
Quantification of left ventricular mass in
multiple views of echocardiograms using
model-agnostic meta learning in a few-shot
setting
Yeong Hyeon Kim1,*, Donghoon Kim2,*, Jin Young Youm3, Jiyoon
Won4, Seola Kim5, Woohyun Park6, Yisak Kim1 and Dongheon Lee1,7,8

1 Interdisciplinary Program in Bioengineering, Graduate School, Seoul National University, Seoul,
Republic of Korea

2 Division of Pulmonary and Allergy, Department of Internal Medicine, Chung-Ang University
Hospital, Seoul, Republic of South Korea

3 Department of Radiological Science, Nambu University, Gwangju, Republic of South Korea
4Department of Meridian & Acupoint, College of Korean Medicine, Dong-Eui University, Busan,
Republic of South Korea

5 Medical AI Division, Ziovision, Seoul, Republic of South Korea
6 Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon,
Republic of South Korea

7 Department of Biomedical Engineering, Chungnam National University, Daejeon, Republic of
South Korea

8 Department of Radiology, Seoul National University College of Medicine, Seoul National
University Hospital, Seoul, Republic of South Korea

* These authors contributed equally to this work.

ABSTRACT
Background: Reliable measurement of left ventricular mass (LVM) in
echocardiography is essential for early detection of left ventricular dysfunction,
coronary artery disease, and arrhythmia risk, yet growing patient volumes have
created critical shortage of experts in echocardiography. Recent deep learning
approaches reduce inter‐operator variability but require large, fully labeled datasets
for each standard view—an impractical demand in many clinical settings.
Methods: To overcome these limitations, we propose a heatmap-based
point-estimation segmentation model trained via model-agnostic meta-learning
(MAML) for few-shot LVM quantification across multiple echocardiographic views.
Our framework adapts rapidly to new views by learning a shared representation and
view-specific head performing K inner-loop updates, and then meta-updating in the
outer loop. We used the EchoNet-LVH dataset for the PLAX view, the TMED-2
dataset for the PSAX view and the CAMUS dataset for both the apical 2-chamber and
apical 4-chamber views under 1-, 5-, and 10-shot scenarios.
Results: As a result, the proposed MAML methods demonstrated comparable
performance using mean distance error, mean angle error, successful distance error
and spatial angular similarity in a few-shot setting compared to models trained with
larger labeled datasets for each view of the echocardiogram.
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INTRODUCTION
The increasing number of patients with cardiovascular disease and the growing demand
for echocardiography studies have led an imbalance between the availability and need for
echocardiography experts (Narang et al., 2016). Left ventricular mass (LVM) is a strong
independent predictor of adverse cardiovascular events, and an increase in LVM is
associated with deterioration in left ventricular function, coronary artery disease, and an
increased incidence of arrhythmias (Bacharova et al., 2023; Lu et al., 2018). Therapies
aimed at reducing LVM can decrease associated risks, making reliable quantification of
LVM in echocardiography essential for initial measurement, monitoring clinical response
to treatments, and predicting outcomes (Armstrong et al., 2012; Devereux et al., 2004).
However, compared to radiation-based medical image diagnosis, diagnosis using
echocardiography is much more dependent on the operator’s experience and skill
(Alsharqi et al., 2018). Therefore, there have been reports aiming to minimize
inter-observer and intra-observer variations and to assist in acquiring more consistent
echocardiogram images using deep learning (Alsharqi et al., 2018).

Existing deep-learning approaches have demonstrated impressive accuracy and
reproducibility in automating echocardiographic measurements—EchoNet-Dynamic
(Ouyang et al., 2019), segments the left ventricle to compute ejection fraction and assess
cardiomyopathy; EchoNet-LVH (Duffy et al., 2022), quantifies ventricular hypertrophy
and tracks changes in wall thickness; and recent video-based models (Kim et al., 2023)
classify diverse cardiac conditions from apical 4-chamber (A4C) cine loops. These fully
automated methods eliminate much of the inter-observer variability inherent to manual
tracing (Duffy et al., 2022; Haq, Haq & Xu, 2021; Lang et al., 2021), yet each evaluates only
a single standard view (e.g., PLAX or A4C) (Duffy et al., 2022; Ouyang et al., 2019; Ouyang
et al., 2020).

Accurate left ventricular mass (LVM) quantification, however, requires combining
linear and volumetric measurements frommultiple orthogonal views—PLAX, PSAX, A2C,
A4C—to capture chamber geometry fully (Kristensen et al., 2022; Lang et al., 2021;
Lu et al., 2018;Marwick et al., 2015;Mizukoshi et al., 2016; Takeuchi et al., 2008). Meeting
this requirement conventionally demands large, view-specific labeled datasets, placing a
heavy annotation burden on clinical collaborators and limiting generalizability across
institutions.

To overcome these challenges, we propose a novel, multi-view segmentation framework
that leverages model-agnostic meta-learning (MAML) to learn reliable cardiac contours in
a few-shot setting. By treating each echocardiographic view as a “task” within the MAML
paradigm, our method dramatically reduces the need for extensive per-view annotations
while preserving the measurement precision necessary for robust LVM estimation across
all standard views of the echocardiography.

