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ABSTRACT
Urban pollution has become a significant issue for the whole world, specifically for
underdeveloped nations. This pollution poses significant challenges to public health,
economic stability and environmental sustainability. The rapid growth of
urbanization and industries, and inadequate regulatory frameworks has led to the
deterioration of air, contamination of water and soil pollution. Major urban centers
such as Lahore remain at the top among the most polluted cities, globally, with
adverse effects such as rising respiratory diseases, contaminated water supplies and
environmental degradation. The countries have proposed various policies and
regulatory framework; however, these attempts do not reverse the trend of
exacerbating urban pollution due to the lack of monitoring and measurable goals.
This research proposes deep learning and ensemble learning approach to track
pollution levels efficiently that could be utilized for policymaking and governance,
supporting real time monitoring and data driven interventions. The findings indicate
decision tree and random forest gave the most reliable and accurate air quality
prediction, achieving an accuracy of 0.99 and 0.98, respectively, for particulate matter
2.5 (PM2.5) and particulate matter 10 (PM10), with high precision in classification
across all categories. The smog-predict app has been made available via a
user-friendly webserver at: https://smog-pred.streamlit.app.

Subjects Artificial Intelligence, Data Mining and Machine Learning, Data Science
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INTRODUCTION
Air pollution is one of the most serious concerns for the whole world. This growing
pollution problem has emerged as a global concern, posing serious risks to both the
environment and public health. The issue is getting worse and more intensified in the
developing nations where governance struggles to keep up with the growth of cities.
According to World Health Organization (WHO), 4.2 million deaths per year accounted
for air pollution particularly in the underdeveloped countries (World Health Organization,
2020). Urban air pollution is fueled with various factors, such as rapid urbanization and
industrialization have increased the pollution levels significantly. Pakistan faces the severe
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challenges of urban air pollution in cities like Lahore, Karachi, and Peshawar with Lahore
consistently stands second among the top five most polluted cities in the world. The
transport sector in Lahore is responsible for approximately 83% of the total emissions.
Between 2011 and 2021, the number of registered vehicles in Lahore saw a drastic increase,
especially two-stroke vehicles as shown in Fig. 1. Two-stroke vehicles contributed an
estimated 104.76 Gg of emissions, followed by motorcars, jeeps, and station wagons at
16.34 Gg (The Urban Unit, 2023). The fuel quality used in Pakistan’s vehicles falls under
the Euro-II standard, which is considerably lower than Euro-VI standards, causing higher
levels of pollutants such as nitrogen oxides and carbon monoxide. Traffic congestion
further compounds emissions, as vehicles emit 3.6 times more NOx and 25 times more
carbon per kilometer than the average vehicle in the United States of America (USA).
Waste management practices in Lahore are a significant source of pollution, with around
3.6% of emissions attributed to open waste burning. Lahore generates approximately 7,000
tons of waste per day, with about 30% of uncollected waste openly burned. This practice
emits harmful pollutants, including methane, carbon monoxide, and particulate matter.
Additionally, crop residue burning contributes around 3.9% of emissions, releasing
pollutants such as carbon monoxide and sulfur oxides. The percentage of concentration of
particulate matter 2.5 (PM2.5) comes from different sectors in Lahore is shown in Fig. 2
that also results in smog in winters.

PM2.5 (PM ≤ 2.5 microns) and particulate matter 10 (PM10) (≤10 microns) are major
air pollutants in urban areas, primarily originating from vehicle emissions, industrial
activities, and construction dust. PM2.5 is particularly harmful as its tiny particles
penetrate deep into the lungs and bloodstream, causing respiratory and cardiovascular

Figure 1 Vehicles statistics in Urban Lahore (A). Increase in registered vehicles (2011–2021) in
Lahore (B). Proportion of vehicle categories in Lahore (The Urban Unit, 2023).

Full-size DOI: 10.7717/peerj-cs.3162/fig-1
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diseases. The WHO recommends PM2.5 levels below 5 µg/m3 (annual) and 15 µg/m3

(24-h) and PM10 below 15 µg/m3 (annual) and 45 µg/m3 (24-h) for safe air quality
(California Air Resources Board). In Pakistan, major cities like Lahore, Karachi, and
Islamabad frequently exceed safe air quality limits, with PM2.5 levels often surpassing
100 µg/m3. This leads to severe smog, health crises, and reduced visibility, exacerbated by
industrial emissions, vehicular pollution, crop burning, and inadequate regulatory
enforcement. The issue of air pollution requires serious intervention due to its negative
impacts on human health, economy and the environment. A significant increase in
diseases has been observed due to urban pollution, especially respiratory and
cardiovascular diseases. It is estimated that environmental degradation costs around
5.88 % of the Gross Domestic Product (GDP) of Pakistan (World Bank, 2024). Pakistan has
passed various legislations and implemented policies like National Clean Air Policy, 2023,
Policy on Controlling Smog, 2017, National Environmental Policy, 2005 to reduce urban
air pollution. However, these attempts do not reverse the trend of exacerbating urban
pollution, including the quality of life and health among habitats. The main reason is the
enforcement mechanism that requires monitoring and measurable goals. The country
needs to invest in modern technologies such as internet of things and promote smart cities
for real time data collection to track pollution levels efficiently. This centralized data
platform could be utilized for policymaking and governance, supporting timely
interventions. This study proposes a system that utilizes sensors data to monitor air quality
by measuring the levels of PM2.5 and PM10. It is significant as it will help in monitoring
policymaking and timely interventions.

