
Quality of experience-aware application
deployment in fog computing
environments using machine learning
P. Jenifer1 and J. Angela Jennifa Sujana2

1 Computer Science and Engineering, Francis Xavier Engineering College, Tirunelveli, Tamil
Nadu, India

2 Artificial Intelligence and Data Science, Mepco Schlenk Engineering College, Sivakasi, Tamil
Nadu, India

ABSTRACT
Edge intelligence is fast becoming indispensable as billions of sensors demand
real-time inference without saturating backbone links or exposing sensitive data in
remote data centres and emerging artificial intelligence (AI)-edge boards such as
NVIDIA CPUs, 16 GB RAM, and microcontrollers with chip neural processing unit
(NPU) (<1 W). This article introduces the Energy-Smart Component Placement
(ESCP) algorithm of fog devices like fog cluster manager nodes (FCMNs) and fog
nodes (FNs), allocates modules to fog devices, and saves energy by deactivating
inactive devices framework transparently distributes compressed neural workloads
across serverless. To optimize the deployment of AI workloads on fog edge devices as
a service (FEdaaS), this project aims to provide a reliable and dynamic architecture
that guarantees quality of service (QoS) and quality of experience (QoE). The cloud,
fog, and extreme edge layers while upholding application-level QoS and QoE. Two
machine learning (ML) methods that fuse eXtreme Gradient Boosting (XGB)-based
instantaneous QoS scoring and long short term memory (LSTM) forecasting of node
congestion, and a meta-heuristic scheduler that uses XGB for instantaneous QoS
scoring and LSTM for short-horizon load forecasting. Compared with a cloud-only
baseline, ESCP improved bandwidth utilization by 5.2%, scalability (requests per
second) by 3.2%, energy consumption by 3.8% and response time by 2.1% while
maintaining prediction accuracy within +0.4%. The results confirm that low-resource
AI-edge devices, when orchestrated through our adaptive framework, can meet QoE
targets such as 250 ms latency and 24 h of battery life. Future work will explore
federated on-device learning to enhance data privacy, extend the scheduler to
neuromorphic processors, and validate the architecture in real-time intensive care
and smart city deployments.

Subjects Algorithms and Analysis of Algorithms, Computer Networks and Communications, Data
Mining and Machine Learning, Neural Networks, Internet of Things
Keywords Edge intelligence, Cloud computing, Fog edge devices as a service, Quality of service,
Quality of experience, Machine learning, Meta-heuristic, MobileNet-V3, Long short term memory,
XGBoost

INTRODUCTION
Due to the widespread use of cutting-edge technology and the Internet of Things (IoT),
several advanced gadgets are interconnected inside edge-assisted IoT networks to meet the

How to cite this article Jenifer P, Angela Jennifa Sujana J. 2025. Quality of experience-aware application deployment in fog computing
environments using machine learning. PeerJ Comput. Sci. 11:e3143 DOI 10.7717/peerj-cs.3143

Submitted 4 April 2025
Accepted 30 July 2025
Published 5 September 2025

Corresponding author
P. Jenifer,
jeniferjebavaram@gmail.com

Academic editor
Yilun Shang

Additional Information and
Declarations can be found on
page 19

DOI 10.7717/peerj-cs.3143

Copyright
2025 Jenifer and Angela Jennifa
Sujana

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.3143
mailto:jeniferjebavaram@�gmail.�com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.3143
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

diverse technical requirements of modern living (Balasubramanian et al., 2019). Moreover,
AI facilitates the enhancement of user-friendliness in these technologies. Internet of
Things (IoT) technologies using edge computing get advantages from AI since it
automates and optimizes their functionalities (Lu et al., 2020). The integration of machine
learning (ML) with edge computing has resulted in a novel concept: “edge intelligence”
(Deng et al., 2020; Hayyolalam et al., 2021). Innovative technologies, including
autonomous vehicle systems, smart device surveillance, real-time critical infrastructure
management, and predictive healthcare, are poised to develop from this concept
(Hayyolalam et al., 2021).

Cloud computing may be unsuitable for real-time applications like online gaming and
video streaming due to data source distance (Abdullah & Jabir, 2021). Object-level devices
lack processing power and storage for many tasks. Constraints prevent launching fully
developed apps. Cloud applications and algorithms may need plenty of processing power.
This technique has security hazards connected to distant processing and data transmission,
connectivity issues to remote cloud locations, and delays between IoT devices and cloud
nodes. Compact data centres with minimal latency store operational data on fog devices.
IoT devices may integrate algorithms and apps when connected to cloud nodes. Fog
computing and storage provide high-bandwidth, low-latency services (Ghaleb & Farag,
2021; Confais, Lebre & Parrein, 2020; Karagiannis & Schulte, 2020). Cloud computing
experts are improving frameworks to address these issues. Cloud data processing costs
must be considered. The service may save energy and time, but high pricing may prevent
customers (Zhu et al., 2017). Fog computing allows devices to do complex operations at the
network edge, making it useful for IoT mobile application processing. Fog devices need
complex scheduling and resource allocation to assign jobs (Jiang et al., 2019). Cloud task
offloading continues because fog computing has fewer resources than cloud computing.
Identifying and allocating IoT device work offloading requires optimal solutions in a
hybrid IoT, fog, and cloud environment. We provide energy-efficient intelligent job
offloading for IoT, fog, and cloud computing. This multi-classifier system calculates the
task, network, and processing properties of fog nodes (FNs) to choose the best service
node. Offloading request situations are improved by the multi-classifier system by
considering energy utilisation, data transfer speed, service request transmission, and
execution time.

We want to give an effective and environmentally friendly way to offload work to the
cloud, fog, and IoT. The multi-classifier system will excel in cloud, fog, IoT processing
node, network, and task characteristics. These characteristics will classify and choose work
nodes based on service cost, energy usage, and transfer and execution time. The following
are the main contributions of this article:

. To use multi-classifier ML, propose and create a new model for job offloading choices in
an Energy-Smart Component Placement (ESCP) algorithm for fog-cloud computing
architecture.

. To analyse and assess the suggested model by contrasting it with previous efforts;
moreover, to show how the suggested method uses machine learning (ML) techniques to

Jenifer and Angela Jennifa Sujana (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3143 2/21

http://dx.doi.org/10.7717/peerj-cs.3143
https://peerj.com/computer-science/

improve quality of service (QoS) and quality of experience (QoE) metrics, namely
application time to response, network utilisation, and consumption of energy.

. To address the integration problem of heterogeneity by ensuring that application
processing and node interaction are platform-independent.

. To provide a system model for assessing the effectiveness of cloud, fog, edge, and
serverless computing in economic and medical apps using the IoT, employing advanced
MLmodels for long short termmemory (LSTM) and eXtreme Gradient Boosting (XGB).