MATERIALS AND METHODS
The objective of the proposed method is to locate four points in multiple views of
echocardiogram (A2C, apical 2-chamber; A4C, apical 4-chamber; PLAX, parasternal long
axes; and PSAX, parasternal short axes) in a few-shot environment for the quantification of
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LVM (Marwick et al., 2015). The aim of this approach is to achieve comparable or superior
performance compared to models trained on large datasets, as illustrated in detail in Fig. 1.

In this section, we will describe the segmentation method, which predicts the position of
four points within each of the four views (A2C, A4C, PLAX, and PSAX) in
echocardiograms. Also, training the segmentation model using several MAML methods,
which consist of two stages of training, is performed. In the meta-train stage, the model is
trained with data Dtr1 , Dtr2 and Dtr3 by selecting from three out of four views (3-way) in
each training iteration. Next, in the fine-tune stage, the other view data Dtr4 is fine-tuned
with a small amount of labeled data, and the weight of the meta-model are updated.
During the meta-train stage, both inner and outer iterations are performed, whereas
during the fine-tune stage, only inner iterations are performed. Once the training and
tuning are completed, the MAMLmodel performs inference on unseen dataDte4 to predict
points corresponding to anatomical structures in echocardiograms.

Data preprocessing
The input images were resized to 256 × 256 pixels, and augmentation was applied with
rotations ranging from 0 to 30 degrees. Additionally, the images were normalized to a
range of 0 to 255 pixels, and the batch size was set to k (5, 10, 20, and 30 shots).

Figure 1 Overview of our proposed method. It represents the process of quantifying the left ventricular mass (LVM) from multiple views during
echocardiography. The segmentation model with heatmap-based point estimation is utilized, and model-agnostic meta learning (MAML) methods
are applied to predict the four points for LVM estimation. Full-size DOI: 10.7717/peerj-cs.3161/fig-1
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Annotations were conducted by both a cardiologist and an echocardiographer using the
LabelMe program (Torralba, Russell & Yuen, 2010). All labeled data were double-checked
by inter-observers, and in cases of disagreement during the validation process, annotations
were revised through discussion.

Dataset preparation
In this study, we conducted experiments on four different views of echocardiography: A2C,
A4C, PLAX, and PSAX, using several open echocardiography datasets. Specifically, we
utilized the publicly available EchoNet-LVH dataset (Ouyang et al., 2019) for the PLAX
view and the TMED-2 dataset (Huang et al., 2022) for the PSAX view. Additionally, we
utilized the publicly available CAMUS dataset (Leclerc et al., 2019) for both the A2C and
A4C views.

The training set consisted of 100 baseline images, while the MAML method was
composed of k-shot subsets with 5, 10, 20, and 30 images (Fig. A2). The validation set
comprised 34 images for the A2C view, 30 images for the A4C view, 100 images for the
PLAX view, and 30 images for the PSAX view. The datasets used were randomly sampled
from each view’s public dataset, ensuring no overlap between patients, and the test set
comprised 100 images for each view.

Semantic segmentation models
The experimented segmentation models were U-Net (Ronneberger, Fischer & Brox, 2015),
and DeepLab-v3+ (Chen et al., 2018). Firstly, U-Net consists of a contracting path
(encoder) to capture context and a symmetric expanding path (decoder) to enable precise
localization. The architecture uses skip connections between corresponding layers in the
encoder and decoder. These connections help the network retain spatial information lost
during down-sampling, improving segmentation accuracy, especially for tasks that require
detailed boundary predictions. In this study, the Efficientnet-B0 (Tan & Le, 2019) was used
as the encoder model.

Additionally, DeepLab-v3 builds upon earlier versions by incorporating atrous (dilated)
convolutions, which help capture multi-scale contextual information without increasing
the computational cost. Atrous convolutions allow the network to enlarge the receptive
field without losing resolution. DeepLab-v3 also uses a technique called the Atrous Spatial
Pyramid Pooling (ASPP) module, which applies different rates of dilation to capture
information at multiple scales. This architecture is particularly effective at segmenting
objects in images with complex backgrounds.

Heatmap-based point estimation in echocardiography
The segmentation models utilized the heatmap-based point estimation method (Bulat &
Tzimiropoulos, 2016; Zha et al., 2023) to quantify LVM for predicting specific four points
within echocardiograms. Echocardiographic images suffer from low contrast and poorly
defined chamber borders, making precise landmark regression unreliable (Dudnikov,
Quinton & Alphonse, 2021; Mogra, 2013). To overcome this, we convert each target point
into a small Gaussian-shaped region and treat detection as a segmentation task rather than
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direct coordinate regression. Concretely, for each ground-truth landmark we generate a
heatmap by placing a 2D Gaussian kernel—centered at the true point and with standard
deviation σ—over the surrounding pixels.

