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ABSTRACT
We propose a novel hybrid nature-inspired feature selection algorithm that unifies
update mechanisms from Grey Wolf Optimizer (GWO), Artificial Bee Colony
(ABC), and Bat Algorithm (BA). The resulting framework enables optimized
machine learning models for precise grape moisture estimation from radio frequency
(RF)-sensed data, addressing key challenges in smart agriculture. Performance is
assessed in two phases: (1) pairing the feature selection method with a gated
recurrent unit (GRU) model and comparing it against benchmark optimizers, and
(2) integrating it with a customized convolutional neural network variant (CNN-R)
designed for regression. The proposed feature selection technique demonstrates
superior performance across all evaluation metrics. When combined with GRU, it
achieves significantly lower root mean square error (RMSE) and mean absolute error
(MAE) alongside a higher R2 (best-case: 0.999) compared to benchmark methods.
With CNN-R, it maintains equally competitive results, validating its
architecture-independent effectiveness. Crucially, the study shows that convolutional
neural network (CNN), when adapted through CNN-R, can rival traditional
regression models like GRU on numerical data.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Optimization Theory and
Computation, Neural Networks
Keywords Remote sensing, Nature inspired feature selection, Deep neural networks,
Gated recurrent units, Convolutional neural networks

INTRODUCTION
Precision agriculture utilizes radio frequency (RF) waves for measuring various aspects of
plants, soil and environment, thus making RF-sensing a crucial component. By leveraging
the latter, data on crop health, water consumption, stress levels, product and soil moisture
content, insect infestation, and other critical crop health indicators may be acquired in
(near) real-time. Consequently, farmers can optimize crop harvesting, pesticide use,
fertilization, and irrigation (Bouri, Arslan & Şahin, 2023; Oliveira et al., 2024).

Moisture estimation in fruits is crucial for various agricultural and industrial
applications. Accurate moisture levels can significantly influence quality control, storage,
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and processing decisions. Traditionally, RF-sensing is considered non-destructive, and a
reliable method for capturing moisture content (Altherwy &McCann, 2020). However, the
challenge lies in effectively analyzing this data to extract meaningful insights (Mohyuddin
et al., 2024).

While RF-sensing allows farmers to monitor a range of environmental parameters.The
use of machine learning frameworks can help the farmers in improving crop yields and
resource efficiency. Farmers can get information on crop health, the best times to plant,
watering needs and fertilization schedules (Mathi, Akshaya & Sreejith, 2023). The existing
methodologies often rely on machine learning models such as recurrent neural networks
(RNN) for moisture estimation, coupled with nature-inspired (NI) optimization
algorithms for feature selection. While these methods have shown promise, they often fall
short in terms of accuracy and computational efficiency. Current research has yet to fully
explore the potential of advanced deep learning architectures and enhanced optimization
techniques.

It is well known that the performance of a machine learning process, in terms of both
accuracy and computational complexity, is largely dependent upon feature extraction and
subsequent selection. While the former is typically done by training a suitable deep
learning architecture, numerous optimization algorithms have recently been developed for
efficient feature selection. The NI optimization algorithms are currently considered state-
of-the-art for features selection (Kwakye et al., 2024). However, despite the abundance of
such methods, there is no one-for-all solution due to the diversity of the dataset and the
nature of the application. As a result, researchers have to look for the most suitable options
for their target application, thereby creating a room for further exploration and
innovation.

The aim of this study is to address the aforementioned limitations by developing a novel
framework that leverages a customized convolutional neural networks (CNN) architecture,
specifically tailored for regression-based tasks, since they inherently suit the classification
problems in image-based applications (Kattenborn et al., 2021). Furthermore, we propose
a mutation-enhanced hybrid optimization algorithm, which takes inspiration from
collaborative hunting behavior of the Grey Wolf Optimizer (GWO) algorithm (Mirjalili,
Mirjalili & Lewis, 2014; Mishra & Goel, 2024). The primary difference between the
proposed and the original GWO algorithms becomes visible when two of the best three, a,
b and d, wolves (representing the best solutions in an iteration), are replaced by bees and
bat from the Artificial Bee Colony (ABC) (Abu-Mouti & El-Hawary, 2012; Katipoğlu,
Mohammadi & Keblouti, 2024) and Bat Algorithm (BA) (Yang & Hossein Gandomi, 2012;
Jamei et al., 2024) respectively. This update allows the proposed mechanism to leverage
foraging and echolocation principles from the two algorithms, respectively. In order to
avoid the problem of being stuck in the local minima, further diversity is introduced by
incorporating a mutation of the genetic algorithm (GA) (Mahmud et al., 2024). We will
demonstrate that the proposed optimization algorithm improves feature selection and
overall model performance in the sections to come.

Our approach is divided into two main parts. First, we benchmark various
nature-inspired optimization algorithms with gated recurrent unit (GRU)
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(Dey & Salem, 2017; Akilan & Baalamurugan, 2024) model, and evaluate their
performance using root mean square error (RMSE), mean absolute error (MAE), and R2

metrics. The reason for selecting the GRU model stems from our previous work in which
the GRU model outperformed long short-term memory (LSTM) (Yu et al., 2019),
bidirectional LSTM (BI-LSTM) (Huang, Xu & Yu, 2015), GoogleNet (Szegedy et al., 2015)
and RESNET-50 (He et al., 2016) models for the similar application on the same dataset
(Altherwy et al., 2024). In the second part, we introduce the proposed optimization
algorithm, and pair it with GRU and our customized convolutional neural network variant
(CNN-R) model in turn, and demonstrate significant improvement in fruits’ moisture
estimation accuracy. Thus, the main contributions of this work are summarized as follows:

1. We develop a customized CNN architecture for regression tasks in moisture estimation.

2. We propose a mutation-enhanced hybrid optimization algorithm named Hybrid
Predator Algorithm (HPA), for superior features selection.

3. We empirically validate the proposed methods, showing improved performance
compared to the existing approaches.

The rest of the article is organized as follows: Background and related work are
discussed in ‘Related Work’. ‘Methods’, summarizes the materials and methods used in
this work, which include the dataset and algorithms. The proposed framework is presented
in ‘Proposed NI Algorithm and CNN-R’. Simulation results and statistical analysis are
given in ‘Results’, before we conclude the study in ‘Conclusion’.

RELATED WORK
RF-sensing offers a resilient, non-destructive, and cost-effective solution for precision
agriculture by enabling continuous crop monitoring under diverse environmental
conditions. Its ability to capture rich plant and soil data without physical contact makes it
vital for early disease detection and growth analysis. However, challenges such as signal
variability, environmental noise, and high-dimensional data demand advanced machine
learning techniques to fully exploit RF-sensing capabilities. In the first part of this section,
we outline the principles of RF-sensing, its broad application potential, and its integration
with modern machine learning methods. In the second part, we review recent studies
highlighting the role of machine learning in advancing smart agriculture.

RF-sensing: principles and applications
RF-sensing is a technology that uses environmental RF signal detection to interpret certain
physical occurrences (Lubna et al., 2022). It functions according to the theory of analyzing
radio frequency electromagnetic waves. Although it has been used for many years for a
variety of purposes, such as wireless communication, radars, and security systems, the
development of artificial intelligence (AI) and the internet-of-things (IoT) has
revolutionized RF-sensing technology (Bolisetti et al., 2017). Among the many
contemporary uses of RF-sensing are occupancy, motion, and gesture detection—all of
which can be done without the use of cameras. RF-sensing technology has other beneficial
uses in agriculture, such as estimating the moisture content of different fruits, and
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noninvasive diagnostics of physiological parameters in healthcare, such as blood glucose
monitoring. We provide a brief summary of some helpful uses for this technology in
Table 1.

Table 1 summarizes various research works related to RF-sensed data, detailing their
publication year, research idea, and implementation techniques. Key points include: grass
quality estimation by Oliveira et al. (2024), which utilized a random forest algorithm to
assess the quality of grass based on RF signals (Oliveira et al., 2024). Abuhoureyah,Wong &
Mohd Isira (2024) developed a WiFi-based human activity recognition system using RNN
and LSTM networks to analyze activity patterns. Khan et al. (2023) focused on human
activity recognition, employing a combination of CNN, LSTM, and Hybrid models to
improve accuracy and efficiency. Zhang et al. (2023) estimated grain mass using multiple
variable linear regression, demonstrating the potential for RF-based agricultural
applications. Altherwy & McCann (2020), Altherwy (2022) estimated grape moisture
content with a regression model, showcasing an innovative approach to agricultural
monitoring. Hao et al. (2022) differentiated between safe and dangerous driving behaviors
using Bi-LSTM and GRU models, highlighting advancements in automotive safety.
Hameed et al. (2022) implemented an RF-based lip reading framework with the VGG16
architecture, illustrating the use of CNNs in advanced communication systems. The table
highlights the diversity of applications and machine learning techniques employed in
smart agriculture.

