layers. This model includes
modules called inception. Convolution filters of different sizes are applied in parallel. The
number of parameters is reduced with 1 x 1 filters. There are 170 connections to connect
the layers. The inception module allows the model to contain fewer parameters. Thus, it
takes up less space in memory. Thus, the computational cost is reduced. There are
approximately 5 million parameters (Szegedy et al., 2015). The study was selected because
it increases the performance of deep learning models and also has a low computational
cost.

ResNet (ResNet18, ResNet50, ResNet101)

Resnet18 (He et al., 2016) has a depth of 18 layers and consists of a total of 72 layers and 79
connections. This model has 11.7 million parameters. Resnet50 (He et al., 2016) has a
depth of 50 layers and consists of a total of 177 layers and 192 connections. It has

25.6 million parameters. Resnet101 (He et al., 2016) has a depth of 101 layers and consists
of 347 layers and 379 connections. It has 40 million parameters and the computational
load is quite high compared to other models. It has been observed that the performance
rates increase as the number of layers increases in Resnet models. Blocks called residual
connections are used in these models. In such deep networks, it prevents gradient loss
(vanishing gradient) and allows deeper models to be trained. In many studies, ResNet101
was chosen for its ability to address vanishing gradient issues, enabling deeper network
training with superior accuracy in complex patterns.

SqueezeNet

SqueezeNet (landola, 2016) is a model consisting of a total of 68 layers with a depth of 18
layers and 75 connections. This model includes the Fire module. 1 x 1 and 3 x 3 kernel
filters are used in the Fire module. It contains 1.2 million parameters. This model comes to
the fore in studies where a small number of parameters are needed. This model is used
especially in environments with resource constraints. This model is more preferred in
mobile and embedded systems.

InceptionV3 ve InceptionResNetV2

InceptionResNetV2 (Szegedy et al., 2017) consists of a total of 825 layers and 922
connections with a depth of 164 layers. It is a model with inception and residual blocks. It
has a deep structure with 55.9 million parameters. It is a very successful deep learning
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model in obtaining features thanks to its depth. InceptionV3 (Szegedy et al., 2016) has a
depth of 48 layers. It contains a total of 316 layers and 350 connections. It consists of
23.8 million parameters. This model includes the improved version of inception modules.
Both models provide very successful performance in complex image processing problems.
It was also selected to be presented in this article because it is better in large datasets.

MobileNetV2

MobileNetV2 (Sandler et al., 2018) is a deep learning model developed specifically for
mobile devices. It has a depth of 23 layers. It consists of a total of 153 layers and 162
connections. It contains 3.5 million parameters. This model includes inverted residual
blocks. It is preferred in applications that require fast efficiency. Low hardware
requirements can also be shown as one of the reasons for preference. It is also a preferable
model for real-time applications.

Each deep learning model used in this study was chosen due to its advantages in
addressing certain aspects of image classification or object detection. AlexNet was chosen
due to its simplicity and fast training time, which makes it suitable as a baseline model.
VGG16 and VGG19 with deeper architectures were included due to their strong feature
extraction capabilities. ResNet models address the vanishing gradient problem. They were
chosen to explore the effect of depth on accuracy. MobileNetV2 and SqueezeNet were
chosen due to their lightweight architecture. Inception models and GoogleNet were chosen
due to the effectiveness of the inception module in feature extraction and parameter
reduction.

Each model was included in this study due to the most frequently encountered models
in literature reviews and the reasons stated above. The combination of these models allows
us to evaluate the trade-offs between accuracy, computational cost, and generalization. For
instance, while ResNet101 provides high accuracy, its resource requirements are
substantial. In contrast, SqueezeNet and MobileNetV?2 offer faster inference and smaller
memory footprints, which are critical for edge devices. This diversity enables a
comparative analysis to identify the most appropriate model for real-world wind turbine
applications.

Recommended Model SatNET

SatNET (Dogan, 2021) is a deep learning model prepared for object detection from satellite
images. It is a model developed for the detection of objects of different sizes on the ground
surface from images obtained by satellite or remote sensing. This model consists of 115
layers and 131 connections, has a depth of 43 layers, and approximately 1.6 million
parameters. The model is not pre-trained and is designed from scratch. Therefore, it does
not have weights. A detailed image of the layered structure of the SatNET deep learning
model is shown in Fig. 3.