RELATED WORKS
The IoT includes hardware, software, sensors, and components for computers, among
other things, that facilitate the collection and sharing of data for processing by other IoT
devices and systems (Gill et al., 2019). IoT devices include, but are not limited to, fitness
trackers, smartwatches, and medical sensors. The goal of this subfield of AI, as stated, is to
streamline decision-making processes by eliminating the need for human analysts by
automating data analysis techniques for trend prediction. This Internet-based on-demand
service allows several cloud customers to access data and compute-intensive resources via
a specified user interface. Software, platforms, and infrastructure are the three main
categories of services offered by cloud computing (Aslanpour et al., 2021). This
decentralised strategy tries to bridge the gap between the IoT devices and the cloud data
centre. Its goal is to enhance the cloud’s capabilities and speed up reaction times for
time-sensitive IoT applications. This model of distributed computing reduces latency and
increases reaction time by bringing data storage and computational resources nearer to
edge/IoT devices (Singh, Singh & Gill, 2021).

An important part of resource management in fog computing is load balancing, which
ensures that all processes and applications are given an equitable share of the available
resources. When applied to fog computing environments, conventional load-balancing
methods fail because of their inflexibility and lack of uniformity (Omoniwa et al., 2018).
Service quality guarantees in fog computing systems are, therefore, very challenging. There
has been a plethora of studies on fog computing during the last two decades. To make
better use of the fog environment, one might study certain scholarly articles. Improving the
area of QoS aspects is possible. While providing helpful background on several models and
algorithms, the article delves more into the approaches and strategies recommended for
enhancing adaptation in fog circumstances (Brogi & Forti, 2017; Ni et al., 2017). A
decentralised approach to service design using blockchain technology has been proposed
by academics in Al Ridhawi et al. (2020) for the domain of offering complex multimedia
services to clients in the cloud. The suggested approach does away with transitional
services and network provider units by dynamically creating user-defined authentication
and composite service provisioning services. This study presents a trustworthy, scalable,
adaptable, and decentralised cloud infrastructure. By combining state-of-the-art services
with technologies like software-defined networking (SDN), blockchain, and fog
computing, it offers a sophisticated and cutting-edge solution right at the router
(Al Ridhawi et al., 2018). A separate research project aimed at developing an effective

Jenifer and Angela Jennifa Sujana (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3143 3/21

http://dx.doi.org/10.7717/peerj-cs.3143
https://peerj.com/computer-science/

composite service delivery system by introducing a framework for context-aware real-time
cooperation at the network edge. Devices used by end users and mobile edge clouds
(MECs) will be part of this design. Duplicating data and services hosted in the cloud over
several MEC nodes is the suggested approach. The authors built a privacy-focused AI task
generation framework to simplify edge AI deployment. They propose task offloading and
distribution to accomplish complex AI tasks on edge devices. The Skyline optimisation
approach provides an intelligent service selection mechanism (Rahman et al., 2020).

The work presents a QoS-aware cloud-edge service discovery and selection model in an
IoT setting, with an emphasis on the outcomes indicated above. To evaluate QoS factors as
non-functional attributes, this model employs a hybrid multi-objective metaheuristic
method based on a grey wolf optimiser and a genetic algorithm (GWO-GA). The proposed
approach for the service discovery and selection issue in the IoT context seeks to ensure
QoS requirements such as response time, energy use, and cost concerns. According to
trials, the proposed technique surpasses the other algorithms by 30% when it comes to cost
reduction (Wang & Lu, 2021). This approach prioritises both energy efficiency and
security. The proposed method makes use of a GA and a multi-objective GWO. Energy
efficiency, response speed, and the costs of discovering and selecting services in the IoT are
all much enhanced by the proposed hybrid approach. The authors of Huang, Liang & Ali
(2020) have also presented an optimisation method for service composition that uses
simulations to improve reliability. They have taken a two-layer approach to the system
analysis, looking at both the edge and cloud levels. They created a model aggregation
strategy for problems with service composition and used a probabilistic Petri net model to
build both layers. To provide an amalgamated service under typical circumstances, most
conventional methods of rearranging service composition centre on service scheduling;
nevertheless, these methods are unable to quickly adjust to changing environmental
conditions. Therefore, to address the stated problem, the authors of Gao, Huang & Duan
(2021) proposed a dynamic reconfiguration of service processes in mobile edge
e-commerce environments. Despite the evident advantages of fog computing for medical
treatment monitoring systems and numerous studies validating the foundational concepts
of this computing paradigm, formulating strategies to optimise the utilisation of fog
devices remains challenging due to their constrained power and computational capacities,
as well as the need to appropriately allocate modules to specific fog devices to attain the
intended level of service (Hassan et al., 2022). Our thorough performance analysis was
made possible by the iFogSim simulator, which uses the Energy-Efficient Internet of
Medical Things (EEIoMT) to Fog Interoperability of Task Scheduling architecture
(Alatoun et al., 2022). Using the proposed method, our study assesses the information
distribution, resource management, and job scheduling of the Fog Computing Layer.

METHODOLOGY
For cloud-based systems, it is standard procedure to overprovision resources to prevent a
decline in customer service in the event of an unforeseen calamity. This results in excessive
power utilization as well as wasteful expenditure. A cloud-hosted system is made up of
RAM, storage space, processor power, and I/O functions. Even while certain optimization

Jenifer and Angela Jennifa Sujana (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3143 4/21

http://dx.doi.org/10.7717/peerj-cs.3143
https://peerj.com/computer-science/

techniques lower resource use, they may have a detrimental effect on service quality (such
as accessibility or response time). It is consequently not easy to determine the ideal
quantity of cloud resources in terms of both cost and QoS. We are interested in researching
systems that use the most popular cloud service models, such as Infrastructure as a Service
(IaaS), Platform as a Service (PaaS), and FEDaaS, to deliver applications. Both the amount
and quality of cloud components may be scaled individually by these models without
affecting each other. Additionally, they can optimize themselves since they are dispersed
throughout several cloud regions. To keep things simple, we will only demonstrate our
approach in a single application. This integrated system concept combines several software
and hardware elements to provide platform independence and organized communication.

Cloud datacenter
IoT back-end apps are operated in the cloud when the capacity with fog architecture is not
enough for handling a program or when applications that require latency are operating.
With this method, the system model may be used to investigate the computing resources
for IoT applications. Serverless technology is used in it. Compute, storage, virtual machine
(VM) management, and resource scheduling are some of the most important components
of a cloud data centre. While the latter two are in charge of managing virtual computers,
the former two are in charge of scheduling both real and virtual resources. Cloud
customers can build and launch IoT apps and services without worrying about server
administration on the serverless platform, which links cloud data centres with fog
infrastructure. It provides adaptable scalability and affordable deployment of IoT
applications. The four main parts of the Serverless platform are provisioning, computing,
monitoring, and storage. Provisioning is responsible for allocating resources to meet user
requests, computing is responsible for doing computations, and storage is responsible for
retaining data for processing. The serverless platform consists of a data manager, a
resource manager, a ML model, and a security administrator. Data collected from various
IoT devices is overseen by the data manager before it is processed further. To complete a
job, the resource manager must first gather all of the required materials and then distribute
them. Data is used to build ML models that can anticipate trends that meet the needs of an
IoT application. To provide adequate protection, the security manager uses a variety of
security techniques.

Fog architecture
The formation of the fog architecture is the result of two essential elements. These consist
of the fog computational centers and fog gateway nodes (FGNs).

