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ABSTRACT
Detecting unsafe human behaviors is crucial for enhancing safety in industrial
production environments. Current models face limitations in multi-scale target
detection within such settings. This study introduces a novel model, Sec-YOLO,
which is specifically designed for detecting unsafe behaviors. Firstly, the model
incorporates a receptive-field attention convolution (RFAConv) module to better
focus on the key features of unsafe behaviors. Secondly, a deformable convolution
network v2 (DCNv2) is integrated into the C2f module to enhance the model’s
adaptability to the continually changing feature structures of unsafe behaviors.
Additionally, inspired by the multi-branch auxiliary feature pyramid network
(MAFPN) structure, the neck architecture of the model has been restructured.
Importantly, to improve feature extraction and fusion, feature-enhanced hybrid
attention (FEHA) is introduced and integrated with DCNv2 and MAFPN.
Experimental results demonstrate that Sec-YOLO achieves a mean average precision
(mAP) at 0.5 of 92.6% and mAP at 0.5:0.95 of 63.6% on a custom dataset comprising
four common unsafe behaviors: falling, sleeping at the post, using mobile phones,
and not wearing safety helmets. These results represent a 2.0% and 2.5%
improvement over the YOLOv8n model. Sec-YOLO exhibits excellent performance
in practical applications, focusing more precisely on feature handling and detection.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Computer Vision,
Data Mining and Machine Learning, Neural Networks
Keywords Unsafe behavior detection, Multi-scale feature fusion, Small object detection,
Industrial safety, Attention mechanisms, FEHA, Sec-YOLO

INTRODUCTION
Throughout the entire process of corporate development, the foundation of safety in
production is invariably its cornerstone. Despite significant improvements in industrial
safety management in recent years, the risk of production accidents remains substantial.
Human factors, which account for the majority of incidents, are particularly responsible.
This indicates that existing safety management measures have yet to effectively address the
safety challenges posed by increasingly complex and diverse working environments.
Indeed, human factors play a decisive role in ensuring safety in production (Wenwen et al.,
2011). Numerous studies have shown that most industrial accidents are caused by
improper operations, including a lack of safety awareness and lax attitudes towards work
(Xie & Guo, 2018). For instance, an analysis of accidents in the Greek petrochemical
industry from 1997 to 2003 revealed that 73% of the accidents could be attributed to
human (46%) and organizational (37%) factors (Konstandinidou et al., 2006). Similarly, an
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analysis of severe industrial accidents caused by hazardous chemicals in South Korea from
January 2008 to June 2018 indicated that approximately 76.1% of chemical incidents were
due to human error. Although the causes of accidents varied, the recurrent nature of
similar types of chemical incidents suggests systemic issues. These incidents were primarily
caused by operational errors, which also highlight deficiencies in the implementation and
dissemination of safety measures (Jung, Woo & Kang, 2020). Therefore, human factors
undoubtedly represent a critical aspect of industrial safety.

Although strategies such as safety education, safety criticism, behavioral monitoring,
and feedback provision are widely employed in safety management, they often fail to
ensure that workers fully understand the severity of their actions. As a result, they prove
ineffective in ensuring long-term safety. Furthermore, behavioral modification largely
depends on the specific factors addressed during safety education, which presents
challenges in ensuring that workers fully comprehend and reflect on their errors (Yang
et al., 2023;Morgan et al., 2021; Gonyora & Ventura-Medina, 2024). Meanwhile, intelligent
electronic surveillance methods based on target detection can instantly alert workers at the
moment an incorrect behavior occurs, or even as an erroneous trend emerges, effectively
preventing potential safety risks and production accidents. Currently, in many work
environments requiring special monitoring, the application of intelligent electronic
surveillance is becoming increasingly widespread, primarily used to detect abnormal
human behaviors and other unsafe factors. Nevertheless, current intelligent monitoring
methods still face a series of challenges, such as high target density, scene occlusion, and
multi-scale detection issues. This is especially true in complex industrial environments,
where traditional deep learning models often fall short in terms of detection accuracy and
real-time performance.

Detecting unsafe behaviors in industrial environments presents a variety of challenges.
One of the most common issues encountered when using computer vision techniques is
visual occlusion. When workers are partially or fully blocked by objects, most vision-based
methods fail to detect and monitor their actions. Additionally, self-occlusion occurs when
a worker’s limbs or joints are obstructed by their own body—especially when facing away
from the camera—making pose estimation and action recognition more difficult.
Moreover, certain unsafe postures cannot be accurately recognized or classified,
particularly in cases involving ambiguous or transitional movements. Although modern
object detection methods can effectively recognize many objects in industrial scenes with
high precision, their performance significantly deteriorates when dealing with small-scale
objects or irregular postures. Furthermore, in industrial settings, target behaviors often
involve frequent changes in body orientation and non-uniform motion, which poses
additional challenges for robust detection. These complexities highlight the need for more
specialized and optimized deep learning models capable of handling such variability in
real-world conditions (Liu et al., 2021). In 2017, Fang et al. (2018) aimed to accurately
identify safety helmets in distant scenes using the faster region-convolutional neural
network (Faster R-CNN) model. They collected a substantial dataset of workers wearing
safety helmets in various scenarios. The results demonstrated that this method improved
monitoring detection precision and speed across different settings. However, the detection
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speed was too slow to meet the requirements for real-time detection, and its performance
in complex scenarios remained untested. In 2021, Kong et al. (2021) combined computer
vision with long short-term memory networks (LSTMs) to predict unsafe human
behaviors. Initially, they used SiamMask to track the individuals to be detected, followed by
an improved Social-LSTM to predict future human behavior trajectories. Finally, the point
inclusion in polygon (PNPOLY) algorithm was employed to determine the presence of
unsafe behavior (Kong et al., 2021). Although combining various algorithms and models
yielded better results, the target detection area required manual segmentation. It was also
limited to construction site scenarios, which made it non-generalizable. Similarly, in 2023,
Park et al. (2023) proposed that deep learning networks are an effective means to replace
safety managers in monitoring and managing workers. They reconstructed the
YOLOv5 model with an attention mechanism and optimized loss function, focusing on
ladder workers and marking the hinge parts as target labels. They estimated the actual
working height of the object detection bounding box, using it as the dataset, thereby
enhancing the detection network’s recognition accuracy (Park et al., 2023). However, the
network was still limited to specific scenarios and was not effective in generalizing to other
scenes for detecting unsafe human behaviors. To address challenges such as object density,
occlusion, and multi-scale scenes in classroom video images, Chen, Zhou & Jiang (2023)
improved the YOLOv8 model by proposing a novel C2f_Res2block module and
integrating multi-headed self-attention (MHSA) and efficient multi-scale attention (EMA)
into the model. Although Res2block and MHSA can significantly improve model
performance, they also introduce high computational costs. In particular, MHSA, as a
self-attention mechanism, requires substantial computation and memory, making its use
in real-time monitoring highly challenging. Despite recent advancements, existing
detection models still face several limitations when applied to industrial unsafe behavior
monitoring. Many suffer from poor generalization across different scenes, low recall rates
under occlusion or complex postures, and high computational demands that hinder
real-time deployment. These shortcomings significantly reduce their reliability in high-risk
industrial settings.

To address these issues, we propose Sec-YOLO, a task-driven enhancement of
YOLOv8n tailored for complex industrial scenarios. Sec-YOLO integrates three key
improvements: (1) receptive-field attention convolution (RFAConv) to enhance spatial
focus; (2) a DCNv2-FEHA module for adaptive geometric modeling of irregular human
behaviors; and (3) a multi-branch auxiliary feature pyramid network (MAFPN) to
strengthen multi-scale feature fusion.

At the core of Sec-YOLO lies the proposed feature-enhanced hybrid attention (FEHA)
module, which combines global and local attention across spatial and channel dimensions.
FEHA is uniquely embedded in both the deformable convolution offset path and deep
fusion layers, allowing it to guide feature learning more precisely and dynamically adapt to
complex unsafe behaviors. This novel attention design is the central innovation of our
work and plays a critical role in achieving robust, real-time detection across diverse
scenarios.
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This article proposes a novel model, Sec-YOLO, for detecting unsafe human behaviors.
To enhance the model’s detection capability, an enhanced hybrid attention module, FEHA,
is introduced. The specific contributions are as follows:

(a) The model employs RFAConv to replace the standard Conv in YOLOv8, thereby
achieving a more comprehensive representation of receptive field spatial features.

(b) The introduction of the second-generation deformable convolution, DCNv2, into
the C2f module enhances model detection capabilities. This module operates by
calculating offset vectors to perform feature extraction from feature maps, particularly
improving detection performance in scenarios involving irregular behaviors depicted in
images.

(c) To enhance the multi-scale feature fusion capabilities, the neck part of the model
employs the MAFPN architecture. This architecture comprises two key components: the
superficial assisted fusion (SAF) module and the advanced assisted fusion (AAF) module.
The SAF module is dedicated to preserving optimal shallow features, while the AAF
module focuses on integrating diverse features to achieve more refined and extensive
feature fusion.

(d) This study introduces the FEHA attention module, which is embedded within the
second generation deformable convolution (DCNv2) to enhance the capability of
capturing offsets during the convolution process. Additionally, the FEHA module is
positioned after the convolution within the MAFPN architecture that is utilized for
advanced feature fusion, thereby enhancing the effectiveness of feature integration. The
operational mechanism of FEHA involves using convolution to augment pooled
information, mixing the initial attention map with the original input, and subsequently
extracting attention features to enrich the model’s capacity for information aggregation.
This enables the model to dynamically adjust the significance of each channel and spatial
position within the feature map, thereby responding more adeptly to changes in the spatial
content context.

