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ABSTRACT

Background: The research on autonomous driving using deep learning has made
significant progress on structured roads, but there has been limited research on
temporary roads. The End-to-End autonomous driving model is highly integrated,
allowing for the direct translation of input data into desired driving actions. This
method eliminates inter-module coupling, thereby enhancing the safety and stability
of autonomous vehicles.

Methods: Therefore, we propose a novel End-to-End model for autonomous driving
on temporary roads specifically designed for mobile robots. The model takes three
road images as input, extracts image features using the Global Context Vision
Transformer (GCViT) network, plans local paths through a Transformer network
and a gated recurrent unit (GRU) network, and finally outputs the steering angle
through a control model to manage the automatic tracking of unmanned ground
vehicles. To verify the model performance, both simulation tests and field tests were
conducted.

Results: The experimental results demonstrate that our End-to-End model
accurately identifies temporary roads. The trajectory planning time for a single frame
is approximately 100 ms, while the average trajectory deviation is 0.689 m. This
performance meets the real-time processing requirements for low-speed vehicles,
enabling unmanned vehicles to execute tracking tasks in temporary road
environments.

Subjects Artificial Intelligence, Autonomous Systems, Computer Vision, Robotics, Neural
Networks

Keywords End-to-End model, Deep neural network, Autonomous driving, UGV

INTRODUCTION

In recent years, autonomous driving has become a popular research topic in the
automotive industry, and autonomous driving technology has made rapid advancements.
The advantage of traditional autonomous driving systems lies in their clear functional
partitioning and system interpretability. However, there is also a risk that the system may
crash when certain subsystems fail. The deep neural network-based autonomous driving
methods have achieved tremendous success in the field of autonomous driving due to their
high accuracy, strong robustness, and low cost. Compared to the success obtained by
traditional modular approaches, End-to-End autonomous driving systems utilize sensor
data as input and train deep neural networks to output control information. Therefore,
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directly mapping sensor data to decisions can effectively reduce the uncertainty transfer
between modules.

Among various perception sensors, camera requires low price and high data density
compared to other sensors. Utilizing cameras instead of radar can effectively help control
costs. Currently, typical deep learning techniques, such as convolutional neural networks,
are widely used in image processing applications and are particularly suitable for
autonomous driving. The End-to-End model in this study also uses images as data input to
control the vehicle’s movement based on temporary road information.

In terms of scenarios, traffic roads can be categorized into structured roads and
unstructured roads. Compared to structured roads, unstructured roads present relatively
fewer scenarios during normal driving. However, when these scenarios do occur, it often
indicates an accident or traffic control situation, which conventional autonomous driving
algorithms may struggle to navigate smoothly, such as in temporary roads constructed
with traffic cones. Therefore, the research on autonomous driving algorithms for
temporary road scenarios is of great significance for enhancing driving safety.

Therefore, the main content of this research includes: (1) developing an End-to-End
autonomous driving model for unmanned vehicles on temporary roads; (2) creating
temporary road scene maps and collecting expert training datasets using the CARLA
simulation system; (3) model training and fine-tuning; (4) validating the model
performance through simulation tests and field tests.

RELATED WORK

End-to-End autonomous driving systems

Pomerleau (1988) from Carnegie Mellon University utilized a single hidden layer fully
connected network to train with the available driving samples, resulting in the first End-to-
End driving system, which also marks the origin of End-to-End autonomous driving
systems. NVIDIA proposed the PilotNet, which takes images as input and outputs vehicle
steering control (Bojarski et al., 2016). Its network can autonomously recognize road edges
and vehicles, demonstrating the feasibility of End-to-End systems. This method directly
establishes a function mapping from the input image to the angle control, but the
abstraction of the output is too low, resulting in low interpretability. Wu et al. (2022)
proposed an End-to-End Trajectory guided Control Prediction (TCP) model that uses only
one RGB image as input and outputs control trajectories. This model predicts both the
planned trajectory and the vehicle control signal. Chen ¢ Krihenbiihl (2022) proposed the
Learning from All Vehicles (LAV) model, which integrates information from its own
vehicle and surrounding vehicles in network to make output decision. Prakash, Chitta &
Geiger (2021) proposed the TransFuser model, which introduces global contextual
reasoning to adapt to complex scenes, such as managing traffic coming from multiple
directions at uncontrolled intersections. Compared to traditional path planning
algorithms, End-to-End networks not only reduce the need for extensive manual rule
design but also demonstrate a stronger ability to adapt to new environments and greater
robustness.
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Transformer model in computer vision