LITERATURE REVIEW
Urban air pollution has emerged as a critical concern across the world and many
researchers have proposed solutions to take early measures to counter this growing issue.
Sharma et al. (2024) provided a robust framework by using machine learning algorithms
for the prediction of Air Quality Index (AQI) in smart cities. The study identified PM2.5,
PM10, O3, SO2 as the dangerous pollutants affecting the cities due to high activities of
industrial and vehicle emission. By combining random forest (RF) with XGBoost provided
high accuracy and precision of AQI with lower error rates. Researchers (Anitha,
Malleswarao & Naidu, 2024) found that the proposed machine learning models offers a
foundational approach for baseline prediction in air quality. The multi variant linear

Figure 2 Percentage of concentration of PM2.5 in Lahore (The Urban Unit, 2023).
Full-size DOI: 10.7717/peerj-cs.3162/fig-2
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regression helped to find the relationship between input features and indicators,
meanwhile the random forest was used to discern complex patterns and non-linear
correlations within air quality data. This algorithm could also handle large datasets. The
study showed that multivariate linear regression (MLR) and random forest regressor
(RFR), with low error rates while high R2 scores, shows robust predicting capabilities.

Essamlali, Nhaila & El Khaili (2024) demonstrated that particulate matter like PM2.5
and PM10 cause respiratory disorders health risks. Hybrid models with artificial neural
network (ANN) demonstrated high accuracy in predicting pollutants levels in air. Support
vector machine showed effectiveness in continuous data predictions, meanwhile random
forest excels and showed abilities to perform both in classifications and regression.

Dang et al. (2024) leverages the use of artificial intelligence (AI) and Internet of Things
(IoT) to construct the models and analyze the large datasets to understand the relationship
between economic development and air pollution. This study created the theoretical model
using data from urban areas for collecting weather patterns; pollutants in air etc., to enable
IoT sensors for intelligent health system along economic growth. Support vector machine
(SVM) algorithm known for its precise handling both in classification and regression
effectively handles the complex process. The study uses multidisciplinary approach by
integrating the advanced data, economics analytics and environmental science to examine
the complexities by offering practical framework. IoT sensors are placed in urban panels
for the purpose of collecting data of weather patterns and pollution levels. The sensors
allow for real-time monitoring. Molina-Gómez, Díaz-Arévalo & López-Jiménez (2021)
showed the pivotal role of machine learning in analyzing and forecasting air quality. The
simulations showed ANN, SVM and decision tree revealed that models make it simple to
monitor the behavior of air pollution and offer early warnings for sustainable environment
and handle the complex correlation between environmental, social and economic
indicators. The study also highlighted the gaps for the purpose of sustainability assessment
like unavailability or limited data and the new approach or methodology needed for
accurate predictions.Méndez, Merayo & Núñez (2023) emphasized the dire importance of
machine learning and deep learning strategies in detection of pollutants concentrations
and finding air quality trends. The analysis highlighted the key findings such as long short-
term memory (LSTM), multi-layer perceptron (MLP) and convolutional neural network
(CNN) algorithm for time-series forecasting and particularly for pollutants such as PM2.5
and AQI. The study also found that by combining pollutants data and meteorological
variables such as wind speed, temperature and humidity enhanced the efficiency and
accuracy in predictions.

Liao et al. (2020) put the emphasis by overcoming the limitations of traditional model
like chemistry transport model and statistical techniques, the deep learning has a great deal
and significant advantages in improving the air quality forecasting. In extracting complex,
high dimensional and nonlinear features the DL architecture such as CNN, recurrent
neural network (RNN) and LSTM have shown its success. These models showed the
proven capacity in managing large datasets and filling the gaps efficiently. Furthermore,
the deep learning (DL) models outperform the traditional techniques and perform better
than conventional models in integrating satellite and ground-level data. Kaur et al. (2023)
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conducted a systematic review emphasizing the significance of DL models in identifying
both spatial and temporal correlation dependencies in data for predicting air quality. It
finds out hybrid models (CNN, RNN, LSTM) are the most effective technique in handling
air pollution datasets. In this systematic review, a variety of evaluation metrics applied to
analyze the performance of DL models for different set of metrics used depending on
various models like for time series and regression model, error based metrics used.