(e) Conducting experimental tests on a dataset of unsafe behaviors collected in the
network to demonstrate the effectiveness of the proposed Sec-YOLO.

The subsequent sections of the article are organized as follows: “Related Work” presents
the methodology of the model design, “Methods” discusses the improvements made to the
model, “Experiment and Analysis” details the experimental analysis results and
discussions, and “Conclusions” concludes the work of this article.

RELATED WORK
In this section, we first provide a detailed review of the target detection algorithm
YOLOv8n that is to be improved. Next, we introduce the key modules involved in this
algorithm. Additionally, we briefly describe the application and impact of classical
attention mechanisms in the field of object detection, particularly how they enhance the
model’s feature representation capabilities.
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Architecture of YOLOv8n
YOLOv8 is the latest model iteration released by Ultralytics following the YOLOv5 series,
specifically designed for high-speed and precise object detection tasks. This model utilizes
an anchor-free detection approach and incorporates dynamic quantization technology
algorithms, allowing it to directly predict the centers and aspect ratios of objects to
determine their categories and positions. Such a method substantially optimizes the
model’s processing speed and accuracy. The YOLOv8 series includes five variants of
different scales: YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8l, and YOLOv8x, each tailored
to meet diverse application requirements.

Among these, YOLOv8n is the lightest model in the series. It not only maintains an
outstanding detection speed, particularly suited for real-time monitoring of unsafe
behaviors, but also achieves high detection accuracy with minimal parameter size and
computational demand. The structure of YOLOv8n is shown in Fig. 1. In its backbone
network design, YOLOv8n inherits the cross-stage partial (CSP) architecture concept from
YOLOv5. However, in this iteration, the traditional C3 module is replaced with the newer
C2f module to further reduce the model’s weight. Additionally, YOLOv8n innovatively
eliminates the convolutional structures in the upsampling phase of path aggregation
network—feature pyramid network (PAN-FPN) in the neck section and replaces them
with C2f modules, thereby enhancing performance and reducing complexity.

RFAConv module
Receptive-field attention convolution (RFAConv) is a fixed convolutional combination
that emphasizes the importance of different features within a sliding receptive field and
sorts spatial features of the receptive field (Zhang et al., 2023). The structural principle of
RFAConv is shown in Fig. 2.

RFAConv introduces an efficient mechanism for enhancing convolutional neural
networks by leveraging 3 × 3 group convolutions to quickly capture spatial features across
the receptive field. This mechanism improves network performance by enabling feature
cross-aggregation, where information from different spatial locations is effectively
combined to better understand the underlying data.

To minimize computational overhead, RFAConv uses an efficient strategy for
aggregating global information within each receptive field. Specifically, it first applies
average pooling (AvgPool) to gather global feature information across the receptive field.
This global information is then merged using 1 × 1 group convolutions, allowing for
effective feature fusion without adding significant computational cost.

Next, a SoftMax function is applied to the fused features, which assigns importance to
different features within the receptive field. This emphasizes the most relevant
information, enabling the network to focus on the most critical spatial details. Finally, the
feature maps from the two branches—one with the spatial features and one with the
aggregated global information—are combined to form the final output feature map.
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The overall computation process of RFAConv can be summarized as follows:

F ¼ Sof tmax g1�1 AvgPool Xð Þð Þ� �� ReLU Norm g1�1 Xð Þ� �� � ¼ Arf � Frf : (1)

Here, g1×1 represents a group convolution of size i × i, k denotes the kernel size, Norm
indicates normalization, and X denotes the input feature map. F is obtained by multiplying
attention map Arf with transformed receptive field spatial features Frf. The combination of
SoftMax and ReLU is employed to enhance both spatial selectivity and activation sparsity.
SoftMax ensures that the attention weights across the receptive field are normalized and
interpretable as relative importance scores, while ReLU suppresses irrelevant activations by
eliminating negative responses in Frf. This design enables the network to concentrate more
effectively on salient receptive field regions while maintaining numerical stability during
training. The structure follows the original RFAConv formulation.

Figure 1 The architecture and internal modules of YOLOv8. Full-size DOI: 10.7717/peerj-cs.3151/fig-1

Liu et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3151 6/39

http://dx.doi.org/10.7717/peerj-cs.3151/fig-1
http://dx.doi.org/10.7717/peerj-cs.3151
https://peerj.com/computer-science/


Figure 2 Receptive-field attention convolution (RFAConv) structure diagram. Full-size DOI: 10.7717/peerj-cs.3151/fig-2
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DCNv2 module
Deformable convolution network (DCN) enhances the capability of traditional
convolutional neural networks to handle irregular geometric variations by introducing
additional parameters (Dai et al., 2017). Initially, a batch of input images
U 2 Rb� h� w� c is processed by a conventional convolution layer with a kernel size k,
producing an output V 2 Rb� h� w� ð2� k� kÞ, which has the same dimensions as
U. Here, V represents the offset at each pixel point in the original image, including offsets
in both x and y directions. Subsequently, each pixel index in the original image U is added
to the offset computed in V to calculate the new pixel positions after the offset. The pixel
values at these new coordinates are then obtained using bilinear interpolation.

However, a major drawback of DCN is that the new positions of the sampling points,
after applying the offset, may exceed the ideal sampling locations. This could lead to some
DCN convolution points covering parts of the image irrelevant to the object’s content. To
further enhance DCN’s ability to learn geometric transformations, an additional
modulation mechanism is proposed to be incorporated into DCN. Besides learning the
offset parameters Dp (offset), a modulation parameter Dm is introduced through
modulation learning. This parameter Dm helps to further reasonably control the range of
the new sampling points. The improved version of DCN, commonly referred to as DCNv2
(Zhu et al., 2019), utilizes this additional modulation mechanism to enhance performance.

MAFPN structure
The multi-branch auxiliary feature pyramid network (MAFPN) represents an innovative
“neck” architecture, specifically designed to enhance the integration of shallow and deep
features, thereby optimizing recognition capabilities across multiple scales. The MAFPN
architecture comprises two key connectivity modules: superficial assisted fusion (SAF) and
advanced assisted fusion (AAF) (Yang et al., 2024). As illustrated in Fig. 3, the
implementation mechanisms of SAF and AAF are detailed. SAF is primarily applied to the
superficial layers of the neck, aiming to retain shallow feature information from the
backbone network to improve the detection efficiency of small-scale targets. Conversely,
AAF is applied to the deeper layers, integrating features from the current and adjacent
layers of varying resolutions, thereby significantly enhancing the model’s target detection
performance across various scales. This innovative configuration of the structure markedly
improves the system’s multi-scale target detection capabilities.

In Fig. 3, the subscript n in the lower right corner represents the baseline feature layer,
with Pn − 1 and Pn + 1 respectively denoting the high-resolution features of the previous
layer and the low-resolution features of the next layer. In the upper right corner, the
apostrophe, as in P′n, indicates features obtained after SAF processing; double
apostrophes, as in P″n, denote features obtained after AAF processing.

Attention mechanism
Over the past several decades, computer vision has become one of the core research
directions within the field of artificial intelligence. With the rapid development of deep
learning, the performance of computer vision models has significantly improved.
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However, the increasing complexity of the three major tasks, such as image classification,
object detection, and semantic segmentation, has overwhelmed traditional feature
extraction and classification methods when dealing with large-scale visual datasets and
complex scenes. To address these issues, researchers developed the attention mechanism,
inspired by the focused attention of the human visual system. This mechanism allows
computer vision models to dynamically prioritize the most relevant regions of the images,
significantly improving performance in tasks such as object detection and image
segmentation.

A convolutional block attention module (CBAM) sequentially extracts attention
features along two independent dimensions: channel and spatial dimensions (Woo et al.,
2018). The primary idea of CBAM is straightforward, simultaneously considering channel
attention (CAM) and spatial attention (SAM). Through multiple experiments, it has been
determined that concatenating these two parts using residual structures achieves the best
performance.

CBAM employs both global average pooling and global max pooling to transform the
feature maps from dimensions C × H × W to two different C × 1 × 1 spatial context
information feature vectors. It uses shared multi-layer perceptron (MLP) and Sigmoid
activation functions to generate channel feature attention maps, thereby capturing the
performance of different features.

SAM takes the feature maps generated by CAM as inputs, processes them separately
through global average pooling and global max pooling based on the channel dimension,
obtaining two 1 × H × W feature vectors. After concatenating along the channel and
passing through a 7 × 7 convolution kernel to extract features and reduce dimensionality, it
generates spatial feature attention maps through Sigmoid activation. Finally, it reconnects
with the input of the spatial attention part through residual connections to restore to the
size of C × H × W, thus obtaining the final output.

Figure 3 Diagram: superficial assisted fusion (SAF) on the left and advanced assisted fusion (AAF)
on the right. Full-size DOI: 10.7717/peerj-cs.3151/fig-3
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Coordinate attention is implemented in two main steps (Hou, Zhou & Feng, 2021):
coordinate information embedding and coordinate attention generation. In the coordinate
information embedding step, the model aggregates features using average pooling along
two directions to capture important spatial information. Subsequently, in the coordinate
attention generation step, these features aggregated along different directions are
concatenated and processed through convolutional layers and non-linear activation
functions to generate intermediate feature maps. These intermediate feature maps are then
further split into two independent tensors and transformed into feature vectors with the
same number of channels as the input feature map using two separate 1 × 1 convolutions.

