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ABSTRACT

Traditional diagnostic methods of leukemia, a blood cancer disease, are based on
visual assessment of white cells in microscopic peripheral blood smears, and as a
result, they are arbitrary, laborious, and susceptible to errors. This study proposes a
new automated deep learning-based framework for accurately classifying leukemia
cancer. A novel lightweight algorithm based on the hyperbolic sin function has been
designed for contrast enhancement. In the next step, we proposed a customized
convolutional neural network (CNN) model based on a parallel inverted dual
self-attention network (PIDSAN4), and a tiny16 Vision Transformer (ViT) has been
employed. The hyperparameters were tuned using the grey wolf optimization and
then used to train the models. The experiment is carried out on a publicly available
leukemia microscopic images dataset, and the proposed model achieved 0.913
accuracy, 0.892 sensitivity, 0.925 speciﬁcity, 0.883 precision, 0.894 F-measure, and
0.901 G-mean. The results were compared with state-of-the-art pre-trained models,
showing that the proposed model improved accuracy.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Computer Vision,
Data Mining and Machine Learning, Neural Networks

Keywords Leukemia cancer, Self-attention, Grey wolf optimization, Vision transformer,
Customized CNN

INTRODUCTION

Leukemia is a malignant disorder of the blood and bone marrow considered by the
unregulated proliferation of abnormal white blood cells (leukemic cells) (Talaat & Gamel,
2024). The normal function of blood cells is often affected depending on the number of
leukaemic cells. When white blood cells are in excess, the body’s immune system is
compromised; when red blood cells are in abundance, the transport of oxygen to the body
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is impaired; and an increased number of platelets can result in bleeding disorders (Habchi,
Bouddou & Aimer, 2024). Leukemia is generally classified into four types: acute
lymphoblastic leukemia (ALL), acute myeloid leukemia (AML), chronic lymphocytic
leukemia (CLL), and chronic myeloid leukemia (CML). Although all four types of
leukemia affect children and adults. The clinical presentation and pathology of the disease
differ among the four types (Al-Bashir, Khnouf ¢ Bany Issa, 2024). The cause of leukemia
appears to be a combination of genetic predisposition and environmental factors in the
child, adolescent, or adult who is diagnosed. Symptoms of leukemia differ depending on
the kind of leukemia, but common general symptoms include: fatigue, recurrent fever,
recurrent infections, unexplained weight loss, bruising, bleeding, bone pain, and swollen
lymph nodes. Early detection and diagnosis are important to survival; however, most
individuals have non-specific symptoms which leads to late diagnosis of the disease. After
conducting the non-specific screening, the World Health Organization (WHO) and
GLOBOCAN findings in 2023 show approximately 474,519 new cases of leukemia were
noticed with an estimated death toll of 311,594 (Xu et al., 2024) globally regarding
leukemia in a single year (Ramesh & Thouti, 2024; Hassan, Saber ¢ Elbedwehy, 2024). The
estimate of cases is likely to increase in 2024 due to increased odds of exposure to
environmental carcinogens, and an aging population which will likely affect detection and
increase treatment options, is important to enable fast detection and proper treatments
(Mafi et al., 2023).

Leukemia has been identified through conventional methods of patient physical
examination, complete blood counts (CBC), bone marrow biopsy, and microscopic
examination (Tripathi ¢ Chuda, 2025). The microscopic examination of peripheral blood
smears and bone marrow aspirates has been the gold standard for identifying individuals’
morphological features of leukemic cells. Pathologists examine the cell shape, size, nucleus-
to-cytoplasm ratios, and granularity to identify leukemia subtype. Consequently, for more
refined diagnosis, immunopheno typing and cytogenetic testing have identified certain
surface markers and specific chromosomal translocations (Shah et al., 2021). However,
these methods, along with immunophenotyping testing methods, are often
time-consuming and can be influenced by inter-observer variability. Classifying leukemic
subtypes can be a difficult process (Jaime-Pérez et al., 2019). Dxigital images taken by light
microscopy of blood smears and bone marrow have provided access to automated
procedures in addition to human examination. The automated procedures allow the use of
computational tools and methods for subsequent analysis allowing for improved
efficiency, reproducibility and accuracy when diagnosing cases of leukemia (Oybek Kizi,
Theodore Armand ¢ Kim, 2025).

Artificial intelligence (AI) has significantly influenced leukemia diagnostics in the past
few years, especially in the classification of microscopic images (Achir et al., 2024). In
leukemia diagnosis, many machine-learning (ML) approaches including support vector
machines (SVM) (Vogado et al., 2018), k-nearest neighbors (KNN) (Dagqa, Maghari ¢» Al
Sarraj, 2017), and random forests (Gupta et al., 2024) have been used for classification of
leukemic cells using hand-crafted features such as texture, shape descriptors, and color
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histograms. These hand-crafted features are extracted either manually or using algorithms,
rule-based, which are then fed to classifiers to differentiate between healthy and malignant
cells (Nair ¢ Subaji, 2023). While ML-based approaches can show promising results, their
functions ultimately rely on feature engineering expertise with limited understanding of
the context of the images and lack of generalization across datasets. ML techniques might
not necessarily capture complicated patterns or changes in cell morphology that are
necessary for accurate classification (Ochoa-Montiel et al., 2020; Attallah, 2024).

The limitations of ML have prompted the rapid transition to deep learning (DL) with
convolutional neural networks (CNNs) and Vision Transformer (ViT) networks being
widely adopted for DL tasks. CNNs are capable of identifying hierarchical features of input
images, processing raw images as pixel values to learn features around them, CNNs have
the ability to learn low-level details and high level of abstraction from the images (Jiang
et al., 2021). This means there is less reliance on hand crafted features, providing the
network with the ability to learn adapted patterns of leukemia. ViT methods (Ahmed et al.,
2025), with self-attention mechanisms, have shown tremendous success very recently as
they are great at modeling long-range dependencies and they offer a holistic view of the
image to be inputted. Unlike CNN methods, ViT methods can attend to every part of the
image at the same time making them fertile when understanding spatial relations of hand
cell images. The emergence of CNNs and ViTs has greatly contributed to the accurate,
sensitive and robust automation methods for leukemia diagnostic systems which prompts
clinicians to work and make decisions more effectively (Rezayi et al., 2021; Nasif, Othman
& Sani, 2021; Othman et al., 2020).