The SatNET model has an input size of 248 x 248. The model consists of 12 blocks and
each block has its own features. The first three blocks have convolution layers consisting of
1 x 1,3 x 3 and 5 x 5 convolutions. In the first two blocks, the activation function is ReLU
after the convolution layer, and in the 3rd block, the batch normalization layer is after the
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Figure 3 Layered structure of SatNET deep learning model.
Full-size 4] DOT: 10.7717/peerj-cs.3163/fig-3

convolution layer. In the 3rd block, the image size is reduced to 124 x 124 x 3. In blocks 4,
8, and 10, the activation function is ReLU after the 3 x 3 convolution layer, and then the
batch normalization layer. In the first layer of block 4, there is an additional activation
function. In blocks 4, 8 and 10, the input size is reduced by half. In blocks 5, 6 and 7, there
is a structure similar to the inception module. The blocks are similar. This block has a four
branch internal structure and in the first branch, there is only a 1 x 1 convolution layer. In
the second branch, there are three additional layers to the layer in the first branch. These
are the activation function, 3 x 3 convolution layer, and Leaky ReLU activation layer
respectively. In the third branch, instead of the Leaky ReLU activation function used in the
second branch, there is ReLU, then the 3 x 3 convolution layer and then the Leaky ReLU
activation layer. In the fourth branch, there is 1 x 1 convolution, batch normalization,
activation, 3 x 3 convolution layer, batch normalization layer, and finally Leaky ReLU
activation layer. In blocks numbered 9 and 11, there is a 3 x 3 convolution layer,
cross-channel normalization layer, activation function, 3 x 3 convolution layer,
cross-channel normalization layer, 3 x 3 convolution layer, and cross-channel
normalization layer, respectively. In these blocks, the input size from the previous block
remains constant. Block 12 is the block where the classification is made. This block
includes first the activation function, dropout layer, average pooling layer, fully connected
layer, softmax layer and finally the classification layer.

This model does not have weights because it is newly created. However, other models
were taken as pre-trained. To evaluate the SatNET model under the same conditions as
pre-trained, the model was trained twice. This approach shows that it would be more
appropriate to compare it with other models.

Information about the features of the deep learning models used in this study and the
reasons for their preference is given. The training of the models was taken as transfer
learning, that is, pre-trained. Thus, it was subjected to fine-tuning for the damage detection
task in wind turbines. The features of the deep learning models used are given in Table 4.
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Table 4 Features of deep learning models.

Architecture Layers Connections Convolution Layers  Parameters Top-1 error  Top-5 error
AlexNet (Krizhevsky, Sutskever ¢ Hinton, 2012) 25 - 8 62 m 36.7 154
VGG16 (Simonyan & Zisserman, 2014) 41 - 16 138 m 25.6 8.1
VGG19 (Simonyan ¢ Zisserman, 2014) 47 - 19 144 m 25.5 8
GoogleNet (Szegedy et al., 2015) 144 170 22 5m - 6.67
Resnet18 (He et al., 2016) 72 79 18 11.7 m 30.43 10.76
ResNet50 (He et al., 2016) 177 192 50 25.6 m 22.8 6.71
Resnetl101 (He et al., 2016) 347 379 101 40 m 21.75 6.05
SqueezeNet (Iandola, 2016) 68 75 18 1.2 m 41.90 19.58
InceptionResnetv2 (Szegedy et al., 2017) 825 922 164 559 m 19.9 49
Inceptionv3 (Szegedy et al., 2016) 316 350 48 23.8 m 21.2 5.6
MobilNetV2 (Sandler et al., 2018) 153 162 23 35 m 28.0 8.6
SatNET 115 131 43 1.6 m - -
Table 5 Hyperparameters used for training deep learning models.
Hyperparameter Value Explanation

Optimizer SGDM (Stochastic Gradient Descent with Optimization algorithm used.

Momentum)

LearnRateSchedule Piecewise
LearnRateDropFactor 0.1
LearnRateDropPeriod 1

InitialLearnRate le—4 (0.0001)
MaxEpochs 5
MiniBatchSize 2-16

Verbose True

ValidationFrequency 20

The learning rate is reduced in parts over time.

The decay factor of the learning rate (multiplied by 0.1 at each step).