Selected deep learning models’ applications
The RNNs (Yu et al., 2019) and their more complex variations, LSTM, Bi-LSTM, and
GRU, are crucial for sequence-based applications and are also good for estimation. Using
memory cells and gating methods, LSTM networks preserve long-term relationships in
order to circumvent the vanishing gradient issue that limits conventional RNNs
(Sherstinsky, 2020). By gathering context from previous and future states and processing
data in both forward and backward directions, Bi-LSTM networks improve this capability
(Huang, Xu & Yu, 2015). With the forget and input gates combined into a single update
gate, GRUs are a less complex alternative to LSTMs that are computationally economical,
which frequently achieve equivalent performance (Dey & Salem, 2017). While Bi-LSTMs

Table 1 Related work regarding RF-sensed data.

Reference Year Research idea Implementation

Oliveira et al. (2024) 2024 Grass quality estimation Random Forest

Abuhoureyah, Wong & Mohd Isira (2024) 2024 WiFi-based human activity recognition RNN, LSTM

Khan et al. (2023) 2023 Human activity recognition CNN, LSTM, Hybrid

Zhang et al. (2023) 2023 Grain mass estimation Multiple variable linear regression

Altherwy & McCann (2020), Altherwy (2022) 2022 Grape moisture estimation Regression model

Hao et al. (2022) 2022 Safe and dangerous driving classification Bi-LSTM, GRU

Hameed et al. (2022) 2022 RF-based lip reading framework VGG16
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are superior in total context capture, GRUs are superior in computational efficiency, and
LSTMs are superior in long-sequence learning.

CNNs are especially good at processing images because of their capacity to
automatically learn the spatial hierarchies of features through convolutional layers
(Brahmi, Jdey & Drira, 2024). CNNs were first created for classification problems, but they
have also been effectively modified for regression-based applications and remote sensing
applications (Kattenborn et al., 2021). CNNs predict continuous values instead of discrete
classifications in various applications. Let us go through some examples of these deep
neural networks in smart agriculture to highlight their significance and impact.

Recent advancements in smart farming and precision agriculture have leveraged deep
learning and optimization techniques to enhance prediction accuracy and operational
efficiency. A particle swarm optimization (PSO)-CNN-Bi-LSTM model—a hybrid
optimization-enabled deep learning approach—for smart farming applications is
introduced in Saini & Nagpal (2024). A novel model combining Shuffled Shepherd
Optimization with attention based convolution neural network with optimized
bidirectional long short term memory (ACNN-OBDLSTM) to predict brinjal crop yield,
showcasing significant improvements in yield estimation is proposed in Rao et al. (2024).
An IoT-based prediction and classification framework utilizing adaptive multi-scale deep
networks, offering robust solutions for various smart farming challenges is developed in
Padmavathi et al. (2024). To optimize water usage, an intelligent irrigation scheduling
using a deep bidirectional LSTM technique is proposed which support sustainable
agriculture practices (Jenitha & Rajesh, 2024). An automated weather forecasting and field
monitoring system using a gated recurrent unit (GRU)-CNN model integrated with IoT,
aiming to enhance precision agriculture through accurate environmental monitoring is
proposed by Akilan & Baalamurugan (2024). Lastly, to address the critical issue of
intrusion detection in IoT-based smart farming, a hybrid deep learning framework,
ensuring secure and resilient farming operations is developed by Kethineni & Pradeepini
(2024).

Transformer-based architectures and, more recently, Mamba-based state-space models
have been developed as a result of recent developments in deep sequence modeling. For
example, SenseMamba (Huang et al., 2025b) combines Kolmogorov-Arnold Networks
(KANs) with state-space modeling to provide wireless human sensing in real-time and
with minimal overhead for a variety of activities. By incorporating dilated convolutions
and Mamba-inspired elements for reliable temporal feature extraction, BiMamba
Kolmogorov Arnold based Transformers (BiMKANsDformer) (Huang et al., 2025a).
improves on conventional transformers for water quality prediction in environmental
applications. Similar to this, RSMamba (Zhao et al., 2024) show how state-space-inspired
structures allow for precise and computationally effective analysis in tasks involving
remote sensing and visual tracking, respectively. These developments demonstrate the
increasing applicability of transformer and Mamba-based models in tasks involving
sequential, high-dimensional, or dynamic data, which encourages their use in plant disease
modeling and smart agriculture.
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NI feature selection
In machine learning, feature selection is the process of locating and choosing a subset of
pertinent characteristics from a dataset in order to enhance model performance (Theng &
Bhoyar, 2024). A number of advantages, including increased accuracy, decreased
overfitting, quicker training times, and greater interpretability, results from this approach.
Models can improve their ability to adapt to new environments, generate more accurate
predictions, and be simpler to understand by concentrating on the most important
elements (Chandrashekar & Sahin, 2014).

Techniques for NI feature selection usually prove more effective by mimicking the
natural processes. These methods search for the best answers by simulating physical,
biological, or social systems. Examples include the genetic algorithm (GA) (Mahmud et al.,
2024), which emulates the process of natural selection, Particle Swarm Optimization (PSO)
(Marini & Walczak, 2015), which is based on bird flocking behavior, Ant Colony
Optimization (ACO) (Dorigo, Birattari & Stutzle, 2006), which is based on ant foraging.
The Artificial Bee Colony (ABC) (Abu-Mouti & El-Hawary, 2012), which is modeled after
honey bee foraging; Bat Algorithm (BA) (Yang & Hossein Gandomi, 2012), which is based
on bat echolocation. The Grey Wolf Optimization (GWO) (Mirjalili, Mirjalili & Lewis,
2014), is based on the social hierarchy and hunting behavior of grey wolves, and Red Fox
Optimization (RFO) (Połap &Woźniak, 2021), which is based on red fox hunting method.
When examining vast and intricate feature regions, these techniques work very well.

By utilizing global search capabilities, adaptability, resilience, and flexibility, the NI
strategies improve machine learning performance (Singh et al., 2024). These algorithms
have an inherent tendency to avoid getting stuck in local optima, identify (near) optimal
solutions, and conduct a thorough search in the feature space. Their robustness and
flexibility enable hybridization with other methods, resulting in more effective, accurate,
and interpretable models (Abu Khurma et al., 2022). Their adaptation to complicated
contexts makes them appropriate for high-dimensional datasets.

Recent advancements in optimization algorithms have led to the development of
various hybrid techniques aimed at enhancing performance in complex problem-solving
scenarios. Dhal & Azad (2024) proposed a hybrid momentum accelerated Bat Algorithm
combined with GWO for efficient spam classification, showcasing significant
improvements in accuracy and speed. Umar et al. (2024) introduced a modified Bat
Algorithm designed to tackle complex and real-world problems with enhanced solution
quality and robustness. Lakshmiramana et al. (2024) presented a hybrid approach
integrating ACO and ABC techniques for optimal resource allocation in cognitive radio
networks, demonstrating superior resource management.

In the domain of autonomous systems, Ketafa & Al-Darraji (2024) developed the
RFO-GWO Optimization Algorithm for path planning in autonomous mobile robots,
ensuring efficient and collision-free navigation. Águila-León et al. (2024) focused on
optimizing photovoltaic systems using a GWO-Enhanced PSO algorithm to improve
maximum power point tracking (MPPT) controllers, resulting in enhanced energy
efficiency and system performance.Hu et al. (2024) applied a GA-GWOHybrid Algorithm
for scheduling container transportation vehicles in surface coal mines, achieving optimized
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scheduling and increased operational efficiency. These studies highlight the versatility and
effectiveness of hybrid NI optimization techniques in addressing a wide range of challenges
across different domains.

METHODS
This section provides insights to the data acquisition, machine learning methods and
several benchmark nature-inspired feature selection algorithms we employ for estimating
grapes moisture. Our primary focus will be on GRU as our previous study suggests better
performance in-terms of RMSE, MAE and R2 (Altherwy et al., 2024). This is the primary
reason of using feature selection techniques with GRU, but we will also see the impact of
our proposed HPA technique with LSTM and Bi-LSTM. We specifically focus on two
machine learning methods namely GRU and CNN, both of which have proven extremely
successful in estimation and classification tasks using numeric and imagery data
respectively. Following up, in ‘Results’, we demonstrate that our proposed novel feature
selection algorithmHPA, when combined with either machine learning model, manages to
outperform the benchmark methods in terms of estimation accuracy.