The cardiologist and the echocardiographer initially annotated the desired locations as
point coordinates. From these points, a two-dimensional gaussian distribution (mask or
contour) with a deviation of 7 was automatically generated and used as labels (Fig. A3). As
a result, the segmentation model trained on this dataset generates a heatmap resembling a
gaussian distribution. The model calculates the center points of the identified regions,
ultimately determining specific point coordinates within the echocardiogram.

Model-agnostic meta learning
MAML (Finn, Abbeel & Levine, 2017) is a method of meta-learning designed to learn a
good set of initial parameters through various processes, enabling rapid adaptation to new
tasks. MAML is not constrained by the model structure and can generally be applied to a
variety of learning problems, thus delivering strong performance in tasks that require rapid
adaptation with little data and only a few examples.

MAML involves a two-stage optimization process (Finn, Abbeel & Levine, 2017). The
inner optimization starts with initial model parameters and adjusts these parameters
through a few learning steps for rapid adaptation to individual tasks. The outer
optimization integrates learning outcomes from various tasks to update the initial model
parameters. This study applied three prominent MAML methods—first-order
model-agnostic meta learning (FOMAML) (Finn, Abbeel & Levine, 2017), Meta-SGD
(Li et al., 2017), and meta-curvature (Park & Oliva, 2019)—to multiple views of
echocardiograms.

The reason for comparing these segmentation models using MAML-based few-shot
learning methods is to evaluate their adaptability and performance in scenarios where data
is scarce. Few-shot learning is particularly valuable in real-world applications where
gathering large annotated datasets for segmentation tasks can be difficult. By using these
MAML methods, the goal is to identify which variant can achieve better model
generalization with fewer samples. Each MAML variant has unique properties regarding
computational efficiency and adaptability, and this comparison helps pinpoint the optimal
trade-offs between performance and resource usage when combined with the
segmentation models.

First-order model-agnostic meta learning
First-order model-agnostic meta learning (FOMAML) (Finn, Abbeel & Levine, 2017)
simplifies the computational complexity in MAML by omitting the second derivative
calculations that assess the impact of parameter updates on the overall model parameters
after each task. This omission significantly reduces computational demands while
maintaining similar performance. FOMAML approximates second-order derivatives with
first-order derivatives and updates the meta-parameters with a few gradient descent steps.
This makes meta-learning more practical and scalable for few-shot learning and related
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tasks. At the k-th inner gradient iteration, the model parameter is hk, the learning rate a,
and the loss L, as shown in Eq. (1) (Finn, Abbeel & Levine, 2017).

hk ¼ hk�1 � arhL 0ð Þ hk�1ð Þ: (1)

During the outer iteration, the meta-objective was updated for each batch. FOMAML
(Finn, Abbeel & Levine, 2017) simplifies the equation by omitting the second derivative
term of MAML, and the initial model parameter u0 is umeta, defined as shown in Eqs. (2),
(3) (Finn, Abbeel & Levine, 2017).

hmeta ¼ hmeta � bgFOMAML (2)

gFOMAML ¼ rhkL 1ð Þ hkð Þ: (3)

Meta-SGD
Meta-SGD (Li et al., 2017) enhances the flexibility and efficiency of meta-learning by
adding the capability to automatically adjust learning rates through the meta-learning
process. While traditional MAML methods apply the same learning rate to all parameters,
Meta-SGD (Li et al., 2017) learns individual learning rates for each model parameter. This
allows for the adjustment of learning speeds according to the importance of each
parameter during the meta-learning process. Meta-SGD (Li et al., 2017) involves
initializing and adapting the learner fhi in the meta-space (h; a), where the learning rate a is
typically set manually and the learner is updated through iterative gradient descent starting
from a random initialization as shown in Eq. (4) (Li et al., 2017).

hi ¼ hi�1 � ai�1 � rh�T iLT i fhi�1ð Þ (4)

In the inner iteration, weights are updated while in the outer iteration, both the
meta-parameters hk and ak are updated. The learning process is conducted with a learning
rate of b for the task distribution p T ið Þ, which defined as shown in Eqs. (5), (6) (Li et al.,
2017).

hk ¼ hk�1 � brh�T i�p T ið ÞLT i fhið Þ (5)

ak ¼ ak�1 � bra�T i�p Tð ÞLT i fhið Þ (6)

Meta-curvature
Meta-curvature (Park & Oliva, 2019) retains the basic meta-learning structure used in
MAML but adds curvature information to each parameter’s update, allowing for more
appropriate updates for each task-specific parameter. This curvature information reflects
how parameter updates are influenced by the shape of the task’s loss function, enabling
more sophisticated adjustments than the typical learning rates or parameter update
methods. The key concept of meta-curvature (Park & Oliva, 2019) is to adjust the
optimization path to suit the characteristics of each task. It achieves this by learning a
meta-trained matrix used in parameter updates, which reflects the unique characteristics of
each task’s loss surface. The meta-trained matrix Mmc can be used to expand all the
same-sized meta-curvature matrices bMo, bMi and bMf with the Kronecker product �,
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and a k-dimensional identity matrix Ik, which defined as shown in Eqs. (7)–(9)
(Park & Oliva, 2019).

hi ¼ hi�1 �Mmc � rh�TiLTi fhi�1ð Þ (7)

Mmc ¼ bMo bMi bMf (8)

bMo ¼ Mo � ICin � Id;

bMi ¼ ICout �Mi � Id; (9)

bMf ¼ ICout � ICin �Mf :

This matrix replaces the traditional scalar learning rate and allows for finer control over
the direction and magnitude of parameter updates. This method enhances the adaptability
and effectiveness of the learning process by aligning updates more closely with the specific
needs of each task (Park & Oliva, 2019).