The Transformer model first achieved great success in the field of natural language
processing (NLP) and was then applied to the field of computer vision (Vaswani et al.,
2017). Convolutional Vision Transformer (ViT) generates tokens through convolutional
networks based on ViT, combining the advantages of both convolutional networks and
Transformer networks (Dosovitskiy et al., 2017; Wu et al., 2021). The Swin Transformer
network divides the image into individual windows, restricts the Transformer calculations
to within these windows, and enhances the interaction between windows through shifted
window attention (Liu et al., 2021). The Global Context Vision Transformer (GCViT)
integrates the global context self-attention module and the local self-attention module by
computing attention masks and shifting local windows. This method models both
long-range and short-range spatial interactions to achieve enhanced image feature
extraction (Hatamizadeh et al., 2023).

The Transformer is also widely used in the field of modality fusion. The
TransformerFusion network employs Transformers to fuse sequential images and
accomplish 3D scene reconstruction (Bozic et al., 2021). TransFuser and InterFuser
integrate image and LiDAR data using transformer modules to generate local paths
(Prakash, Chitta & Geiger, 2021; Shao et al., 2023).

MODEL CONSTRUCTION

As shown in Fig. 1, the End-to-End autonomous driving model proposed in this research
consists of five parts: (1) Sensor Data Input Module. Three cameras are used as the road
information collectors, and the captured images will be processed for further usages. (2)
Image Feature Extraction Module. It uses GCViT as the backbone network to extract
intermediate features of RGB images. (3) The Transformer Fusion Module. It achieves the
fusion encoding of image features and has different outputs during the training phase and
deployment phase. (4) The Local Path Prediction Module. It predicts local paths instead of
directly outputting vehicle control information, which reduces dependence on vehicle
hardware while enhancing applicability to other platforms. (5) The controller. It takes the
path as input and outputs appropriate angles for vehicle controlling.

Sensor data input module

The Sensor Data Input Module captures road image data from three RGB cameras. The
camera in the middle is facing straight ahead, and the angles between the left, middle, and
right cameras are 60 degrees. The camera outputs road images at a rate of 25 frames per
second, and the original image resolution is 1,280 x 720. Then, the image resolution is
converted to 224 x 224 and Image Set I (I = {Ileft; ot I,,-ght}, Lieft front,right € R¥*W+H) g
constructed, which is subsequently input into the Image Feature Extraction Module.

Image feature extraction module

The Image Feature Extraction Module is based on the xtiny’ version of the GCViT
network, as illustrated in Fig. 2. This module comprises four GCViT blocks and
subsequently outputs the extracted image features F. Each GCViT block is composed of a
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Figure 1 The structure diagram of End-to-End autonomous driving model.
Full-size K&l DOT: 10.7717/peerj-cs.3152/fig-1
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Figure 2 The image feature extraction module. Full-size K&l DOT: 10.7717/peerj-cs.3152/fig-2

Window Partition model, a Local Multi-head Self Attention (MSA) model, a Global MSA
model, a Global Token Gen model and a Downsampling model.

The Window Partition model divides the input image data into several windows using
partitioning methods (Liu ef al., 2021), as shown in Fig. 3. In Fig. 3A, the image is divided
into four sub-images by windows, and self-attention is computed within each sub-image.
In Fig. 3B, the window partition is shifted, resulting in a new division of the image. The two
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Figure 3 The window partition model. (A) Traditional window partitioning. (B) Sliding window
partitioning. Full-size K&l DOT: 10.7717/peerj-cs.3152/fig-3

different divisions complement each other by filling in their respective division boundaries,
enabling complete attention computation in the boundary area of the partitioned windows.
Finally, the original image is divided into m pieces of sub-images Fj,,,, (where

Fi"PW = {fl’f2af37 c- 7fm})'

The Local MSA model calculates attention within pre-segmented sub-images Fj,,,; and
computes attention, as shown in Fig. 4 (Dosovitskiy et al., 2020). The Q, K, and V represent
Query vector, Key vector, and Value vector of Attention Block, similarly for Q’, K, and V'.
The Scalar Product refers to the dot product of Q and K, while Multiply is for the matrix
multiplication calculation. The Softmax function converts the result into probability, and
the FC stands for the fully connected layer. The scale is an operator which is multiplied by
a scaling factor, corresponding to a constant scaling factor v/d in Eq. (1). In addition, the
scale serves a regulatory role to ensure that the results remain within an appropriate range.