Comparison with previous work
This section briefly compares the current work with one of our previous works done
regarding grapes moisture estimation (Altherwy et al., 2024). Figure 1 presents the
comparison. The figure shows a concise P2 package from Altherwy et al. (2024). The
enhancements within the existing framework are also shown along P2 package. The first
major enhancement is in feature selection, where the techniques are increased form three
(PSO, ACO and GA) to eight including our main contribution, the HPA. Secondly, in our
previous work, we came to the conclusion of using GRU as our ML model after a detailed
performance analysis. In the current work, we retain the GRU model for our analysis, but
also introduce a customized CNN-R model tailored for the regression tasks. While this
study is independently focused on regression-based moisture estimation in fruits, it builds
on our broader exploration of nature-inspired feature selection in smart agriculture. A
prior work by the authors (Ali et al., 2025) addressed a different multiclass classification on
image based agricultural datasets, using a lighter variant of the feature selection algorithm
and a CNN with a softmax and classification head.

Dataset: acquisition and description
The dataset employed in this research is based on the experimental component of the work
presented in Altherwy (2022), Altherwy & McCann (2020). The data is collected using a
wireless sensing system from real grape clusters. Both experimental and simulation setups
were originally developed, with simulations conducted using CST Microwave Studio.
However, for this study, only experimental (real) cluster data were used.

In the experimental setup, there were nine real grape clusters. Each cluster was
suspended from a wooden rod and mechanically rotated to capture signal responses at 30
different angles. Two directional antennas were aligned, operating at a frequency band of 5
to 6 GHz. For each cluster, four separate files were generated. These files correspond to the
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scattering parameters S11, S12, S21, and S22, respectively. Each file records 1,601
frequency points for each of the 30 angles. For each frequency-angle combination, five
signal features are available: the raw complex value, dB strength, magnitude, and phase in
both radians and degrees.

The moisture and sugar content of each grape cluster are summarized in Table 2.
Although the original dataset includes both experimental and simulated data, this study

exclusively uses the experimental measurements for model development and evaluation.
To facilitate data exploration, the dataset is publicly available at (Roman et al., 2025).

Working with LSTM, Bi-LSTM and GRU
The choice of LSTM, Bi-LSTM, and GRU was motivated by the fact that the dataset
discussed in ‘Dataset: Acquisition and Description’ is sequential in nature. RNN with
LSTM architectures are used to identify long-term dependencies in sequential data. They

P2 section (our Previous work) Current Work

Dataset with full features 
and responses

Data preprocessing stage

PSO            ACO           GA

GRU training and deployment

Selected Features

Performance and statistical 
analysis

7 NI-FS techniques                             HPA

Comparative analysis

Feature 
Selection

RMSE, MAE, R^2

GRU training and    
deployment

CNN-R training and 
deployment

Feature 
Selection

Selected Features

Performance and 
statistical analysis

Performance and 
statistical analysis

Work

RMSE, MAE, R^2

Figure 1 Comparison with our previous work (grape moisture estimation). Full-size DOI: 10.7717/peerj-cs.3142/fig-1
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accomplish this by adding memory cells and gating mechanisms (forget, input, and output
gates) that control the information flow. These gates let LSTM models learn from lengthy
sequences and mitigate the vanishing gradient issue that plagues conventional RNN by
enabling them to maintain and update a cell state over time. Bi-LSTM networks analyze
data in both forward and backward directions, increasing the capabilities of ordinary
LSTM. Because Bi-LSTMmodels take into account both past and future information in the
sequence, this dual processing enables them to have a thorough comprehension of the
context. This is especially helpful for jobs like natural language processing, where
performance can be enhanced by context from both sides.

Another variant of RNN architecture that makes the design of LSTM simpler is the
GRU network. They blend the cell state and hidden state together and combine the input
and forget gates into a single update gate. GRU models are a popular option when
computational resources are constrained because of their simplified structure, which
usually lowers computational complexity. With our dataset in particular, they performed
well as compared to LSTM and Bi-LSTM counterparts.

Working with CNN
CNN are a class of deep learning algorithms primarily used for image and video
recognition tasks. They work by automatically learning spatial hierarchies of features
through backpropagation. CNN consists of multiple layers, each with a specific role:

1. Convolutional layers: These layers apply a set of filters (or kernels) to the input image.
Each filter slides over the input, performing a convolution operation that captures local
features such as edges, textures, and patterns. The result is a set of feature maps, which
highlight the presence of specific features in the input image.

2. Normalization and activation layers: After the convolution operation, batch
normalization is performed if required. The activation function is typically the rectified
linear unit (ReLU) function, which is applied to introduce non-linearity into the model.
This allows the CNN to learn complex patterns.

3. Pooling layers and drop out layers: These layers perform downsampling operations,
such as max pooling or average pooling, to reduce the spatial dimensions of the feature
maps. Pooling helps to reduce the computational load, memory usage, and the number
of parameters in the network, while retaining the most important information.
The dropout layer in a CNN is a regularization technique used to prevent overfitting,
improve generalization, and enhance the network’s robustness.

Table 2 Moisture/sugar content of the grape clusters.

Cluster type Content

Real Sugar 82.84 53.17 38.08 22.28 88.1 69.82 53.14 37.63 26.5

Moisture 380 233 157 95 369 282 215 150 103

Simulated Sugar 12 20 48 21.7 47 80 25 33 70

Moisture 55 98 120 92 132 190 125 160 200
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4. Fully connected layers: Towards the end of the network, fully connected layers, similar
to those in traditional neural networks, are used to integrate features extracted by the
convolutional and pooling layers. These layers contribute to the final classification or
regression tasks by mapping the high-level features into output categories.

5. Output layer: The final layer of a CNN is typically a softmax layer for classification
tasks, providing probabilities for each class label, or a linear layer for regression tasks,
providing continuous output values.

Benchmark NI feature selection techniques
In this research, we employ a variety of NI optimization techniques for feature selection,
leveraging the inherent strengths of each algorithm to achieve robust and efficient
selection. The GA is known for its ability to explore a vast search space through crossover
and mutation, making it suitable for identifying optimal feature subsets. ACO mimics the
foraging behavior of ants and excels in discovering high-quality solutions through
pheromone trails, making it effective for feature selection in complex datasets. PSO,
inspired by the social behavior of birds, efficiently navigates the search space by
considering both individual and collective experiences, ensuring rapid convergence to
optimal feature sets. The ABC algorithm utilizes the foraging behavior of bees to balance
exploration and exploitation, resulting in a comprehensive feature selection process. The
RFO algorithm, based on the hunting strategy of red foxes, introduces a unique perspective
on optimization by emphasizing strategic moves and adaptability. The BA leverages
echolocation to dynamically adjust the search process, making it highly adaptable to
varying feature landscapes. Lastly, the GWO emulates the leadership hierarchy and
hunting mechanism of grey wolves, offering a balanced exploration and exploitation
strategy. By incorporating these diverse and NI optimization techniques, we ensure a
thorough and multifaceted approach to feature selection, enhancing the overall
performance and robustness of the model.

While the proposed NI algorithm takes inspiration from a subset of these benchmark
algorithms, we carry out its thorough comparison with each of them. The latter−based on
estimation accuracy measured in terms of RMSE, MAE and R2−is detailed in ‘Results’.

PROPOSED NI ALGORITHM AND CNN-R
This section begins with the description of the proposed NI algorithm for feature selection.
We discuss its origin, present its through mathematical model followed by highlighting its
convergence conditions and complexity analysis for a fair comparison with the benchmark
algorithms. The second part of the section discusses how we tailor the CNN to suit a
regression-based task. We name the resulting model CNN-R.

Proposed NI feature selection
Inspiration
The proposed NI feature selection algorithm named onwards as Hybrid Predator
Algorithm (HPA), takes its inspiration from the GWO algorithm. In order to ensure
comprehensive exploration while concentrating on favorable regions, GWO constantly
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modifies its search method using a leadership hierarchy. Faster convergence and increased
efficiency are facilitated by its straightforward parameter setting, which minimizes the
need for tedious adjustment. Furthermore, GWO’s resilient and broadly applicable
methodology allows it to efficiently manage a wide range of data distributions, yielding
better performance measures including reduced RMSE, MAE, and increased R2 values.
Courtesy to our exhaustive simulations, we conclude that its hierarchical search strategy
enables the GWO algorithm to align well with the layered structure of the CNN, and,
hence, outperform its counterparts in effective feature selection.