Almost-no-inner-loop
Almost-no-inner-loop (ANIL) (Raghu et al., 2019) simplifies the standard MAML
framework by restricting inner-loop adaptation to only the task-specific “head”
parameters, while leaving the shared feature extractor fixed during task-level updates.
Concretely, we partition the model parameters into a shared representation h and a
per-task head f, and perform K inner-gradient steps only on f:

fi ¼ fi�1 � arfLTi fh;fi�1

� �
(10)

with h held constant. After K steps, the outer-loop meta-update then adjusts both h and f
by aggregating task losses evaluated at the adapted head fk:

h h� b �TIrhLTI fh;fk

� �
;

f f� b �TIrfLTI fh;fk

� �
: (11)

By eliminating inner-loop updates on h, ANIL achieves a dramatic reduction in per-task
computation and highlights that rapid adaptation primarily occurs in the final layer, while
the shared representation learned h generalizes across tasks. An illustration of the
differences between the MAML and ANIL methods is shown in Supplemental Fig. A4.

Implementation details
The experimented segmentation models were trained using the mean square error (MSE)
loss function with the Adam optimizer, employing a learning rate of 5e−3. During the
meta-training process, 50 epochs were applied, and the learning rate between adaptations
in meta-training was set to 0.03. Adaptation was performed 10 times for all shots, and the
learning rate between meta-tests was set to 0.05, with 100 adaptation steps. Additionally,
the final model was selected based on the highest mean pixel accuracy observed in the
validation set. In the inference process, the highest probability value in the region was
extracted as a point and used as the final predicted value. To compare the performance, the
baseline was set to 100-shot, and the MAML methods were varied by 5, 10, 20, and 30
shots.
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The development was implemented using PyTorch (ver. 1.12.1) and learn2learn (ver.
0.1.7), and the model was trained using NVIDIA RTX A6000 GPU on Linux (Ubuntu
18.04). Our implementation is available here: https://github.com/KimYeongHyeon/
Metalearning-echocardiogram. Here, the pre-trained model weights are also made
available, along with dataset selected and labeled from the raw public data. Specifically,
EchoNet-LVH dataset (https://echonet.github.io/lvh/index.html#dataset) (Ouyang et al.,
2019) is used for the PLAX view, the TMED-2 dataset (https://tmed.cs.tufts.edu/tmed_v2.
html) (Huang et al., 2022) for the PSAX view, and the CAMUS dataset (https://www.
creatis.insa-lyon.fr/Challenge/camus/databases.html) (Leclerc et al., 2019) for both the
A2C and A4C views. These resources are provided for the MAML experiments in this
study.

Evaluation metrics
The proposed method was quantitatively evaluated using the mean distance error (MDE),
which calculates the difference between the reference points and the coordinates predicted
by the model. Additionally, we introduced a new evaluation metric, successful detection
rate (SDR), which evaluates whether predicted points fall within a certain threshold
distance. Furthermore, the model predicted line segments formed by the points such as the
intraventricular septum (IVS), left ventricular internal dimension (LVID), and left
ventricular posterior wall (LVPW) in the PLAX view (Kristensen et al., 2022). The mean
angle error (MAE), which measures the angle difference between the predicted line and the
reference line, was also evaluated.

Furthermore, we introduce a novel evaluation metric, spatial angular similarity (SAS),
which jointly captures both the degree of parallelism (angular similarity) and the distance
difference between two lines by integrating elements of SDR and MAE. The metric is
defined as:

SAS ¼ 100� ða � coshj j þ 1� að Þ � e�bd: (12)

Here, a (ranging from 0 to 1) weights the orientation component, d denotes the distance
between the two lines, β determines the rate at which the distance-based score decays, and
perfectly parallel lines are guaranteed a minimum score of a × 100 regardless of their
separation.

In clinical practice, small errors in landmark localization can lead to substantial
inaccuracies in left ventricular mass, since LVM formulas combine linear measurements
(e.g., septal thickness, cavity diameter) in three-dimensional measures. Our suite of metrics
therefore provides a multi-faceted assessment of how well the model meets the precision
demands of LVM quantification.