Gugnani & Singh (2022) indicated that LSTM based models had been performing better
than temporal forecasting and were particularly good at sequential data. Spatiotemporal
hybrid models based on CNN and LSTM, while not very old, demonstrate great results in
terms of accuracy, and while they require more development, sophisticated frameworks
using attention mechanisms and graph convolutional networks, or GCN, demonstrate
great potential. While they suffer from vanishing gradient problems, recurrent neural
networks (RNN) are suitable for sequential data.

Zaini et al. (2022) emphasized that deep learning outperforms traditional statistical and
machine learning methods. Specifically, LSTM and gated recurrent unit (GRU) should be
able to solve time series dependent problem proficiently. CNN are rather efficient at
feature extraction as well as spatial data processing. Benefits of hybrid models such as deep
learning models with auxiliary methods solving problems by improving accuracy.
CNN-LSTM is one of the spatiotemporal forecasting methods while optimization
algorithms are used to update parameters.

Ansari & Quaff (2025a) analysis of data on air quality in the Azamgarh district shows
that temporal factors are greatly influential and especially during the winter season, which
also has bad weather and serious pollution caused by burning of biomass. With the dataset
of 8,760 hourly observation data and considering the hourly simulation of the timed Air
Quality Index (AQI), six deep learning models such as feedforward neural network (FNN),
CNN, LSTM, GRU, multilayer perceptron (MLP), and Transformer were employed to
evaluate the performance in the series of timed data pattern during a year period (July
2022–June 2023). Further, the analysis of the variance through MANOVA, ANOVA and
t-tests determining trends of pollutant concentrations detected higher AQI at night and
during winter. From the models the FNN showed the highest level of fitness with an mean
absolute error (MAE) of 2.89, root mean square error (RMSE) of 4.99 and R-square of
0.9971.

Kang et al. (2018) highlights the importance of the development of real-time air quality
assessment systems for smart cities, underlining big data and complex machine learning
methods as the basis for accurate spatial-temporal predictions. Through such techniques
mentioned, for example artificial neural networks, decision trees, as well as the genetic
algorithms, it demonstrates that they offer a degree of sophistication to emulate complex
pollution behaviors, and estimate IoT networks data, satellite imagery, and even
sensor-based systems data capabilities. Despite these contributions, basic research
questions continue to limit the credibility of data, the reliability of sensors, and the
extensibility of models. The application of modern algorithms including GA-ANN and
random forests has proven to improve the efficacy of pollutant predication, as well as
improve the urban AQI forecast as compared to conventional techniques. The outcomes
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suggest considering the future research of multi-modal and time-variable system
approaches to fill the existing gaps and improve the air quality forecast applying to
emerging smart city environments further.

Joharestani et al. (2019) provides confirmation of the applicability of machine learning
in air quality prediction, most especially when diverse and quality input features are used.
Empirical with Tehran, 37 stations including Satellite imagery Aerosol Optical Depth
(AOD), Met data, Geographical information gathered to predict PM2.5 levels for 4 years.
Data normalization through attribute selection by employing rational approaches followed
by model tuning yielded a superior model of Extreme Gradient Boost (XGBoost) with an
R-squared estimate of 0.81, MAE of 10.0 µg/m3, and RMSE of 13.62 µg/m3. Random forest
and deep learning models also showed good stability in their predictions and their
R-squared respectively were 0.78 and 0.77.

Huang & Kuo (2018) presents APNet, a deep learning model employing CNN for
feature learning and LSTM networks for temporal dynamics to enhance the rapidly
growing PM2.5 forecasting precision. In the experiments with Beijing’s PM2.5 data, APNet
achieved better results than benchmark models, including support vector machine,
random forest, and decision trees, when it was trained using features including the PM2.5
concentration, wind speed, and rainfall. In other words, prediction accuracy was at its best
with the lowest RMSE, MAE, and MAPE values while the highest Pearson correlation
coefficients and IA tests for the employed model.

Cheng et al. (2018) presents ADAIN: Attentional Deep Air Quality Inference Network, a
new model for estimating the quality of the air in large cities, especially where there are no
fixed monitoring stations. ADAIN utilizes both feed-forward and recurrent neural
networks and applies an attention mechanism to flexibly control the POI information,
road network, meteorological condition data, and historical air quality data from multiple
stations. This approach improves the model’s forecast functionality and goes beyond
simple proximity-based techniques.

Zhu et al. (2018) showed the study of temporal dependencies and the efficient
deployment of parameters in an ML model for air pollution projection is underlined.
Specifically, as O3, PM2.5, and SO2 hourly monitoring data from Chicago were adopted for
analysis, the authors considered a multi-task learning (MTL) approach since it was
hypothesized that tasks constructed for optimization will provide better accuracy while the
complexity of the model is relatively small. The core meteorological variables and U.S. EPA
data were pre-processed to handle the missing values within the variables and rescaled
where necessary. Pre-processing methods such as Frobenius norm, nuclear norm and
consecutive close were integrated to improve model structure. The analysis of the results
revealed that the proposed light MTL models can be from 8% to 15% more accurate in
terms of RMSE, compared to the baseline models, and more accurate for those pollutants
with similar day/night curves.