The Local MSA model is calculated by Eq. (1). The f; is the i-th split sub-image of Fj;,pys,
fi € RY*h*Ci where the w;, h; and C; are the width, height, and channel number of the i-th
split image. The z (z € R™P) is the result of multi-head self-attention, while D is the
encoding vector dimension, and # is the number of heads in the multi-head attention
mechanism (where # = 8 in this research). The attention within these sub-images will be
calculated separately and merged into the output Froca msa (Frocal Msa € RW*H*C the W, H
and C are width, height, and channel number of output image respectively).

Q. K,V = FC(f;)
z = attention(Q, K, V) = Softmax (Q—KT> Vv
- 3Ny - \/E .
fllocali = FC(Z)

FLOWIMSA = {fl:)call’ﬁ;calZ’ﬁ;caB’ te ’fl:)cali}

(1)

The Global MSA model (as shown in Fig. 4) establishes the long-term dependencies by
capturing global contextual information, thereby eliminating the need for complex
operations. Its inputs are the F,c. ms4 and the Global Token Q' (the output of Global
Token Generation model), and its output Fgiopar msa is calculated by Eq. (2).
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Figure 4 The structure diagram of local MSA model and global MSA model.
Full-size K&l DOT: 10.7717/peerj-cs.3152/fig-4

( K, V' =FC(f))
Q' = GlobalTokenGen (F,»,,pm)
Z' = attention(Q,K’, V') = Softmax (Q/K/T> V. (2)
) b \/3
fcl;lobau = FC(Z')
\ FGlobal Msa = {fézobanafézobalzvfélobam s 7félobali}

The structure of Global Token Gen module is shown in Fig. 5A. The Repeat operation
repeats Q' (Q'e R¥ns<Cxwithiy 6 match the i-th sub-image number, wins represents the
number of the i-th split image. The Conv2d is a 2D convolutional layer, GERU is the
activation function, and MaxPool2d is the maximum pooling layer.

Downsampling module reduces the data dimension, imposes locality bias and
cross-channel interaction, as shown in Fig. 5B. The Norm is the normalization layer, while

Su et al. (2025), Peerd Comput. Sci., DOI 10.7717/peerj-cs.3152 6/19


http://dx.doi.org/10.7717/peerj-cs.3152/fig-4
http://dx.doi.org/10.7717/peerj-cs.3152
https://peerj.com/computer-science/

PeerJ Computer Science

Sub-images Finpus Input Feiobal msa

v
Avg Pool

Multiply «—
|

Repeat <
v
Output Global Token Q' Output Image features F
A B

Figure 5 The structure diagram of Global Token Gen model and Downsampling model. (A) Global
Token Gen model. (B) Downsampling model. Full-size k&l DOT: 10.7717/peerj-cs.3152/fig-5
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Figure 6 The structure diagram of Transformer Fusion module.
Full-size K&] DOT: 10.7717/peerj-cs.3152/fig-6

the Avg Pool and the Sigmoid are the average pooling layer and activation function,

respectively.
After four GCVIiT blocks calculation, the image feature extraction module outputs
L. Wi g
image feature F| F € R 32 32 . Here, S represents the number of images

and C represents the number of feature channels, and they are set to 3 and 512 respectively
in this research.

Transformer fusion module

The structure of Transformer Fusion Module is illustrated in Fig. 6. During the training
and deployment phase, its Transformer Encoder layer integrates the image features F and
generates the fused encoded features E (E € RY*P, N = F,, * Fj, * I,). Where D is the
dimension of the Transformer, F,, and Fj, are the width and height of the feature map F,
with values of 7 * 7, and I is the number of images. To enhance the interpretability of the
network, a Transformer Decoder is utilized during the model training phase to predict the
local obstacle map M, which is a Bird’s Eye View grid probability map. Each grid in M
represents a rectangular area of 1 m * 1 m, and the value of the grid indicates the
probability of an obstacle existing within that area. The MLP stands for a multilayer
perceptron consisting of an input layer, a hidden layer, and an output layer. The

Qmap (Qmap € RVidthuheighty <D ) is the map query vector, which is a learnable parameter.
The width,, and height,,, are the width and height of M, and D denotes the dimension of the
encoding vector. During the deployment phase, the Transformer Fusion Module only
infers the Transformer Encoder layer part without outputting the local obstacle map,
thereby saving computational resources and improving the real-time performance.