Fog gateway nodes

The FGNs function as the portal to the realm of distributed computing. The proposed
framework indicates that the FGNs assist IoT devices with employment placement, along
with application processing. The FGN provides an interface for supplementary
applications, including controlled IoT devices, credential authentication, backend program
access, resource requirements for the processing of applications, and service expectation
articulation. Furthermore, FGN formats the data uniformly and sanitizes it. After data

Jenifer and Angela Jennifa Sujana (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3143 5/21

http://dx.doi.org/10.7717/peerj-cs.3143
https://peerj.com/computer-science/

collection from many sources, aggregate data is collected. For substantial processing, the
data is transferred to supplementary computer nodes via a combined environment in
Eq. (1).

PFGN ¼ k � Rcomp þ l � Rcomm þ m � Elatency (1)

where, PFGN is the performance metric, Rcomp is the computational resource consumption
(e.g., central processing unit (CPU)/graphics processing unit (GPU) usage) rate, Rcomm is
communication efficiency (e.g., bandwidth, packet transfer), Elatency is an energy-delay
factor (e.g., time delay in ms), and k, are weighting coefficient.

In Eq. (1), the variable is defined as follows:
k;m; n 2 [0, 1] are normalized weighting factors used to balance the influence of

computation, communication, and latency, respectively. The sum can be considered to be
1 for normalization (i.e., lþ mþ n ¼ 1).

Rcomp 2 [0, Rmax], where Rmax is the maximum available computation resource in the

FGN, typically measured in FLOPS or CPU units.
Rcomm 2 [0, Bmax], where Bmax is the maximum communication bandwidth or

throughput available.
Elatency 2 [0, Lmax], where Lmax is the maximum tolerable or measured latency,

typically in milliseconds or seconds.

Fog computational nodes

The proposed design was developed to manage the massive number of FCNs running in
parallel. It is the job of FCNs to design new storage capacity and resource designs.
Processing cores, memory, storage, and bandwidth are the building blocks of FCNs, which
are used to carry out processing tasks. Here are the responsibilities that FCNs perform in
Eq. (2).

PFCN ¼ a � Ucpu þ b � Bcomm þ c � Eenergy (2)

where, PFCN represents node performance, Ucpu is CPU utilization, Bcomm is bandwidth
usage, Eenergy is energy consumption, and a, c are weights for each factor.

In Eq. (2), the variable is defined as follows,
a, b, c 2 [0, 1]; these are normalized weighting factors assigned to CPU usage,

communication bandwidth, and energy consumption, respectively. The values can be set
according to the optimization priority and may satisfy a + b + c = 1 for normalization.

Ucpu 2 [0, 1], CPU utilization ratio of the fog computing node, expressed as a fraction or

percentage (e.g., 0.75 = 75% CPU usage).
Bcomm 2 [0, Bmax], Bandwidth consumption or data transmission requirements,

typically measured in Mbps or similar units. Bmax is the maximum available bandwidth.
Eenergy 2 [0, Emax], Energy consumed by the fog computing node, usually measured in

joules (J) or watts (W), depending on the context. Emax is he an upper bound on acceptable
or expected energy consumption?

Figure 1 illustrates a multi-layered model designed to enable intelligent application
deployment in fog computing environments, particularly for IoT-based use cases. At the

Jenifer and Angela Jennifa Sujana (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3143 6/21

http://dx.doi.org/10.7717/peerj-cs.3143
https://peerj.com/computer-science/

base layer, ML models like XGB and LSTM handle tasks such as performance prediction,
workload forecasting, and decision-making. These models directly interface with IoT
devices and the edge network layer, which includes a variety of low-power sensors,
wearables, medical monitors, and routers responsible for real-time data generation and
initial edge processing.

The Fog architecture layers serve as an intermediate processing environment between
the edge device and the cloud. It includes:

. QoS and QoE models, which access network and user-level performance,

. Broker nodes (BNs), which handle task scheduling and service matching.

. General computing nodes (GCNs), which execute moderately intensive tasks closer to
the data source,

. Repository nodes (RNs), which manage data storage and resource availability.

At the top, the cloud data center layer is responsible for handling large-scale data
analytics and long-term storage when local resources are insufficient.

This proposed architecture ensures reduced latency, improved energy efficiency, and
enhanced responsiveness by enabling smart task offloading across layers. It supports
scalability and reliability for critical IoT applications, especially in dynamic environments.

The RNs oversee the replication, data sharing, remuneration, and storage security
functions of the distributed database. Registered nurses provide access to current data and
the study of past data. Generated and maintained application-specific metadata, including
dependencies, models, and processing needs. Nevertheless, the data culminates at these
nodes, since they are the source of run-time data for anomaly-driven applications.

Not all FCNs have instant access to FGNs. The FCN and the FGN are connected via the
BN. These BNs are responsible for managing resources and submitting applications for
processing, along with the required information. Multiple BNs may be serviced
simultaneously by GCNs with reliable performance. When distributed applications are

Figure 1 Proposed system architecture. Full-size DOI: 10.7717/peerj-cs.3143/fig-1

Jenifer and Angela Jennifa Sujana (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3143 7/21

http://dx.doi.org/10.7717/peerj-cs.3143/fig-1
http://dx.doi.org/10.7717/peerj-cs.3143
https://peerj.com/computer-science/

running, an automatic group of GCNs is created underneath the BN. Available FCNs with
FGN collaboration allow the back-end functioning of IoT applications. After FCNs have
allocated enough resources, they begin running the application’s backend. If the FGN is
unable to run the back-end application due to a lack of resources, the FCN will step in and
provide them, much like a BN. Other FCNs and cloud data centres are its interfaces. This
leads to delegating tasks to different FCNs and then arranging, overseeing, and
coordinating their activities. To back up these BNs, the suggested architecture makes use of
deep learning to spot anomalies, blockchain to add security measures, and replication to
make it fault-tolerant. Secure communication between cloud data centres, FGNs, and
FCNs is made possible by this resilient architecture.

Quality of service and quality of experience model
For every edge service (device), this article examines four QoS metrics: availability,
reliability, latency, and reaction time. The values of the variables we utilised were sourced
from the Quality of Web Service (QWS) dataset, which is a popular resource for academic
research on service composition difficulties. Out of the six QoS measures that were utilised
to evaluate the 2,507 valid services in this study, four are used in this report. The baseline
values of the QoS parameters are determined using the dataset. With each service
invocation, the QoS values are randomly changed to mimic the non-static nature of QoS
values in real-world circumstances and to promote dynamic service composition. With
every call to the edge service, the QoS and QoE metric values fluctuate wildly; to keep track
of them, we included a monitoring component inside the framework. At first, we take the
number of subjective evaluations (K) and use them to construct K randomly assigned QoE
values for all the services in the dataset. This means that for every service, K people provide
measurable feedback. With every service call, the QoS and QoE parameters for the relevant
service would be changed at random. Because there is a linear relationship between QoE
and QoS values, and because these QoS values may vary, the new QoS parameters will be
used to modify the QoE value. We include the computed QoE values in the dataset as an
additional QoS measure, and the technique is completely stochastic. It generates a number
at random from 0 to 1.