On the other hand, the GRU networks demand fine-tuning of temporal
dependencies, for which exploration of the GWO approach does not prove effective. This
usually leads to suboptimal performance in capturing temporal dependencies. In such
situations, BA and ABC algorithms prove more effective with their dynamically adjusting
search strategies, which helps in optimizing the recurrent connections in the GRU
networks (Ahmad et al., 2024).

HPA mainframe
The mainframe of the HPA is structured on the GWO’s template. The latter is a
meta-heuristic algorithm, in which the best three solutions represent the alpha, beta and
delta wolves leading the pack in a hunt. Initialization, exploration, and exploitation are the
three main phases that make up the GWO algorithm.

The initial grey wolf population is created randomly within the search space during the
initialization phase. Every wolf stands for a potential fix for the optimization issue. These
wolves’ locations are represented in the solution space as vectors. The exploration phase is
similar to how wolves scout their surroundings in order to find prey. Wolves positions are
updated in accordance with the relative positions of alpha, beta, and delta wolves. During
the exploitation phase, the wolves systematically converge toward the best solutions
identified thus far. The alpha, beta, and delta wolves take the lead in this process,
employing a refined, greedy strategy to enhance the search for the optimal solution. By
continuously updating their positions to be closer to the leading wolves, the pack
effectively narrows the search space, allowing for a more precise and focused optimization
of the candidate solutions.

The alpha wolf signifies the best solution discovered up to that point, guiding the overall
direction of the search process. The beta wolf, representing the second-best solution, assists
the alpha in steering the search, offering additional guidance to maintain diversity. The
delta wolf, as the third-best solution, supports both the alpha and beta wolves, helping to
prevent premature convergence by exploring other promising regions of the search space.
The position update mechanism involves calculating the new positions based on the
weighted influence of the alpha, beta, and delta wolves. The final position update for a wolf
is the average of the influences from these three leaders. Ahmad et al. (2024), succinctly
summarize the GWO framework and points out its strengths.

Adaptation
The HPA is a merger of three NI-FS techniques, GWO, ABC and BA, along with mutation
process adopted from the GA. As stated earlier, the mainframe of the proposed scheme is
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the same as of the GWO algorithm, whereas, the other algorithms are integrated as the
position update components within. This way, while the GWO component ensures
suitability with the CNN model, the other algorithms take the lead when coupled with the
GRU model. These algorithms were chosen for hybridization due to their complementing
skills in navigating high-dimensional search environments and their ability to successfully
strike a balance between exploration and exploitation.

GWO offers a strong search mechanism that directs the search toward favorable areas of
the solution space by using the alpha, beta, and delta wolves, which stand in for the best
solutions in the population. Effective exploration and exploitation are ensured by this
hierarchical structure, which makes GWO especially well-suited for optimization tasks
involving static feature selection.

The dynamic search capabilities of ABC and BA, which modify the search method in
real-time, led to their incorporation. GWO is effective at selecting static features, but it is
not always able to capture dynamic temporal dependencies, which are crucial for recurrent
models such as GRU networks. Adaptive search algorithms are used by ABC and BA to
overcome this constraint, enabling HPA to effectively handle intricate, non-linear
correlations in the data.

Distinct from conventional metaheuristic feature selection techniques, which are often
designed for classification or static data modeling, HPA is specifically designed for
regression tasks with nonlinear, dynamic dependencies. This hybridization strategy
combines structured exploration (GWO), dynamic foraging (ABC), and velocity-based
adaptation (BAT) and is novel in the context of regression based tasks and allows for
superior convergence and robustness.

Through the hybridization of these algorithms, HPA is able to use the adaptive search
capabilities of ABC and BA for more dynamic tasks while simultaneously leveraging
GWO’s stable exploration for feature selection. Improved feature selection performance is
the outcome of this synergy for a variety of models and datasets, including RF-sensed data.

Upon confirming these attributes through preliminary simulations, we arrive at a
unique hybrid of these algorithms that enjoys the best of both worlds—discussed next.

Iterative optimization is the foundation of HPA’s feature selection procedure. Each
wolf’s location serves as a candidate solution in the form of a feature subset at the center of
this procedure. By using the chosen features to train a regression model (such as linear
regression) and computing the RMSE between the predicted and actual values, the fitness
of each solution is assessed. Because the wolf locations are adjusted to reduce the RMSE,
this procedure guarantees that only the most pertinent features are chosen.

GWO’s hierarchical leadership structure, in which the alpha, beta, and delta wolves
direct the solution space’s exploration and exploitation, serves as the basis for the position
updates. Furthermore, the search dynamics brought about by ABC and BA guarantee that
the algorithmmaintains its quest for the globally optimal feature set without being stuck in
local optima.

HPA can effectively handle high-dimensional feature spaces by utilizing this hybrid
optimization technique, which makes it possible to computationally choose the best
feature set for RF-sensed data. The method works especially well for regression tasks where
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accuracy and resilience are crucial since it can adjust to both static and dynamic
dependence.

The HPA algorithm uses several techniques that are included into its architecture to
alleviate the curse of dimensionality. Initially, HPA uses the advantages of ABC for
dynamic candidate solution refinement, BAT for adaptive local search, and GWO for
structured exploration during the feature selection process. By methodically removing
superfluous or irrelevant features, these complementing techniques lower the complexity
of the dataset without sacrificing its quality.

Second, HPA uses a fitness function designed to maximize regression performance
metrics like RMSE, as seen by the goal function’s use of linear regression (fitlm). Each
feature subset is assessed according to how well it predicts the response variable, and subsets
that are either too big or ineffective in lowering the RMSE are penalized. The algorithm is
pushed toward more condensed and significant feature subsets by this implicit penalization,
which discourages high-dimensional solutions. Third, the meta-heuristic parallelizable
structure of the algorithm maintains computing efficiency while enabling iterative
convergence behavior to efficiently traverse large search spaces associated with
high-dimensional data. This particular combination of optimizers with a regression-driven
fitness strategy and parallelizable architecture has not, as far as we are aware, been
integrated into any existing approach in the field of RF-sensed regression tasks. This
positions HPA as a unique and scalable solution for high-dimensional regression problems.

Finally, research indicates that on RF-sensed datasets, HPA performs better than
benchmark techniques. Specifically, HPA continuously yields higher R2 values, lower
RMSE, and lower MAE even as the feature space expands in size. These features
demonstrate how HPA may effectively balance dimensionality reduction and model
accuracy, making it dependable and scalable for high-dimensional data issues.

Figure 2 presents the basic flow and processing of the HPA. The variables X1 through
X9, which are obtained from the different mechanisms of the GWO, ABC, and BA,
indicate various positions calculated during the hybrid optimization process. In particular,
the GWO mechanism is used to compute X1, X4, and X7, the ABC mechanism is used to
compute X2, X5, and X8, and the BA method is used to compute X3, X6, and X9. A binary
vector that represents a subset of features is represented by each of these variables; each bit
in the binary vector indicates whether a feature is excluded (0) or selected (1) from the
feature set. These variables are important because they can be iteratively optimized to find
the most pertinent features for the regression problem.

Based on the outcomes of these mechanisms, the algorithm calculates three new
positions (P1, P2, and P3) at each iteration. In order to keep the most pertinent features
throughout the various optimization techniques, the final position is then calculated by
taking the element-wise minimum of these three positions. By ensuring that only the best
features are kept, this step reduces dimensionality and enhances model performance.
Because they enable the feature subset to be refined over several iterations and let the HPA
handle high-dimensional RF-sensed data, X1 through X9 are crucial to the feature
selection process. The detailed explanation of process with mathematical representation of
HPA’s crucial stages is explained below.
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The process begins by initializing a random population of wolves according to Eq. (1):

wolvesi;j � Bð0:5Þ; for i ¼ 1; . . . ; num wolves; j ¼ 1; . . . ; num samples (1)

Each element wolvesi;j in the initialization matrix is independently sampled from a
Bernoulli distribution with a success probability of 0.5. The initial population goes through
a fitness evaluation test. Equation (2) presents the fitness test in terms of RMSE:

RMSEðwolvesiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
k¼1
ðŷk � ykÞ2

vuut : (2)

Following the fitness evaluation, the solutions are sorted based on RMSE ðwolvesiÞ in
ascending order, where awolf is termed the best, bwolf the second best, and dwolf the third
best. They are then subjected to an iterative position update, mutation and fitness
evaluation process. The technique uses the main optimization loop and computes 9 new
position variables X1 through X9. X1, X4, X7 use the main GWO position calculation
mechanism while X2, X5 and X8 use the ABC mechanism and X3, X6 and X9 use the BA
procedure respectively, as given by Eq. (3).