Local path prediction module
The structure of Local Path Prediction Module is shown in Fig. 7 (Chung et al., 2014). A
local path P (where P € R?*, and k is 10 in this research) is generated based on the
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Figure 7 The structure diagram of Local Path Prediction Module.
Full-size K&l DOT: 10.7717/peerj-cs.3152/fig-7

E\yaypointss which includes the first 10 vectors in the Encoded Feature E. The GRU is Gated
Recurrent Unit network and the MLP is the multilayer perceptron.

The local path P is using the vehicle coordinate system, where the positive y-axis points
towards the front of the vehicle, and the positive x-axis points to the left side. The unit
length in the vehicle coordinate system is 1 m. The first waypoint of P starts at the center of
the vehicle as the origin, with the remaining waypoints are listed in front of the vehicle.

Controller module

The Controller Module implements vehicle motion control, independently designed from
the End-to-End model, enabling cross-platform usage. In this research, the Controller
Module employs proportion integration differentiation (PID) controller to compute the
vehicle’s angular velocity A based on selected waypoints in local path P, ensuring that the
vehicle maintains path tracking at a constant speed, as shown in Eq. (3). Where u(?) is the
output, e(t) is the input, K, K; and K} are the proportions, integral and differential
coefficients, respectively.

de(t)
dt
The angular velocity A is calculated by Eq. (4). The p’ is obtained by averaging the first

u(e(t)) = K, xe(t) + K; /Ot e(t)dt + Ky . (3)

three waypoints in the local path P. The p/ and p), are the components of p’ along the x and
y axis, respectively.

,_1 2
P=32 0P
YA
<tan p}) ‘ (4)
A=u - T
2
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Loss function

The loss function L of the End-to-End autonomous driving model includes two parts: the
loss L,,, for local path prediction and the loss L, for local obstacle map prediction, as
shown in Eq. (5). Here, P, represents the waypoints in predicted local path; P; is the ground
truth of the waypoints; 4, and 4,4, are weighted coefficients, both set to 0.5.

L= AWPLZP + JomapLmap
Ly = 3 1P =]
t=

The L4 is represented by the object probability prediction loss function Ly, which is

(5)

composed of the positive label function L! orop ad the negative label function meb,
shown in Eq. (6). Where M,] and M;; are the true value and predicted value of the

probability of the obstacle presence in the i-th row and j-th column grid; 1 [M_:O € {0,1}is
an indicator function that represents the grid containing obstacle in the label; Cy and C, are

the quantity of grids with obstacles and without obstacles, respectively.

;

Lmap = LP”Ob = <Lprob + prob) /2

zz (1 M,,:O]\ i

) . (6)

EXPERIMENT AND RESULTS ANALYSIS

In this research, we utilize the CARLA simulator (version 0.9.10.1) to create a virtual
testing field, gather experimental data, and validate the End-to-End autonomous driving
model. The model is trained using transfer learning techniques. Urban simulation
environments are used for data collection to pre-train the network, followed by collecting
appropriate data in a customized temporary road environment for further model training.
Ultimately, the efficacy of the model is assessed through both simulation and field testing.

Experimental dataset collection

The experimental dataset is captured by a rule-based expert model in eight official town
maps on the CARLA platform by using the expert agent in Interfuser (Shao et al., 2023), as
shown in Fig. 8A. Each frame of driving data includes RGB images from left, middle, and
right cameras, along with the target path. To enhance the model’s adaptability, various
weather and lighting conditions are simulated during data collection, including sunny,
cloudy, rainy and other scenarios. Besides that, a customized temporary road map, which
uses red and blue traffic cones to mark the edges of the road, has been created on the
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gV

Figure 8 Data collection in CARLA platform. (A) Top view of town map. (B) Customized temporary
road map. (C) Manual driving platform. Full-size &) DOTI: 10.7717/peerj-cs.3152/fig-8

CARLA platform. The length and width of the temporary road are approximately 880 and
3 m, and it incorporates various road conditions such as straight sections, left and right
turns, as illustrated in Fig. 8B.

Compared with structured roads in urban environments, paths in temporary road are
difficult to generate using rule-based autonomous driving controllers. Therefore, the
manual driving annotation is used to generate training data. The manual driving platform
consists of a Logitech G29 steering wheel, an accelerator pedal, a brake pedal, a driving
seat, a computer and three screens, as shown in Fig. 8C. The driver controls the vehicle
along the middle of temporary road under different weather and lighting conditions, and
the annotated data will be saved while driving. In addition, the training dataset is also
expanded through data augmentation for increasing the data diversity.