QoE ¼ a � QoSlatency þ b � QoSthroughput þ c � QoSpacket loss þ d: (3)

In Eq. (3), the variable is defined as follows:
a, b, c 2 [0, 1]; these are the weighting coefficients that determine the relative

importance of latency, throughput, and packet loss in contributing to overall QoE. Often,
they satisfy a + b + c = 1 for normalization.

QoSlatency 2 [0, 1], A normalized value representing latency-based QoS. Lower latency

(closer to 0) improves QoE, so the normalized form could be:

QoSlatency = 1 -
latency
Lmax

, where latency ≤ Lmax:

QoSthroughput 2 [0, 1], A normalized throughput score. Higher throughput improves

QoE, so: QoSthroughput =
throughput

Tmax
, where throughput ≤ Tmax:

Jenifer and Angela Jennifa Sujana (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3143 8/21

http://dx.doi.org/10.7717/peerj-cs.3143
https://peerj.com/computer-science/

QoSpacket loss 2 [0, 1], Reflects packet loss quality, since lower packet loss is better, it is

normalized as: QoSpacket loss = 1 -
packet loss

Pmax
, where packet loss rate ≤ Pmax

d 2 R=, A bias or adjustment term that allows for baseline scaling or offset in the final
QoE-score, often used to fine-tune the output.

IoT device and edge network
In fog computing environments, IoT devices form the primary data generators and play a
crucial role in influencing application QoE. These devices include a wide range of sensors,
actuators, smart cameras, wearables, and embedded systems that continuously produce
real-time data across domains such as healthcare, smart homes, and industrial automation.
However, these devices are resource-constrained, having limited computation, memory,
and energy capacity. To support intelligent QoE-aware application deployment, edge
networks act as intermediaries between IoT devices and fog/cloud infrastructure. Edge
nodes, such as local gateways, micro data centres, and edge servers, perform lightweight
processing tasks such as initial data filtering, aggregation, and inference using pre-trained
ML models. These devices reduce latency, bandwidth, and consumption and centralise
load, thereby improving user-perceived QoE. In the proposed system, the edge layer
supports the deployment of ML algorithms (e.g., QoS prediction, resource estimation) and
collaborates with FGNs to make localised decisions based on real-time conditions. The
communication protocols between IoT devices and the edge layer leverage low-power and
high-speed technologies such as 5G, Wi-Fi 6, NB-IoT, and LoRaWAN. Ensures low-
latency, energy-efficient, and scalable data handling, which is essential for dynamic,
QoE-driven application deployment in fog environments.

Machine learning models
This section takes the preprocessed data from IoT devices and utilises it to train artificial
intelligence models to classify data points. The creation of these feature vectors follows the
data-collecting process. Prior work made use of the graphical user interface (GUI) to make
ensemble voting-based data state predictions. With this project in mind, we used
state-of-the-art ML methods like XGB and LSTM. The workload manager is in charge of
processing data, managing incoming job requests, and allocating tasks in a queue. The
arbitration module arranges fog/cloud resources for each task’s execution based on its QoS
requirements. Depending on the demands of the user, the broker decides whether to
execute a job at a cloud node or a FN. This system has a credential archive where users’
credentials for authentication are kept. Additionally, the credential archive gives the
security keys to other parties and alerts them when the broker service creates a new
data block.

In the proposed QoE-aware application deployment framework, two advanced ML
models, LSTM and XGB, are strategically integrated to make intelligent, adaptive
deployment decisions in a fog computing environment. This work is designed to enhance
QoE by proactively forecasting resource usage trends and evaluating current system
conditions. The LSTM model is employed to capture temporal dependencies in system

Jenifer and Angela Jennifa Sujana (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3143 9/21

http://dx.doi.org/10.7717/peerj-cs.3143
https://peerj.com/computer-science/

performance metrics. It is trained on historical time-series data collected from IoT, edge,
fog, and cloud nodes, including CPU utilisation, memory usage, latency, queue length, and
bandwidth status. The input to the LSTM is a sequence of N past metrics per node, and the
output is a future horizon of predicted system states (e.g., expected CPU load or delay for
the next 5–10 time intervals). This temporal foresight allows the system to anticipate
bottlenecks or overloads before they happen, enabling preemptive job offloading to
alternative nodes with better predicted performance. The LSTM consists of two stacked
layers with 64 memory units each, followed by a dense layer that outputs a prediction
vector. During training, the model is optimised using the ADAM optimiser and
validated using mean absolute error (MAE) to ensure robust short-term forecasting.
Complementing the LSTM, the XGB model functions as a high-performance regressor or
classifier that processes current, real-time features to score or rank the suitability of each
node for task deployment. The features fed into XGB include instantaneous values such as
network latency, available bandwidth, packet loss, and node energy consumption, along
with contextual metadata such as application priority, task size, and time-of-day
indicators. XGB ensemble of decision trees is turned using a hyperparameter search over
tree depth, learning rate, and subsample ratios. The output is a score that reflects the node’s
current fitness for hosting an application, normalised between 0 and 1. Together, the
LSTM and XGB models are fused in a multi-criteria decision engine. For every candidate
deployment node, the system aggregates (i) the LSTM’s predicted performance horizon,
(ii) the XGB’s real-time suitability score, and (iii) the current resource availability
(e.g., CPU, memory, and bandwidth). These inputs are combined in a weighted utility
function. The orchestrator then selects the node with the highest utility score for
application deployment. If no nodes meet a minimum utility threshold (including
potential QoE degradation), a rule-based fallback selects the nearest edge node or defers
the task to a cloud node.

The intelligent offloading mechanism ensures that applications are always placed in the
most appropriate execution environment, whether edge, fog, cloud, or serverless, while
optimising for QoEmetrics like response time, throughput, network utilisation, and energy
consumption. Furthermore, the platform-agnostic design of the ML models (served via
Open Neural Network Exchange (ONNX) or container-based microservices) ensures they
can be deployed across heterogeneous hardware and software environments, addressing
one of the key challenges in fog computing: interoperability and heterogeneity. Table 1
describes the summary of ML model roles.

eXtreme Gradient Boosting
XGB, is an effective ML approach for evaluating QoE and QoS in cloud service settings. Its
capacity to manage extensive datasets, intricate relationships, and absent values makes it
optimal for pattern identification and performance metric forecasting. XGB employs
gradient boosting to generate exceptionally precise models while maximising resource
allocation, minimising latency, and enhancing user happiness. The extensive scale
facilitates real-time analysis, allowing cloud providers to perpetually enhance their

Jenifer and Angela Jennifa Sujana (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3143 10/21

http://dx.doi.org/10.7717/peerj-cs.3143
https://peerj.com/computer-science/

services. Integrating XGB with QoE and QoS frameworks enhances decision-making,
dependability, and performance in highly competitive cloud computing settings.

Algorithm 1 describes the XGB QoS model is fitted to instantaneous features.
Categorical context (such as workload type and hour of day) is one-hot encoded, while
numeric QoS readings (latency, throughput, energy, and packet loss) are normalised. A
systematic hyperparameter search chooses the optimum tree depth, learning rate, and
ensemble size by maximising validation F1 (for classification) or minimising Root mean
square error (RMSE) (for regression). The selected configuration is retrained on the full
training split, saved, and exposed as a stateless microservice that converts a fresh QoS
features vector into either a normalised suitability score or an offloading class label.