RESULTS
Performance comparison of segmentation models
In this study, we utilized the U-Net (Ronneberger, Fischer & Brox, 2015), DeepLab-v3+
(Chen et al., 2018) and SegFormer (Xie et al., 2021) models along with the heatmap-based
point estimation method (Bulat & Tzimiropoulos, 2016; Zha et al., 2023) to quantify LVM
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by predicting specific four points within echocardiograms. We compared the performance
of these two models under the baseline setting (100-shot) and used the dice coefficient and
mean pixel accuracy as evaluation metrics.

Table 1 presents the results of evaluating four models using the Dice coefficient, mean
pixel accuracy, mean distance error and spatial angular similarity metrics. The similarity in
performance suggests that the model type does not significantly impact the outcomes, and
the lower results from the dice coefficient metric—especially for SegFormer—can be
attributed to training with a mean square error loss function on gaussian distribution labels
in heatmap form rather than binary masks. Based on the balance of accuracy and
localization, DeepLab-v3+ (Chen et al., 2018), which represents superior performance, was
selected as the baseline model for subsequence metal-learning experiments.

Performance comparison of MAML methods
We implemented a segmentation model, DeepLab-v3+ (Chen et al., 2018) which
demonstrated the best performance of mean pixel accuracy, to locate specific four points
within an echocardiogram using several MAML methods, including FOMAML (Finn,
Abbeel & Levine, 2017), Meta-SGD (Li et al., 2017), Meta-Curvature (Park & Oliva, 2019)
and Almost-No-Inner-Loop (ANIL) (Raghu et al., 2019). The quantitative evaluation of
the MAMLmethods is presented in Table 2 and Supplemental Tables A1–A6, showing the
results of mean distance error (MDE), mean angle error (MAE) and SAS in a few-shot
environment from multiple views of echocardiogram. It compares the performance of
MAML methods to that of a baseline (100-shot) trained with more labels. As the k-shot
increased, the errors of the MAML methods decreased, and when the k-shot reached 30,
they exhibited similar or better performance compared to the baseline (p > 0.05).
Specifically, in the A2C, A4C, and PLAX views, FOMAML (Finn, Abbeel & Levine, 2017)
demonstrated the highest performance; however, there is no statistical difference in
performance (p > 0.05). For the PSAX view, the proposed FOMAML (Finn, Abbeel &
Levine, 2017) demonstrated statistically significantly higher performance compared to the
baseline in terms of the MAE metric (p = 0.0493). The k-shot was low, the performance
differences among the MAML methods, but as it increased, the performance saturated.

Figure 2 illustrates the results of successful detection rate (SDR) as an extended
evaluation of MDE. It indicates the prediction rate of points within the echocardiogram
with the pixel-level threshold varied. The k-shot was set to 30, as the threshold increased,
the performance of the MAML methods showed similar or better performance compared
to the baseline.

Table 1 Overview of our proposed method: It represents the process of quantifying the left ventricular mass (LVM) from multiple views
during echocardiography. The segmentation model with heatmap-based point estimation is utilized, and model-agnostic meta learning
(MAML) methods are applied to predict the four points for LVM estimation.

Segmentation model Dice coefficient ↑ Mean pixel accuracy ↑ Mean distance error ↓ Spatial angular similarity ↑

U-Net (Ronneberger, Fischer & Brox, 2015) 0.597 0.98 5.882 75.689

DeepLab-v3+ (Chen et al., 2018) 0.548 0.989 5.624 74.189

SegFormer (Xie et al., 2021) 0.196 0.98 5.514 75.331
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Table 2 The quantitative results for each view of echocardiogram using several model-agnostic meta learning (MAML) methods were
compared. The performance of the baseline (100-shot) and MAML methods was evaluated based on mean distance error (MDE) and mean
angle error (MAE) and spatial angular similarity (SAS).

k-
shot

Model Metric A2C (CAMUS Leclerc
et al., 2019)

A4C (CAMUS Leclerc
et al., 2019)

PLAX (EchoNet-LVH
Ouyang et al., 2019)

PSAX (TMED-2Huang
et al., 2022)

100 Baseline MDE 4.56 ± 3.84 5.17 ± 5.23 5.11 ± 3.96 7.38 ± 5.67

MAE – – 10.25 ± 10.70 24.65 ± 26.03

SAS 78.14 ± 6.67 77.52 ± 8.80 77.40 ± 8.09 64.10 ± 11.47

5 FOMAML (Finn, Abbeel &
Levine, 2017)

MDE 13.62 ± 14.36 12.14 ± 11.22 7.39 ± 8.13 10.87 ± 7.67

MAE – – 16.52 ± 17.42 23.98 ± 22.14

SAS 64.03 ± 14.00 66.10 ± 11.35 70.04 ± 9.42 58.98 ± 10.58

Meta-SGD (Li et al., 2017) MDE 12.09 ± 14.82 12.55 ± 13.64 6.86 ± 4.68 12.72 ± 11.47

MAE – – 19.74 ± 26.87 30.14 ± 32.03

SAS 66.39 ± 14.33 65.01 ± 9.87 68.21 ± 9.79 56.24 ± 12.71

Meta-Curvature (Park &
Oliva, 2019)