Specifies every number of epochs that the learning rate was decreased.

Initial learning rate at the beginning of training.

Maximum number of epochs (how many times to go through the

dataset).

The number of data samples to use in an iteration.

Whether to show detailed output during training.

How many iterations were required to check a validation dataset?

All models were trained using the same hyperparameters on the dataset containing

wind turbine damage. Table 5 shows the hyperparameter values used for training the

models. Different values were used due to the change in the number of parameters of the

minibatch size models. The values vary between 2-16.

Faster R-CNN for object detection

Object detection algorithms are not typically deployed alone in real-world applications.

They are often integrated with various deep learning models to enhance their capabilities

and improve performance. Object detection is a complex task that involves not only

identifying objects within images but also accurately classifying and localizing them. Deep

learning models, particularly CNNss, are widely used in this context to process and analyze

image data more effectively.

There are different object detection algorithms used in literature to detect the object in

the image. YOLO (Redmon, 2016) algorithm is released with different versions almost
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every year. YOLO is one of the object detection algorithms used in literature. Single Shot
MultiBox Detector (SSD) (Liu et al., 2016) tries to detect the object in a single step. It is
quite fast but it is behind YOLO and Faster R-CNN (Ren et al., 2016) in terms of
performance rate. RetinaNet (Lin, 2017) is an algorithm used for detecting small objects.
EfficientDet (Tan, Pang ¢ Le, 2020) is an efficiency-oriented object detection algorithm
offered by Google. In this study, the Faster R-CNN (Ren et al., 2016) object detection
algorithm was used to detect the damage and damage types on the wind turbine blades.
This algorithm provides high accuracy and exhibits a 2-stage approach. The first of these
stages is region proposal, and the second is object classification and bounding box
regression.

Region Proposal Network (RPN) is a convolutional network. It uses anchor boxes to
determine possible object regions in the image. The anchor box used to determine the
region has different sizes and ratios. In this study, the number of anchor boxes of different
sizes used to determine the region is determined as 15. This algorithm, which makes region
suggestions for object detection in the image, is converted into fixed-size feature maps.
This process is carried out by the region of interest (ROI) pooling layer. Feature maps are
used for object classification and bounding box regression. This situation is shown in
Fig. 4.

Faster R-CNN is used with deep learning models to detect damage and types in wind
turbines. Each model is trained with the Faster R-CNN structure and the object is detected
by classifying it with the suggested target boxes. The algorithm designed to detect the
damage and its classes in the study is shown in Fig. 5. All models are run according to this
flow.
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Faster R-CNN object detection algorithm was selected due to its high accuracy and
robustness in detecting multiple object classes in complex scenes. Instead of single-stage
detectors (e.g., YOLO, SSD), Faster R-CNN adopts a two-stage approach that first
generates region proposals and then classifies the bounding boxes. It provides more precise
detection, which is especially important in wind turbine damage analysis, where defects
(e.g., erosion, paint damage, vortex) may be small, irregular, and visually similar. Faster
R-CNN is well suited for the high-resolution image data used in this study and can
effectively detect fine-grained damage types under varying light and weather conditions.
Considering these advantages, Faster R-CNN is a strong candidate.

Evaluation metrics

In object detection tasks, the evaluation of model performance is crucial to understanding
how well the algorithm is identifying and localizing objects within an image. The most
commonly used evaluation metrics are precision and recall, which measure the accuracy
and completeness of the model’s detections. Precision refers to the proportion of true
positive detections (correctly identified objects) out of all the detections made by the
model, including false positives (incorrect detections). Recall, on the other hand, measures
the proportion of true positives out of all actual objects in the image, including false
negatives (missed objects). To provide a comprehensive evaluation, the average precision
(AP) is calculated, which is the area under the precision-recall (PR) curve. The PR curve is
created by plotting precision against recall at different thresholds of detection confidence.
The AP value summarizes the model’s precision and recall performance across all possible
detection thresholds, with a higher AP indicating better overall performance. The diagram
below illustrates how precision and recall are calculated and how they are used to generate
the AP score, offering a clearer understanding of the model’s effectiveness in detecting
objects.
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Non-Max Suppression (NMS): Non-Max Suppression is used to identify the correct
bounding boxes in object detection. It retains bounding boxes with an Intersection Over
Union (IoU) score greater than 0.5 and suppresses the others. If multiple bounding boxes
with an IoU greater than 0.5 are detected for the same object, the one with the highest
confidence score is selected and used.