Finally, these two feature vectors along different spatial dimensions are processed
through a sigmoid activation function and multiplied with the original input feature map,
forming a residual connection. This structure not only strengthens the model’s attention to
spatial locations but also significantly enhances the model’s performance in handling
complex visual tasks through this complementary approach. Coordinate attention, with its
unique structural design and processing flow, demonstrates an effective strategy for
integrating precise positional information into modern deep learning models.

MLCA primarily employs three techniques for feature mapping and recovery to adapt
to different information processing needs: local average pooling (LAP), global average
pooling (GAP), and reverse average pooling (UNAP) (Wan et al., 2023). LAP focuses on
extracting more refined local feature information by dividing the feature map into multiple
k × k patches, performing global average pooling within each patch, and using an
appropriate number of adaptive average pooling outputs to maintain the spatial continuity
of the information. GAP utilizes adaptive average pooling to reduce the feature map to a
1 × 1 dimension, which aids in capturing overall or global feature information and
effectively summarizing the extensive features of the entire image. Reverse average pooling
(UNAP) is used to restore feature maps compressed by GAP or LAP back to their original
size. This process is achieved by distributing stored weights to the corresponding patches,
ensuring that the spatial dimensions of the feature map remain consistent with those at the
input stage.

METHODS
In this section, we introduce a newly proposed attention mechanism in this research, the
feature-enhanced hybrid attention module (FEHA). Additionally, we present a novel
algorithm, Sec-YOLO, which is based on the improved module and the FEHA attention
mechanism, specifically designed for the detection of unsafe behaviors. The implementations
of the FEHA attention mechanism and the Sec-YOLO model are publicly available at
DOI: 10.5281/zenodo.14233625 to ensure reproducibility and facilitate future research.

FEHA attention mechanism
Attention mechanisms have significantly enhanced the performance of neural networks by
capturing and combing features from both channel and spatial dimensions. Although
CBAM considers both channel and spatial attention mechanisms, the use of multi-layer
perceptron increases the model complexity. Derived on CBAM, Hybrid attention module
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(HAM) enhances feature extraction by utilizing both average pooling and max pooling in
the channel attention mechanism (Li et al., 2022). It employs two learnable parameters to
fuse the captured feature vectors, preserving original feature information while adaptively
adjusting feature biases. In spatial attention, the channel separation technique multiplies
the features obtained from channel attention, denoted as F′, with two predefined mask
groups, resulting in two separate feature sets, F1′ and F2′. These are then subjected to two
types of pooling along the spatial dimension, and the pooling results are concatenated to
produce two sets of output features. Although this method effectively identifies salient
features, it focuses solely on the spatial dimension and overlooks the positional
information formed by the length and width dimensions. In ASF-YOLO, the channel and
position attention mechanism (CPAM) attention fusion mechanism, similar to CBAM,
combines both channel and spatial attentions (Kang et al., 2024). While it effectively
captures positional information of features through pooling across the length and width
dimensions in spatial attention, the exclusive use of average pooling in channel attention
may result in the loss of crucial feature information.

To further enhance the performance of the attention mechanism, we propose the
FEHA, which leverages the strengths of the existing methods. This module can
comprehensively capture image features, demonstrating higher accuracy and
generalization. Specifically, the structure of the FEHA attention module, as depicted in the
Fig. 4, includes both a channel attention module and a positional attention module. This
design effectively integrates the strengths of both attention types to optimize the extraction
and utilization of feature information across different dimensions, significantly improving
the performance of the system in complex visual environments.

Channel attention module: Fig. 5 shows the channel attention module of FEHA. The
roles of max pooling and average pooling in different stages of image feature extraction
have been well-documented. Max pooling may overlook subtle features, while average
pooling might not effectively highlight significant features. Directly merging these two
pooling methods could potentially lead to information loss. Therefore, to better integrate
the feature information derived from both pooling methods and enhance the module’s
feature representation capability, We are introducing an additional branch as a
compensatory mechanism to support and enhance the existing structure. This branch uses
2D convolution to preliminarily extract features from the input feature tensor X.
Subsequently, average pooling aggregates these features into a vector of the same size as
those from the other two branches. Both max pooling and average pooling utilized here
employ local pooling with a size of 2, which helps preserve information to a greater extent.
The outputs from the three branches are not simply added together; instead, we introduce
learnable parameter a to facilitate feature selection. As illustrated in the Fig. 5, the results
from all three branches are multiplied by respective learned parameters before being
summed. This process can be formulated as follows:

Xadd
c ¼ 1� að Þ � XLAP

c � XLMP
c

� �� a� XEN
c : (2)

Here, Xadd
c represents the final output of the channel attention module, while XLAP

c and

XLMP
c denote the outputs of input X after applying average pooling and max pooling,
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respectively. Additionally, XEN
c refers to the output of the enhancement compensation

branch. The parameter a 2 ½0; 1Þ is a learnable scalar that balances the contribution
between the combined pooling result and the enhancement branch. This formulation
allows the model to adaptively adjust feature emphasis based on training data, enhancing
representation capacity and robustness in channel attention learning. In our
implementation, the initial value of a is set to 0.5, which was determined based on
empirical evaluation. A detailed ablation analysis on a is presented in Section
Hyperparameter selection.

Figure 4 Basic structure diagram of the feature-enhanced hybrid attention module (FEHA). Full-size DOI: 10.7717/peerj-cs.3151/fig-4

Figure 5 Channel attention section of the feature-enhanced hybrid attention module (FEHA). Full-size DOI: 10.7717/peerj-cs.3151/fig-5

Liu et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3151 12/39

http://dx.doi.org/10.7717/peerj-cs.3151/fig-4
http://dx.doi.org/10.7717/peerj-cs.3151/fig-5
http://dx.doi.org/10.7717/peerj-cs.3151
https://peerj.com/computer-science/


After transforming X into Xadd
c , reshape it along the channel dimension to obtain a new

tensor of size (C × 2 × 2) × 1 × 1. Then, use 1D convolution to extract the channel features
and reshape it back to its original size C × 2 × 2. Finally, apply UNAP to obtain the channel
attention tensor Xc, which is multiplied by the initial input X to get the input Xin

p for
positional attention module. In summary, channel attention can be summarized as follows
(Eq. (3)):

Xin
p ¼ X � UNAP r C1D Xadd

c

� �� �� �
: (3)

Here, C1D represents 1D convolution, and σ denotes the sigmoid activation function.
Positional attention module: Fig. 6 shows the Positional Attention Module of FEHA. As

demonstrated in CBAM, using the two modules sequentially proves more effective.
Therefore, in the spatial attention module, the output feature tensor Xin

p from the channel
attention module serves as the input for the positional attention module. We start by
reshaping the inputs, splitting both X and Xin

p along the channel dimension into two halves,
followed by a hybrid concatenation to form Xp1 and Xp2.

This concatenation with the original input more precisely locates the features within the
spatial context of the input image. Strip pooling is then applied to Xc1 and Xc2 along the
horizontal and vertical directions, respectively, to obtain the spatial positional attention
coordinates. These coordinates are concatenated, and 1 × 1 convolution is used to fuse the
features, preliminarily forming the positional attention features.

Xstrip
p ¼ C2D Cat SPoolh Xp1

� �
; SPoolw Xp2

� �� ��
: (4)

Here, C2D represents 2D convolution, Cat stands for the concatenation operation, and
SPoolh and Spoolw respectively represent strip pooling on the height dimension and strip
pooling on the width dimension.

These are then split along the dimension used for concatenation and expanded to form
directional positional attention tensors. These tensors are multiplied by Xp1 and Xp2

respectively to derive positional feature tensors Xadd
p .

Figure 6 Positional attention section of the feature-enhanced hybrid attention module (FEHA). Full-size DOI: 10.7717/peerj-cs.3151/fig-6
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Xadd
p ¼ Xp1 � e Xstrip

p1

� �� �
� Xp2 � e Xstrip

p2

� �� �
: (5)

Here, e represents the expand operation, and Xstrip
p1 and Xstrip

p2 respectively refer to the two
tensors obtained by splitting Xstrip

p along the concatenated dimension.
The final convolution is used to merge the features, culminating in the positional

attention tensor Xp. The initial input is multiplied by the newly obtained positional
attention tensor to produce a new attention feature map, which is the final output of
FEHA, as shown in Eq. (6).

Xp ¼ X � r C2D Xadd
p

� �� �
: (6)

Sec-YOLO structure
In the field of unsafe behavior recognition, the primary focus is on detecting behaviors
within surveillance video. Surveillance videos typically contain targets of varying scales,
necessitating that network models possess excellent multi-scale fusion capabilities. Even
within the same category of unsafe behavior, the characteristics can vary significantly, such
as in the case of falling states. Falling represents a sudden target state, which can result in
various falling forms, hence the model needs to effectively adapt to these changes in target
types during feature extraction. Although YOLOv8n employs the C2f module and path
aggregation network—feature pyramid network (PAN-FPN) (Liu et al., 2018; Lin et al.,
2017) to enhance its feature extraction and multi-scale feature fusion capabilities, it still
faces challenges in detecting unsafe behaviors with frequently changing scales and forms.
To address this, we improved YOLOv8n by integrating various enhancement modules and
incorporating the newly proposed FEHA attention mechanism. This led to the
development of Sec-YOLO, a new model specifically designed for detecting common
unsafe behaviors, as shown in Fig. 7.