Pande et al. (2025) evaluated the prediction of Air Quality Index (AQI) in Delhi using
three machine learning models: linear regression, decision tree (DT), and random forest
(RF). Historical air pollution data (PM2.5, NO2, SO2, and O3) from 1987 to 2020 was
cleaned and analyzed across three scenarios with six input variables. The model stability
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along with accuracy was achieved through 10-fold cross-validation while R2 and RMSE
evaluated the performance output. RF surpassed DT and linear regression by achieving
highest R2 along with minimum RMSE values in the experiments. Data classification with
DT was efficient but RF achieved superior results than DT and linear regression yielded
increased error rates when giving input predictions. The model accuracy increased with
the addition of essential pollutants including PM2.5 and NO2. These findings underscore
RF’s adaptability to large datasets and highlight the potential of machine learning in air
quality management, offering policymakers robust tools for developing pollution control
strategies.

Tong et al. (2019) established deep learning technology can interpret air pollution
through bidirectional long short-term memory (bi-LSTM), recurrent neural networks
(RNNs) which produces better PM2.5 distribution understanding. The model application
used time and space information together to achieve better PM2.5 interpolation results
than basic unidirectional LSTM models. Researchers tested model performance by
applying PM2.5 Florida data from 2009 which came from the U.S. EPA andmeasured their
results using MAE, RMSE, MAPE alongside parameter optimization through cross-
validation. The research established that time-based factors surpass spatial relationships
due to their essential impact on air pollution measurement.

Shahsavani et al. (2025) investigated the concentrations of heavy metals of PM10
aerosols near Bakhtegan Lake and health risks associated with them. The concentration of
22 metals in air from a neighboring village was measured by inductively coupled plasma
mass spectrometry, while random forest machine learning algorithms were used to
estimate nickel concentrations. Sources of nickel pollution were found to include copper
and lead. PM10 concentration in the study was 78.12 ± 24.56 µg/m3 and similarly showed
breaching the WHO recommended standards at 24-h mark which is 50 µg/m3.
Concentration of arsenic, manganese, and nickel exceeded WHO permissible limits was
due to natural contributions from crust and sediment and anthropogenic contributions
from industrial emissions, motor vehicles, and combustion.

Tawiah, Daniyal & Qureshi (2017) highlights the demand for new and sectorial
strategies in decreasing CO2 by comparing statistical models like ARIMA and exponential
smoothing with the MLP neural networks with an application of CO2 emissions of
Pakistan in energy, manufacturing and transport sectors for the time series 1971–2014.
Different performance measurements such as MAPE and sMAPE were used to measure
accuracy based on the data used, projections were made up to the year 2030 for policy
making. According to the findings, the trend in CO2 emissions is on the increase with
forces from the energy sector taking the largest cut from the industrial and transport
sectors. Neural network models gave better results as compared with statistical techniques
involved were more accurate in terms of approximation.

Ameer et al. (2019) evaluated air quality prediction in smart cities using four machine
learning techniques, DT, RF, gradient boosting, and MLP. The monitored PM2.5
concentrations and related meteorological parameters from five Chinese cities for 5 years
(2010–2015) were evaluated using modeling accuracy indices such as RMSE and MAE.
Among the models, we discovered that RF regression offered the highest accuracy and the
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least amount of time spent to make predictions while hauling least error rates. Although
DT regression had a less complex and shorter time to solve, it provided larger error
bounds.

Ansari & Quaff (2025b) evaluated the hourly AQI for the city of Azamgarh, India for
July 2022 to June 2023 using air pollutant concentrations and meteorological conditions
gathered by a sensor network of Pollutrem’s PM2.5, PM10, NO2, and SO2 concentrations
and temperature, humidity, wind speed, and UV radiation. Ten-fold cross validation was
used to train eight machine learning models namely XGBoost and CatBoost for the
estimation of AQI, which resulted in the estimate of AQI 123 which is interpreted as
moderately polluted air. The best model was identified as XGBoost; the model yielded an
RMSE of 0.32 and took a computational time of 1.61 s. The results of sensitivity analysis
further indicated that PM2.5, PM10, NO2 and SO2 had the highest impact on AQI.