Recent studies have implemented several methods to classify leukemia disease using
deep learning. Prellberg ¢» Kramer (2019) presented a technique for recognizing leukemia
using customized CNN. The authors utilized CNN-based approaches of ResNeXt with
squeeze and excitation modules, which achieved 88% accuracy. This work’s primary
limitation was utilizing various raw image datasets and ensuring the process was
transparent and repeatable. Kumar et al. (2018) suggested a deep learning method for
classifying leukemia cancer. The authors employed a preprocessing method for reducing
the noise and blurring effect. The preprocessed images were further used for the feature
extraction. The authors extracted the manual features, which included color, geometry,
textural, and statistical aspects. They employed naive Bayes and k-nearest neighbor and
neural network. They achieved the highest accuracy on neural networks, which was 92.8%.
Setiawan et al. (2018) suggested an automatic framework for AML subtypes M4, M5, and
M7 cells. The authors used the k-means method for the segment of the cells. After that, six
statistical characteristics were obtained and used in the multi-class SVM classifier’s
training, and the authors achieved 87% accuracy for the segmentation and 92.9% for the
classification accuracy. The limitation was the less amount of data for the training process.
Laosai & Chamnongthai (2014) designed a contour signature and k-means-based AML
classification scheme for segment cells. They employed an SVM classifier and achieved up
to 92% experiment accuracy. Mourya et al. (2018) suggested a method for classifying
leukemia cancer using deep learning. The authors employed a CNN hybrid model from the
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experiment; they achieved 94% accuracy. The drawback of this method was
implementing GAN to produce new samples for the training, but the image quality was not
good enough for the better learning of a deep learning model. Abunadi & Senan (2022)
suggested an automatic technique for identifying leukemia cancer using hybrid models.
The authors utilized CNN-based models of Resnet-18 and Google-Net. For this
experiment, the authors gained 90% of the highest accuracy. The drawback of this work
was the lack of sufficient data to train CNN models, which necessitates a big dataset to
prevent over-fitting.

Yadav (2021) suggested feature fusion-based deep learning models that utilized two
different convolutional neural networks (CNN); SqueezeNet and ResNet-50 to increase the
classification accuracy of leukemia cells. The authors fused features from both models
rather than concatenating features as in the original way feature fusion models were
constructed, resulting in more complementary features representations. The dataset
contained 12,500 pictures of four classes of white blood cells (eosinophils, lymphocytes,
monocytes and neutrophils), where they scaled them to 150 x 150 pixels. They designed
their dataset with strong design characteristics, of which they employed 5-fold cross-
validation. The proposed model achieved a classification accuracy of 99.3% with precision,
recall, and F1-scores of greater than or equal to 98% returned at each fold. The ROC
analysis returned very high sensitivities such as the monocyte class was AUC-100 and
precision for all classes. The study only noted a little confusion when classifying
morphologically similar cells—particularly neutrophils and eosinophils-during the early
epochs. The study does not report on the evaluation of the model in real-time or the
generalization of the model as a tool with clinical applicability. Aadiwal, Sharma & Yadav
(2024) suggested the technique of late fusion and a hybrid method employing deep
learning to detect blood cancer, while incorporating both the AlexNet and VGG16 models.
The hybrid model was intended to take advantage of the spatial learning elements of
AlexNet and the deep-feature extraction of VGG16. They used a fairly modest-sized
dataset of labeled blood cell images that had been pre-processed and augmented, but failed
to provide the compositional elements. The hybrid model was trained up to 100 epochs,
using early stopping, and included the Adam optimizer, to generate a converged model
with no overfitting. The authors reported an accuracy of 98%, and consistently high
F1-score, precision, and recall for the four types of blood cells, which led to the authors
concluding that the hybrid deep learning model had produced a robust classification
performance. However, the authors did not benchmark their hybrid model against modern
architectures such as Vision Transformers, EfficientNet ASC, nor did they show real-time
inference in the clinical context. Yadav et al. (2023) presented a new deep learning
architecture referred to as 3SNet for the morphological diagnostics of hematologic
malignancies. The new 3SNet model combined multiscale feature fusions and processed
three types of input images (grayscale, local binary patterns (LBP) and histogram of
oriented gradients (HOG)) that incorporates texture and shape alterations in leukemic
cells. This was particularly developed to meet some of the challenges of morphologically
and functionally similar cell types as well as class imbalance. The model used the
AML-Cytomorphology-LMU dataset for training and testing, which contains labeled
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images of several leukemia sub-types. As judged by the mean average precision (MAP), the
model exhibited a MAP of 93.83% for well represented classes but a MAP of 84% for under
represented classes. The model exhibited area under the receiver operating characteristic
curve (ROC AUC) scores above 98% in most classes. These results provide evidence that
the model has the ability to differentiate leukemia cells, even with limited data. The
limitation of the method was the moderately high computational cost due to processing
triple input, as well as the lack of testing on actual real-world clinical data to establish its
generalization. Tanwar et al. (2025) suggested a hybrid deep learning model, ResViT, in
which ResNet-50 was combined with a two-views ViT for effective leukemia cell diagnosis
based primarily on 20,000 imagery findings associated with the different stages of leukemia
and secondly with an 18,236 single-cell image dataset comprising of 15 morphological
classes. The ResViT model utilized convolutional and transformer streams for extracting
both local level spatial features and global contextual dependencies. The ResViT model
performed above 99% accuracy on both datasets outperforming stand-alone CNNs or
ViTs. The use of both local and global attention allowed ResViT to appropriately avoid
challenges associated with subtle morphological differences or contaminated and noisy
data. However, limitations to ResViT included inability for deployment in a
lower-resourced cognitive clinical setting, due to an overly complex architecture and that
there was no output inference time or deployment capability reported to enable rapid fire
head-and-face schema diagnosis. Kadry et al. (2022) proposed a CNN-assisted
segmentation approach for leukocyte extraction from RGB-scaled blood smear images
using models such as SegNet, U-Net, and VGG-UNet. The study used the LISC dataset and
demonstrated that the VGG-UNet model outperformed others with a Jaccard Index of
91.51%, Dice coefficient of 94.41%, and accuracy of 97.73%. The robustness of the
approach was further validated using additional datasets like BCCD and ALL-IDB2.
Magsood et al. (2025) introduced Csec-net, a deep feature fusion and entropy-controlled
firefly optimization-based feature selection framework for leukemia classification. Their
method involved preprocessing, transfer learning with five CNN architectures, feature
fusion via convolutional sparse decomposition, and selection using a firefly algorithm.
Classification was performed using a multi-class SVM, achieving high accuracies across
four datasets upto 99.64% on ALLID_B1 demonstrating the efficacy of the proposed
pipeline.

Challenges still remain in the classification of leukemia in images viewed with a
microscope such as, such as classifying leukemia cells from images is the bizarre
morphology and multi-nucli features of malignant cells. For example, unlike normal blood
cells, leukemia cells are associated with having larger nuclei that can appear asymmetric
and extremely large nucleoli that vary in size, shape, and texture depending on the patient.
The variations in complexity of the structures are difficult for traditional CNNs to
recognize because they rely on narrow convolutional filters that may not be able to discern
long-term dependencies, much less subtle common global patterns. Therefore, in this
research, we propose an automatic lightweight deep learning framework based on a novel
CNN model named PIDSAN4 and modified ViT for classifying leukemia disease using
microscopic images.
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The main contributions are as follows:

* A novel preprocessing pipeline that includes a hyperbolic sin based contrast
enhancement that boosted the visibility of microscopic blood smears to improve the
classification performance.