X1;4;7 ¼ fwolf ;j � A1 � C1 � fwolf ;j � wolvesi;j
�� ��;

X2;5;8 ¼ wolvesi;j þ f1 � wolvesi;j � zwolf ;j

� �
;

X3;6;9 ¼ wolvesi;j þ f3 � fwolf ;j � wolvesi;j
� �þ velocitiesi;j

� 	
:

(3)

Here, the term fwolf ;j denotes a reference point derived from the leadership hierarchy
within the population, selected based on the update index:

fwolf ;j ¼
awolf ;j if X1;6;8;
bwolf ;j if X2;4;9;
dwolf ;j if X3;5;7;

8<
:

. X1;4;7: Positions updated via the GWO strategy.

. X2;5;8: Positions adjusted using the ABC method.

. X3;6;9: Positions refined through the BA formulation.

. awolf ;j, bwolf ;j, dwolf ;j: Represent the top three agents (alpha, beta, delta) guiding the
optimization in dimension j.

. A1, C1: Random modulation factors that influence exploration in GWO.

. f1: Scaling coefficient applied in the ABC update mechanism.

. f3: Scaling parameter used in the BA strategy.

For exploitation, three position variables, Pos1, Pos2 and Pos3 are computed by taking
averages of different combinations of GWO, ABC and BA− as done in the GWO
framework. This is given by Eq. (4):

P1 ¼ X1þX2þX3
3 ;

P2 ¼ X4þX5þX6
3 ;

P3 ¼ X7þX8þX9
3

(4)
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Algorithm 1 Proposed nature-inspired hybrid optimization algorithm (HPA).

Require: objective_function: Evaluation function to be minimized
1: num_samples: Dimensionality of the feature space
2: lb: Lower bounds for each feature
3: ub: Upper bounds for each feature
4: num_wolves: Population size
5: max_iterations: Maximum number of search cycles
Ensure: selected_samples: Best solution identified
6: rmse: Fitness score of selected solution
7: wolves InitializeWolves(num wolves, num samples)
8: UpdateWolves(wolves, objective function, lb, ub) . Initial fitness

evaluation
9: SortWolves(wolves, objective function)
10: for iteration ¼ 1 to max iterations do
11: a 2� iteration � ð2=max iterationsÞ
12: for i ¼ 1 to num wolves do
13: UpdatePosition(wolves[i], alpha wolf , beta wolf , delta wolf , a, lb, ub)
14: end for
15: UpdateWolves(wolves, objective function, lb, ub)
16: SortWolves(wolves, objective function)
17: end for
18: Return a wolf as selected_samples and its fitness as rmse

Algorithm 2 UpdatePosition with velocity-driven movement.

1: procedure UPDATEPOSITION (wolf, alpha wolf , beta wolf , delta wolf , a, lb, ub)
2: for j ¼ 1 to num samples do
3: % Grey Wolf dynamics
4: X1 alpha wolf ½j� � A1 � jC1 � alpha wolf ½j� � wolf ½j�j þ velocities½i�½j�
5: X4 beta wolf ½j� � A1 � jC1 � beta wolf ½j� � wolf ½j�j þ velocities½i�½j�
6: X7 delta wolf ½j� � A1 � jC1 � delta wolf ½j� � wolf ½j�j þ velocities½i�½j�
7: % Artificial Bee Colony-like perturbation
8: X2 wolf ½j� þ f � ðalpha wolf ½j� � wolf ½j�Þ þ velocities½i�½j�
9: X5 wolf ½j� þ f � ðbeta wolf ½j� � wolf ½j�Þ þ velocities½i�½j�
10: X8 wolf ½j� þ f � ðdelta wolf ½j� � wolf ½j�Þ þ velocities½i�½j�
11: % Bat-inspired velocity and update
12: beta randðÞ
13: velocities½i�½j�  velocities½i�½j� þ ðdelta wolf ½j� � wolf ½j�Þ � beta
14: max velocity 1
15: velocities½i�½j�  maxð�max velocity;minðvelocities½i�½j�;max velocityÞÞ
16: X3;X6;X9 wolf ½j� þ velocities½i�½j�
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Among these three position variables, the minimum is selected for each feature j of each
wolf i using Eq. (5):

wolvesi;j ¼ min P1;P2; P3ð Þ (5)

which then goes through mutation, Eq. (6). In this equation, the terms l and e represents
mutation probability and mutation strength respectively. The wolves positions are
bounded by the boundary handling (bounded at lb = 0, ub = 1) Eq. (7), and binary
quantization (thresholding at 0.5) is given by Eq. (8):

wolvesi;j ¼ wolvesi;j þ e � ðrandðÞ � 0:5Þ if randðÞ < l (6)

wolvesi;j ¼ maxðminðwolvesi;j; ubjÞ; lbjÞ (7)

Algorithm 2 (continued)

17: % Averaged hybrid candidate positions
18: P1 ðX1þ X2þ X3Þ=3
19: P2 ðX4þ X5þ X6Þ=3
20: P3 ðX7þ X8þ X9Þ=3
21: % Select the most promising estimate
22: wolf ½j�  minðP1;P2; P3Þ
23: % Random mutation step
24: if rand() < l then
25: e 0:01
26: wolf ½j�  wolf ½j� þ e � ðrandðÞ � 0:5Þ
27: end if
28: % Enforce boundary limits
29: wolf ½j�  maxðminðwolf ½j�; ub½j�Þ; lb½j�Þ
30: % Thresholding to binary selection
31: wolf ½j�  1 if wolf ½j� > 0:5, 0 otherwise
32: end for
33: fitness objective functionðwolf Þ
34: return fitness
35: end procedure

Algorithm 3 Fitness evaluation for entire population.

1: procedure UPDATEWOLVES (wolves, objective function, lb, ub)
2: for i ¼ 1 to num wolves do
3: fitness values½i�  UpdatePosition(wolves[i], alpha wolf , beta wolf ,

delta wolf , a, lb, ub)
4: end for
5: end procedure
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wolvesi;j ¼ 1 if wolvesi;j > 0:5
0 otherwise



(8)

The Pseudo code for the technique is given by Algorithm 1, while the position update
rules are given by Algorithms 2 and 3.

Convergence analysis
It is generally accepted that performing convergence analysis of a NI process is arduous
and often needless. There may be multiple reasons behind this conjecture: (1) They are
often stochastic in nature, making their behaviour impossible to predict even with identical
initial conditions (Green, Aleti & Garcia, 2017). (2) They usually involve complex
interactions among multiple components, thereby creating nonlinear and unpredictable
dynamics (Shandilya, Datta & Nagar, 2023). However, the convergence criteria may be
defined, which in this case, is based on the following conditions:

1. Decreasing step size:

a must decrease linearly from 2 to 0 over iterations

2. Diversity maintenance:

• Random components r1, r2, and f ensure that the population maintains diversity

• Mutation probability ensures that new potential solutions are explored

3. Boundary handling:

Xi ¼ maxðlb;minðXi; ubÞÞ (9)

That is, the positions must be bounded within the lower and upper bounds ½lb; ub�
4. Stability and convergence:

• The algorithm should converge if the RMSE history stabilizes and does not show
significant changes over iterations

• Mathematically, the convergence condition is:

lim
k!1

f ðakÞ ¼ f ðX�Þ (10)

where k is the iteration number, ak is the position of the alpha wolf at iteration k, and X� is
the global optimum solution minimizing the RMSE

The convergence behavior of the proposed HPA algorithm, as illustrated in Fig. 3. The
first plot shows that HPA consistently achieves lower RMSE values across iterations,
indicating a faster and more stable convergence toward the optimal solution. The second
plot, which depicts the rate of change in RMSE, highlights HPA’s smooth and gradual
performance improvements with minimal fluctuations. which further emphasizes its
convergence stability. To validate these observations, we conducted multiple independent
runs, all of which confirmed HPA’s robust and consistent behavior across different
initializations. These findings affirm the reliability of HPA in high-dimensional
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optimization settings and underscore its effectiveness for regression-based feature
selection, where stable convergence is essential for performance and reproducibility.

Complexity analysis
This section provides a detailed analysis of the time complexity of the proposed HPA and
its comparison with baseline algorithms, including GWO, ABC, and BA.

The GWO serves as the foundation for the HPA, which incorporates improvements
from the ABC and BA. Although new position update calculations are included, they are
carried out using the same iteration framework and are linear in relation to the number of
samples and wolves.