Abdulraheem et al. (2025) showed PM2.5 concentrations and their trends across the
eleven selected cities in Nigeria were explained by precipitation, temperature, nighttime
lights and population density from 2000–2020. They applied linear regression, K-nearest
neighbors, decision tree regression, support vector regression, neural network, CatBoost
algorithm; Five-fold cross validation for the assessment and statistical assessment such as
R2, RMSE, MAE, MAPE are also used. CatBoost was the winner of the proposed models,
followed by an effective way to work with categorical data and no sign of over-fitting
during its training phase, and, on the opposite side, decision tree regressor exhibited the
worst performance. Table 1 shows the comparative analysis of related work with current
research work.

RESEARCH METHODOLOGY
The proposed methodology employs deep learning and ensemble learning algorithms to
predict the levels of PM2.5 and PM10. Following are the breakdowns of the detailed
methodology starting from data preprocessing to the simulation of the results.

Dataset description
The dataset consists of 26,746 total samples collected between 2020 and 2023, with an
80:20 train-test split. Each year has a substantial number of records, with 2021, 2022, and
2023 contributing significantly (~8,600+ records each), while 2020 has a smaller dataset
(887 samples). The train-test division ensures that 21,397 samples are used for training,
while 5,349 are allocated for testing, maintaining a robust dataset for model evaluation.
Table 2 shows the detailed description of the dataset and its divisions. The dataset used in
our study was obtained through a weather API and includes various atmospheric
pollutants such as CO, NO, NO2, O3, SO2, PM2.5, PM10, and NH3, along with the AQI
and a derived PM10 smog level. While direct meteorological parameters like temperature,
humidity, and wind speed were not available in this dataset, the pollutant concentration
levels implicitly reflect environmental conditions, as these are often co-dependent on
weather phenomena.
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Data preprocessing
The air quality dataset was sourced from an Excel file containing PM2.5 and PM10 AQI
records. Missing values in the ‘Calculated PM2.5 AQI’ and ‘Calculated PM10 AQI’
columns were handled using linear interpolation, followed by rounding and conversion to
integer values. Based on standard AQI thresholds, new columns (‘PM2.5 Smog Level’ and
‘PM10 Smog Level’) were created, assigning numerical values from 1 (Good) to 6
(Hazardous) to represent increasing pollution severity. The preprocessed dataset was then
saved to a new Excel file for further analysis.

Feature selection and label preparation
To prepare the dataset for machine learning models, independent variables (features) were
separated from the dependent variable (labels), excluding the “Date” column. Labels were

Table 1 Comparative analysis of related work and current study.

Study/Author Key focus/Contribution Techniques
used

Limitation/Scope Difference with current study

Sharma et al. (2024) AQI prediction in smart cities RF +
XGBoost

Lacks deep models Our study compares DL & ML
across 4 years

Essamlali, Nhaila & El Khaili (2024) Health risk via PM2.5/PM10 ANN, SVM,
RF

Focus on health
impacts

Our work focuses on temporal
performance

Dang et al. (2024) AI + IoT for eco-health SVM, IoT
sensors

Theoretical
framework

Our study uses real pollutant
datasets

Molina-Gómez, Díaz-Arévalo &
López-Jiménez (2021)

ML for sustainable
environment

ANN, DT,
SVM

Highlights of early
warning gaps

We assess long-term yearly
performance

Méndez, Merayo & Núñez (2023) DL + meteorological features LSTM, CNN,
MLP

High complexity
models

Our study compares DL vs ML
without external features

Kaur et al. (2023) DL in spatial-temporal data CNN, LSTM,
RNN

Systematic review We provide empirical validation
with Lahore data

Ansari & Quaff (2025a) Hourly AQI with 8,760 samples FNN, GRU,
LSTM

Focus on fine-grained
hourly data

We focus on yearly accuracy
patterns

Huang & Kuo (2018) CNN + LSTM (APNet) Hybrid DL Beijing PM2.5 only We include PM2.5 & PM10 across
multiple years

Cheng et al. (2018) ADAIN: attention-based DL RNN, FFN Limited to cities
without stations

Our dataset includes fixed sensor
locations

Abdulraheem et al. (2025) 20-year PM2.5 trend in Nigeria CatBoost,
SVR

Focus on spatial
trends

Our focus is temporal model
comparison in Lahore

Table 2 Smog dataset description with training and test samples.

Year Total samples Train samples (80%) Test samples (20%)

2020 887 709 177

2021 8,693 6,954 1,738

2022 8,563 6,850 1,712

2023 8,603 6,882 1,720

2020–2023 26,746 21,397 5,349
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remapped into a 0-based index format to maintain compatibility with machine learning
and deep learning models.

Data splitting and scaling
To facilitate robust model training and evaluation, the dataset was split into training (80%)
and testing (20%) sets using stratified sampling to preserve the label distribution. A
StandardScaler was applied to ensure that all input features had a mean of 0 and a standard
deviation of 1, improving model convergence and performance.