Spatial feature enhancement via RFAConv
Traditional convolutional operations apply the same set of weights across all spatial
positions within the receptive field. This parameter sharing mechanism, while
computationally efficient, limits the network’s ability to capture the varying importance of
different spatial features—particularly in complex scenes such as industrial environments
where contextual cues may differ significantly across locations. Moreover, standard
convolution lacks the capacity to emphasize semantically important regions within the
receptive field, leading to reduced representational power. To address this issue, attention
mechanisms were introduced and have been integrated into various networks to help the
model concentrate on more informative features. Spatial attention, in particular, partially
mitigates the rigidity of parameter sharing by adaptively weighting spatial positions.
However, when used with large kernel sizes, conventional spatial attention still struggles to
resolve the limitations of weight uniformity, as it often lacks the granularity to distinguish
subtle yet critical spatial dependencies—especially in high-resolution surveillance imagery.
RFAConv addresses these challenges by introducing receptive-field-aware spatial
weighting. It enhances traditional convolution through a dual-branch design—one
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capturing local features via group convolution, and the other aggregating global context
through average pooling. A SoftMax attention mechanism is then used to assign dynamic
importance weights across the receptive field, allowing the model to focus more on
semantically meaningful regions.

In the context of unsafe behavior detection, such as identifying whether a worker is
falling or using a phone, the ability to discriminate between foreground action and
background clutter is crucial. RFAConv allows the model to dynamically prioritize regions
with high behavioral saliency—such as body posture, hand movement, or helmet
visibility—while suppressing irrelevant background signals. This targeted enhancement
significantly improves detection robustness in industrial scenes characterized by occlusion,
scale variation, and cluttered visual information.

In terms of computational complexity, the introduction of RFAConv does not
significantly increase the overall model size or FLOPs. Since it replaces the original
convolution with lightweight group convolution and local attention mechanisms, the

Figure 7 Overall architecture of Sec-YOLO and the structure and principle diagram of Bottleneck-DCNv2-FEHA.
Full-size DOI: 10.7717/peerj-cs.3151/fig-7
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overall structural footprint remains nearly unchanged. This ensures that improvements in
spatial feature sensitivity are achieved without adding notable computational burden.

Deformable feature extraction via DCNv2-FEHA
Standard convolution operations adopt fixed and uniform sampling patterns, which limits
their ability to model spatially variant features in detection scenarios. This limitation is
particularly problematic in industrial environments, where unsafe behaviors such as falling
or sleeping on duty often involve significant variations in posture and motion trajectories.
These spatial transformations make it difficult for traditional convolutional kernels to
capture all contextually relevant features, leading to performance degradation in complex
or dynamic scenes. To address these challenges, various convolutional variants have been
proposed. Deformable convolutional networks (DCN) introduced learnable spatial offsets,
enabling convolutional kernels to adaptively shift their sampling locations. The
second-generation DCNv2 further incorporates modulation scalars to control the
influence of each sampling point. While DCNv2 improves geometric flexibility, its offset
prediction remains entirely based on local convolutional features, lacking semantic
guidance. As a result, it may still focus on irrelevant regions under conditions such as
occlusion, clutter, or low contrast. Other convolutional innovations have also attempted to
handle spatial diversity. For instance, dynamic convolution (DyConv) dynamically selects
convolutional kernels based on input content, enhancing feature adaptiveness—but at the
cost of increased memory usage and inference complexity, which limits its applicability in
real-time systems (Chen et al., 2020). Large kernel convolutions, as employed in
architectures like RepLKNet (Ding et al., 2022) and ConvNeXt (Liu et al., 2022), can
effectively capture long-range dependencies, but their high computational cost and lack of
fine-grained local deformation modeling make them unsuitable for lightweight, real-time
unsafe behavior detection.

Given these limitations, we propose an enhanced solution: DCNv2-FEHA, which
integrates our FEHA mechanism directly into the offset and modulation prediction
pathway of DCNv2. We choose DCNv2 over other deformable convolution variants due to
its lightweight design and stable detection performance. By incorporating both global and
local attention across channel and spatial dimensions, FEHA provides semantic guidance
that steers the learned offsets toward behavior-relevant regions—such as the head, limbs,
or hands. This guided deformation mechanism enhances the model’s robustness in
handling complex or occluded behaviors.

The resulting C2f-DCNv2-FEHA module is embedded into the YOLOv8 backbone by
replacing the second convolution layer in the Bottleneck block. This integration
significantly improves the network’s ability to localize and recognize unsafe behaviors
under diverse spatial conditions, without introducing substantial computational
overhead—thus maintaining real-time performance.

Although DCNv2 introduces additional operations for offset learning and modulation,
and FEHA adds attention refinement, their integration into the backbone is carefully
controlled. The deformable convolution is selectively applied, and the FEHA module is
designed with lightweight pooling and convolutional components. As a result, this
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combined module provides enhanced spatial adaptability with only a minimal increase in
model complexity.

Multi-scale feature fusion via MAFPN-FEHA
To address the challenge of multi-scale feature fusion, we restructured the model’s neck
based on the MAFPN design. The novel neck efficiently integrates multi-level contextual
information, enhancing the model’s ability to detect objects across different scales. This
improvement is particularly evident in complex scenes, where the model demonstrates
superior performance.

Additionally, we introduced the FEHA attention mechanism into the deeper layers of
the neck to further refine the fusion of contextual features, resulting in more precise and
robust feature representations. This deep integration improves the model’s performance
on multi-scale features, effectively overcoming the challenges posed by variations in scale
and morphology in unsafe behavior detection.

While MAFPN modifies the neck structure by introducing multi-branch fusion paths,
including the superficial assisted fusion (SAF) and Advanced Assisted Fusion (AAF)
modules, its overall computational complexity remains well-controlled. These modules
operate on existing feature maps at predefined resolution levels and do not introduce
additional deep branches or increase the spatial resolution of feature maps. Furthermore,
the design emphasizes reusability and shallow-layer fusion rather than stacking or
expansion, ensuring that additional operations are localized and efficient.

The integration of FEHA into the MAFPN structure, particularly when applied to deep
layers, also follows a lightweight principle. FEHA itself relies on simple pooling and
convolutional operations, and its insertion does not alter the overall architecture depth or
introduce redundant computation paths. Even when FEHA is applied to both shallow and
deep layers, the structural layout of the neck remains unchanged, and no new layers or
channels are added.

As a result, although the MAFPN-FEHA combination enhances the model’s ability to
capture and integrate multi-scale features with attention guidance, the associated
computational cost is marginal. The network remains within the computational range of a
lightweight detector, making it suitable for deployment in environments with constrained
hardware resources.

Through a series of targeted innovations, Sec-YOLO achieves significant improvements
in the accuracy of unsafe behavior detection. The model demonstrates an enhanced ability
to accurately capture the critical features of unsafe behaviors and exhibits exceptional
adaptability to frequent morphological variations. Additionally, Sec-YOLO excels in
identifying multi-scale unsafe behavior targets within complex scenarios. While there is a
slight increase in parameters and computational cost, the increase is minimal, ensuring the
model remains efficient even in resource-constrained environments. This balance of high
performance and computational efficiency makes Sec-YOLO well-suited for a wide range
of real-world applications.
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EXPERIMENT AND ANALYSIS
This section first introduces the dataset used, experimental parameters, and evaluation
metrics. Subsequently, a series of experiments were conducted, including loss analysis of
Sec-YOLO, hyperparameter selection, comparison with other feature fusion networks, and
validation of the effectiveness of the proposed FEHA module. In addition, Sec-YOLO was
compared with mainstream models, and ablation studies were performed to thoroughly
analyze the effectiveness of the model improvements. Finally, the actual detection results of
the model were presented to further demonstrate its superiority in unsafe behavior
detection tasks.

Datasets
In this experiment, the dataset employed was a custom collection compiled through online
resources, designed to address the limitations of existing datasets for detecting unsafe
behaviors. Current datasets typically focus on specific categories or include a variety of
human actions without explicitly targeting multiple unsafe behaviors. To better represent
diverse unsafe behaviors in industrial scenarios, we collected images from public datasets
and publicly accessible websites, re-annotating them using the Make Sense annotation
platform to create an integrated dataset. The dataset compiled and used in this study is
available at DOI: 10.5281/zenodo.14015767.

The resulting dataset comprises 8,799 images representing four of the most common
unsafe behaviors in industrial settings: falling (2,105 images), sleeping on duty (2,095
images), using mobile phones (2,200 images), and not wearing safety helmets (2,399
images). These images were divided into training, validation, and testing sets in a 7:2:1
ratio. To ensure representativeness and practical relevance, specific datasets were chosen
based on their alignment with industrial unsafe behavior scenarios. For example, the UR
Fall Detection Dataset (Kwolek & Kepski, 2014) and the Multicam Fall Dataset (Auvinet
et al., 2010) were selected for their extensive coverage of falling incidents under varying
conditions, supplemented by web searches to expand contextual diversity. Similarly, the
Safety Helmet Wearing Dataset (SHWD) (PaddlePaddle, 2022a; njvisionpower, 2019) was
included for its focus on key safety compliance behaviors in industrial settings. To address
the scarcity of data for behaviors such as smartphone usage and sleeping on duty,
additional efforts were made to enhance diversity. The smartphone usage dataset was
obtained from publicly available dataset websites (PaddlePaddle, 2022b), while the
sleeping-on-duty dataset was compiled by extracting frames from surveillance footage of
workers and supplemented with web searches. This approach ensured the inclusion of
realistic and diverse scenarios.