Initialization phase:

Oða� bÞ þ Oða� f ðbÞÞ;
where a is the population size, b is the number of features, and f ðbÞ is the complexity of
fitness evaluation.

Iterative optimization phase:
The primary components of the iterative phase are:

. Position updates using GWO as the foundational framework: Oða� bÞ,

. Enhancements from ABC and BA, implemented as linear operations: Oð2� a� bÞ,

. Combination, mutation, and binary discretization: Oð5� a� bÞ,

. Fitness evaluation and leader updates: Oða� f ðbÞÞ þ Oða log aÞ.
The total complexity per iteration is:

Oða� ð8� bþ f ðbÞÞ þ a log aÞ:
Several linear operations carried out during position updates, combinations, and

improvements are combined to provide the constant factor “8” in this case. The “8” offers a
thorough analysis of these contributions, but it’s crucial to remember that constant
components have no bearing on the asymptotic growth rate. Therefore, in theoretical
terms, the complexity remains Oða� ðbþ f ðbÞÞ þ a log aÞ, comparable to GWO.

For max_iterations iterations, the overall complexity is:

Oðmax iterations� a� ð8� bþ f ðbÞ þ log aÞÞ:
Table 3 provides a comparative analysis of the time complexities of HPA and the

baseline algorithms.

Table 3 Comparison of time complexities of HPA and baseline algorithms.

Algorithm Per-iteration complexity Overall complexity

GWO Oða � ðbþ f ðbÞÞ þ a log aÞ O(max_iterations�a � ðbþ f ðbÞ þ log aÞÞ
ABC Oða � bþ a � f ðbÞÞ O(max_iterations�a � ðbþ f ðbÞÞÞ
BA Oða � bþ a � f ðbÞÞ O(max_iterations�a � ðbþ f ðbÞÞÞ
HPA Oða � ð8 � bþ f ðbÞÞ þ a log aÞ O(max_iterations�a � ð8 � bþ f ðbÞ þ log aÞÞ
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According to Table 3, the temporal complexity of HPA remains comparable to GWO.
The computational overhead introduced by the ABC and BAT components is negligible.
These enhancements do not require new loops or higher-order dependencies, thus
preserving the algorithm’s computational efficiency.

Customized CNN-R model architecture
The backbone of CNN-R is identical to the one used in Ali et al. (2025), except for the final
layers tailored for regression tasks. With 17 layers and 16 connections, the customized
CNN-R model architecture perfectly balances computational economy and performance.
As shown in Fig. 4, the architecture consists of three primary layer combinations (LC1,
LC2, and LC3). Convolutional, batch normalization, and ReLU layers are among these
combinations; pooling, dropout, and fully connected layers come next. Every component is
designed to improve the model’s training effectiveness, generalization ability, and
accuracy.

Every layer in the CNN-R architecture is essential to enhancing the performance of the
model. In order to adapt dynamically to different datasets and reduce computing costs, the
input layer is designed to support feature combinations produced during the feature
selection process. Different levels of characteristics are captured by the layer combinations
LC1, LC2, and LC3, which use convolutional layers with filter widths of 64, 128, and 256,
respectively. In order to recognize complex patterns, ReLU activation functions
incorporate non-linearity, whereas batch normalization standardizes inputs to stabilize
and speed up training. Following LC2, dropout layers with a 0.5 probability improve
generalization by avoiding overfitting, while max pooling minimizes computational
expenses and spatial dimensions while preserving crucial information.

To determine how max pooling and average pooling affected regression performance
indicators, particularly RMSE, a study of the CNN-R model’s pooling layers was carried

Image Input 
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LC 1 LC 2

Max 
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Layer

LC 3 FC 1 FC 2

Regression 
Layer

Customized CNN-R

Sub layer Information : Convolution            
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Figure 4 Customized CNN-R architecture. Full-size DOI: 10.7717/peerj-cs.3142/fig-4
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out. Two CNN-R architectures were created, one with a max pooling layer and the other
with an average pooling layer, in order to determine the effect of layer variation. Superior
RMSE values (0.083 vs. 0.095) demonstrated that max pooling, which chooses the
maximum value from feature regions, performed noticeably better than average pooling.
The ability of max pooling to highlight important features which are essential for high
precision tasks is credited with this superiority. On the other hand, average pooling
resulted in somewhat low performance even if it provided smoother feature
representations. The CNN-R model’s preference for max pooling is confirmed by the
RMSE results, which indicate that it is the best option for applications requiring accurate
feature extraction.

Compared to deeper networks like GoogLeNet or ResNet-50, the CNN-R model’s small
and effective architecture provides a number of design advantages. Combinations of layers
that are stacked preserve accuracy while using less computing power and training time.
Using 1 × 1 kernels allows for extensive feature extraction with a modest processing
overhead. The model’s ability to identify different patterns is improved by the hierarchical
filter organization in LC1, LC2, and LC3, and its generalization ability is further increased
by the addition of dropout and batch normalization layers.

Despite being simpler, the CNN-R model exhibits competitive accuracy and training
speed when compared to typical CNN architectures. For real-time applications or
resource-constrained contexts where computational efficiency is essential, its tailored
architecture is perfect. Combining the CNN-R model with the HPA yields estimation
accuracy comparable to the GRU, as shown in ‘Results’, which makes it appropriate for
numeric datasets.

Combined framework
The proposed framework is shown in Fig. 5. It consists of three major parts: The first part
describes the machine learning implementation without the use of any feature selection
technique. In initialization stage, the dataset is accessed. For supervised learning, the
response value is identified by computing the dielectric properties derived from
S-parameters, following the method described by Altherwy & McCann (2020). In data
pre-processing stage, the data is normalized and training (TD) and testing (TSD) data are
identified. Three deep learning models, LSTM, Bi-LSTM and GRU are trained and tested
with training and testing data, and predictions are made. During this process, the
hyperparameters for these three models are kept same for consistency and fairness.
Predictions are made by these models, and performance is evaluated in-terms of the
selected performance metrics. The best performing model is selected for further analysis in
the second part.

In second part, labeled as Feature Selection with NI-FS technique in Fig. 5, the NI
feature selection techniques are incorporated after the pre-processing stage, and best
features are selected against each technique. Subsequently, a sub dataset is created
comprising the best features and corresponding responses. The best model from part 1 is
used with the same hyperparameter configurations. In this step, seven benchmark NI
feature selection techniques are used, the model is trained and tested with sub dataset
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obtained with each technique, and the performance is evaluated. The HPA is then
integrated within this step and the process is repeated to get the performance metric. The
statistical analysis is subsequently performed.

In third part, the customized CNN model, described in Fig. 4, is deployed after
reshaping the data obtained from the sub-dataset. The hyperparameters for the CNN-R
model are identified, the model is trained and tested to get the performances parameters,
and statistical analysis is performed. The comparative analysis among the results of part 2
and part 3 are also performed to see the impacts on performance gains in terms of RMSE,
MAE and R2. The process gives us insights of any impacts of switching from GRU (the best
performing model) to CNN-R.

The hyperparameter settings for the benchmark feature selection techniques along with
HPA are shown in Table 4.

The hyperparameter settings for ML model simulations are given in Table 5.
The number of neurons is kept at 2,000. The execution environment is set to ‘GPU’.

GTH stands for gradient threshold, where ILR, LRDP and LRDF are initial learning rate,
learning rate drop period, and learning rate drop factor, respectively. OPT stands for
optimizer which is set to ADAM. The layered structure of the LSTM, Bi-LSTM and GRU
are kept same as used in the baseline work (Altherwy et al., 2024).
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RESULTS
In this section, we discuss the results of the feature selection framework for grape moisture
estimation. The framework is implemented in MATLAB 2022A (The MathWorks, Natick,
MA, USA), on a system with INTEL CORE i7 processor and 32 GB RAM, equipped with
NVIDIA TESLA K40 GPU. To evaluate the framework we compute performance metrics,
namely RMSE, MAE and R2 values. The optimizers are used for feature selection and then
we use two ML models for moisture estimation.

Feature subset size and efficiency evaluation
In this section, we evaluate the feature subset size and the run-time efficiency of the
benchmark feature selection techniques, including ABC, BAT, GWO, and HPA. Table 6,
tells the details about selected feature subset by HPA along with individual benchmark
techniques contributing in the design of HPA. Table 7, presents the elapsed time for
processing feature selection technique in main pipeline.