A custom parallel inverted dual self-attention network (PIDSAN4). It uses lightweight
inverted residual blocks combined with self-attention mechanisms to represent the
irregular morphology of leukemic cells. The parallel combination of customized CNN
and attention, has not been explored for leukemia classification previously.

o The hyperparameters of the proposed models are optimized using the grey wolf
optimization method. The optimal hyperparameters are employed for the training of
both proposed models.

The manuscript is organized as ‘Proposed Methodology” describes the methodology
based on dataset collection and preprocessing, proposed model designing,
hyperparameters tuning, and training. ‘Experimental Results’ discussed and compared the
results of the proposed framework. ‘Comparison with Sota Methods’ concluded with the
discussion of the achieved results.

PROPOSED METHODOLOGY

Dataset collection and preprocessing

In this research, we employed the leukemia dataset for experimental purposes. The selected
dataset is publically available at https://www.kaggle.com/datasets/andrewmvd/leukemia-
classification. The dataset is collected from 118 patients, and it has two classes,
including normal cells and leukemia blast. The normal class contains 5,531 microscopic
images, and the leukemia blast consists of 5,530 microscopic images. Each sample in the
dataset has the dimension of 224 x 224 x 3. The information on images is not clear
enough to perform accurate classification. Therefore, we proposed a new technique to
improve the contrast of input images. The proposed method starts by applying a
hyperbolic sin function to provide a simple modification. The function is mathematically
formulated as:

ef(X,)/) — _f(x!y)
/sinh = + (1)

where f (x, y) represents the low contrast input image, and [ sinh denotes the output of the
hyperbolic sine function. After that, the power law function is performed on the resultant
image. The power law is defined as:

Op=p- (/ sinh)a (2)

where 0, denotes the resultant image of the power law, p represents the controlling
parameter of brightness, and o controls the enhancement in the contrast. Following that,
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the hazing layer is removed by employing the dehazing function. The mathematical
equation of dehazing is:
ap - CUA

oy, :T+wA (3)

where ¢, denotes the output image of dehazing, w, represents the estimation of
atmospheric light, and &, is the estimation of the transmission map. In the last phase, the
resultant image is passed through the contrast stretching function to remap the pixels into
their dynamic range. The function is described as:

¢, — min(¢,)

P () — min(y,)

(4)

where max(¢;,) and min(¢),) represent the maximum and minimum intensity values, and
Foutput is the final output of the proposed algorithm, which is visually presented in Fig. 1.

Proposed parallel inverted dual self-attention network (PIDSAN4)
CNNss are the baseline architecture for numerous computer vision tasks, including image
classification, object detection, and segmentation. CNNs are structured to automatically
and adaptively learn different spatial hierarchies of features from the input; the
fundamental property in the standard architecture of a CNN is the convolutions; the
convolutions are applied to the input via multiple filters which capture the local patterns in
the input like edges, corners, textures, efc. Activation functions such as rectified linear unit
(ReLU) are applied after the convolutions to introduce non-linearity to the model. The
convolutional layers are typically followed by pooling layers which help to downsample the
spatial resolution of the input in order to reduce computational costs, as well as fully
connected layers which help the model to reason about high level representations for
classification. Although CNNs can extract features locally, CNNs are limited when it
comes to modelling the long-range dependencies and global contextual features. To
address this, hybrid models that integrate CNNs with self-attention techniques. Hybrid
models seek to capitalize on the local feature extraction capabilities of CNNs, alongside the
global modelling capabilities of self-attention.

Pre-trained models can be an efficient and time-saving solution to many problems. Still,
they also come with a certain set of limitations that disqualify their use in some
applications. Such as, they have high numbers of parameters, translating into excessive
computational resource requirements and memory usage that make them harder for
devices with limited hardware capabilities, unable to effectively learn long-term
dependencies in data, as they are usually intended to solve generic tasks like object
recognition, and fixed architectures can limit the adaptability to learn unique features.
Therefore, it is necessary to optimally design CNNss to realize these desired features to solve
specific tasks. In the work, we designed a lightweight hybrid model based on parallel
inverted residual blocks integrated with self-attention mechanism named with PIDSAN4.
The purpose behind designing the PDSAN4 is to learn the irregular shape and large nuclei,
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Input Image Dehaze Image Output Image

Figure 1 Visual representation of the contrast improvement algorithm.
Full-size Kl DOI: 10.7717/peerj-cs.3160/fig-1

as in leukemia cells; the nucleoli are prominent compared to normal cells. The proposed
model comprises 107 layers and a total of 5.7 million parameters.

Input and initial layers: The network starts with the input size of 224 x 224 x 3. Initially,
two convolutional layers are attached with the configurations of 3 x 3 kernel size, 2 x 2,
1 x 1 stride, and 32, 64 number of channels respectively.

Parallel inverted bottleneck block: After initial layers, inverted residual block has been
employed with parallel branches. Each block contains one expansion convolutional
configured with 1 x 1 filter size, 64 depth, and 1 x 1 stride, two batch normalization
layers, swish activation, and one depth-wise convolutional operation with 3 x 3 filter size,
64 group channels, and 1 x 1 stride settings, one projection convolutional operation with
1 x 1 filter size, 64 depth, and 1 x 1 stride. A skip connection is established among the
expansion to projection convolutional operations. The mathematical formulation of this

block is:

Perp = O(T X Wexp),  Dexp € RV Pex (5)
¢(k) = k- a(k) (6)
b = 0(Pep X 0a), g € R3*3%Depx1 7)
by = bg X p, @, € R1X1%Dep Dy )
bgip =T + ¢, )
where ¢, represents the expansion operation, ¢ is swish activation, ¢, ¢, represent the

depthwise and projection operations, and ¢, is the skip connection. Intermediate

skip
Layers: After each parallel inverted bottleneck, max pooling activation is employed to

downsample the spatial dimension with swish activation function.

Patch embedding and dual attention layers: After the fourth intermediate layers, the
patch embedding layer is employed to convert 2D tensor into 1D sequence of patches. The
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number of patches is 16. After that, the patches are passed to the dual attention layers. The
first self-attention layer is applied along the spatial features and second attention is
employed on channel attention. The mathematical formulation is:

bm = {p1,P2:P3,- - P16} (11)
pi = Flatten(P;) (12)
pi=w-pi+b (13)
pp=[p1@p@ ... @pig| € RN*P (14)
T
¢35 = Softmax <Q—\/I§E> \% (15)
T
qb;t = Softmax(%}?f) Vb (16)

where ¢ g represents the max pooling operation, ¢ is the patch embedding and ¢, (]52tt
denote the spatial attention and channel attention operations. In the final step, the dual
attention is presented as:

(»bdual = ¢E+O"¢satt+ﬁ'¢:tt (17)

where o and f are learnable parameters with value of 0.5 for equal weights.