Intersection Over Union (IoU): Intersection Over Union (IoU) is a measure of accuracy
for bounding boxes. It compares a predicted bounding box with the actual ground truth
bounding box. The IoU value is determined by calculating the overlap between the
predicted and actual boxes, divided by the area of their union. Figure 6 shows the IoU
calculation process.

Originally, the R-CNN architecture was used for object detection, but it required
classifying 2,000 region proposals per image, which made training the network very time-
consuming. As a result, a faster architecture was developed, known as the Faster R-CNN
algorithm, which improved the speed and efficiency of the detection process.

Computing infrastructure

The experiments and deep learning model training were conducted on a high-performance
computer running Windows 11 Pro as the operating system. The system was equipped
with an Intel core 19-14900 processor, 48 GB of ram, a 3 TB ssd for storage, and an Nvidia
Rtx 4080 graphics card with 16 GB of vram, which provided the computational power
required for deep learning tasks. The implementation of the models was carried out using
Matlab, specifically leveraging its built-in Deep Learning Toolbox for model design,
training, and evaluation. All scripts and functions were developed and executed within the
matlab environment, ensuring a streamlined workflow for the experiments.

EXPERIMENTAL RESULTS

Wind turbines rely heavily on the performance of their generators and back-to-back (B2B)
converters to ensure efficient energy conversion and grid compatibility (Kasasbeh et al.,
20205 Saygin & Aksoz, 2017; Yilmaz et al., 2018). The generator transforms mechanical
energy into electrical energy, while the B2B converter regulates variable frequency power
into grid-compatible output. Faults in these components, such as insulation degradation in
generators or insulated-gate bipolar transistor (IGBT) failures in converters, can lead to
inefficiencies, energy losses, and grid disturbances. Deep learning models, trained on
operational data such as voltage, current, rotor speed, and temperature, have proven
effective in detecting these faults (Wang et al., 2021, 2020). For instance, issues like
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unbalanced magnetic pull or winding short circuits in generators, and thermal stress or
harmonic distortions in converters, can be identified through pattern analysis in real-time
data. Evaluating these models involves metrics like precision and recall, which measure the
accuracy and completeness of fault detections (Lan et al., 2020; Wang et al., 2021). AP,
calculated from the precision-recall (PR) curve, offers a comprehensive measure of
performance, while techniques like Non-Max Suppression (NMS) and Intersection Over
Union (IoU) enhance fault localization. Faults in generators or B2B converters can have
significant grid impacts, including harmonics, voltage sags, and reactive power imbalances,
potentially compromising grid stability (Lan et al., 2020). By integrating deep
learning-based fault detection with grid simulation tools, operators can predict and
mitigate these effects proactively. Advanced models like Faster R-CNN enable real-time
fault diagnosis, ensuring reliable turbine operation and minimizing disruptions to the
power system (Saygin, Aksoz ¢ Yilmaz, 2016).

In this study, an analysis was performed for damage detection using 11 different deep
learning models and the Faster R-CNN object detection algorithm. 10 deep learning
models frequently used in the literature were evaluated as pre-trained, and a new model,
the SatNET, was presented and its performance was compared with other models. The
evaluation focused on damage types and memory space. The advantages and performance
of the new model, the SatNET, were evaluated. The performance of the models according
to damage types is given in Table 6. The AP value for each damage type is given in the
table.

Model Performances by Damage Types:

In paint damage detection, ResNet50 (58.4%) and SatNET achieved high accuracy for
this damage category with a success rate of 55.7%. AlexNet (9.8%) and ResNet18 (3.6%)
provided accuracy and exhibited the lowest performance among deep learning models.
The performance of ResNet50 and SatNET is quite close and considering the space it
occupies in memory, it is clear that the SatNET has the advantage.

In erosion damage detection, ResNet101 (80.3%), SatNET, 76.7%, and VGG19 (75.8%)
showed good performance in this damage with accuracy rates. When we look at
ResNet101, SatNET, and VGG19 models, SatNET’s performance with its lightweight
structure is quite remarkable.