Model development and evaluation
A combination of deep learning and traditional machine learning models was
implemented for smog level prediction. A CNN in deep learning models contained
convolutional layers and dense layers together with max-pooling strategies to feature
extraction and smog levels classification. Before training the model, we reshaped the data
for CNN input while optimizing it through the combination of categorical cross-entropy
loss and Adam optimizer. A deep neural network employed MLP architecture to
implement multi-layer perceptron as it included dense layers and dropout regularization
to boost model generalization. LSTM-based framework processed time-dependent data
patterns after transforming the dataset into sequences. The research adopted a linear
kernel SVM as its traditional machine learning approach for training standardized data
alongside decision trees for modeling hierarchical decision rules. The implementation of
random forest ensemble served to produce more accurate predictions while the K-nearest
neighbors (KNN) classifier used proximity assessments of data points to generate results.
Table 3 contained the details of the hyperparameters that were tuned for optimization. The
assessment of prediction models occurred through primary evaluation based on accuracy
measurement. Confusion matrices were generated to analyze classification performance
across different smog level categories. Confusion matrices were represented as heat maps
to facilitate an intuitive understanding of classification results. Smog levels were annotated
according to their real-world significance (e.g., Moderate, Unhealthy, Unhealthy Sensitive,
Very Unhealthy and Hazardous).

Comparative analysis and model selection
Models were compared based on accuracy and confusion matrix analysis. The optimal
model was selected based on its ability to correctly predict smog levels across all categories
with the highest accuracy and lowest misclassification rate. The methodology pictorially
represented in Fig. 3 ensures a rigorous approach to smog level prediction by integrating
classical machine learning techniques with deep learning architectures, leveraging robust
preprocessing, evaluation, and interpretability techniques.

RESULTS AND DISCUSSION
The performance evaluation of different machine learning models for PM2.5 and PM10
prediction over 4 years (2020–2023) demonstrates significant variations in accuracy across
methodologies as visible in Fig. 4. Table 4 exhibits the detailed results for PM2.5, decision
tree and random forest exhibited the highest predictive accuracy, achieving a perfect score
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Table 3 Tuned parameters values of models.

Model Random forest KNN Decision tree classifier SVM CNN/DNN/LSTM

Hyper-parameter value (s) n_estimators = 100 N = 5 Splitter = ‘random’ C = 10 Learning rate = 0.001

max_depth = 50 Max_depth = 50 Gamma = 0.0001 Batch size = 32

max_features = ‘Auto’ min_samples_leaf = 4 Kernel = linear Epochs = 50

min_samples_split = 10 random_state= ‘None’ Probability = ‘True’ Validation Split = 0.1

min_samples_leaf = 5 min_weight_fraction_leaf = 0.1 Verbose = ‘False’

Random_state = none

Figure 3 Methodology for smog detection. Full-size DOI: 10.7717/peerj-cs.3162/fig-3
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0.99 in 2021, 2022, and 2023. LSTM and SVM performed consistently well, with LSTM
improving from 0.90 in 2020 to 0.97 in 2023, and SVM maintaining a stable accuracy
around 0.95–0.96. CNN and DNN also showed promising results, both reaching 0.97 by
2023. However, KNN consistently recorded the lowest accuracy, stagnating at 0.89 across
all years. While some models like decision tree and random forest achieved high test
accuracy, the potential risk of overfitting exists. Figures 5 and 6 show the simulation of
confusion matrix for concentration of PM2.5 for 2020–2023. However, to mitigate this, a
validation split has been employed for deep learning models and used ensemble methods
like random forest for robustness. Confusion matrices have also been analyzed to ensure
consistent performance across classes. To evaluate models, F1-score, precision and recall
scores were computed and presented in Table 5 for PM2.5.

Figure 4 Spiral visualization for PM2.5. Full-size DOI: 10.7717/peerj-cs.3162/fig-4

Table 4 PM2.5 results.

Method Year-2020 Year-2021 Year-2022 Year-2023 Year-2020–2023

SVM 0.95 0.94 0.95 0.96 0.97

Decision tree 0.99 0.99 0.99 0.99 0.99

Random forest 0.99 0.99 0.99 0.99 0.99

KNN 0.89 0.89 0.89 0.89 0.91

CNN 0.93 0.95 0.96 0.96 0.95

DNN 0.93 0.97 0.97 0.97 0.98

LSTM 0.90 0.95 0.95 0.97 0.96
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Figure 6 Confusion matrix for concentration of PM2.5 for 2020–2023. (A) LSTM (B) Random forest (C) SVM (D) CNN.
Full-size DOI: 10.7717/peerj-cs.3162/fig-6

Figure 5 Confusion matrix for concentration of PM2.5 for 2020–2023. (A) DNN (B) KNN (C) Decision tree (DT).
Full-size DOI: 10.7717/peerj-cs.3162/fig-5

Table 5 F1-score, precision and recall values for PM2.5.