Final layers: After the dual attention mechanism, a 1-D global average pooling layer is
utilized, followed by a new fully connected layer, a new softmax layer, and a classification
layer at the end for class prediction. The loss function of the proposed model is categorical
cross-entropy to minimize the training loss, defined as:

N
- Z)’i log (i) (18)

N C
Vioss = Z Z O log(Pap) (19)

=1 f=1

where N and C represent the number of samples and classes, respectively. O,z denotes the
a-th sample belonging to the -th class, and P,z is the predicted probability output.
Figure 2 presents the proposed model architecture.

Modified vision transformer
ViT, a deep learning architecture, draw inspiration from the Transformer model, initially
designed for text data within natural language processing (NLP) settings, to tackle image
processing tasks. ViT is selected to take advantage of its long-range dependency processing
features and flexibility in handling different features, making it suitable for identifying
complex and subtle features of leukemia and normal cells. The tiny16 variant is employed
in this work due to its lightweight complexity and computational cost.

The proposed ViT is briefly described as follows: Suppose T = {(A;, b;)};_, is a set of s
images, where A; denotes a sample image and b; denotes the corresponding class label
of that image, b; € {1,2,...,n}, where n represents the number of classes in set T
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Figure 2 High-level architecture of the proposed PIDSAN4 model. Full-size K&l DOT: 10.7717/peerj-cs.3160/fig-2

(Bazi et al., 2021). The ViT model aims to learn a mapping from patterns of image patches
to their semantic labels. The architecture of ViT is inspired by the vanilla Transformer,
which follows the encoder-decoder architecture, capable of processing sequential data
independently of recurrent networks (Vaswani, 2017; Holliday, Sani & Willett, 2018).

The self-attention mechanism is a key strength of the transformer model, as it acquires
relationships between elements in long-range sequences. ViT extends transformers for
image classification. The attention mechanism enables ViT to process different regions of
an image and concatenate information obtained from the entire image sequence. The
generic architecture of the ViT model comprises multiple layers, including an embedding
layer, an encoder, and a classification layer.

Initially, a sample image A; is split into patches, each containing non-overlapping
information of the image. Each patch is considered a token by the transformer. For an
image A; of size (d x t X w), where d is the depth of the channels, ¢ is the height, and w is
the width, patches of dimension (d x p x p) are extracted. A sequence of image patches is
formulated as (ay,4a,, ... ,a,) of length m, where m = ;—‘2’. Commonly, a patch size of
16 x 16 or 32 x 32 is used. Smaller patch sizes increase the sequence length and vice versa.

The created patches are fed into the encoder after being linearly projected into a vector
space of dimension k through a learned embedding matrix F. These embeddings are
concatenated with a learnable classification token w5, Wwhose purpose is to perform
classification. The transformer visualizes the embedded patches as a set of unordered
patches. To preserve spatial information, patch positions are encoded and added to the
representation of the patches. The sequence of embedded patches with positional encoding
is given by:

Xo = [Wclass; a\F;aF; .. . amF] + Fp037 F e R(pZd)Xky Fpos S R(m+l)><k' (20)

Here a 1-D positional encoding scheme is utilized to preserve patch positions
(Dosovitskiy et al., 2020). The sequence x; is fed into the transformer encoder. The encoder
comprises identical layers I, where each layer has two sub-components: a multi-head
self-attention (MSA) block and a fully connected feed-forward dense block (MLP). The
MLP block consists of two dense layers with a GeLU activation function. Both
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sub-components use skip connections followed by a normalization layer (LN). The
operations are defined as:

x'f =MSA(LN(x;_1)) +xp1, f=1,...,1 (21)

xf = MLP(LN(x’f)) +«s, f=1,...,L (22)
In the encoder, the first element from the final layer x{ is passed to the classifier for label

prediction:

b = LN(x7). (23)

The MSA block is a crucial component, determining the importance of individual
patches relative to others in the sequence. MSA computes query (C), key (E), and value (Y)
matrices using learned weights Mcgy. These are used to calculate attention scores:

[C,E, Y] = xMcpy, Mcpy € RF¥3D: (24)
T

CE

A = softmax
<\/ Dg
SA(x) =A-Y. (26)

), A e R™™ (25)

The MSA block concatenates outputs from all attention heads and passes them through
a feed-forward layer with learnable weights:

MSA(x) = Concat(SA;(x); SAz(x);...;SA(x))W, W € RP=D, (27)

In this work, a tiny16 vision transformer is utilized. The last three layers (indexing, fully
connected, and softmax) are replaced with global average pooling, a new fully connected
layer, and a new softmax layer for transfer learning. The modified tinyl6 model has three
heads and N x 192 hidden dimensions. The architecture is visually presented in Fig. 3.

Hyperparameter tuning using grey wolf optimization

The grey wolf optimizer (GWO) (Bazi et al., 2021) was inspired by the social behaviour of
grey wolves, the leadership hierarchy, and pursuit of property in the group. Within their
natural habitat, grey wolves typically inhabit groups. The range of group sizes is from five
to twelve. A strict social dominance hierarchy is maintained. The most prominent male or
female wolves are placed at the apex of the hierarchy as alphas. These individuals are
primarily tasked with making decisions regarding the wolf pack’s habitat, foraging, resting,
and feeding of the wolf pack. Every other pack follows the dominant canines. Beta wolves
are the subsequent level of the alpha pack; they execute the directives and exercise
dominion over the lower-level wolves. Delta wolves assist alpha and beta wolves in
pursuing and investigating prey. They patrol the boundaries of the territory, communicate
potential threats to other wolves, and take care of the needs of wounded or vulnerable
individuals. Omegas are the lowest category of wolves, which exist outside the hierarchy of
other canines. Their social hierarchy predominantly determines wolves’ foraging
effectiveness. The mathematical modelling of grey wolf social behaviour involves
identifying the optimal solution for the prey location and representing the wolf’s position
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Figure 3 Customized vision transformer architecture for the classification of leukemia disease.
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in the search space as the solution. Alpha wolves are the most optimal solution, given their
proximity to the prey. According to their social hierarchies, the beta and delta wolves
represent the next best solution. In space, omega wolves adjust their position during the
search process based on the whereabouts of alpha, beta, and delta wolves. Suppose that the
position in the space of alpha, beta, delta, and omega is denoted by w,, wg, ws, and w,.
Prey surrounding, hunting, attacking, and seeking are essential steps in the GWO. The
surrounding is a process by which wolves encircle the prey during hunting time, which is a
mathematically formulated equation:

dp = ‘Cl cw,(t) — a)(t)‘ (28)
o(t+1) =w,(t) — Cy- ®p (29)
Ci=2-7-Rj—7 (30)
C,=2-R, (31)

where C; and C, are the two coefficient vectors, w(t) and w,(t) represent the position

vector of wolves and prey at the current iteration. R; and R, are two random matrices with
the range of [0, 1], and 7 is a matrix whose values decrease over the iteration from 2 to 0.
Alpha wolves perform the role of guides during the prey stalking process. Delta and beta
wolves are also implicated in this process. It is postulated that these three canines possess
knowledge regarding the probable location where sustenance could be encountered. This
information facilitates the determination of the three most efficient search agents, which
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are subsequently utilized to update the coordinates of other wolves, as represented by

equations:

D, =|C - w, — 0 (32)
Py = ‘Cl-wﬁ—w‘ (33)
(1)5 = |C1 s — w| (34)
W1 = Wy — T1 : (I)O( (35)
Wy = Wp — Tz . (pﬁ (36)
W3 = Wy — T3 . ‘I)(; (37)
o(t+1) :w' (38)

The attacking phase is equivalent to exploitation and is implemented by the factor 7.
When the prey ceases to move, the predatory wolves launch an assault on the defenseless
prey. The value of T is a randomly selected value within the range [2r, 2r], where r is within
the range [—1, 1]. The process of seeking or exploring the most optimal solution is related
to the rising behavior of wolves. Wolves converge after locating prey after diverging in
pursuing it. If |T| > 1, wolves diverge in search of superior prey; otherwise, if |T| < 1, they
converge towards the prey. A random C is used to prevent local optima and promote
exploration. The method produces random values at the beginning and end stages,
promoting impartial investigation. In this research, the proposed models” hyperparameters
are considered optimization problems. The objective is to determine the optimal
hyperparameters of models using the GWO algorithm. The architecture of the proposed
model is mathematically described as:

¢acc = Network (lpHIw Oyyeights s \IITD) (39)
pgl(?é( = Network <lpHp7 mweights; \I]TD) 3 K< Kmax (40)

where pr denotes the list of hyperparameters, ycights Tepresents the weights of the
proposed network, and Urp denotes the training dataset. The objective function is to
maximize the accuracy of the network for hyperparameters, as mathematically formulated
in Eq. (40). In this work, we employed the grey wolf optimization to tune the proposed
models during the training process. the ranges of hyperparameters are described in
Table 1.

In this work, we also trained all selected models on static hyperparameters, and the
static hyperparameters are learning rate, mini-batch size, epochs, and optimizer having
values of 0.001, 16, 200, and SGDM. The proposed PIDSAN4 and tiny ViT models have
significantly improved accuracy when the hyperparameters are tuned. The proposed
PIDSAN2 improved with 1.9% accuracy, and the tiny ViT improved by 3.00% accuracy, as
shown in Fig. 4. The GWO was selected for the hyperparameters tuning due to its balance
among the exploration and exploitation, computational efficiency, which aligned well with
the lightweight nature of our models. While, other alogrithms such as particle swarm
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Table 1 Hyperparameters for selected optimization.

Hyperparameters Ranges
Learning rate [0.00021, 1]
Section depth [0.001, 2.914]
L2 regularization [le77, 1e7}]
Activation type ReLU, Sigmoid, Clipped ReLU
Dropout [0.24, 0.91]
InceptionV3

Tiny16 VIiT ResNet50
90 95
PIDSAN4 MobileNetV2

VGG19

-@- Static Hyperparameters =@~ Tuned Hyperparameters

Figure 4 Comparative analysis among the static and optimized hyperparameters.
Full-size Ka] DOT: 10.7717/peerj-cs.3160/fig-4

optimization (PSO), firefly optimization, tree growth optimization (TGO) has also
outperformed but GWO has consistently showed competitive performance in
hyperparameters tuning in recent studies. the process of GWO for tuning are shown
in Fig. 5.

Training process

The selected dataset is divided into multiple ratios: 50:40:10, 60:30:10, and 70:20:10. The
50%, 60%, and 70% of the dataset are utilized for the training process in various
experiments, while 40%, 30%, and 20% of data are employed for testing purposes. A total
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Figure 6 Training and validation progress on proposed PIDSAN4 model.
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of 10% of the data is used for validation. After analyzing the dataset, it is observed that the

selected dataset has an imbalance problem, To address this issue and attain better

generalization, we implemented a class weighting method during the training process.

Weights are computed inversely proportional to the class occurrences, ensuring that the
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model gives more consideration to the underrepresented class. The weights are
calculated as:

T;

C. =
2 Cy x G

(41)

where Cy is the number of classes, T; is the total count of samples, C; represents the class
samples, and C,, is the class weight. The calculated weights are then passed into the loss
function to reduce the bias towards the majority class during the learning process.

After designing the proposed models, the proposed models are trained using the
training data, as shown in Fig. 6. The hyperparameters for training are selected based on
the grey wolf optimization. After training, the trained models are employed for the testing
phase.

EXPERIMENTAL SETUP

The result of the proposed framework is presented in this section. The selected dataset is
divided into a 70:20:10 ratio, where 70% of the data is utilized for training, 20% for testing,
and 10% for validation. The entire experimental process is carried out using 10-fold
cross-validation. The training of the proposed models is dynamically selected using grey
wolf optimization. The proposed models were trained using hyperparameters such as
learning rate (0.00122), section depth (2), activation type (ReLU), and L2 regularization
factor (1.0003 x 107°). The evaluation parameters are precision, sensitivity, specificity,
F-measure, and G-mean. All experiments are performed on MATLAB R2023b, executed
on a desktop system configured with an Intel Core i5 processor, 32 GB RAM, 1TB HDD,
and an NVIDIA GTX 3060 graphics card.

EXPERIMENTAL RESULTS

The InceptionV2, ResNet50, MobileNetV2, and VGG19 models were also trained using
grey wolf optimization and compared with the proposed models (modified ViT and
PIDSAN4). The results of all the trained models are presented in Table 2. From this table, it
is observed that the proposed PIDSAN4 model achieved the highest accuracy, which is
0.913. The other parameters are sensitivity (0.892), precision (0.925), F-measure (0.883),
and G-mean (0.894), with corresponding values of 0.901. This can be verified by the
confusion matrix presented in Fig. 7. This figure illustrates that the PIDSAN4 network
confirms strong performance in its claim of generalization. The model achieves good
percentage prediction for the Leukemia Blast and Normal Cell samples (92.84% and
91.29%, respectively), demonstrating how the network learned to distinguish these two
classes well, which shows its potential for application in further medical diagnosis. Some
classification tasks entail erroneous results, such as 104 Leukemia Blast samples
misclassified as Normal Cells (7.16%) and 59 Normal Cells misclassified as Leukemia Blast
samples (8.71%). The balanced performance in both cases indicates the generalization
ability of the model. The second-highest accuracy is achieved by the modified ViT from the
listed models, with an accuracy of 0.901, sensitivity of 0.897, specificity of 0.897, precision
of 0.889, F-measure of 0.881, and G-mean of 0.87.
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Table 2 Comparison of pre-trained models and proposed models on the leukemia cancer dataset.