The data used in this study is publicly available and sourced from reputable datasets,
which have been anonymized to protect individual privacy. Images from surveillance
footage were selected and processed in accordance with data protection regulations,
ensuring that no personally identifiable information was retained. In particular, the
datasets utilized, including the SHWD, UR Fall Detection Dataset, and Multicam Fall
Dataset, follow ethical guidelines for data collection and use, ensuring the privacy and
confidentiality of individuals depicted. No personal or sensitive information was used in
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the compilation of the dataset, and all annotations were performed in compliance with
ethical standards. Furthermore, a double-review process was implemented to maintain
annotation quality, ensuring consistency and accuracy across all categories.

To further improve the dataset’s generalization capability, particular attention was paid
to environmental diversity, such as variations in lighting conditions, camera angles, and
worker demographics. Detailed annotation guidelines were established to ensure
consistency during the annotation process. For falling behaviors, the falling states were
annotated; for sleeping-on-duty behaviors, the sleeping postures of individuals at their
workstations were labeled; for smartphone usage, the phones themselves were annotated;
and for behaviors involving the absence of safety helmets, the head regions of targets were
precisely labeled. To ensure the accuracy and reliability of annotations, a double-review
process was employed, and random sampling was conducted for quality control.

Experimental setup and evaluation metrics
This experiment was conducted on a Windows 10 operating system, utilizing the PyTorch
deep learning framework. The experimental environment included Python 3.8 and CUDA
11.3. The hardware specifications comprised an 11th Gen Intel(R) Core(TM) i7-11700KF
CPU at 3.60 GHz, 32 GB of RAM, and an NVIDIA GeForce RTX 3090 GPU with a boost
clock of 1.70 GHz and 24 GB of VRAM. In the model training parameters, the learning rate
was set to 0.01, with 200 training epochs, a batch size of 32, and the optimizer used was
SGD.

In this experiment, to validate the advantages of the Sec-YOLO model, we employed
several commonly used performance metrics, including precision, recall, mAP@0.5,
mAP@0.5:0.95, and computational cost (GFLOPs). To properly understand the evaluation
metrics used, we introduce definitions for four model detection outcomes: True Positive
(TP), which represents the number of samples correctly predicted as positive by the model;
False Positive (FP), which represents the number of samples incorrectly predicted as
positive; True Negative (TN), which denotes the number of samples correctly predicted as
negative; and False Negative (FN), which indicates the number of samples incorrectly
predicted as negative.

Precision measures the proportion of actual positives among the samples predicted by
the model as positive. It assesses the accuracy of positive predictions, that is, among all the
samples predicted as positive, how many are truly positive. This can be expressed with
Eq. (7):

Precision ¼ TP
TP þ FP

: (7)

Recall measures the proportion of actual positive samples that are correctly predicted as
positive by the model. It evaluates the sensitivity of the model, indicating how many of the
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actual positive samples are correctly identified as positive. This can be expressed with
Eq. (8):

Recall ¼ TP
TP þ FN

: (8)

Mean average precision (mAP) is a widely used evaluation metric in object detection
and information retrieval, utilized to assess the detection effectiveness of a model across all
categories. It integrates both precision and recall to measure the overall performance of the
model. To calculate mAP, one must first compute the average precision (AP), which is
derived from the area under the precision-recall curve. A higher AP value indicates better
model performance. mAP is the mean of the AP values across all categories and can be
expressed by Eq. (9):

mAP ¼ 1
N

XN
i¼1

APi : (9)

Here, N represents the number of categories, and APi is the average precision for the ith
category. mAP@0.5 refers to the mAP calculated at an Intersection over Union (IoU)
threshold of 0.5. IoU is a measure of overlap between the predicted bounding box and the
true bounding box. A prediction is considered correct when the IoU reaches or exceeds 0.5.
mAP@0.5:0.95 represents the average of the mAPs calculated at multiple IoU thresholds
from 0.5 to 0.95, with an interval of 0.05. This means that the model’s performance is
evaluated at various IoU thresholds, providing a more comprehensive assessment of its
effectiveness.

Billion floating-point operations per second (GFLOPs) is a key metric for measuring the
computational complexity of neural network models, representing the number of billion
floating-point operations that a model can perform per second. This metric is particularly
important when assessing the performance of neural network models in processing
scientific computations, graphics, and machine learning tasks. It is commonly used to
describe the efficiency of a model running on graphics processing units (GPUs) or other
high-performance computing systems. A lower GFLOPs value indicates that the model is
computationally less demanding, making it more efficient and lightweight, suitable for
deployment in resource-constrained environments.

Parameters (Params) is a key metric for measuring the complexity and capacity of
neural network models. Fewer parameters result in a more streamlined model, lower risk
of overfitting, and reduced demand on computational resources. This makes the model
more suitable for deployment in resource-constrained environments such as mobile
devices and embedded systems. In summary, the number of parameters directly relates to
the model’s efficiency and applicability, particularly in settings with limited resources,
making a smaller number of parameters the preferable choice.

Loss curve analysis
In our research, we conducted a thorough analysis of the loss curves of the Sec-YOLO
model after training. As shown in Fig. 8, the training and validation losses of the model
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consist primarily of three components: box_loss, cls_loss, and dfl_loss. Box_loss assesses
the accuracy of the model’s predicted bounding box positions on the training set. Its loss
value decreases gradually from an initially high level and stabilizes, indicating a progressive
improvement in the model’s ability to predict bounding box positions, which also
demonstrates good generalization capabilities on unseen data. Cls_loss evaluates the
accuracy of classifications on the training dataset, and the downward trend of this loss
indicates that the model becomes increasingly precise in classifying objects, also showing
good classification performance on the validation set.

Dfl_loss specifically addresses the common issue of class imbalance in object detection
and focuses on enhancing the model’s efficiency in handling small targets and difficult
samples. During training, the rapid decrease and subsequent stabilization of dfl_loss
indicate that the model effectively learned to balance differences between classes,
improving recognition of small targets and difficult samples in complex scenes. Similarly,
the continued reduction of dfl_loss on the validation set further validates the model’s

Figure 8 Training and validation losses of Sec-YOLO. Full-size DOI: 10.7717/peerj-cs.3151/fig-8
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ability to process new data, effectively resolving issues related to class imbalance and the
challenges of recognizing small targets and difficult samples.

In summary, the analysis of these loss curves demonstrates that the Sec-YOLO model
exhibits rapid convergence and high stability during training and validation processes. The
model’s strong performance and feasibility in practical applications are evident from its
good generalization on the validation dataset.

Confusion matrix analysis
To comprehensively assess the behavior-wise classification performance of Sec-YOLO, we
visualized the normalized confusion matrix on the custom dataset, as illustrated in Fig. 9.
This analysis complements the quantitative metrics such as mAP by revealing the
inter-class prediction dynamics and the model’s discriminative capability for each
behavior category.

Figure 9 Normalized confusion matrix of Sec-YOLO. The horizontal axis represents the ground truth
categories, while the vertical axis shows the predicted categories. Each cell displays the proportion of
predictions for a given true class, with rows normalized to sum to 1. Higher diagonal values indicate
correct predictions, while off-diagonal values represent confusion between classes. The matrix reflects
that Sec-YOLO achieves high class-wise accuracy and effective discrimination in unsafe behavior
detection tasks. Full-size DOI: 10.7717/peerj-cs.3151/fig-9
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As shown in the matrix, Sec-YOLO achieves high classification consistency across all
major unsafe behavior categories, with true positive rates of 94% for phone, 89% for sleep,
88% for helmet, and 86% for fall. These results demonstrate that the architectural
components of Sec-YOLO—such as FEHA attention modules and multi-scale
enhancements—contribute effectively to capturing behavior-specific visual features under
various scenarios. The model shows strong reliability in differentiating both static and
dynamic postures, even under challenging conditions like occlusions or motion blur.

While the majority of predictions are highly accurate, a small portion of background
samples were predicted as unsafe behaviors such as fall or helmet. Similarly, a subset of fall
instances were predicted as background. These observations are common in behavior
detection tasks, where ambiguous poses or overlapping features may exist across
categories, especially in industrial environments with diverse camera angles and complex
backgrounds.

Importantly, these cases are relatively infrequent and do not significantly affect the
model’s overall detection accuracy. On the contrary, the low confusion rates affirm that the
model generalizes well across categories while maintaining a high degree of category
separation. Moreover, these insights can inform future enhancements such as
incorporating richer contextual cues or multi-frame temporal consistency, especially in
real-time monitoring applications.

In conclusion, the confusion matrix supports the effectiveness of the Sec-YOLO
architecture in multi-class unsafe behavior detection, and reflects its robustness in
distinguishing complex postures with minimal class overlap, thereby validating the
practical viability of the proposed system.

Hyperparameter selection
In the channel attention component of FEHA, we utilize a “convolution + pooling”
method to compensate for the errors that may arise from the combination of average
pooling and max pooling. Additionally, we introduce a hyperparameter a to adjust the
magnitude of this compensation. While a is set to be learnable, its initial value has a
significant impact on the model’s early-stage training, thereby influencing overall model
performance. To explore this effect, we conducted experiments with initial values of a
ranging from 0 to 0.9, with a step size of 0.1 (where 0 indicates no compensation). The
results, shown in Fig. 10, indicate that an initial value of 0.5 provides the most optimal
performance.