Long short term memory (LSTM)

It is reasonable to use LSTM, recurrent neural networks (RNNs) for cloud QoE and QoS
prediction since these networks excel at simulating sequential data. Service effectiveness
and customer satisfaction patterns may be correctly predicted by LSTMs due to their
proficiency in recognizing long-term dependencies. They could look at time-series data
like error rates, capacity utilization, and network latency to foretell potential abnormalities
or bottlenecks. Incorporating LSTM models may help cloud service providers optimize

Table 1 Summary of ML model roles.

Model Role Input Output

LSTM Predict future node performance Time-series metrics (last N timesteps) Predicted load/delay

XGBoost Rank the current node’s suitability Instant QoS metrics + context QoE-aware deployment score (0–1)

Fusion layer Combine LSTM, XGB, and resource metrics Forecast + score + real-time state Offloading decision (edge/fog/cloud/serverless)

Algorithm 1 Algorithm for XGB.

Input: Feature matrix F (instant QoS + context), label/target T

where T is either (a) a regression QoS score or (b) an offload class

Output: Trained model M_XGB accessible via Score()

Step 1: Pre‑process:

a. One‑hot encode categorical context features

b. Scale/normalize continuous QoS inputs

Step 2: Hyperparameter search (e.g., grid or Bayesian):

For each candidate config C:

train XGBoost with parameters C (max_depth, n_trees, η, subsample)

evaluate metric (RMSE for regression; F1 for classification)

Select config C* with the best validation metric

Step 3: Retrain the full model on the combined Train+Validation set with C*

Step 4: Persist trained model as M_XGB

Step 5: Deploy:

Wrap M_XGB in a stateless microservice

Expose Score(request_features) → scalar S_QoS or class label

Jenifer and Angela Jennifa Sujana (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3143 11/21

http://dx.doi.org/10.7717/peerj-cs.3143
https://peerj.com/computer-science/

resources, enhance the user experience, and maintain consistent service quality, all of
which may lead to increased customer retention and productivity in operation.

Algorithm 2 describes the LSTM forecaster is prepared by cleaning the historical
telemetry logs, normalizing every continuous metric to a 0–1 scale, and sliding a window of
N consecutive shots to build input-target pairs. A two-layer LSTM with 64 hidden layers
learns to map each sequence to a horizon of H predicted values (future CPU load, queue
depth, and link delay). Training uses the ADAM optimizer until early stopping on the
validation set minimizes MAE; the best weights are exported and wrapped in a lightweight
inference service that returns a forecast vector of the latest N readings for any nodes.
During real-time offloading, the orchestrator queries every candidate node in parallel. It
feeds each node’s most recent N telemetry shots into the LSTM service to obtain
short-term forecasts and, at the same time, passes the current QoS vector to the XGB
service to obtain an instantaneous suitability score. These two predictions are combined
with the live resource vector (CPU, memory, bandwidth) in a weighted utility function.
Nodes that cannot satisfy hard constraints, such as minimum free memory, are discarded,
and the destination with the highest utility is selected.

PFGN=FCN ¼ k � XGB PQoSð Þ þ l � LSTM Ptime�seriesð Þ þ m � Rresource (4)

where, PFGN=FCN is the node performance, XGB PQoSð Þ models QoS metrics using

Algorithm 2 Algorithm for LSTM.

Input: Historical metric logs D, horizon H, sequence length N

Output: Trained model M_LSTM accessible via Predict()

Step 1: Pre‑process:

a. Remove missing records, interpolate short gaps

b. Scale each continuous feature to [0, 1]

c. Segment D into overlapping sequences of length N → X and their next‑H targets → Y

Step 2: Initialize LSTM network:

Layer1: LSTM(units=64, return_sequences=True)

Layer2: LSTM(units=64)

Dense(H × |features|) with linear activation

Step 3: Split X, Y into Train/Validation/Test (80/10/10)

Step 4: Train using Adam optimizer:

Repeat until early‑stopping

compute loss = MAE(Y_pred, Y_true)

Back-propagate loss, update weights

Step 5: Evaluate on Test; persist best weights as M_LSTM

Step 6: Deploy:

Wrap M_LSTM in a lightweight inference service

Accept REST/IPC request hnode_id, last N snapshotsi
Return the forecast vector of size H

Jenifer and Angela Jennifa Sujana (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3143 12/21

http://dx.doi.org/10.7717/peerj-cs.3143
https://peerj.com/computer-science/

XGB, LSTM Ptime�seriesð Þ predicts time-dependent trends using LSTM, Rresource is resource
utilization, and k, l, m are weight coefficients.

In Eq. (4), the variable is defined as follows:
k;m; n 2 [0, 1]; these are the weighting factors controlling the influence of QoS

prediction, time-series performance trends, and resource usage, respectively. They may be
normalized such that, often, they satisfy k + m + n = 1 for normalization.

XGB PQoSð Þ 2 R=, this term represents the output of an XGB model trained on QoS
metrics (latency, throughput, jitter, etc.). The value is typically normalized or scaled based
on the prediction (e.g., QoS score between 0 and 1 or a regression score for priority).

LSTM Ptime�seriesð Þ 2 R= The LSTM model outputs, which forecast system performance
(e.g., load, delay, failure probability) over time. Its output is based on historical
performance trends, typically in the normalized range [0, 1] or in units relevant to
performance (e.g., expected delay in ms).

Rresource 2 0; Rmax½ �, resource consumption (CPU, memory, bandwidth, etc.) in the
FGN/FCN. This can be scalar, representing either a composite resource score or a key
individual metric like CPU utilization. It is often normalized between 0 and 1 or bounded
by a system-defined upper limit.Rmax.

RESULTS AND DISCUSSION
The suggested AI subtask composition approach was evaluated using Python on a laptop
with an Intel Core i7-10750H CPU running at 2.60 GHz and 16 GB of random access
memory (RAM). To provide a fair comparison, all three techniques were fed the identical
set of services collected from the dataset. Every trial’s QoS values were derived using the
QWS dataset. During the composition process, the QoS values are randomly updated to
offer a dynamic composition framework. Four qualities of service metrics, availability,
dependability, response time, and latency, have been the primary focus of our
data-collecting efforts.

Quality of Web Service (QWS) dataset
The first dataset of its sort to measure the QoS of real internet services was created in 2007
as part of Eyhab Al-Masri’s PhD thesis. Dataset available at open source download link
https://qwsdata.github.io/. In 2007, it was introduced. The QWS Dataset has been
downloaded over 9,000 times since it was first made available in 2007, demonstrating how
well accepted it is among academics. This dataset might serve as a starting point for
researchers who are interested in online services. Search engines, service portals, Universal
Description, Discovery, and Integration (UDDI) registries, and other publicly accessible
online resources were the primary sources of the web services that were gathered using the
Web Service Crawler Engine (WSCE). In 2008, tested the QWS of 2,507 web services using
our web service broker (WSB) technology for the QWS Dataset ver. 2.0. Each row of this
collection contains nine QWSmetrics for each web service, separated by commas. The first
nine components, which are QWS metrics, were evaluated over 6 days using a variety of
Web service benchmarking tools. The average readings for all the measurements made

Jenifer and Angela Jennifa Sujana (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3143 13/21

https://qwsdata.github.io/
http://dx.doi.org/10.7717/peerj-cs.3143
https://peerj.com/computer-science/

during that period are the QWS values. The last two inputs are the service name and the
Uniform Resource Locator (URL) of the Web Services Description Language (WSDL) file.