Models Accuracy  Sensitivity  Specificity ~ Precision = F-measure = G-mean
InceptionV3 0.909 0.904 0.901 0.895 0.894 0.893
ResNet50 0.858 0.841 0.844 0.852 0.853 0.851
MobileNetV2 0.874 0.872 0.861 0.877 0.864 0.871
VGG19 0.896 0.887 0.893 0.884 0.871 0.894
Modified ViT 0.901 0.891 0.897 0.889 0.881 0.871
Proposed PIDSAN4 0.913 0.892 0.925 0.883 0.894 0.901
Leukemia Blast 1350 104
(92.84%) (7.16%)
&
Q
Q
& 59 619
Normal Cell (8.71%) (91.29%)
Leukemia Blast Normal Cell
Predicted Class

Figure 7 Confusion matrix of proposed PIDSAN4 on the selected dataset.
Full-size K&l DOI: 10.7717/peerj-cs.3160/fig-7

For further clarification, the standard error of the mean (SEM) and confidence interval
(CI) were measured using the precision of the models. In this method, the confidence
interval is 95%, where the z-score is 1.96, and the test sample size is 2,131. The SEM and CI
are calculated for each model, as described in Table 3. The SEM and CI are calculated using
Egs. (43) and (44).

Mspm = I (42)
VN
M, (1= M,)
Mgy = % (43)
Mc; = Mp * Zscore X Msgm (44)

where o is the standard deviation, calculated as /M, (1 — M,), where M, is the precision
and (1 — M,) is the error proportion of each model. Table 3 presents the results of the
SEM and CI method. According to the table, the InceptionV3 model has the highest
precision (0.895) among the models, and its small confidence interval [0.882-0.908]
suggests that it is highly reliable. These results show that InceptionV3’s low error rate of
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Table 3 Standard error of the mean and confidence interval for each model.

Models M, (1—-M,) Mggm Mgy (95%)

InceptionV3 0.895 0.105 0.00665 [0.882-0.908]
ResNet50 0.852 0.148 0.00779 [0.837-0.867]
MobileNetV2 0.877 0.123 0.00718 [0.863-0.891]
VGG19 0.884 0.116 0.00696 [0.871-0.897]
Modified ViT 0.889 0.111 0.00686 [0.876-0.902]
Proposed PIDSAN4 0.883 0.117 0.00698 [0.870-0.896]

0.105 was well considered to predict correct classifications. After this model, the Modified
ViT achieved a precision of 0.889, showing that transformer-based architectures can also
achieve competitive results with a similarly narrow CI [0.876-0.902]. MobileNetV2 and
VGG19 performed well with precision scores of 0.877 and 0.884, indicating their stability
with relatively narrow CI intervals. Even though ResNet50 had slightly lower precision
(0.852) and a wider margin of error (0.148), it still serves as a useful baseline, especially in
setups with constrained computational resources. The proposed PIDSAN4 model also
performed well, achieving a precision of 0.883 and demonstrating strong stability with a CI
of [0.870-0.896]. However, relatively fitted confidence intervals imply that in most cases,
models have successfully attained high precision, making them worthy of real-time
applications where reliability is critical.

Ablation study

After optimizing the hyperparameters, all the selected models are trained using various
optimizers with the same configurations, as shown in Table 4. According to this table, it is
observed that the proposed models achieved higher accuracy with the optimizer of SGDM
and the learning rate of 1.22 x 10>, The training time of all the selected models is also
noted, and it is noted that InceptionV3 has the highest training time, which is 13.53 h. The
proposed model completed its training within 7.98 h. The second-lowest training time is
8.57 h, obtained by the MobileNetV2 model. Three experiments were performed using
three ratios of data: 50:40:10, 60:30:10, and 70:20:10. The 50%, 60%, and 70% of the dataset
are utilized for the training process in various experiments, while 40%, 30%, and 20% of
data are employed for testing purposes, and 10% of data is used for validation. Figure 8
highlights the relationship between data splits and model performance, raising issues of
underfitting, overfitting, and generalization considerations. Models such as Tiny16 ViT
and the proposed PIDSAN4 show consistent performance improvements as training data
increases, showing better generalization capabilities. Older architectures such as ResNet50
and VGG19 show lower precision and scalability with more training data, suggesting that
they may be inadequate due to their limited ability to learn complex patterns from data
sets. For the split of 50:40:10, lower training data may result in inadequate adaptation for
most models, as shown in the modest accuracy values, except PIDSAN4 and Tinyl6 ViT,
which still achieve high performance. As the distribution increases to 70:20:10, most
models improve accuracy. Still, the distance between PIDSAN4/Tiny16 ViT and other
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Table 4 Selected models are trained on different optimizers with the same configurations.

Models Adam SGDM RMSprop Training time (H)
InceptionV3 0.8561 0.909 0.8714 13.53
ResNet50 0.8277 0.858 0.8416 10.52
MobileNetV2 0.8471 0.874 0.8661 8.57
VGGI19 0.8631 0.896 0.8514 11.17
Modified ViT 0.8741 0.901 0.884 12.41
Proposed PIDSAN4 0.8319 0.913 0.8462 7.97
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Figure 8 Results of selected models based on different dataset split ratios.
Full-size K&l DOT: 10.7717/peerj-cs.3160/fig-8

models increases, indicating that older models may be too suitable or unable to generalize
due to their weak adaptability to larger data sets. The high performance of PIDSAN4 and
Tinyl6 ViT in all partitions shows that these models effectively balance generalization
based on modern architectural advances.

A comprehensive comparison of proposed models and the state-of-the-art models has
been conducted in this section. Table 5 illustrates the comparison based on the number of
layers, number of parameters, and size of the models. From this table, Inception V3 has
316 total layers with 23.9 million parameters and 23.9 MB in size. The ResNet50 and
MobileNetv2 have 177 and 154 layers with 25.6 and 3.5M parameters, respectively. Both
models are 96 and 13 MB in size. VGG19 has 47 layers with 143.6M parameters and
535 MB in size. The proposed PIDSAN4 model has 107 layers with 7.5M parameters and
16.4 MB in size. The other proposed model, Tiny ViT, has 143 layers with 5.7M parameters
and only 22.6 MB in size. As a result, concerning parameters, the proposed model is much
more lightweight than InceptionV3, ResNet50, and VGG19. The receiver operating
characteristic (ROC) curve shows all six of the models. InceptionV3, ResNet50,
MobileNetV2, VGG19, Modified ViT, and PIDSAN4. The ROC curve plots the Sensitivity
against the False Positive Rate for the model. The three models that performed the best in
the evaluation and were most effective were InceptionV3, Modified ViT, and PIDSAN4
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Table 5 Comparison of the proposed PIDSAN4 with state-of-the-art models.

Models No. of layers No. of parameters Size in MB
InceptionV3 316 23.9M 23.9 MB
ResNet50 177 25.6M 96 MB
MobileNetV2 154 3.5M 13 MB
VGGI19 47 143.6M 535 MB
Modified ViT 143 57M 22.6 MB
Proposed PIDSAN4 107 7.5M 16.4 MB

Table 6 Comparison of ViT architectures with proposed models based on performance metrics.