When the alpha is set to 0, the model’s mAP is 92.1%, relying entirely on the
unprocessed fusion of average and max pooling results, unaffected by the “convolution +
pooling” compensation. However, as alpha increases to 0.5, the mAP rises to its peak at
92.6%, demonstrating that the balanced integration of “convolution + pooling”
compensation with the original pooling methods offers the best feature representation for
the current dataset. Further increasing alpha to 0.9 leads to a decrease in mAP to 91.9%,
indicating that the model increasingly depends on the compensated results, which can
sometimes result in overemphasis on certain features while neglecting other critical ones.
This trend suggests that introducing “convolution + pooling” compensation generally
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benefits the model’s performance as alpha increases from 0 to 0.5. However, when the
alpha value is excessively high, the model may become overly sensitive to noise or
insignificant features. Thus, excessive reliance on processed features can compromise the
overall performance of the model.

Experimental results indicate that 0.5 serves as an optimal balance point. Although the
“convolution + pooling” approach is introduced as a compensation mechanism, it
effectively extracts meaningful features, which may lead to improved performance.

Compare with other feature fusion networks
In our experiments, we utilized the backbone network of YOLOv8n and conducted
multiple replacements of its neck component to test the effects of different network
architectures: First, we replaced the neck part with the classical BiFPN (Tan, Pang & Le,
2020); then, we used the content-guided attention fusion (CGAFusion) from DEA-Net
(Chen, He & Lu, 2024); followed by the attentional scale sequence fusion (ASF) from
ASF-YOLO (Kang et al., 2024); in addition, based on HS-FPN from MFDS-DETR (Chen
et al., 2024), we also implemented a replacement and, inspired by the path aggregation
network (PAN), designed and included HS-PAN in our experiments; finally, the neck part
was replaced with MAFPN from the model used in this article, MAF-YOLO.

The experimental results are displayed in the Table 1, where MAFPN demonstrated the
most outstanding performance, achieving an mAP@0.5:0.95 of 61.4%, with a reduction in
parameter count. Although BiFPN, HS-FPN, and HS-PAN reduced the computational and
parameter requirements by an average of 1.0 GFLOPs and 1.1 M respectively, their
detection accuracy significantly decreased, which is unacceptable in unsafe behavior
detection tasks. For CGA Fusion, while its computational load and parameter count

Figure 10 Experimental results for various values of hyperparameter α.
Full-size DOI: 10.7717/peerj-cs.3151/fig-10
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increased relative to YOLOv8n, similar to MAFPN, its mAP was not as high as that of
MAFPN. The closest in performance to MAFPN was ASF, which even exceeded MAFPN
by 0.2% in mAP@0.5; however, MAFPN had a smaller parameter count and outperformed
ASF by 0.4% in mAP@0.5:0.95, making it more suitable for unsafe behavior detection tasks
in terms of overall capability.

Compare with attention mechanisms
To evaluate the effectiveness of the proposed FEHA attention mechanism, we conducted
comparative experiments with various attention mechanisms. Initially, we incorporated
the squeeze-and-excitation (SE) attention mechanism (Hu, Shen & Sun, 2018), a
well-established approach widely recognized for enhancing the channel attention
capabilities of models. Subsequently, we compared FEHA with other mainstream attention
mechanisms, including CBAM and HAM, which enhance features by combining channel
attention with spatial or positional attention. Additionally, we included the CA attention
mechanism in our comparison due to its outstanding performance in positional
information extraction. Finally, to explore the effectiveness of different mechanisms in
efficient local and global information interaction, we introduced the lightweight attention
mechanism MLCA into our experiments. The experimental results are shown in Table 2.

As our attention mechanism is embedded within deformable convolutions, the
validation experiment to assess FEHA’s effectiveness in enhancing the model’s ability to
extract key features and spatially locate critical regions was conducted using YOLOv8n
with C2f-DCNv2 as the baseline network. In this experiment, five different attention
mechanisms were embedded in the deformable convolutions for comparative analysis,
while all other settings remained unchanged. Through a comprehensive analysis of the
results, it was found that FEHA achieved superior composite scores, with an mAP@0.5 of
92.1%, representing increases of 0.7% over the baseline network.

After integrating the SE module, the model’s recall rate significantly improved, reaching
the highest value in this experiment at 86.4%. However, its accuracy was unsatisfactory, at
only 89.8%, which directly led to a decrease in mAP. This issue may arise because the SE
module primarily focuses on the interdependencies between channels, potentially

Table 1 Comparison results with other feature fusion networks. The experiment utilizes four eva-
luation metrics: mAP@0.5/%, mAP@0.5 :0.95/%, GFLOPs, and the number of parameters (Params, in
millions). These metrics were selected because they provide a direct illustration of the performance and
complexity of different feature fusion networks.

Module mAP@0.5/% mAP@0.5:0.95/% GFLOPs Params (M)

Baseline 90.6 61.1 8.7 3.2

BiFPN 90.2 60.7 7.7 2.1

CGA fusion 90.7 60.8 9.0 3.3

ASF 91.0 61.0 9.4 3.3

HS-FPN 90.3 59.6 7.5 2.0

HS-PAN 90.5 59.7 7.7 2.2

MAFPN 90.8 61.4 9.4 3.1
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overlooking other critical feature dimensions, especially spatial features. While the recall
rate increased, the rise in false positives resulted in lower overall accuracy, which negatively
impacted the model’s overall performance.

In contrast, the integration of the CBAM module led to a substantial improvement in
the model’s overall performance compared to the baseline network. CBAM combines both
channel and spatial attention mechanisms, allowing the model to capture features more
accurately. This combination enhances the network’s attention to multi-dimensional
features, effectively mitigating the potential biases that arise when focusing on only one
aspect, thus improving both accuracy and mAP.

The HAMmodule, which integrates channel and spatial position features, was designed
with a focus on lightweight architecture. However, this resulted in a trade-off where some
accuracy was sacrificed for model simplicity. Consequently, HAM did not perform as well
as expected in this experiment. Although its structure is more streamlined, its ability to
handle complex features was diminished, leading to performance that fell short of the
other attention mechanisms.

The CA module, which emphasizes spatial position features, also contributed to a
performance increase. By enhancing spatial information capture, the CA module
improved the model’s recognition capability, though the extent of the improvement was
relatively modest.

The MLCA module, designed as a lightweight attention mechanism that focuses on
both local and global feature interactions, did not demonstrate a significant enhancement
in overall model performance in this experiment. Despite its lightweight nature, MLCA
failed to exhibit a substantial improvement in the model’s results.

Finally, the proposed FEHA module outperformed the baseline network across all
evaluation metrics, demonstrating exceptional performance. The FEHAmodule effectively
combines the advantages of various attention mechanisms, ensuring comprehensive
attention to both channel and spatial features while striking a balance between model
complexity and accuracy. Experimental results show that FEHA achieved the best scores in
terms of accuracy, mAP@0.5, and mAP@0.5:0.95, reaching 92.2%, 92.1%, and 62.5%,

Table 2 Comparative results with various attention mechanisms. In this experiment, the attention
mechanisms embedded into DCNv2 have a minimal impact on the model’s parameter count and
computational load. Consequently, the focus of this study is primarily on the performance improvements
brought about by these attention mechanisms. To this end, the selected evaluation metrics include
Precision/%, Recall/%, mAP@0.5/%, and mAP@0.5:0.95/%.

Module Precision/% Recall/% mAP@0.5/% mAP@0.5:0.95/%

Baseline 91.6 84.2 91.4 62.2

+SE 89.8 86.4 91.1 61.7

+CBAM 92.2 84.5 91.9 62.5

+CA 91.3 84.6 91.5 62.3

+MLCA 91.3 84.6 91.1 62.3

+HAM 90.5 84.5 91.1 61.0

+FEHA 92.2 84.9 92.1 62.5
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respectively. These results confirm the superiority of the FEHA module in handling
complex tasks.

Comparison with the current models
To comprehensively assess both the computational efficiency and detection accuracy of the
proposed Sec-YOLO model, we conducted extensive comparative experiments against a
range of mainstream YOLO models and recent task-specific variants. Given the
importance of real-time deployment and resource constraints in industrial settings, the
comparison focuses not only on mAP performance but also on computational complexity
metrics such as GFLOPs and parameter count. The selected models span multiple
generations of the You Only Live Once (YOLO) family, including YOLOv5n, YOLOv8n,
YOLOv9s (Wang, Yeh & Liao, 2024), YOLOv10n (Wang et al., 2024), YOLOv11n
(Khanam & Hussain, 2024), and YOLOv12n (Tian, Ye & Doermann, 2025), as well as
customized variants like GOLD-YOLO (Wang et al., 2023), MAF-YOLO, and YOLO-MIF
(Wan et al., 2024), and domain-specific detectors such as yolov8s-Transformer (Do et al.,
2023), Helmet-YOLO (Zhou et al., 2024), and YOLO-Fall (Zhao et al., 2024).