MDE 10.62 ± 15.08 10.85 ± 10.73 6.99 ± 5.40 10.24 ± 7.16

MAE – – 17.39 ± 17.96 23.72 ± 21.16

SAS 69.73 ± 11.62 67.47 ± 9.13 69.21 ± 8.77 60.43 ± 10.30

ANIL (Raghu et al., 2019) MDE 39.33 ± 39.01 49.33 ± 45.50 15.60 ± 13.92 13.21 ± 11.64

MAE 63.88 ± 53.97 33.60 ± 38.49 32.89 ± 37.41 24.58 ± 35.07

SAS 45.02 ± 11.55 50.38 ± 12.46 54.24 ± 12.35 59.15 ± 12.86

10 FOMAML (Finn, Abbeel &
Levine, 2017)

MDE 8.66 ± 8.39 8.39 ± 7.68 7.62 ± 7.58 11.06 ± 11.21

MAE – – 18.57 ± 21.88 28.50 ± 32.42

SAS 69.80 ± 7.40 70.80 ± 7.35 70.39 ± 8.96 59.45 ± 9.62

Meta-SGD (Li et al., 2017) MDE 10.35 ± 12.05 7.81 ± 7.53 6.76 ± 5.18 9.15 ± 7.08

MAE – – 12.59 ± 14.65 21.85 ± 20.53

SAS 68.56 ± 8.91 72.53 ± 7.17 71.93 ± 8.64 64.03 ± 10.10

Meta-Curvature (Park &
Oliva, 2019)

MDE 11.37 ± 15.49 9.29 ± 8.61 6.04 ± 4.67 9.87 ± 7.96

MAE – – 10.48 ± 13.89 18.34 ± 16.48

SAS 66.97 ± 12.15 68.58 ± 9.44 74.22 ± 7.62 63.89 ± 10.20

ANIL (Raghu et al., 2019) MDE 37.19 ± 38.56 37.26 ± 35.47 13.97 ± 13.03 16.70 ± 13.10

MAE 57.12 ± 56.28 51.91 ± 49.80 37.20 ± 41.25 29.53 ± 33.23

SAS 47.54 ± 11.82 44.91 ± 14.63 55.98 ± 9.90 54.46 ± 10.64

20 FOMAML (Finn, Abbeel &
Levine, 2017)

MDE 6.84 ± 4.38 6.24 ± 4.18 5.44 ± 3.67 9.01 ± 7.44

MAE – – 10.71 ± 9.32 18.66 ± 19.10

SAS 71.85 ± 6.84 73.46 ± 6.70 75.61 ± 6.54 64.83 ± 9.75

Meta-SGD (Li et al., 2017) MDE 8.49 ± 7.80 6.99 ± 7.23 5.81 ± 4.34 8.86 ± 6.99

MAE – – 8.45 ± 7.79 19.82 ± 19.85

SAS 69.54 ± 11.32 73.49 ± 7.93 75.27 ± 8.50 64.70 ± 9.81

Meta-Curvature (Park &
Oliva, 2019)

MDE 9.34 ± 6.87 7.43 ± 7.17 5.81 ± 5.74 9.16 ± 5.73

MAE – – 10.07 ± 15.20 18.34 ± 16.30

SAS 69.93 ± 7.86 72.24 ± 8.56 76.02 ± 7.65 63.55 ± 8.62

ANIL (Raghu et al., 2019) MDE 34.95 ± 36.93 20.98 ± 23.08 14.56 ± 14.86 16.37 ± 13.49

MAE 40.59 ± 45.17 22.27 ± 30.41 29.53 ± 38.05 38.45 ± 35.78

SAS 49.21 ± 14.33 60.65 ± 13.04 58.88 ± 11.59 49.46 ± 10.95
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Figure 3 presents qualitative results comparing the ground truth with the prediction
results in the baseline (100-shot) and the FOMAML (Finn, Abbeel & Levine, 2017) method
with a k-shot of 30. In the A2C and A4C views, the reference points are represented by red
points, while the predicted results are depicted as green square points (Figs. 3A, 3B).
Additionally, in the PLAX and PSAX views, the reference lines are represented by red
points and lines (IVS, LVID, and LVPW), while the predicted results are shown as green
square points and lines.

DISCUSSION
The demand for echocardiography experts is increasing due to the rising number of
cardiovascular disease patients and growing prevalence of echocardiography studies
(Narang et al., 2016). Quantitatively measuring left ventricular mass (LVM) in
echocardiograms is clinically crucial (Armstrong et al., 2012; Bacharova et al., 2023;
Devereux et al., 2004; Kim et al., 2022; Lu et al., 2018); however, echocardiography
diagnosis heavily depends on individual experience, resulting in significant subjectivity in
image interpretation (Alsharqi et al., 2018).