Model performance evaluation in CARLA platform
Model training and validation
Training the End-to-End autonomous driving model involves two stages: (1) pre-training
with dataset generated by expert models in official town map; (2) fine-tuning with dataset
captured in temporary road map. The experimental computer configuration included an
Intel(R) Xeon(R) Gold 6230R CPU with a frequency of 2.1 GHz, 128 GB of RAM and four
NVIDIA GeForce RTX 3090 GPUs with Ubuntu 20.04 Operating System.

During model training, the Adam optimizer is used with a batch size of 16. The learning
rate adjustment is shown in Eq. (7), where y the decay factor, Ir; is the learning rate for
epoch i, StepSize is the number of epochs needed for the adjustment, k is a positive integer.
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Figure 9 The loss curves of training and validation in model pre-training phase. (A) Train loss. (B)
Validation loss. Full-size K&] DOT: 10.7717/peerj-cs.3152/fig-9

The learning rate will no longer decrease when the minimum learning rate MinLR is
reached.

o Iri_y %7, i = StepSize * k , .
Ir; = max({ Iri 1, i StepSize s k MinLR ), k€ Z, i>0. (7)

In pre-training phase, the training set consists of 40,256 data frames, while the
validation set consists of 11,968 data frames. The initial learning rate for the Image Feature
Extraction Module is set to 0.005, and for other modules, it is set to 0.01. The value of y is
set to 0.35, StepSize is set to 1, MinLR is set to 1e—5. The loss curves of training and
validation stabilize around 0.4 in training and 0.76 in validation, as shown in Fig. 9.

In fine-tuning phase, the model uses 7,600 training data frames and 1,600 validation data
frames generated in the temporary road map. The initial learning rate for the Image Feature
Extraction Module is set to 0.0001, with a decay parameter of 0.35 and a StepSize of 1. The
training and validation results are illustrated in Fig. 10. The loss curve in training phase
stabilizes around 0.4. In validation phase, the loss curve exhibits oscillations between the
0th and 5th epochs due to the high learning rate in the initial stage, then, it begins to
decrease and ultimately converges around 0.75.

To validate the performance of the GCVit block in Image Feature Extraction
Module, it will be replaced by ResNet18, ResNet26 and ResNet50 respectively, as shown in
Fig. 11. The result shows that using GCVit as the backbone network performs better
than ResNet. Even the initial loss of GCVit is high, it quickly converges after six epochs
and reduces to 0.8. The ResNet50 has the largest number of parameters, but its
convergence trajectory highly overlaps with that of ResNet18, while ResNet26 performs
slightly worse, suggesting that merely increasing the depth of ResNet provides limited
improvement.

During the training phase, the End-to-End autonomous driving model outputs a local
obstacle map to assist in training. The loss L,,, variation is also verified by comparing
experiments with and without outputting the local obstacle map, as shown in Fig. 12.
According to the experimental result, outputting local obstacle map during training phase
can reduce the loss L, thereby improving model robustness and performance.
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Figure 10 The loss curves of training and validation in model fine-tuning phase. (A) Train loss. (B)
Validation loss. Full-size K&] DOT: 10.7717/peerj-cs.3152/fig-10
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Figure 11 Comparison of loss curves with different backbone network in Image Feature Extraction
Module. Full-size k&l DOI: 10.7717/peerj-cs.3152/fig-11

Model performance evaluation

Another customized temporary road map has been designed to evaluate the End-to-End
model performance, as shown in Fig. 13. The trajectory of manual driving is represented by
a blue dashed line, serving as the ground truth, while the trajectory of autonomous driving
is marked with a red dashed line. The K, K;, and K, parameters of the PID controller are
set to 2, 0.15, and 2.3, respectively. Mostly, the automatic driving trajectory and the manual
driving trajectory overlap significantly, except in areas with large curves. The average
trajectory deviation is 0.689 m, and the maximum deviation is 1.204 m. By further
optimizing the parameters of the PID model, the trajectory deviation can be reduced.
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The output of End-to-End autonomous driving model during temporary road test is
shown in Fig. 14. Three RGB images in Fig. 14A are captured from right turn, left turn, and
straight road conditions. From the visualization results in Figs. 14B and 14C, it can be seen
that the obstacle map labels indicate the traffic cones on both sides of the road, while the
manual driving path labels mark the vehicle’s driving trajectory. The local obstacle map
generated by the End-to-End model uses the identified obstacles as boundaries, and the
area within the boundaries is traversable, as shown in Fig. 14D. Based on the local obstacle
map, the End-to-End model predicts corresponding local path. Experimental results
demonstrate that this path is consistent with the path labels while manual driving, as
illustrated in Fig. 14E. Furthermore, the time consumption for a single path planning is
approximately 80 ms, which meets the requirements for real-time processing.