In serration detection, VGG19 (95.4%) and SatNET, with 95.2% accuracy rates, were the
best-performing models in this damage type. These two models showed almost the same
performance. The SatNET is notable for its lower memory requirements.

In vortex detection, ResNet50 (93.1%) and ResNet101 (87.5%) provided the highest
performance in this type with their performances. The SatNET, on the other hand, showed
a moderate performance with a 66.1% accuracy rate. Although it lags other models, this
performance is considered to be at an acceptable level when the SatNET’s lightweight
structure and low resource consumption are considered.

In vortex damage detection, ResNet101 (51.5%), ResNet50 (46.4%), and SatNET show
the 3 deep learning models that perform best with 27.3% accuracy. It is seen that the
SatNET provides above-average performance in this damage type, whereas other models

Dogan et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3163 17/25


http://dx.doi.org/10.7717/peerj-cs.3163
https://peerj.com/computer-science/

PeerJ Computer Science

Table 6 AP values obtained from deep learning models according to damage types.

Paint damage Erosion Serration Vortex Vortex damage
AlexNet 0.098 0.572 0.899 0.166 0.044
GoogleNet 0.280 0.713 0.930 0.186 0.076
InceptionV3 0.321 0.740 0.934 0.694 0.155
MobilNetV2 0.295 0.696 0.929 0.412 0.056
ResNet18 0.036 0.664 0.893 0.254 0.011
ResNet50 0.584 0.787 0.944 0.931 0.464
ResNet101 0.541 0.803 0.936 0.875 0.515
SequeezeNet 0.327 0.706 0.921 0.749 0.120
VGG16 0.425 0.753 0.939 0.722 0.231
VGG19 0.439 0.758 0.954 0.481 0.240
SatNET 0.557 0.767 0.952 0.661 0.273
Average 0.355 0.724 0.930 0.557 0.199

Table 7 Memory usage, total test time and fps values of the models.

Space occupied in memory

Total testing time (s)

Frames per second

AlexNet
GoogleNet
InceptionV3
MobilNetV2
ResNet18
ResNet50
ResNet101
SequeezeNet
VGG16
VGGI19
SatNET

824 MB
266 MB
461 MB
230 MB
311 MB
474 MB
705 MB
201 MB
1,674 MB
1,733 MB
192 MB

48.4
163.3
324.2
150.6
51.3
179.8
191.9
97.3
72.39
80.2
46.5

14.83
4.40
2.21
4.77
14.00
3.99
3.74
7.38
9.92
8.95
15.44

also show low performance. When all models and damage types are considered, the

SatNET model has performed above average and shows a successful performance.

Considering the space it takes up in memory, the SatNET has become the model that

requires the least memory with only 192 MB. This provides a significant advantage in

situations where resource needs are limited. When compared to other models, it has been

observed that the models that require the most resources are the VGG16 and

VGG19 models. The SatNET stands out in environments where resource constraints and

high performance is desired and shows that it is an important option. In addition, SatNET

completes the test process in the dataset of the models in a short time. Information on how

long (in seconds) the 10% part allocated for the test in the dataset is completed and the

memory usage areas of the models are shown in Table 7. The number of images processed

per second is also given in the table.