The percentage reduction in features is calculated based on the initial number of
features (48,030), indicating the extent of dimensionality reduction achieved by each
technique. As seen, GWO and HPA result in significant reductions, selecting only a small
fraction of the original feature set.

Table 7, provides insights into the computational time required for each feature
selection technique. While ABC and BAT are relatively efficient, with run-times of
approximately 140 s, HPA requires 161 s comparable to GWO. The GWO took 149 s for
execution.

These run-time values correlate with the computational complexity of the algorithms, as
higher-dimensional search spaces typically require more time for exploration. The HPA
algorithm, being a hybrid, involves more complex operations due to its integration of
multiple techniques, explaining its higher run-time but still comparable with GWO.

Table 4 Hyperparameter settings for benchmark feature selection techniques.

Algorithm Population size Max iterations Other key hyperparameters

ABC 20 employed bees 100 —

ACO 20 ants 100 a ¼ 1, b ¼ 2, pheromone evaporation = 0.5, initial pheromone = 0.1

BAT 20 bats 100 A0 ¼ 0:5, decay a ¼ 0:5, emission rate c ¼ 0:5

GA 20 individuals 100 generations Crossover = 0.8, mutation = 0.01

PSO 20 particles 100 —

RFO 20 foxes 100 —

GWO 20 wolves 100 —

HPA 20 agents 100 Hybrid of GWO, ABC, and BAT strategies

Table 5 Hyperparameters for the proposed LSTM/GRU and CNN-R framework.

Framework Epoch GTH ILR LRDP LRDF Optimizer

LSTM/Bi-LSTM/GRU 100 1 Piecewise 50 0.5 Adam

CNN-R 100 N/A 0.001 N/A N/A Adam
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In Table 6, we see that GWO and HPA result in a substantial reduction in feature size,
achieving 93% and 95% feature reduction, respectively. While ABC and BAT also reduce
the feature set by about 50%, they retain more features compared to GWO and HPA.

In Table 7, the run-time performance suggests that while ABC and BAT are relatively
fast, HPA, which selects fewer features, has the comparable computational cost. This could
be attributed to the hybrid nature of HPA, which combines the strengths of multiple
algorithms, leading to higher computational cost. GWO, while reducing features
significantly, also takes considerable time, although less than HPA.

Estimation using GRU and benchmark techniques
Table 8 presents the performance metrics of the GRU model using various benchmark NI
feature selection techniques, including GA, ACO, PSO, ABC, RFO, BA, and GWO. These
results sets a benchmark for quantify our HPA’s performance.

For RMSE, the GWO technique achieves the lowest value (0.256), indicating the highest
accuracy, followed by GA (0.302) and PSO (0.308). In terms of MAE, GWO again
outperforms the other techniques with the lowest error (0.193), followed by GA (0.226)
and ACO (0.234). The R2 values indicate that GWO provides the best fit to the data
(0.928), surpassing all other techniques, with ABC (0.908) and GA (0.907) trailing behind.

These findings show that GWO, the benchmark method, is very successful in choosing
the best features for the GRU model, producing a high R2, low RMSE, and MAE. In the
next sections, we will demonstrate that HPA provides an even more efficient feature
selection procedure by hybridizing GWO, ABC, and BAT. By balancing exploration and
exploitation, HPA improves model performance by including more nature-inspired
methods, which also increases accuracy and lowers error levels.

Estimation using CNN-R and benchmark techniques
Table 9 presents the performance metrics of the CNN-R model using the benchmark NI
feature selection techniques.

Table 6 Selected feature subset size and percentage reduction.

Feature selection technique Number of selected features Percentage reduction (%)

ABC 24,045 49.99

BAT 24,064 49.98

GWO 3,381 93.02

HPA 2,417 95.03

Table 7 Run-time efficiency of feature selection techniques.

Feature selection technique Run-time (seconds)

ABC 141.8581

BAT 139.3210

GWO 149.3698

HPA 161.3247
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For RMSE, the GA technique achieves the lowest value (0.034), indicating the highest
accuracy, followed closely by BA (0.044) and ABC (0.048). In terms of MAE, ABC
outperforms the other techniques with the lowest error (0.037), followed by GA (0.057)
and ACO (0.068). The R2 values indicate that ACO provides the best fit to the data (0.999),
slightly surpassing other techniques, with GA, PSO, ABC, and BA all achieving R2 values
of 0.998.

Overall, the GA and ABC techniques demonstrate superior performance across the
RMSE and MAE metrics, making them the most effective NI feature selection techniques
for optimizing the CNN-R model in this study. The consistently high R2 values across all
techniques confirm that the CNN-R model provides an excellent fit to the data, regardless
of the specific feature selection technique used.

Performance analysis of the proposed technique (HPA)
This section’s empirical data provides a graphic representation of how HPA outperforms
the individual baseline approaches in terms of accuracy and performance, obtaining
superior performance metrics in both the CNN-R and GRU models. Figure 6 represents
the RMSE values of the ML models when integrated with benchmark and HPA. Similarly,
Fig. 7 represent the MAE statistics and Fig. 8 represents the R2 values of the ML models
when integrated with the benchmark techniques and HPA. The GRUmodel’s performance
when paired with the benchmark methods and then with the HPA shows notable variances
in terms of RMSE. With an incredibly low RMSE of 0.02, the HPA stands out and
contributes a notable improvement in model accuracy. Compared to the best among the
benchmark techniques, the HPA promises around 92% improvement in the estimation
accuracy. This investigation demonstrates the potential of hybrid optimizers in delivering
unparalleled estimation performance in the GRU models.

When taking MAE into consideration for the GRU model, the HPA leads to an
exceptionally lowMAE of 0.013, indicating a notable improvement in estimation accuracy.
With an MAE of 0.193, GWO was the best-performing traditional optimizer; by contrast,
the HPA ensures an impressive 93% improvement. Similarly, the HPA achieves almost the
perfect result of 0.999 in terms of R2, which is around 7.7% improved compared to the best
benchmark method, GWO.

Table 9 Performance metrics of CNN-R model using benchmark techniques.

Model Metric GA ACO PSO ABC RFO BA GWO

CNN-R RMSE 0.034 0.058 0.085 0.048 0.090 0.044 0.084

MAE 0.057 0.068 0.096 0.037 0.090 0.078 0.094

R2 0.998 0.999 0.998 0.998 0.997 0.998 0.997

Table 8 Performance metrics of GRU model using benchmark techniques.

Model Metric GA ACO PSO ABC RFO BA GWO

GRU RMSE 0.302 0.312 0.308 0.309 0.347 0.312 0.256

MAE 0.226 0.234 0.235 0.235 0.267 0.237 0.193

R2 0.907 0.905 0.906 0.908 0.904 0.903 0.928
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Performance analysis of the CNN-R
Considering RMSE values across various optimizers, a significant performance
improvement is evident when transitioning from the GRU model to the customized
CNN-R. For instance, the GA optimizer shows a remarkable reduction in RMSE from
0.302 with GRU to 0.034 with CNN-R, demonstrating an improvement of approximately
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Figure 6 RMSE values. Full-size DOI: 10.7717/peerj-cs.3142/fig-6
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88.7%. Similarly, the ACO optimizer reduces RMSE from 0.312 with GRU to 0.058 with
CNN-R, achieving an improvement of around 81.4%. PSO and ABC optimizers also
exhibit substantial gains, with RMSE reductions from 0.308 to 0.085 and from 0.309 to
0.048, corresponding to improvements of 72.4% and 84.5%, respectively. Even the least
effective optimizers for GRU, such as RFO and BA, show significant enhancements with
CNN-R, with RMSE decreasing from 0.347 to 0.09 and from 0.312 to 0.044, reflecting
improvements of 74% and 85.9%, respectively. The GWO optimizer with GRU
manages an RMSE of 0.256 and with CNN-R of 0.084, which shows an improvement
by about 67.2%.

The HPA, which already excels with the GRU model at an RMSE of 0.02, maintains its
high performance with the CNN-R model, achieving an RMSE of 0.082. Although, during
this transition, the proposed method does not bring about any improvement in terms of
RMSE, due to its already optimized performance, the consistently low RMSE values
highlight its robustness across different models. This analysis underscores the
transformative impact of adopting the CNN-R architecture, which consistently
outperforms the GRU model across all benchmark optimizers, achieving substantial
reductions in RMSE. It highlights the CNN-R model’s superior accuracy and predictive
performance in machine learning applications, with the HPA continuing to demonstrate
its effectiveness as a top-performing optimizer.