As shown in Fig. 11, Sec-YOLO achieves the highest mAP@0.5 of 92.6%, with only
3.7 M parameters and 9.6 GFLOPs, outperforming all comparison models in accuracy
while maintaining moderate complexity. For instance, YOLOv9s, which shares the same
mAP@0.5 of 91.7%, requires almost double the computation (26.7 GFLOPs) and
significantly more parameters (7.2 M). Lighter models such as YOLOv10n (2.3 M,
6.7 GFLOPs) and YOLOv5n (2.6 M, 7.7 GFLOPs) offer lower computational load but
suffer from reduced accuracy, reaching only 90.2% and 90.7% mAP, respectively.

Figure 11 Comparison results with the current model. Full-size DOI: 10.7717/peerj-cs.3151/fig-11
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When compared with task-specific detectors, Sec-YOLO maintains its advantage in
both accuracy and complexity. While MAF-YOLO achieved the same 91.7% accuracy, it
requires more computation (10.5 GFLOPs). GOLD-YOLO (91.2%) and YOLO-Fall
(91.5%) both fall short in performance, despite having larger model sizes and higher
GFLOPs (12.1 and 12.3, respectively).

In terms of extreme configurations, Helmet-YOLO (2.0 M, 6.5 GFLOPs) is the lightest
model but yields only 87.2% accuracy, while yolov8s-Transformer, the heaviest model
(10.5 M, 29.2 GFLOPs), achieves only 90.9%, confirming that increased complexity does
not always lead to better results.

These findings highlight that Sec-YOLO achieves an optimal trade-off between accuracy
and computational cost, making it suitable for real-world deployment in industrial safety
applications where both detection reliability and resource constraints must be balanced.

Ablation experiments
In the Sec-YOLO model, we introduced RFAConv to replace the traditional CBS module,
which not only enhances the model’s focus on receptive field spatial features but also
significantly improves feature extraction efficiency. Additionally, this study proposed the
FEHA attention mechanism, which was integrated into DCNv2, enhancing the offset
capturing ability of DCNv2. This led to the formation of the C2f-DCNv2-FEHA structure,
replacing the original C2f and markedly enhancing the model’s ability to extract features
from irregular variations. In the neck section, inspired by MAFPN, we reconstructed the
original PAN-FPN architecture of YOLOv8n. Experimental results showed that adding the
FEHA attention mechanism to the four CBS units in the deep layer of the reconstructed
neck structure effectively enhances the model’s ability to integrate multi-scale features.

To verify the actual impact of these improvements on model performance, we
conducted a series of ablation studies. Considering the effectiveness of FEHA in optimizing
DCNv2 and MAFPN, we first verified the enhancements in these two parts. Finally, we
integrated the three improved components—RFAConv, C2f-DCNv2-FEHA, and
MAFPN-FEHA—into a comprehensive ablation experiment, comparing the effectiveness
of each improvement step by step.

DCNv2 optimized with FEHA
This section demonstrates the improvement effect of DCNv2 on the model and further
validates the optimization impact of FEHA on DCNv2. As shown in Table 3, after
integrating DCNv2 into the C2f module, the overall computational load of the model is
reduced compared to the original YOLOv8n, despite DCNv2 involving additional offset
and modulation computations. This reduction is largely attributed to the improved feature
representation capability of DCNv2, which enables the model to achieve better accuracy
with fewer redundant operations.

Specifically, the model achieves increases of 1.0% and 0.9% in mAP@0.5 and
mAP@0.5:0.95, respectively. When FEHA is further incorporated into DCNv2 to guide the
offset generation, performance is enhanced across all evaluation metrics—reaching 93.0%
in mAP@0.5—while maintaining a compact computational profile. These results
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demonstrate that the combination of DCNv2 and FEHA not only improves detection
performance but also preserves model efficiency.

MAFPN optimized with FEHA

This section demonstrates the improvement effects of MAFPN on the model, further
substantiates the efficacy of FEHA in enhancing feature fusion within MAFPN, and
identifies the optimal placement of FEHA within the MAFPN structure. According to
Table 4, the introduction of MAFPN into the neck results in enhanced performance
metrics across various aspects compared to the original YOLOv8n model. We integrated
FEHA at the shallow layers of the neck, specifically post-convolutions labeled as 10, 14, and
18 in Fig. 8, denoted in Table 4 as “+MAFPN-Shallow.” FEHA was also added to the
deeper layers, post-convolutions 23, 24, 27, and 28, represented in Table 4 as “+MAFPN-
Deep.” Additionally, FEHA was applied to both shallow and deep layers, indicated as
“+MAFPN-All” in the Table 4.

As shown in Table 4, after integrating the FEHA module into the shallow layers, the
model’s performance declined compared to the model with only the MAFPN module.
Although there was a significant improvement in recall, accuracy decreased, and
mAP@0.5:0.95 dropped by 0.4%. This is because when FEHA is integrated into the shallow
layers, which are in the early stages of feature fusion, the model primarily performs initial
fusion of features from different layers. Introducing FEHA at this stage may cause the
model to overly emphasize certain features, neglecting others that are also important. As a
result, this can negatively impact the model’s generalization ability, ultimately leading to a
decrease in accuracy. When the FEHA module was added to both the shallow and deep
layers of MAFPN, the model did not exhibit a substantial improvement compared to the
model with only MAFPN.While accuracy increased by 0.7%, there was no improvement in
mAP@0.5, and mAP@0.5:0.95 decreased by 0.2%. This suggests that placing the attention
mechanism in both shallow and deep layers may lead to redundant or conflicting attention
signals. The shallow layers could provide too much localized attention to less informative

Table 3 Performance of DCNv2 optimized with FEHA.

Module Precision/% Recall/% mAP@0.5/% mAP@0.5:0.95/%

YOLOv8n 90.3 83.1 90.6 61.1

+DCNv2 91.6 84.2 91.4 62.1

+DCNv2-FEHA 92.2 84.9 92.1 62.5

Table 4 Performance of MAFPN optimized with FEHA.

Module Precision/% Recall/% mAP@0.5/% mAP@0.5:0.95/%

YOLOv8n 90.3 83.1 90.6 61.1

+MAFPN 91.8 82.9 90.8 61.4

+MAFPN-Shallow 90.9 84.3 90.8 61.0

+MAFPN-All 92.5 83.0 90.8 61.2

+MAFPN-Deep 90.8 85.5 91.5 61.9
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features, while the deep layers may not have had enough focus on high-level abstractions
due to the interference from the shallow attention mechanism. This misalignment in
attention flow might hinder the model’s ability to extract and fuse meaningful features
across different scales. However, when the FEHA module was integrated into the deep
layers of MAFPN, the model showed improvements across various evaluation metrics.
Compared to the model with only MAFPN, despite a slight drop in precision, there was a
significant increase in recall and mAP values, with improvements of 2.6%, 0.7%, and 0.5%,
respectively. This suggests that integrating the FEHA module into the deep feature
extraction layers has a positive impact on enhancing the overall performance of the model.
In deep layers, features are more abstract and contain high-level representations of the
input data. At this stage, applying attention mechanisms can help the model focus on the
most relevant, semantically rich features, which are crucial for improving the overall
performance of the model. The increase in recall indicates that the attention mechanism
helped to capture more relevant positive samples, while the improvement in mAP
highlights better feature discrimination for precise localization and recognition tasks.

We did not include GFLOPs and parameter statistics in Table 4, as all the FEHA
integration strategies—whether applied to shallow layers, deep layers, or both—result in
the same overall model complexity. Specifically, each configuration maintains
approximately 3.4 million parameters and 9.5 GFLOPs, with no measurable variation
across strategies. This is because the placement of FEHA within MAFPN only alters the
location of attention enhancement, not the number of layers or operations, as the module
is reused in identical form and number.

Comparison of improvements in each part
Following the discussions above, the effectiveness of FEHA in optimizing DCNv2 and
MAFPN has been demonstrated. Therefore, the next section will further validate the
impact of these optimizations through stepwise combination ablation experiments on the
RFAConv, DCNv2-FEHA, and MAFPN-FEHA optimization modules. The related
experimental results are displayed in Table 5.

As shown in Table 5, Model 1 represents the baseline YOLOv8n, while Models 2, 3, and
4 correspond to the individual application of RFAConv, DCNv2-FEHA, and MAFPN-
FEHA, respectively. Each of these modifications contributes positively to model
performance, with Model 3 showing the most significant improvement. Not only does it
achieve notable increases in precision and recall, but it also improves the key metrics
mAP@0.5 and mAP@0.5:0.95 by 1.7% and 2.1%, respectively, over Model 1. Additionally,
the GFLOPs decrease from 8.7 to 8.5, indicating that DCNv2-FEHA plays a crucial role in
feature extraction within the backbone network. Models 4 through 7 demonstrate the
effects of combining these modifications in pairs. It is observed that, although the
combined use of RFAConv and DCNv2-FEHA results in a slight decrease in mAP@0.5
compared to DCNv2-FEHA alone, other performance metrics show improvements, with
only minimal increases in GFLOPs and Params. The combination of RFAConv and
MAFPN-FEHA also proves effective, while the pairing of DCNv2-FEHA and
MAFPN-FEHA yields enhancements across all metrics, particularly with a 3.2% increase
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in mAP@0.5:0.95. Finally, Model 8, which integrates all three improvements—referred to
as Sec-YOLO—demonstrates the best performance in both mAP@0.5 and mAP@0.5:0.95.