Dogan et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3163

18/25


http://dx.doi.org/10.7717/peerj-cs.3163
https://peerj.com/computer-science/

PeerJ Computer Science

Paint Damage Erosion Serration Vortex Vortex Damage
' ' A——————_ ' '
]m.,\ \
0, 08 N 0 o,
g 0 o6 ) o5 os,
Z i
Z oafbry, o4 | o4 Nh”
< 02 3 0z 02, 02 \
nn 02 04 06 08 1 uo 02 04 06 08 1 nu 02 04 08 08 1 un 02 04 06 08 1 uo 02 04 06 08 1
. e _ . — ' '
Rt \
o8, o8 1 os| o8|/ o8]
- \ |
2 P
Z osfl/ N 08, o) | 05 05
2 |
B o \\ o o os o
S 02| \ 0z, 02| 02| L\ nz/hwl\\
1
O i
% 02 04 06 08 1 % 02 04 06 08 1 % 02 04 06 08 1 % o2 o4 0e o8 1 % 0z 04 o5 o8 1
f [P — T —— n '
% e \ ) B
g o o8 o8 o e T Ll 08
L
= as ! ™~ o8 o8 a8 o5,
\
g \ o4 o4 01 N
) | 3
< oz 02 02| 0z 02! ‘\
]
- L 0 o o o
" ez o4 os bs 1 " 02 04 05 0s 1 o 02 04 0 os 1 " w2 a4 o8 o8 1 % 0z o4 as os 1
1 1 . . ' '
|, \
- -
g 08 L os| ¥ \1 o5 | o8
N
z B “ | "
Z o) o 5 ol
§ 02 \ 02 0z 02/ \,\
% 02 04 06 08 1 % 02 04 06 08 1 % 82 04 08 08 1 08 1 % 0z 04 o5 o8 1
n ’ — '
o8 k \ o8 | 038,
) o, \ |
= s s \ as os
@ 1
4 04 oa 04 04
s |
g . \ " o N al
% ez a4 e o 1 % 0z o4 e s 1 % 62 04 0e os 1 % ez a4 we os 1 un 02 04 06 08 1
' . . — . N '
A ™~ L /
o8] \;\ o8 o8 08 08 VL/»/»L“
>
wn o \ o8 a8 05, os, \
o ‘ |
4 04 | 04 04 04 04 A
5
F |
& 02 02 oz oz 0z
% 02 o4 0s o8 1 % 02 04 05 08 1 % ez o4 08 bs 1 % 02 o4 0s o8 1 % 0z 04 o5 o8 1
1 ' L F 1 I '
oafln o osf o/ [ -
— ~ N
= \ i
- 0 o8 o8 os 05
A+ 1
S \
P 04 o4 04 0 04
2 1
K] 02 02 02 02 0z
Du 02 04 06 08 1 na 02 04 08 08 1 r‘u 02 04 08 08 1 1 un 02 04 06 08 1
1 1— 1 N '
e \
- o8|}, 08 ™ 08 1 08
3] O\ !
z o8 . o8 o6 05,
04 04 04 04
b1 \ h
=
T o 02 02 0z oz
@
% 02 o4 os o8 1 % 02 04 06 08 1 % 02 04 08 08 1 % oz o4 s s 1 % o2 o4 o5 o8 1
' \ o 1 R 1 '
l . \ 1,
onf'la___ o8 08 o3, L, o8,
- ‘ e "
© 08, \ o8 o3 08! = osf
- -
&0 3
B \ o4 04 04 04, 3
> oz t 02 02 02 02 \
% ez 04 e we 1 nu 02 04 06 08 1 nu 02 04 06 08 1 u“ 02 04 06 08 1 uo 02 04 06 08 1
' —— . — ' .
— \
g e o8 o8 o8 as]
\ e
= o) 1 o5, s | 06 [t ey u‘k
o \ b N
20 04 W 04 04 04 I 04

o o o o .
S a1 a4 05 es " 0z b4 05 os 1 s ez o4 s 6a s a1 4 08 es TR TR TR T
‘71/—\ N e ¥ = o m N
. , - |
o \ 08 o8 08| 1 e o5,
— \ | v b “
o5 \ 08 05 0s SN
z I
W
Z \ 04 01 04 04
3
@ 02 02 02 0z
B B o P B
" oz o4 06 o8 1 s 0z w4 05 o8 1 " 6z o4 05 oa 1 " 0z o4 o6 o8 1 s 0z w4 o5 o0s 1

Figure 7 Comparison of average precision values obtained from all deep learning models in five
different wind turbine damage types (paint damage, erosion, serration, vortex and vortex
damage). Full-size ] DOI: 10.7717/peerj-cs.3163/fig-7
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AP graphs of the results obtained from deep learning models are given in Fig. 7. A
comparative graph of the turbine damage and classes of each model is presented. Figure 7
compares the average precision (AP) values across different models and damage types,
highlighting SatNET’s efficiency in memory-limited environments. Each graph represents
the AP value achieved by a model for its corresponding damage type. It highlights the
performance variability between models and helps determine which architectures are
better suited to detect certain damage types.

The proposed model demonstrates high efficiency in damage detection, owing to its
superior performance and low resource consumption. This provides a balanced solution.
In addition, low memory usage provides a great advantage in terms of real-time
applications. The speed of the model and low requirements makes the model stand out.
The generalization ability of the SatNET model has shown that it can be used in different
applications.