ViTs Architecture type Precision Recall Fl-score Specificity Accuracy
ConvNeXt-t CNN-Transformer Hybrid 0.874 0.871 0.872 0.889 0.894
DaViT-S Dual attention ViT 0.866 0.869 0.867 0.877 0.882
CrossViT-s Cross-Attention ViT 0.871 0.873  0.872 0.882 0.888
Proposed PIDSAN4 CNN + Self-Attention 0.883 0.892  0.894 0.925 0.913
Modified TinyViT  Vision transformer 0.889 0.897 0.881 0.897 0.901

with an area under the curve (AUC) of 0.91, indicating that they are excelling at class
discrimination. VGG19 was close behind with an AUC of 0.90 indicating it also performed
strongly. MobileNetV2 and ResNet50 performed comparatively weaker than their peers
with an AUC of 0.87 and 0.86 respectively suggesting that they are slightly less effective
than others for the purpose of demonstrating class discrimination ability for this
evaluation setting. The ROC is presented in Fig. 9.

Table 6 shows a comprehensive comparison of various ViTs and hybrid models using
five relevant classification metrics of precision, recall, F1-score, specificity, and accuracy.
The proposed PIDSAN4 model which is based on hybrid architecture that combines CNN
with self-attention, showed more balance and superior performance across all metrics. It
had the highest F1-score (0.894), which indicates the best precision and recall tradeoff. It is
also superior to the other models in specificity (0.925) and accuracy (0.913). This shows its
ability to correctly classify both the positive and negative samples, which is especially
salient for maintaining low false positive rates in a high consequence classification task.
The modified TinyViT made no changes to a pure ViT architecture, showed the highest
precision (0.889) and recall (0.897) which show its strength in correctly identifying true
positive samples. However, while it demonstrated significant sensitivity in detection, it
shows a somewhat weaker F1-score (0.881) and accuracy (0.901) compared to that of
PIDSAN4 which indicates a slight imbalance in false positive and false negative handling.
While a slight imbalance should not affect its reliability, it may have relevance in some uses
where consistent performance across classes is pertinent. The ConvNeXt-t and CrossViT-s
models are CNN-Transformer hybrid approaches demonstrated F1-scores nearly identical
at 0.872. While they both showed reasonable performance comparably, both also
underperform compared to PIDSAN4 in specificity and accuracy. DaViT-§, which
showcased dual attention mechanisms, showed the lowest specificity (0.877) and accuracy
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(0.882) of any of the models, therefore limiting its ability to correctly identify negatives or
reject potential negative instances. Larger proportion of false negatives may induce higher
levels of false alarms in potential real-world applications.

Table 7 describes a useful comparison of a number of metaheuristic optimization
methods for hyperparameter tuning and their effect on the performance of the proposed
PIDSAN4 model. The results show that a properly tuned hyperparameter tuning approach
utilizing metaheuristics can provide some performance benefits regarding classification
performance. Compared to the without tuned performance of the model accuracy is 0.881,
F1-score is 0.891, the correctly tuned options optimize training dynamics that allow the
classifiers to refine predictive accuracy and generalization. The GWO method is by far the
best evaluated optimizer with respect to the metrics that are used. It have both the highest
F1-score (0.894) and highest accuracy (0.913). The GWO must have performed
accordingly because it is able to search the search space, and find optimal combinations of
hyperparameters to use while training the networks in a way that improved their learning.
The chimp optimizer provided strong accuracy which is 0.879, F1-score is 0.868
performance, followed closely by firefly optimizer accuracy (0.881). While the TGO ACO
are effective in terms of performance improvements, they did not provide as much
performance benefit as GWO and firefly, which indicates GWO and Firefly have better
search features compared to the ACO and TGO. TGO performed worse than the baseline.
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Table 7 Performance comparison of optimization algorithms with and without hyperparameter

tuning.
Optimizations With tuning Precision Recall F1-score Accuracy
W/o tuning - 0.879 0.887 0.891 0.881
Tree growth (TGO) v 0.867 0.859 0.863 0.874
Firefly optimization v 0.876 0.862 0.869 0.881
Ant colony (ACO) v 0.869 0.858 0.863 0.875
Chimp optimization v 0.872 0.865 0.868 0.879
Grey wolf (GWO) v 0.883 0.892 0.894 0.913

Figure 10 demonstrates the comparative performance of the PIDSAN4 model and the
Modified ViT model while they both operated under varying intensities of image noise
with the purpose of examining the performance of each model across three levels of
Gaussian noise (1%, 3% and 5%). The performance results demonstrated that as the noise
intensity increased the overall performance for each model would gradually decrease;
however, the PIDSAN4 model maintained a better performance under all levels of noise.
At noise level 1%, the PIDSAN4 model demonstrated the highest performance with an
accuracy of 90.8% and an F1-score of 88.9%. Comparatively, the modified ViT recorded an
accuracy of 89.4% and F1-score of 87.1% for the model performance. When the noise
intensity level is raised to a level of 3%, the PIDSAN4 model again maintained a better
performance with a model accuracy of 89.2% and an F1-score of 87.4% which compared to
the modified ViT’s accuracy of 87.9% and F1-score of 85.3% respectively. By noise level 5%
the PIDSAN4 model still have relatively better performance with an accuracy of 87.1% and
F1-score of 86.6% while the modified ViT have an accuracy of 85.4% and F1-score of
83.3%.

Discussion

The results clearly show that the proposed PIDSAN4 and modified Tiny ViT models are
more efficient on leukemia cancer datasets than state-of-the-art architectures such as
InceptionV3, ResNet50, MobileNetV2, and VGG19. In particular, the PIDSAN4 model
achieved the highest precision of 91.3% and a balanced sensitivity (89.2%), specificity
(92.5%), and precision (83.8%). Its superior measurement demonstrates its generalization
capability, as evidenced by the confusion matrix, in which it accurately classified 92.84% of
leukemia blast samples and 91.29% of normal cells. These results demonstrate the
network’s ability to effectively learn complex patterns, minimize classification errors, and
maintain balance between both classes.

The modified Tiny ViT achieves slightly reduced accuracy 0.901 compared to
InceptionV3 0.909, however, its inclusion in our investigation was as part of an intentional
tradeoff between performance, computation, and interpretability in model building. The
Tiny ViT is much smaller which has 5.7M parameters compared to InceptionV3 which is
23.9M and requires less time to train 12.41 vs. 13.53 h. This compactness means it is more
appropriate for real-time use in less resource-rich environments, such as portable
diagnostic devices and clinics. A transformer model enhances explainability since attention
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Figure 10 Evaluation of proposed models on noisy data.
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has been shown to help understand decision-making in some cases and we used LIME
visualization to understand the decisions made by the model as shown in Fig. 8. Our
framework contributes to model development, including Tiny ViT for model evaluation,
and the view is not that Tiny ViT replaces a standard CNN, such as the

InceptionV3 model, but can contribute to a dual-model strategy whereby models based on
different architecture types can enable even more features and provide a strong basis for
exploration in clinical applications.