Model F1-score Precision Recall

CNN 0.93 0.92 0.94

DNN 0.97 0.97 0.97

LSTM 0.95 0.95 0.96

RF 0.99 0.99 0.99

SVM 0.95 0.96 0.95

KNN 0.88 0.88 0.87

DT 0.99 0.99 0.99
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For PM10 prediction, random forest and decision tree again demonstrated superior
performance, reaching an accuracy of 0.98 and 0.97, respectively, by 2023 as shown in
Fig. 7. Table 6 explains the complete results LSTM exhibited a steady improvement, rising
from 0.84 in 2020 to 0.96 in 2023. SVM showed a notable increase in accuracy, progressing
from 0.74 in 2020 to 0.93 in 2023. CNN and DNN followed a similar upward trajectory,
with both models attaining an accuracy of 0.95 by 2023. KNN, while showing
improvement, remained the lowest-performing model, increasing from 0.80 in 2020 to
0.90 in 2023. To evaluate models, F1-score, precision and recall scores were computed and
presented in Table 7 for PM10. These findings suggest that ensemble-based methods such
as decision tree and random forest offer the highest reliability for air quality prediction,
while deep learning models, particularly LSTM and DNN, exhibit strong adaptability and

Figure 7 Spiral visualization for PM10. Full-size DOI: 10.7717/peerj-cs.3162/fig-7

Table 6 PM10 results.

Method Year-2020 Year-2021 Year-2022 Year-2023 Year-2020–2023

SVM 0.74 0.87 0.92 0.93 0.75

Decision tree 0.89 0.95 0.97 0.97 0.78

Random forest 0.92 0.97 0.98 0.98 0.83

KNN 0.80 0.86 0.89 0.90 0.74

CNN 0.83 0.92 0.94 0.93 0.77

DNN 0.81 0.93 0.95 0.95 0.78

LSTM 0.84 0.91 0.95 0.96 0.78
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continuous performance enhancement over time. Figures 8 and 9 represent the simulation
of confusion matrix for concentration of PM10 for 2020–2023.

The study results show useful information about the quantitative assessment of different
machine learning and deep learning algorithms used for estimating PM2.5 and PM10
values. The research shows ensemble models decision tree and random forest attained
superior accuracy scores compared to other methods throughout all investigated years.
The superior results stem from their exceptional capability to detect complex decision
boundaries and deal with non-linear relationships. The predicted accuracy for PM2.5
reached 0.99 in all three tested years along with PM10 where the prediction accuracy
exceeded 0.98 by 2023. These models were recommended for air quality prediction because
their stable performance indicates they will deliver precise results.

Deep learning approaches, particularly LSTM and DNN, demonstrated strong
adaptability over time. LSTM models showed continuous improvement of accuracy when
predicting both PM2.5 and PM10 showing their strength in identifying temporal patterns
in the data. Over the data of the year 2023, LSTM achieved PM2.5 accuracy at 0.97 along
with PM10 accuracy at 0.96 thus establishing itself as a time-series-based air quality
prediction choice. The performance of DNN increased substantially until 2023 when it
achieved accuracy of 0.97 for PM2.5 and 0.95 for PM10. The increasing trend in
performance for these models highlights the effectiveness of deep learning architectures in
learning intricate patterns from air quality data.

Table 7 F1-score, precision and recall values for PM10.

Model F1-score Precision Recall

CNN 0.75 0.77 0.75

DNN 0.76 0.79 0.75

LSTM 0.74 0.75 0.75

RF 0.80 0.81 0.80

SVM 0.73 0.75 0.73

KNN 0.75 0.88 0.65

DT 0.74 0.75 0.75

Figure 8 Confusion matrix for concentration of PM10 for 2020–2023. (A) DNN (B) KNN (C) Decision tree (DT).
Full-size DOI: 10.7717/peerj-cs.3162/fig-8
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Traditional machine learning methods such as SVM and KNN exhibited varying
degrees of effectiveness. The accuracy rates of SVM remained consistent for PM2.5 from
0.95 to 0.96 throughout the period alongside a substantial PM10 performance boost from
0.74 in 2020 to 0.93 in 2023. Applications of SVM demonstrate that the model performs
effectively when suitable air quality features are properly selected and preprocessed. The
KNN model-maintained consistency with low accuracy levels as PM2.5 reached only 0.89
throughout all years and PM10 showed slight improvement from 0.80 to 0.90 between
2020 and 2023. The substandard performance of KNN during these tasks can be attributed
to its vulnerability to noise and its requirement to depend on local neighbor relationships
that might not work well for complex air quality prediction challenges.