Energy-conscious methods
Our energy-efficient strategy aims to reduce the overall energy consumption of all fog
devices by implementing an optimised resource allocation and job scheduling system for
IoT devices inside a fog ecosystem. Our methodology integrates Fog Cluster Manager
Nodes (FCMNs) and FNs with dynamic classification using the suggested strategy,
facilitating effective resource allocation and optimising response time. Unlike those that
focus on energy consumption in scheduling tasks, our methodology employs distributed
protocols for efficient coordination and communication, therefore substantially reducing
energy consumption and improving sustainability in fog-based healthcare settings. Our
system dynamically locates the nearest gateway to decrease latency, unlike earlier research
that allocated end devices to gateways or used cloud-based data processing. The ESCP
algorithm and clusters of fog devices like FCMNs and FNs helped us allocate modules to
fog devices and save energy by deactivating inactive devices. This section examines our
trial evaluation criteria and how effectively our method tackles latency and energy
utilization issues.

Energy-smart component placement (ESCP)
In the ESCP Algorithm, the Data Processing Module is positioned strategically among the
FNs that are linked to every Fog Cluster Management Node (FCMN). The Data Processing
Module is strategically arranged for optimal system performance and energy efficiency
with the aid of a thorough assessment of FN computing capabilities and energy levels. Each
FCMN classifies FNs into distinct energy levels based on a predefined threshold, allowing
for a detailed analysis of each node’s processing power. This evaluation is used by the ESCP
algorithm to identify the Data Computing Module’s position, ensuring that the selected
FNs have the energy and computing power needed to carry out IoT device operations
efficiently.

An essential performance statistic is the average end-to-end latency, which shows the
time it takes for operations to go from the device itself to the fog layer and back again.
Keeping the intended QoS standards in place is critical and has an immediate impact on
the system’s response to critical patient data. The total end-to-end delay contains the
latency elements processing time (PT), transmission time (TT), and queue time (QT). This
delay encompasses the whole system’s sequence of activities.

Time spent processing tasks by FNs is denoted by PT, data transfer between end devices
is denoted by TT, and queueing time is denoted by QT. Having a complete grasp of these
components makes it simpler to identify opportunities for latency improvement in the
proposed architecture.

We compared our proposed model’s average latency to that of cloud-based and
latency-aware solutions. The measurement of delay is in milliseconds. By taking advantage
of the closeness of fog devices to end devices to reduce end-to-end latency, our approach
outperforms cloud-based and latency-aware models. Both our proposed model and the

Jenifer and Angela Jennifa Sujana (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3143 14/21

http://dx.doi.org/10.7717/peerj-cs.3143
https://peerj.com/computer-science/

latency-aware model use fog devices close to end devices to perform a task, which
considerably reduces average end-to-end latency as compared to the cloud-based
technique. In Fig. 2, we can see that there have been continuous improvements in the
average latency of our suggested model, the cloud-based model, and the latency-aware
model. Table 2 shows the percentage reduction over cloud-based and latency-aware
models across different network configurations (Setup 1, Setup 2, etc.), highlighting the
efficacy and superiority of our recommended model in minimizing end-to-end latency.
Reduced latency is beneficial for medical monitoring systems, as our research shows.
Reducing latency allows for faster data processing, easier access to patient data, and better
decision-making by healthcare professionals.

Figure 2 and Table 2 illustrate the average response time across various setups for both
the cloud module and latency module using different performance configurations: PT
(Setup-1), TT (Setup-2), QT (Setup-3), QoS (Setup-4), and QoE (Setup-5). The cloud
module consistently shows high response efficiency, with all setups ranging from 86% to
93.5%. Notably, the QoE-based setup (Setup-5) performs the best at 93.5%, indicating an
enhanced QoE due to optimised resource allocation and intelligent processing. In contrast,

Figure 2 Average time to respond. Full-size DOI: 10.7717/peerj-cs.3143/fig-2

Table 2 Average time to respond.

Module PT Network
Setup-1 (%)

TT Network
Setup-2 (%)

QT Network
Setup-3 (%)

QoS Network
Setup-4 (%)

QoE Network
Setup-5 (%)

Cloud
module

86 89 91 92 93.5

Latency
module

45 65 75 78 90.5

Jenifer and Angela Jennifa Sujana (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3143 15/21

http://dx.doi.org/10.7717/peerj-cs.3143/fig-2
http://dx.doi.org/10.7717/peerj-cs.3143
https://peerj.com/computer-science/

the latency module starts with a lower performance of 45% in Setup-1 but gradually
improves across setups, reaching a peak of 90.5% in Setup-5. This progression
demonstrates the effectiveness of incorporating QoS and QoE models to minimise latency
and improve responsiveness. Overall, the result suggests that advanced configuration (QoE
and QoS setups) significantly enhances performance, especially in a latency-sensitive
environment, validating the benefit of applying intelligent models in fog computing
architecture.

Figure 3 and Table 3 are a comparative analysis of average energy consumption across
different setups: PT (Setup-1), TT (Setup-2), QT (Setup-3), QoS (Setup-4), and QoE
(Setup-5) for both the cloud module and latency module.

In the cloud module, energy consumption starts at 81.2% in Setup-1 and increases
gradually to a peak of 92.8% in Setup-5, indicating a trade-off between advanced
optimisation and energy usage. Similarly, the latency module shows a more dramatic rise
from 42.5% in Setup-1 to 93.8% in Setup-5, demonstrating that while QoE optimisation
significantly enhances performance, it also results in increased energy use.

Figure 3 visually confirms these trends, with the latency module displaying a steeper
energy consumption curve compared to the cloud module. Notably, the QoE-based setup

Figure 3 Average energy consumption. Full-size DOI: 10.7717/peerj-cs.3143/fig-3

Table 3 Average energy consumption.

Module PT Network
Setup-1 (%)

TT Network
Setup-2 (%)

QT Network
Setup-3 (%)

QoS Network
Setup-4 (%)

QoE Network
Setup-5 (%)

Cloud
module

81.2 85.8 88.9 90.8 92.8

Latency
module

42.5 68.8 74.9 77.8 93.8

Jenifer and Angela Jennifa Sujana (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3143 16/21

http://dx.doi.org/10.7717/peerj-cs.3143/fig-3
http://dx.doi.org/10.7717/peerj-cs.3143
https://peerj.com/computer-science/

(Setup-5) consumes the most energy across both modules, but it also correlates with better
responsiveness and user experience.