Using modern architectural advances in AI models, such as including lightweight layers
and efficient feature extraction mechanisms, the PIDSAN4 network has overcome heavy
architectures such as VGG19, which suffers from overcomplicated fitting due to its large
parameter sizes and limited scale. PIDSAN4 and Tiny ViT models offer superior accuracy
and computational efficiency, making them suitable for integration into medical diagnostic
workflows. Their lightweight architecture can be deployed in resource-limited
environments, such as portable diagnostics and hospitals with limited computational
resources. Balanced classification performance minimizes critical errors such as false
negatives (false classification of leukemia cells as normal), reducing the risk of missed
diagnosis. This high reliability and adaptability can improve early leukemia detection,
support clinical decisions, and personalized treatment planning.

Figure 11 depicts LIME visualizations for five randomly chosen samples processed by
the proposed Tiny Vision Transformer (Tiny16), and the PIDSAN4 model. The process of
LIME consists of perturbing the input image and measuring how the prediction changes. It
then fits a simple interpretable model locally around each sample to model the
contribution of relevant image regions to a final decision. In these visualizations,
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Figure 11 Visual explanation results of proposed models using Lime XAI.
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superpixels such as small colored areas are those areas of the image that LIME estimated
contributed most to a prediction decision made by the model. The warmer colors such as
red, yellow, orange indicate the image regions that highly support a predicted class and the
cooler colors like blue, green are areas of less and even negative influence. From the top
row, the Tiny ViT model appeared to distribute attention more widely across the image
area and focus attention on several, dispersed areas. This could be related to the Tiny ViT
ability to apply long-range dependencies, and to attend to a global context and certainly
less local attention than the PIDSAN4 model was able to apply. The PIDSAN4 model
showed more local and focused attention across the same areas in the image. The LIME
maps of the PIDSAN4 model showed that the regions that consistently highlighted the
core nuclear regions and showed the red and yellow regions of attention. This consistent
application of focus by the PIDSAN4 model reflects the model’s reliance on these specific
morphological features of leukemic cells such as enlarged nuclei, increased chromatin
density.

COMPARISON WITH SOTA METHODS

The comparison table focuses on the comprehensive comparison of the current state-of-
the-art methodology (SOTA) and the proposed models, as shown in Table 8. In existing
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Table 8 Comprehensive comparison among the proposed and SOTA techniques.

Ref Year Methodology Hp’s tuning Accuracy
Park et al. (2024) 2024 EfficientNet-B2 - 87.7%
Ilyas et al. (2024) 2024 Fisher’s linear discriminant analysis - 89.6%
Wang et al. (2024) 2024 Survival-SVM and random survival forest - 89.2%
Huang & Huang (2024) 2024 Ensemble CNNs Yes 91.3%
Wibowo, Rianto & Unjung (2024) 2024 EfficientNetV2M Yes 87.0%
Rahmani et al. (2024) 2024 Combined DL models Yes 90.7%
Vasumathi et al. (2025) 2025 ResNet50 with DTL - 82.69%
Proposed ViT - ViT - 90.1%
Proposed PIDSAN4 - PIDSAN4 - 91.3%

methods, the (Huang ¢» Huang, 2024) ensemble CNN method has achieved the highest
accuracy of 91.3%. This success is due to the integrated strategy that combines several
CNN models to utilize complementary features and increase classification performance.
Rahmani et al. (2024) successfully implemented the combined deep learning model (DL),
which achieved 90.7% accuracy because the DL architecture was integrated into multiple
systems. Methods such as survival SVM and random survival forest of Wang et al. (2024)
(89.2%) and Ilyas et al. (2024) Fisher’s linear discriminant analysis (89.6%) demonstrate
the limitations of classical machine learning techniques in processing high-dimensional
medical imaging data. The proposed PIDSAN4 model is notable in terms of computational
efficiency compared to Huang ¢» Huang (2024) CNN Ensemble with a precision of 91.3%.
Unlike CNN Ensemble, it uses a lightweight design. It incorporates modern architectural
advances such as efficient feature extraction layers and hyperparameter adjustment to
deliver high accuracy without the overhead of the ensemble method, unlike the CNN
Ensemble, which uses its architecture and resources for its architecture.

Vasumathi et al. (2025) presented a framework based on ResNet50 using DTL and
employed some tradition machine learning approaches such as random forest and SVM
for the classification of leukima blast cells. they achieved 82.69% highest accuracy.

The proposed ViT model also shows competitive performance with 90.1% accuracy,
highlighting the potential of transformer-based architecture in medical classification tasks.
Compared to EfficientNet-B2 from Park et al. (2024), which achieved 87.7%, and Rahmani
et al. (2024), EfficientNetV2M gained 87.0% accuracy, the proposed models emphasize the
limitations of standard vector methods for capturing complex patterns in medical imaging
data. This comparison strengthens the suitability of the proposed PIDSAN4 and ViT
models for leukemia classification tasks, combining high precision, computational
efficiency, and adaptation to the real medical diagnostic environment.

CONCLUSION

Leukemia cells generally exhibit irregular shapes, large nuclei and prominent nuclei
compared to normal cells, which requires advanced diagnostic techniques. Therefore, the
parallel Inverted dual self-attention network (PIDSAN4) was designed to address the
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challenges of leukemia cell, such as irregular shapes and large nuclei. The proposed
architecture consists of four inverted residual blocks and self-attention mechanisms,
enabling efficient extraction of features and learning long-term dependency. This
lightweight design only uses 7.5M parameters, ensures computational efficiency, and can
be deployed in resource-limited environments and also modified ViT is proposed (ViT-
Tiny16) to capture complex and subtle features by attention mechanism. The proposed
model demonstrated superior performance, achieving an accuracy of 0.913, sensitivity of
0.892, specificity of 0.925, precision of 0.883, F-measure of 0.894, and G-mean of 0.901.
Comparisons with state-of-the-art pre-trained models and ViT's revealed that the proposed
model led to improved diagnostic accuracy and prominence of the potential of the
proposed automated technique to assist medical experts in achieving higher diagnostic
precision and efficiency in the detection of leukemia cancer and lime is employed to
further interpret the models to insure the decisions. The framework is evaluated with
limited datasets, which may not adequately represent the diversity of microscope images in
clinical practice.

Future research will focus on validating models in larger, more diverse datasets to
ensure generalization. Efforts to optimize the computational efficiency of architectures
would facilitate the wider adoption. The integration of advanced explanation Al
techniques beyond LIME could further improve transparency. A study of the inclusion of
multimodal data such as clinical data or genetic information can also extend the
applicability and diagnostic accuracy of the framework.
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