In clinical practice, left ventricular hypertrophy (LVH) is diagnosed when LVM indexed
to body surface area exceeds guideline thresholds (e.g., >115 g/m2 in men or >95 g/m2 in
women), making precise LVMmeasurement indispensable for LVH detection and grading
(Lang et al., 2021). Large prospective studies have shown that every 50 g increase in LVM
confers roughly a 20% higher risk of heart failure, stroke, atrial fibrillation and all-cause
mortality, while regression of LVM through antihypertensive or other targeted therapies is
directly linked to improved survival and fewer cardiovascular events (Armstrong et al.,
2012; Devereux et al., 2004).

Table 2 (continued)

k-
shot

Model Metric A2C (CAMUS Leclerc
et al., 2019)

A4C (CAMUS Leclerc
et al., 2019)

PLAX (EchoNet-LVH
Ouyang et al., 2019)

PSAX (TMED-2Huang
et al., 2022)

30 FOMAML (Finn, Abbeel &
Levine, 2017)

MDE 5.48 ± 4.28 5.45 ± 6.30 5.06 ± 3.24 7.88 ± 4.46

MAE – – 7.67 ± 6.64 15.23 ± 12.01

SAS 77.01 ± 5.40 77.70 ± 7.60 77.36 ± 7.37 67.23 ± 8.32

Meta-SGD (Li et al., 2017) MDE 5.87 ± 4.75 5.69 ± 5.84 5.45 ± 3.68 7.11 ± 3.80

MAE – – 8.57 ± 11.96 13.53 ± 10.13

SAS 76.39 ± 4.98 77.23 ± 8.57 75.84 ± 7.22 69.19 ± 7.96

Meta-Curvature (Park &
Oliva, 2019)

MDE 6.42 ± 3.92 6.04 ± 7.50 5.56 ± 4.28 7.78 ± 4.57

MAE – – 8.16 ± 10.68 12.73 ± 10.36

SAS 72.83 ± 5.66 76.46 ± 9.67 75.91 ± 7.86 68.24 ± 8.07

ANIL (Raghu et al., 2019) MDE 29.70 ± 35.43 16.12 ± 21.74 11.13 ± 10.99 13.51 ± 13.00

MAE 40.95 ± 47.34 17.70 ± 28.13 27.47 ± 27.14 33.38 ± 38.27

SAS 53.41 ± 14.03 64.69 ± 14.12 59.80 ± 10.66 56.41 ± 14.63

Note:
A2C, apical 2-chamber; A4C, apical 4-chamber; PLAX, parasternal long axes; PSAX, parasternal short axes; MDE: mean distance error; MAE: mean angle error angle
error (MAE), SAS: spatial angular similarity.
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Methods utilizing deep learning on echocardiograms to calculate clinically important
indicators in the left ventricular chamber (Duffy et al., 2022; Ouyang et al., 2019; Ouyang
et al., 2020) have addressed these variations and achieved more standardized image
acquisition and interpretation (Alsharqi et al., 2018). However, measurements from
multiple views are essential for accurate quantification of LVM in echocardiograms, thus
requiring labeled data for each view (Duffy et al., 2022; Ouyang et al., 2019; Ouyang et al.,
2020). The model-agnostic meta-learning (MAML) method, utilizing limited labeled data
for training, has been applied across various medical domains (Godau & Maier-Hein,
2021), including chest X-ray images (Naren, Zhu & Wang, 2021), 3D CT data (Lachinov,
Getmanskaya & Turlapov, 2020), and skin images (Khadka et al., 2022), but has not been
employed for multiple views of echocardiograms.

In contrast to existing deep-learning pipelines that train separate, fully supervised
models on large, single-view datasets, our method reframes multi-view LVM estimation as

Figure 2 The results of successful detection rate (SDR) for each view of echocardiogram using several model-agnostic meta learning (MAML)
methods were analyzed. The k-shot was set to 30, demonstrating the performance variation of the model using different threshold. (A) A2C
view (B) A4C view (C) PLAX view (D) PSAX view. Full-size DOI: 10.7717/peerj-cs.3161/fig-2
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a meta-learning problem. By treating each standard echocardiographic view (A2C, A4C,
PLAX, PSAX) as an individual “task” within the MAML framework, we learn a single
shared initialization that captures the common anatomical priors across views—
dramatically reducing the hundreds of labels normally required per view to as few as 5–30
shots. To address the inherently ambiguous chamber boundaries in 2D echoes (Dudnikov,
Quinton & Alphonse, 2021; Mogra, 2013), we predict four critical LVM landmarks via
heatmap-based Gaussian point estimation rather than binary masks. In k-shot
experiments (k = 5, 10, 20, 30), our MAML-adapted DeepLab-v3+ matches or exceeds the
100-shot baseline across distance, angular, and Dice metrics, demonstrating efficient
cross-view generalization. To our knowledge, this is the first study to (1) detect the specific
point landmarks required for LVM formulae and (2) validate the effectiveness of
model-agnostic meta-learning for few-shot, multi-view quantification in
echocardiography.