Similarly, considering MAE and R2 values for both GRU and CNN-R models across
various optimizers, a significant performance improvement is evident when transitioning
from the GRU model to the customized CNN-R. For instance, the GA optimizer shows a
notable reduction in MAE from 0.226 with GRU to 0.057 with CNN-R, demonstrating an
improvement of approximately 74.8%. Similarly, all the other optimizers reduce MAE and
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Figure 8 R2 values. Full-size DOI: 10.7717/peerj-cs.3142/fig-8
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increase the R2 values by a subtantial margin. The HPA, however, once again maintains
reasonable numbers against both MAE and R2 parameters.

Aditionally, A comparison of the R2 values on the training and testing data was also
carried out in order to guarantee the robustness of system and address concerns about
possible overfitting. With a very minimal difference between training and testing R2, the
model obtained nearly flawless values for both. Because there is no considerable decrease
in performance when applied to unseen data, this suggests that the model generalizes
effectively and is not overfitting. In order to confirm that the high performance is
consistent and not the consequence of overfitting to a particular subset of the data, 10-fold
cross-validation was also used to further evaluate the model’s stability across several
data splits.

In conclusion, the comparison of the GRU and CNN-R models across various
optimization techniques reveals distinct advantages and performance characteristics. The
GRUmodel, while effective, shows notable improvements in accuracy metrics (RMSE,MAE,

R2) when replaced by the CNN-R architecture. Across optimizers such as GA, ACO, PSO,
ABC, RFO, BA, GWO, and the HPA, the CNN-R consistently achieves lower error metrics
(RMSE, MAE) and higher accuracy (R2), showcasing its superior predictive capability.

Specifically, the CNN-R model demonstrates significant reductions in error metrics
compared to GRU, with improvements ranging from approximately 59% to 88.7% in
RMSE and from 51.3% to 84.8% in MAE across various optimizers. The R2 values also
exhibit improvements ranging from 7.8% to 10.9% with CNN-R consistently achieving
higher values, indicating better fit and predictive power.

Furthermore, the proposed HPA for feature selection stands out for its exceptional
performance across both GRU and CNN-R models, maintaining consistently low error
metrics and high R2 values. This underscores the effectiveness of hybrid optimization
techniques in enhancing model performance.

Analysis with previous work, LSTM and Bi-LSTM networks
The effectiveness of the HPA can be observed by having comparative analysis of our
findings with the previous work and also with models like LSTM and Bi-LSTM. Our
findings are highlighted in Table 10. In our previous work, GRU coupled with PSO
provided best results in terms of RMSE, MAE and R2 values. While the values are self-
explanatory, two important conclusions that may be drawn from the table are as follows:

1. When coupled with the proposed feature selection method, each of the three models,
LSTM, Bi-LSTM and GRU exhibit improved values of RMSE, MAE and R2.

2. Confirming our earlier claim, GRU, with and without the feature selection method
stands out among the three models.

Statistical analysis
This section presents the detailed statistical analysis by presenting ANOVA statistics in
Table 11 and box plot analysis of RMSE, MAE and R2 values in Figs. 9, 10 and 11,
respectively.
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The ANOVA results reveal significant differences in performance metrics (RMSE,
MAE, and R2) between the GRU and CNN-Rmodels across various optimizers. For RMSE,
the F-statistic of 29.57 with a p-value of 8:74� 10�5 indicates strong evidence that the

Table 10 Performance comparison of previous work (Altherwy et al., 2024) and with HPA, along
with percentage impact.

Model Previous work With HPA Percentage impact

RMSE MAE R2 RMSE MAE R2 RMSE MAE R2

LSTM 0.301 0.230 0.900 0.053 0.0403 0.997 82.39 81.30 9.7

Bi-LSTM 0.297 0.228 0.900 0.042 0.093 0.998 85.85 59.21 9.8

GRU 0.290 0.220 0.920 0.020 0.013 0.999 93.10 94.09 7.9
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Figure 9 RMSE box plot. Full-size DOI: 10.7717/peerj-cs.3142/fig-9

Table 11 ANOVA statistic table.

Parameter Source SS df MS F Prob > F

RMSE Columns 0.1681 1 0.1681 29.57 8:74� 10�5

Error 0.0796 14 0.0057

Total 0.2477 15

MAE Columns 0.0673 1 0.0673 19.70 6:00� 10�4

Error 0.0479 14 0.0034

Total 0.1152 15

R2 Columns 0.0243 1 0.0243 44.90 1:01� 10�5

Error 0.0076 14 0.0005

Total 0.0319 15
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RMSE values vary significantly across different models and their associated optimizers.
Similarly, MAE shows an F-value of 19.70 with a p-value of 6:00� 10�4, affirming
substantial differences in MAE between models. Additionally, R2 exhibits the highest
variability among the metrics, with an F-value of 44.90 and a very low p-value of

1:01� 10�5, underscoring robust differences in coefficient of determination across the
models.
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Figure 10 MAE box plot. Full-size DOI: 10.7717/peerj-cs.3142/fig-10
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Figure 11 R2 box plot. Full-size DOI: 10.7717/peerj-cs.3142/fig-11
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These findings underscore the superior predictive performance of the CNN-R model
compared to GRU across all tested metrics. The CNN-R consistently achieves lower RMSE
andMAE values, indicating more accurate predictions and reduced errors compared to the
GRUmodel. Moreover, R2 values for the CNN-Rmodel are significantly higher, suggesting
better model fit and a stronger relationship between predicted and actual outcomes. The
statistical significance of these results, as indicated by the low p-values, reinforces the
conclusion that the CNN-R architecture, along with its optimized feature selection
techniques, is better suited for tasks requiring precise and reliable predictions.

In practical terms, these insights support the preference for adopting CNN-R over GRU
in machine learning applications where accuracy and reliability are paramount. The
demonstrated improvements in predictive metrics validate the effectiveness of advanced
neural network architectures and hybrid optimization techniques, such as the one
proposed in this work, in enhancing model performance. This analysis provides a clear
statistical basis for decision-making in model selection and optimization, ensuring optimal
outcomes in real-world applications of machine learning and predictive analytics.

CONCLUSION
This research explored the performance of GRU and customized CNN-R model across
various nature-inspired optimizers for feature selection, including a novel hybrid
optimizer. Our simulation results, supported by statistical analysis, demonstrated
significant differences in prediction accuracy and model fit between the GRU and CNN-R
architectures. The CNN-R model consistently outperformed the GRU model in terms of
RMSE, MAE, and R2, achieving lower error metrics and higher coefficients of
determination across all tested optimizers.

The ANOVA results reinforced these findings, showing statistically significant
differences with p-values well below the 0.05 threshold for RMSE (0.0000874), MAE
(0.0006), and R2 (0.0000100926). These low p-values indicate that the observed
performance improvements are highly unlikely to be due to chance. Specifically, the
CNN-R model demonstrated substantial reductions in RMSE and MAE, and significant
increases in R2 values, confirming its superior accuracy and predictive power.

Most notably, the HPA exhibited exceptional performance across both models. For the
GRU model, it achieved the lowest RMSE (0.02) and MAE (0.013), and the highest R2

(0.999). When applied to the CNN-R model, it maintained its high performance with an
RMSE of 0.082, MAE of 0.082, and R2 of 0.999. Compared to the best-performing
traditional optimizer, GWO, the proposed method showed an RMSE improvement of
approximately 93%, an MAE improvement of 94%, and a 7.7% improvement in R2. These
results highlight the potential of hybrid optimization techniques in enhancing machine
learning model performance.

Despite showing encouraging results for grape moisture estimation, the suggested
framework’s applicability is currently restricted to numeric datasets. Furthermore,
explainability issues should also be taken into account to see how specific features directly
affect model decisions. Improving interpretability via feature importance analysis and
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using HPA to classification tasks with image-based datasets will be the main goals of future
research. Through this modification, the potential of HPA in feature selection optimization
for various image classification applications—particularly in the fields of remote sensing
and smart agriculture—will be investigated. We will be able to compare HPA’s
performance with state-of-the-art approaches in these future investigations by applying it
in combination with deep learning models and other sophisticated feature selection
techniques. We hope that this will provide us with a better grasp of how versatile and
successful HPA is when working with different kinds of data, including both image-based
and numeric information.

In conclusion, the CNN-R model, paired with advanced optimization techniques, offers
a robust and highly accurate alternative to traditional GRU models. This combination is
particularly advantageous for applications requiring precise and reliable predictions. Our
findings provide a strong statistical basis for adopting CNN-R and hybrid optimization
methods in future predictive analytics and machine learning research, setting a new
benchmark for model accuracy and efficiency.
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