In summary, while QoE optimised deployments enhance overall system performance,
they require more energy, especially in latency-sensitive scenarios. This insight highlights

Figure 4 Energy consumption for proposed model. Full-size DOI: 10.7717/peerj-cs.3143/fig-4

Table 4 Energy consumption for proposed model.

Gateways Latency (ms) Proposed ESCP algorithm (ms)

Fog nodes 10,000 13,000

FCN 12,000 14,000

FGN 10,500 15,000

Figure 5 Machine learning models. Full-size DOI: 10.7717/peerj-cs.3143/fig-5

Jenifer and Angela Jennifa Sujana (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3143 17/21

http://dx.doi.org/10.7717/peerj-cs.3143/fig-4
http://dx.doi.org/10.7717/peerj-cs.3143/fig-5
http://dx.doi.org/10.7717/peerj-cs.3143
https://peerj.com/computer-science/

the importance of balancing energy efficiency with performance when designing intelligent
fog and edge computing architectures.

Our proposed solution significantly reduces average energy consumption by
distributing computing tasks across the cluster of FNs, FCN, and FGN for ESCP inside the
fog layer. This energy-efficient strategy enhances the overall sustainability of fog
computing systems shown in Fig. 4 and Table 4.

Figure 5, assuming it is a visual depiction of the data from the table, probably depicts
how XGB and LSTM compare in these four metrics: FN-FCN, FN-FGN, ESCP for QoS,
and ESCP for QoE. Fog Gateway and Computational Nodes favour XGB over LSTM for
optimizing QoS and QoE metrics, as shown in Table 5. XGB beats LSTM in all
circumstances.

ANALYSIS OF RESULTS
The experimental evaluation conducted in this study compared various computing
paradigms—serverless, cloud, fog, and edge through the lens of performance metrics,
including latency, response time, network bandwidth, energy consumption, and failure
rate. Two powerful ML models, XGB and LSTM, were employed for predicting system
performance and dynamically managing resource allocation.

Advantage

. Serverless computing demonstrates the best overall performance, particularly in terms of
dynamic scalability and energy efficiency, making it highly suitable for bursts and
event-driven IoT workloads.

. The proposed fog-layer system, which consists of two intelligent modules (for QoS/QoE
evaluation and resource broking), showed significant improvements in latency and
energy usage, outperforming traditional fog and cloud models.

. XGB offered faster and more interpretable decision-making for QoS evaluation, while
LSTM effectively forecasted resource bottlenecks, allowing the system to take preemptive
offloading decisions.

. The integration of AutoML led to superior model tuning, yielding better prediction
accuracy than manual hyperparameter configurations and other baseline ML models.

Disadvantages

. Although serverless computing yielded the best results, it relies heavily on stateless
functions and lacks fine-grained control over hardware-level optimisation, which may be
a limitation for certain real-time tasks.

Table 5 Machine learning and ESCP models for FCN and FGN.

Algorithm Accuracy for fog
node FCN

Accuracy for fog
node FGN

Accuracy for ESCP
for QoS

Accuracy for ESCP
for QoE

XGBoost 48 68 85 89

LSTM 36 45 62 65

Jenifer and Angela Jennifa Sujana (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3143 18/21

http://dx.doi.org/10.7717/peerj-cs.3143
https://peerj.com/computer-science/

. Fog and edge layers, while effective in reducing latency, face resource constraints such as
limited memory and compute power, which can affect their ability to handle large-scale
or compute-intensive applications.

. The LSTMmodel, while accurate, incurs higher computational overhead during training
and interference compared to simpler models, making it less ideal for lightweight
environments.

Constraints

. The evaluation was based on simulated and controlled test beds, which may not fully
reflect the unpredictable behaviour of real-world IoT deployments.

. Network variability and heterogeneous hardware diversity in real deployments could
introduce deviations from the observed performance patterns.

. The system has been tested primarily for healthcare monitoring scenarios. While results
are promising, further domain-specific adaptations may be required for other sectors
such as industrial IoT or smart cities.

CONCLUSION
In conclusion, this study presents a robust and scalable model that integrates ML,
specifically XGB and LSTM, within serverless, fog, edge, and cloud computing
environments to enhance IoT application performance. The primary contribution includes
the development of a dynamic resource optimization framework using ML, a comparative
evaluation of multiple computing paradigms, and the application of the model.
Experimental results demonstrate that the proposed fog-layer system, composed of two
modular clusters, significantly reduces latency and energy consumption compared to
traditional and standalone fog/cloud systems. Additionally, the use of AutoML yielded
superior performance over other ML methods in terms of accuracy and adaptability. The
architecture proves especially efficient in addressing challenges such as dynamic workload
scalability, battery limitations, and real-time responsiveness. For future work, we plan to
extend this model to include federated learning capabilities and integrate blockchain for
secure data exchange, further strengthening the model’s applicability in critical IoT
domains like smart healthcare and autonomous systems.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
. P. Jenifer conceived and designed the experiments, performed the experiments, analyzed
the data, performed the computation work, prepared figures and/or tables, authored or
reviewed drafts of the article, and approved the final draft.

Jenifer and Angela Jennifa Sujana (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3143 19/21

http://dx.doi.org/10.7717/peerj-cs.3143
https://peerj.com/computer-science/

. J. Angela Jennifa Sujana conceived and designed the experiments, performed the
experiments, prepared figures and/or tables, authored or reviewed drafts of the article,
and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

Raw data is available at Mendeley:
P, Jenifer (2025), “Dataset for QoE-aware application deployment in fog computing

environments using machine learning”, Mendeley Data, V1, doi: 10.17632/jnr5rc259f.1.
The QWS Dataset is GitHub: available at https://qwsdata.github.io/.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.3143#supplemental-information.

REFERENCES
Abdullah S, Jabir A. 2021. A lightweight multi-objective task offloading optimization for vehicular

fog computing. Iraqi Journal for Electrical and Electronic Engineering 17:66–75
DOI 10.37917/ijeee.17.1.8.

Al Ridhawi I, Aloqaily M, Boukerche A, Jaraweh Y. 2020. A blockchain-based decentralized
composition solution for IoT services. In: ICC 2020—IEEE International Conference on
Communications (ICC). Piscataway: IEEE, 1–6.

Al Ridhawi I, Aloqaily M, Kotb Y, Al Ridhawi Y, Jararweh Y. 2018. A collaborative mobile edge
computing and user solution for service composition in 5G systems. Transactions on Emerging
Telecommunications Technologies 29(1):e3446 DOI 10.1002/ett.3446.

Alatoun K, Matrouk K, Mohammed MA, Nedoma J, Martinek R, Zmij P. 2022. A novel
low-latency and energy-efficient task scheduling framework for internet of medical things in an
edge fog cloud system. Sensors 22(14):5327 DOI 10.3390/s22145327.

Aslanpour MS, Toosi AN, Cicconetti C, Javadi B, Sbarski P, Taibi D, Assuncao M, Gill SS, Gaire
R, Dustdar S. 2021. Serverless edge computing: vision and challenges. In: 2021 Australasian
Computer Science Week Multiconference, 1–10 DOI 10.1145/3437378.3444367.