It is known that our proposed method can calculate LVM from various multiple views
(Supplemental Fig. A1). LVM can be calculated from the PLAX view using the Devereux
formula (Supplemental Figs. A1–A1F), and another method for LVM calculation is the
area-length method (A-L) which can be applied in the A4C view to calculate a (apex to

Figure 3 The qualitative results are represented for the baseline (100-shot) and FOMAML (30-shot) in the following views. (A, B) A2C and A4C
views; where the ground truth is indicated by red points, while the predicted results are indicated as green square points. (C, D) PLAX and PSAX
views; where the ground truth is indicated by red points and lines (IVS, LVID, and LVPW), and the predicted results are indicated as green square
points and lines. Full-size DOI: 10.7717/peerj-cs.3161/fig-3
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short-axis-plane) + d (short-axis-plane to mitral-plane) (Supplemental Figs. A1–A1E).
Additionally, utilizing an additional segmentation model, A1 (epicardial area), A2
(endocardial area), and t (A1–A2, wall thickness) can be obtained from the PSAX view,
enabling complete LVM calculation. Moreover, to calculate LVM using the biplane model
(BP) in the A4C and A2C views, it is necessary to determine multiple coordinates of the
boundary plane (Supplemental Figs. A1–A1C). Through our proposed method, we
predicted the coordinates of the boundary planes at the main locations, demonstrating the
ability to calculate LVM using various methods.

From a theoretical standpoint, the convergence of all MAML methods toward baseline
performance by k = 30 reflects that the meta-learner successfully captures a
low-dimensional manifold of echocardiographic contour functions shared across views,
such that only minimal fine-tuning is required for each new task. This rapid adaptation
aligns with the MAML objective of finding an initialization that lies close to every task’s
optimum in parameter space, effectively reducing the expected adaptation error with few
gradient steps. The fact that different backbones—U-Net (Ronneberger, Fischer & Brox,
2015), DeepLab-v3+ (Chen et al., 2018), SegFormer (Xie et al., 2021)—perform similarly
under the same heatmap-based loss further suggests that the meta-learned initialization
encodes anatomy-specific priors that dominate over individual architecture inductive
biases Additionally, because ANIL (Raghu et al., 2019) uses the feature extractor learned
during meta-training as a fixed component, it cannot properly extract features for novel
views, leading to relatively poorer performance compared to other MAML methods.

Compared to fully supervised learning, which requires hundreds of labeled examples
per view, MAML-based few-shot learning reduces the annotation burden by an order of
magnitude while achieving comparable—or even superior—accuracy, cutting expert
labeling costs and time in clinical practice and enabling rapid adaptation to new views or
patient populations with minimal additional data. Altogether, this demonstrates that
multi-view echocardiographic quantification can be framed as a shared meta-learning
problem—where anatomical commonalities drive few-shot generalization—and that
MAML offers a scalable, annotation-efficient path toward AI-driven cardiac imaging.

To quantitatively evaluate the results of our proposed segmentation model using
MAML, we introduced a new metric called successful detection rate (SDR) in addition to
mean distance error (MDE). This is because there are no absolute reference points within
the echocardiogram in terms of their starting or ending points for LVM estimation.
Additionally, we evaluated using the mean angle error (MAE) metric to overcome the
limitations of MDE and SDR metrics, as the positions of structures such as IVS, LVID, and
LVPW may vary between healthcare providers, particularly in the PLAX view. Therefore,
instead of evaluating solely based on the coordinates of points, we assessed the gradient
between the predicted lines (IVS, LVID, and LVPW) and the reference lines (Supplemental
Tables A1–A6).

This study had several limitations. Firstly, although various types of echocardiogram
open datasets were utilized, they did not provide information in millimeter units,
necessitating a time-consuming standardization process and expert labeling for the
segmentation task of this study. In addition, the inclusion of datasets with relatively low
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resolution, such as the A2C view (e.g., CAMUS Leclerc et al., 2019), might have contributed
to a decrease in model performance. Therefore, in the future, it is necessary to enhance the
quality of data by utilizing high-resolution real-world data used in clinical settings, which
can be quantitatively evaluated in millimeter units. Moreover, addressing the data bias
issue through multi-institutional validation will be crucial for improving model
performance. Secondly, as the points used for LVM estimation lack fixed positions in the
echocardiogram regarding their starting or ending points, we introduced a novel
evaluation metric called the successful detection rate (SDR). This metric measures if
predicted points are within a specified threshold distance, providing a solution to the
challenges posed by the mean distance error (MDE) metric in echocardiograms. Finally,
since linear and volumetric measurements of LVM in multiple views are calculated based
on formulas, minor measurement inaccuracies can result in significant errors (Kristensen
et al., 2022). Therefore, for practical clinical application, the performance of the
segmentation model needs to be refined to ensure more precise measurements.

CONCLUSIONS
In this work, we proposed a segmentation model to quantify LVM using MAML methods
in echocardiograms from multiple views. Our method demonstrated the ability to
effectively identify points crucial for LVM calculation even with limited data in multiple
views. To advance toward clinical deployment, future work will focus on incorporating
high-resolution, clinically calibrated cine datasets with multi-center validation, extending
the framework to model spatio-temporal continuity in echocardiographic loops.
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