In addition to performance improvement, we also examined the computational impact
of each module introduced in Sec-YOLO. As shown in Table 5, the inclusion of RFAConv,
DCNv2-FEHA, andMAFPN-FEHA leads to marginal increases in GFLOPs and parameter
count compared to the YOLOv8n baseline. Specifically, the full Sec-YOLO model has
3.7 M parameters and 9.6 GFLOPs, which remains in the lightweight category and is
comparable to YOLOv8n (3.2 M, 8.7 GFLOPs). This demonstrates that our modular
enhancements are computationally efficient and do not compromise the model’s suitability
for real-time deployment.

Detection effect analysis
We conducted detection experiments in real-world scenarios, selecting a set of challenging
images that included all categories present in the dataset. Detection was performed on
these images using both YOLOv8n and Sec-YOLO, and the results were compared.
Furthermore, to more intuitively observe Sec-YOLO’s attention to features, we generated
heatmaps that provide a clearer visualization of the model’s feature-capturing capabilities.

To ensure ethical compliance and subject anonymity, all images used for visualization
and heatmap analysis were anonymized prior to publication. Human regions were
manually annotated and masked in gray, while regions corresponding to specific behavior
categories were masked in blue. All non-annotated background areas were blurred using
strong Gaussian filtering. Heatmaps were overlaid as transparent pseudo-color layers to
visualize model attention without revealing any sensitive information.

Figure 12 illustrates the performance differences between YOLOv8n and Sec-YOLO in
complex multi-scale object detection scenarios. YOLOv8n exhibits significant deficiencies,
particularly in detecting small-scale objects, frequently resulting in both false positives and
missed detections. Detailed observations include: an erroneously marked safety helmet in
the first image; a non-existent falling event incorrectly identified in the second image; the
third image shows an overall better performance, yet fails to detect a small-scale safety
helmet in the distance; the fourth image, despite successfully identifying all targets, suffers

Table 5 Results of ablation studies.

Model RFAConv DCNV2+FEHA MAFPN+FEHA P/% R/% mAP@0.5/% mAP@
0.5:0.95/%

GFLOPs Params (M)

1 90.3 83.1 90.6 61.1 8.7 3.2

2 ✓ 90.8 83.9 91.6 61.5 9.1 3.2

3 ✓ 92.2 84.9 92.1 62.5 8.5 3.4

4 ✓ 90.8 85.5 91.5 61.9 9.5 3.4

5 ✓ ✓ 91.8 85.2 92.0 63.0 8.8 3.4

6 ✓ ✓ 91.7 84.1 91.4 62.1 9.8 3.5

7 ✓ ✓ 91.6 85.3 92.2 63.3 9.2 3.6

8 ✓ ✓ ✓ 91.3 86.5 92.6 63.6 9.6 3.7

Note:
“P” stands for Precision, “R” represents Recall, and “√” indicates that the corresponding improvement module has been integrated into the model.
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Figure 12 Comparative detection results and heatmap analysis between Sec-YOLO and YOLOv8n. (A) Input image, (B) YOLOv8n results, (C)
Sec-YOLO results, (D) YOLOv8n heatmap, (E) Sec-YOLO heatmap. Human regions are anonymized in gray, with blue masks indicating specific
behaviors. Backgrounds are blurred for privacy. Full-size DOI: 10.7717/peerj-cs.3151/fig-12
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from overlapping detection boxes; the fifth image misses an existing mobile phone; and the
sixth image not only falsely reports a falling event but also misses a sleeping at work
incident.

In contrast, Sec-YOLO demonstrates exceptional detection accuracy across all test
images, with no occurrences of false positives or missed detections. It shows superior scale
adaptability, accurately identifying targets of dramatically different scales, as seen in the
fourth image. Furthermore, in detecting small objects, as in the third and fifth images,
Sec-YOLO exhibits high precision and meticulous target recognition capabilities.

The heat map analysis of the models reveals significant disparities in feature attention.
YOLOv8n, despite recognizing key features of targets, often misdirects its attention to
non-target areas, particularly evident in the first and fifth images, leading to a high rate of
false positives. This scattered attention pattern may stem from the model’s excessive
sensitivity to environmental noise. Conversely, the heat maps of Sec-YOLO display
concentrated and precise feature recognition, sharply focusing on target features, which
aids in maintaining consistent detection performance across various complex backgrounds
and effectively avoiding false recognition of non-target areas. These results distinctly
showcase the fundamental differences in design and optimization strategies between the
two models in object detection technology.

To better demonstrate the performance of Sec-YOLO compared to the latest YOLO
series models, we incorporate YOLOv9s, YOLOv10n, YOLOv11n, and the latest
YOLOv12n in the experiments, and generate heatmaps for visualization. The experimental
results are shown in Fig. 13. Specifically, in the fall detection task, although all five models
can capture the target features, Sec-YOLO exhibits more precise delineation of the target
contours. In helmet detection, YOLOv11n and YOLOv12n also show strong feature
capturing capabilities, but Sec-YOLO maintains a more balanced feature extraction for
each target. In mobile phone usage detection, all five models perform well, but Sec-YOLO
is more accurate in capturing the contours of the target. In nap detection, Sec-YOLO
stands out particularly, as it not only successfully captures the features of the two targets
but also significantly reduces the risk of false positives that other models may produce.
Overall, Sec-YOLO demonstrates superior performance compared to the latest YOLO
series models, showcasing its distinct advantage in unsafe behavior detection.

Generalization test on public datasets
To evaluate the generalization capability of Sec-YOLO and rule out the possibility of
overfitting to the custom dataset, we conducted additional experiments on two publicly
available datasets: the Safety Helmet Wearing Dataset (SHWD) and the CAUCA Fall
Dataset (Eraso et al., 2022). These datasets contain the same unsafe behavior categories—
not wearing a helmet and falling—as our custom dataset, but differ significantly in terms of
scene layouts, camera angles, body postures, lighting conditions, and visual domains. The
results are summarized in Table 6.

The SHWD dataset primarily focuses on helmet-wearing compliance in industrial
environments, with diverse backgrounds, lighting conditions, and human postures. To
ensure a fair evaluation, we excluded all SHWD images used in the training phase of our
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custom dataset. This eliminated any potential bias due to data leakage or memorization.
We tested the pre-trained Sec-YOLO model on the remaining subset of SHWD without
further fine-tuning. The model achieved 89.8% mAP@0.5 on this subset, demonstrating
strong generalization to industrial safety behaviors in unfamiliar environments.

The CAUCA Fall Dataset is a benchmark for fall detection, containing various human
fall postures from different directions. To help the model better recognize fall
characteristics, the dataset includes images of visually similar postures such as sitting,
kneeling, and picking up objects. We applied the trained Sec-YOLO model to this dataset,

Figure 13 Heatmap comparing Sec-YOLOwith the YOLO series. (A) YOLOv9s, (B) YOLOv10n, (C) YOLOv11n, (D) YOLOv12n, (E) Sec-YOLO.
All human regions were anonymized by masking in gray, with blue masks indicating behavior-specific annotations. Backgrounds were blurred to
protect contextual privacy. Full-size DOI: 10.7717/peerj-cs.3151/fig-13

Table 6 Performance of Sec-YOLO on custom and public datasets for generalization evaluation.

Dataset Precision/% Recall/% mAP@0.5/% mAP@0.5:0.95/%

Custom dataset 91.3 86.5 92.6 63.6

SHWD 90.1 83.6 89.8 61.1

CAUCA fall 88.4 80.9 87.3 58.7
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achieving 87.3% mAP@0.5, indicating that the model successfully transferred its learned
representations of unsafe behaviors to a different set of postures and scenarios.

Although the unsafe behavior categories in the public datasets align with those in our
custom dataset, the significant differences in visual style, body posture distribution, and
environmental context make them ideal benchmarks for evaluating the model’s
generalization ability. Sec-YOLO’s strong performance on both datasets validates its ability
to detect unsafe behaviors not only within the original training domain but also across
various visual conditions, highlighting its practical applicability in real-world safety
monitoring systems.

CONCLUSIONS
This study proposes Sec-YOLO, a novel target detection model for identifying unsafe
behaviors. The model employs the RFAConv module in the backbone network to improve
feature representation for critical target areas. To handle morphological diversity, the
DCNv2 module is incorporated into C2f structure, improving the model’s generalization
and robustness to diverse target shapes. To further improve detection performance in
complex multi-target and multi-scale scenarios, the neck section is reconstructed based on
the MAFPN structure, which effectively integrates shallow and deep features. Additionally,
by integrating the novel FEHA mechanism into the DCNv2 module, the precision of
offsets and feature convolution accuracy are significantly improved, resulting in enhanced
detection performance. These improvements enable the model to more accurately capture
the critical features of various unsafe behaviors while adapting to their morphological
variations. The model’s performance in multi-scale target detection has been significantly
enhanced, particularly in identifying small targets in industrial scenarios, which increases
its reliability and practicality in real-world applications. Experimental evidence
demonstrates that integrating FEHA into the deep feature fusion section of MAFPN
significantly optimizes feature fusion and extraction. On a custom unsafe behavior dataset,
Sec-YOLO has shown superior detection performance, achieving an mAP@0.5 of 92.6%
and an mAP@0.5:0.95 of 63.6%, confirming its high accuracy in feature capture in practical
applications. Future work will focus on expanding the dataset to include more types of
unsafe behavior data, optimizing the algorithm, and exploring integration with edge
computing devices for real-time detection. Additionally, temporal models, such as LSTM,
will be considered for future video-based detection, where capturing temporal
dependencies across frames could further improve the detection of dynamic behaviors.
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