Balasubramanian V, Wang M, Reisslein M, Xu C. 2019. Edge-Boost: enhancing multimedia
delivery with mobile edge caching in 5G-D2D networks. In: IEEE International Conference on
Multimedia and Expo (ICME) 2019, 1684–1689.

Brogi A, Forti S. 2017. QoS-aware deployment of IoT applications through the fog. IEEE Internet
of Things Journal 4(5):1185–1192 DOI 10.1109/JIOT.2017.2701408.

Confais B, Lebre A, Parrein B. 2020. A fog storage software architecture for the Internet of Things.
In: Advances in Parallel Computing. Amsterdam, The Netherlands: Elsevier BV, 61–105.

Deng S, Zhao H, Fang W, Yin J, Dustdar S, Zomaya AY. 2020. Edge intelligence: the confluence
of edge computing and artificial intelligence. IEEE Internet of Things Journal 7(8):7457–7469
DOI 10.1109/JIOT.2020.2984887.

Gao H, Huang W, Duan Y. 2021. The cloud-edge-based dynamic reconfiguration to service
workflow for mobile e-commerce environments: a QoS prediction perspective. ACM
Transactions on Internet Technology 21(1):1–23 DOI 10.1145/3391198.

Ghaleb M, Farag A. 2021. Towards a scalable and efficient architecture for modeling trust in IoT
environments. Sensors 21:2986 DOI 10.3390/s21092986.

Jenifer and Angela Jennifa Sujana (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3143 20/21

http://dx.doi.org/10.17632/jnr5rc259f.1
https://qwsdata.github.io/
http://dx.doi.org/10.7717/peerj-cs.3143#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.3143#supplemental-information
http://dx.doi.org/10.37917/ijeee.17.1.8
http://dx.doi.org/10.1002/ett.3446
http://dx.doi.org/10.3390/s22145327
http://dx.doi.org/10.1145/3437378.3444367
http://dx.doi.org/10.1109/JIOT.2017.2701408
http://dx.doi.org/10.1109/JIOT.2020.2984887
http://dx.doi.org/10.1145/3391198
http://dx.doi.org/10.3390/s21092986
http://dx.doi.org/10.7717/peerj-cs.3143
https://peerj.com/computer-science/

Gill SS, Tuli S, Xu M, Singh I, Singh KV, Lindsay D, Tuli S, Smirnova D, Singh M, Jain U,
Pervaiz H, Sehgal B, Kaila SS, Misra S, Aslanpour MS, Mehta H, Stankovski V, Garraghan P.
2019. Transformative effects of IoT, blockchain and artificial intelligence on cloud computing:
evolution, vision, trends and open challenges. Internet of Things 8:100118
DOI 10.1016/j.iot.2019.100118.

Hassan S, Rehman A, Hussen S, Hamam H. 2022. Design of resource-aware load allocation for
heterogeneous fog computing environments. Wireless Communications and Mobile Computing
2022:1–11 DOI 10.1155/2022/3543640.

Hayyolalam V, Aloqaily M, Ozkasap O, Guizani M. 2021. Edge intelligence for empowering
IoT-based healthcare systems. IEEE Wireless Communications 28(3):6–14
DOI 10.1109/mwc.001.2000345.

Hayyolalam V, Aloqaily M, Özkasap Ö, Guizani M. 2021. Edge-assisted solutions for IoT-based
connected healthcare systems: a literature review. IEEE Internet of Things Journal 3(12):1–9443
DOI 10.1109/JIOT.2021.3135200.

Huang J, Liang J, Ali S. 2020. A simulation-based optimization approach for reliability-aware
service composition in edge computing. IEEE Access 8:50355–50366
DOI 10.1109/ACCESS.2020.2979970.

Jiang Y-L, Chen Y-S, Yang S-W, Wu C-H. 2019. Energy-efficient task offloading for
time-sensitive applications in fog computing. IEEE Systems Journal 13:2930–2941
DOI 10.1109/jsyst.2018.2877850.

Karagiannis V, Schulte S. 2020. Comparison of alternative architectures in fog computing. In:
Proceedings of the 2020 IEEE 4th International Conference on Fog and Edge Computing (ICFEC),
Melbourne, VIC, Australia, 11–14 May 2020, 19–28.

Lu H, He X, Du M, Ruan X, Sun Y, Wang K. 2020. Edge QoE: computation offloading with deep
reinforcement learning for Internet of Things. IEEE Internet of Things Journal 7(10):9255–9265
DOI 10.1109/JIOT.2020.2981557.

Ni J, Zhang K, Lin X, Shen X. 2017. Securing fog computing for Internet of Things applications:
challenges and solutions. IEEE Communications Surveys & Tutorials 20(1):601–628
DOI 10.1109/COMST.2017.2762345.

Omoniwa B, Hussain R, Javed MA, Bouk SH, Malik SA. 2018. Fog/edge computing-based IoT
(FECIoT): architecture, applications, and research issues. IEEE Internet of Things Journal
6(3):4118–4149 DOI 10.1109/jiot.2018.2875544.

Rahman MS, Khalil I, Atiquzzaman M, Yi X. 2020. Towards privacy-preserving AI-based
composition framework in edge networks using fully homomorphic encryption. Engineering
Applications of Artificial Intelligence 94:103737 DOI 10.1016/j.engappai.2020.103737.

Singh J, Singh P, Gill SS. 2021. Fog computing: a taxonomy, systematic review, current trends and
research challenges. Journal of Parallel and Distributed Computing 157:56–85
DOI 10.1016/j.jpdc.2021.06.005.

Wang R, Lu J. 2021. QoS-aware service discovery and selection management for cloud-edge
computing using a hybrid meta-heuristic algorithm in IoT. Wireless Personal Communications
126(3):2269–2282 DOI 10.1007/s11277-021-09052-4.

Zhu Q, Si B, Yang F, Ma Y. 2017. Task offloading decision in fog computing system. China
Communications 14:59–68 DOI 10.1109/CC.2017.8233651.

Jenifer and Angela Jennifa Sujana (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3143 21/21

http://dx.doi.org/10.1016/j.iot.2019.100118
http://dx.doi.org/10.1155/2022/3543640
http://dx.doi.org/10.1109/mwc.001.2000345
http://dx.doi.org/10.1109/JIOT.2021.3135200
http://dx.doi.org/10.1109/ACCESS.2020.2979970
http://dx.doi.org/10.1109/jsyst.2018.2877850
http://dx.doi.org/10.1109/JIOT.2020.2981557
http://dx.doi.org/10.1109/COMST.2017.2762345
http://dx.doi.org/10.1109/jiot.2018.2875544
http://dx.doi.org/10.1016/j.engappai.2020.103737
http://dx.doi.org/10.1016/j.jpdc.2021.06.005
http://dx.doi.org/10.1007/s11277-021-09052-4
http://dx.doi.org/10.1109/CC.2017.8233651
http://dx.doi.org/10.7717/peerj-cs.3143
https://peerj.com/computer-science/

	Quality of experience-aware application deployment in fog computing environments using machine learning
	Introduction
	Related works
	Methodology
	Results and discussion
	Analysis of results
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