The CNN-based model forecasted PM2.5 with 0.96 accuracy as well as PM10 with
accuracy of 0.93 for 2023. Years of improvement in CNN models indicate their effective
capability to extract both spatial and hierarchical characteristics. The accuracy
performance of CNN as a stand-alone model remained lower than ensemble methods and
LSTM which implies it needs other methods to reach optimal air quality forecasting
results. For PM2.5, deep learning models such as DNN and LSTM achieved high
performance, with DNN reaching accuracy of 0.98, over the full 2020–2023 period,
comparable to traditional models like decision tree and random forest (both 0.99). In the
case of PM10, random forest delivered the best overall accuracy (0.83 across all years), but
deep models like LSTM (up to 0.96), DNN (0.95), and CNN (0.94) also performed
competitively in individual years. These results suggest that while deep learning does not

Figure 9 Confusion matrix for concentration of PM10 for 2020–2023. (A) LSTM (B) CNN (C) Random forest (D) SVM.
Full-size DOI: 10.7717/peerj-cs.3162/fig-9
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always outperform simpler models, it remains effective, particularly when modeling
year-specific patterns in air quality data. To validate model comparison, 95% confidence
intervals were computed for accuracy and performed paired t-tests. Random forest
consistently outperformed other models (p < 0.0001), while differences between DNN and
LSTM were not statistically significant (p = 0.8273). Confidence intervals also supported
these findings, with a minimal overlap between higher- and lower-performing models.
Tables 8 and 9 contained the values for 95% confidence intervals and paired t-test p values
respectively.

Table 8 Model accuracy scores with 95% confidence intervals.

Model Accuracy 95% Confidence interval

Random forest 0.83 [0.82–0.84]

DNN 0.78 [0.77–0.79]

LSTM 0.78 [0.77–0.79]

Decision tree 0.78 [0.77–0.79]

CNN 0.77 [0.76–0.78]

SVM 0.75 [0.74–0.76]

KNN 0.74 [0.73–0.75]

Table 9 Paired t-test p-values for model comparison.

Comparison p-value Significance (p < 0.05)

CNN vs DNN 0.0002 ✓️

CNN vs LSTM 0.0002 ✓️

CNN vs SVM 0.0000 ✓️

CNN vs Decision tree 0.4585 ✗️

CNN vs Random forest 0.0000 ✓️

CNN vs KNN 0.0000 ✓️

DNN vs LSTM 0.8273 ✗️

DNN vs SVM 0.0000 ✓️

DNN vs Decision tree 0.4518 ✗️

DNN vs Random forest 0.0000 ✓️

DNN vs KNN 0.0000 ✓️

LSTM vs SVM 0.0000 ✓️

LSTM vs Decision tree 0.3968 ✗️

LSTM vs Random Forest 0.0000 ✓️

LSTM vs KNN 0.0000 ✓️

SVM vs Decision tree 0.0004 ✓️

SVM vs Random forest 0.0000 ✓️

SVM vs KNN 0.0567 ✗️ (borderline)

Decision tree vs RF 0.0000 ✓️

Decision tree vs KNN 0.0000 ✓️

Random forest vs KNN 0.0000 ✓️
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Overall, the study highlights the effectiveness of ensemble-based techniques such as
decision tree and random forest for high-accuracy air quality prediction. Meanwhile, deep
learning models, especially LSTM and DNN, exhibit strong potential for long-term
predictive performance. The findings reinforce the importance of selecting appropriate
models based on the specific requirements of air quality forecasting, such as real-time
predictions, adaptability to temporal patterns, and classification accuracy. Future work
may explore hybrid approaches that combine ensemble learning with deep learning to
further enhance predictive capabilities and provide more accurate and reliable smog
level forecasts. The data is region-specific and lacks certain meteorological features
(e.g., temperature, humidity), which may limit model generalizability. The incorporation
of multi-regional data and weather attributes in future studies to improve robustness.

WEBSERVER DEVELOPMENT
A user-friendly webserver has been developed for the research community, to validate the
performance of proposed model. Figure 10 shows the interface of app which has made
available public via a user-friendly webserver at: https://smog-pred.streamlit.app.

CONCLUSION
This study aims to demonstrate a real time air quality monitoring system that detects levels
of key pollutants like PM2.5 and PM10. This could be helpful for the decision makers to
develop measure able goals and action plan to counter the hazardous impact of urban air

Figure 10 Smog prediction interface: train & predict air quality levels.
Full-size DOI: 10.7717/peerj-cs.3162/fig-10
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pollution. This study utilized deep learning and ensemble-based models i.e., deep learning,
LSTM, decision tree, random forest, SVM and KNN. The experiments were conducted on
the data of consecutive 4 years which showed the effectiveness of decision tree and random
forest as the most reliable and accurate for air quality prediction, achieving an accuracy of
0.99 and 0.98, respectively, for PM2.5 and PM10, with high precision in classification
across all categories. In future, the dataset will be enhanced, and more techniques will be
explored and employed to get more reliable results for the authentic and efficient early
warnings to counter the disastrous impact of urban air pollution. The model can be
enhanced by integrating temperature, humidity, and wind-related features to improve
generalization and accuracy under varying weather patterns.
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