Overall, the experimental results on the CARLA platform indicate that our End-to-End
model can predict local paths similar to manual driving in temporary road scenarios and
achieve the goal of unmanned driving in simulation tests. Next, field experiments with the
unmanned ground vehicle (UGV) will be conducted to evaluate the performance of the
End-to-End model.
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Figure 14 The output of End-to-End model in CARLA platform test. (A) RGB road Images. (B)
Obstacle map labels. (C) Path labels while manual driving. (D) Predicted local obstacle map. (E) Pre-
dicted local path. Full-size k] DOT: 10.7717/peerj-cs.3152/fig-14

E

Model performance evaluation in field experiment

Experimental devices

The UGV with experimental devices is shown in Fig. 15. The UGV is a XGILEX BUNKER,
which has dimensions of 1,023 mm in length, 778 mm in width, and 400 mm in height. It
weighs 150 kg, is battery-powered, and uses a tracked drive system. The maximum travel
distance is 10 km, and it supports CAN bus communication. The embedded computing
platform is the NVIDIA Jetson AGX Xavier, which is responsible for running the End-to-
End autonomous driving model. Three HKVISION DS-IPC-T12 cameras are installed for
road image acquisition, with an angle of 60° between each camera.

Performance evaluation in field experiment
In the field experiment, the speed of the UGV is set to 0.5 m/s, the K, Ki, Ky of PID
Controller are set to 0.15, 0.75 and 0.3.

Two temporary roads are constructed using blue and red traffic cones. One
temporary road is circular, with a width of 1.6 m and an inner radius of 5 m. This road
evaluates path tracking performance during continuously left and right turns, with the
UGV moving in both clockwise and counterclockwise directions. The other temporary
road is S-shaped, consisting of multiple left and right turns, and has a width and length
of 1.6 and 25 m, respectively. This road verifies system performance in general road
scenarios.
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NVIDIA Jetson AGX Xavier

A

Figure 16 The output of End-to-End model in field test. (A) Road information. (B) Predicted local
path. Full-size K&l DOT: 10.7717/peerj-cs.3152/fig-16

As shown in Fig. 16, the variation trend of the predicted local path is consistent with the
actual road conditions obtained from the camera images. Although the UGV occasionally
collides with traffic cones, it quickly adjusts its direction, returning to the center of the road
to complete the temporary road tracking task. The single path planning time is
approximately 100 ms, which is 20-30 ms longer than in the simulation experiment. Two
reasons account for the increment in time consumption. Firstly, the computational
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capability of the NVIDIA Jetson AGX Xavier is inferior to that of the PC running the
CARLA platform, leading to longer prediction times. Secondly, data interaction between
hardware is necessary in field test, which also contributes to the increased road prediction
time. The experiment video can be found at: https://www.bilibili.com/video/
BV17w4m1v7c2/?vd_source=50e3dalec61d287105da0db529781bal. Field experiment
proves that the End-to-End autonomous driving model can extract road features from
images captured by three cameras, predict the corresponding path based on road
condition, and control the UGV to navigate through temporary roads.

CONCLUSIONS

This study proposes an End-to-End autonomous driving model for local path planning in
a temporary road scenario. The model is based on GCViT to construct a backbone network
for image feature extraction, employs a Transformer encoder to fuse the image features,
outputs predicted local paths through a GRU network, and generates angular velocity
control via a PID controller. In both the simulation and field experiments, the End-to-End
model is capable of helping the vehicle identify drivable areas on temporary roads, as well
as accomplishing path planning and tracking within those temporary roads. In addition,
the time taken is around 100 ms, indicating that our End-to-End model meets the
real-time processing requirements for autopilot.

Due to the difficulty of parameter tuning in PID algorithms, adjusting its three coupled
parameters is challenging. Moreover, fixed-parameter PID controllers struggle to adapt to
dynamically changing systems (e.g., when the vehicle load varies). In the future, we will
further enhance the self-driving performance by training with larger datasets in more
complex environments, and it may be worth considering the use of MPC algorithms to
improve the control performance.
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