CONCLUSION AND FUTURE WORKS

This study has demonstrated the significant potential of deep learning models, particularly
the proposed SatNET model, in detecting and classifying damage types in wind turbines
with high accuracy and low resource consumption. The SatNET’s lightweight design and
minimal memory requirements position it as an optimal solution for real-time and
resource-constrained applications. The results of the study highlight the model’s
competitive performance across various damage categories, validating its suitability for
practical deployment in wind turbine maintenance and monitoring. Furthermore, the
integration of advanced data augmentation techniques and a carefully constructed
datasethas ensured the robustness and generalizability of the proposed framework. Thus, it
is suitable for deployment in edge devices such as drones or embedded systems used in
wind turbine inspections, making it applicable for real-time damage detection during
aerial surveillance without requiring high computational cost and high GPUs.

Despite the favorable results, several areas for improvement and future research remain.
Enhancing the environmental adaptability of SatNET is a critical next step. Training the
model under a broader range of conditions, such as varying lighting, weather, and
operational states, will ensure more robust and reliable performance in real-world
scenarios. Additionally, integrating SatNET model with advanced sensing systems, such as
real-time data collection via drone inspections or sensor networks, can significantly
enhance its detection capabilities. Such integration would not only improve the precision
of damage identification but also enable scalable applications for monitoring large wind
farms. However, there are limitations of the study. One of these limitations is that the
dataset is limited to five damage classes. Another is that while SatNET is efficient, its
accuracy for some damage types (e.g., vortex damage) is lower compared to heavier models
such as ResNet101. The low performance in detecting vortex damage (27.3% AP) should
be analyzed. One of the possible reasons for this damage type is data imbalance. The
number of annotated vortex damage images in the dataset is low compared to other classes.
Also, vortex damage has similar visual features to other damage types such as erosion or
vortex. This makes class separation difficult. The lightweight architecture of SatNET may
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limit its capacity to learn the fine distinctions required to reliably detect this damage type.
Among the future improvement works, it would be more appropriate to collect more
labeled vortex damage data. In addition, techniques such as focus loss or attention
mechanisms can be considered to improve class separation.

Expanding the scope of the SatNET model to other renewable energy systems, such as
solar panel or hydroelectric infrastructure inspections, represents another exciting
direction. The model’s architecture can be adapted and fine-tuned to address diverse
challenges in renewable energy maintenance, further broadening its impact. Moreover,
future work will focus on optimizing the model through techniques such as pruning and
quantization to reduce computational overhead while maintaining or even enhancing its
accuracy.

Another potential research direction involves the integration of predictive analytics into
SatNET’s framework. By incorporating anomaly detection and prognostic capabilities, the
system could provide valuable insights into the progression of damage over time. This
would facilitate predictive maintenance, minimize operational downtime, and ultimately
reduce costs. Finally, extensive field testing and real-world deployment are essential to
validate the model’s performance under diverse operational conditions and to gather
feedback for further refinement. Future work will focus on addressing these limitations by
including a wider set of real-world damage types and environmental conditions in the
training data. In addition, integrating temporal data or video sequences can increase model
robustness. We also plan to explore model compression techniques such as pruning and
quantization to further reduce the computational burden for embedded deployment. Field
testing of the model on active turbines will be important to verify its real-world
performance and reliability. In the study, only Faster R-CNN was used among object
detection methods. In subsequent studies, it is considered to use YOLO versions of
single-stage detection methods.

In conclusion, this study provides a foundational framework for automated wind
turbine monitoring using deep learning models. By addressing the outlined future
objectives, SatNET can evolve into a comprehensive, scalable, and efficient solution,
contributing to the optimization of renewable energy systems and supporting global
sustainability goals. In addition, its low memory requirement and lightweight structure
make SatNET suitable for platforms such as NVIDIA Jetson Nano, Jetson Xavier or Google
Coral used in unmanned aerial vehicle (UAV) systems. It can run efficiently on embedded
processors with a speed of 15.44 fps. In order to provide faster performance in SatNET’s
UAYV integration, it can be exported to edge compatible formats such as Open Neural
Network Exchange (ONNX) or TensorRT. Thus, real-time damage detection is possible. It
reduces the need for manual processing and increases operational efficiency.
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