
Delegated multi-party private set
intersections from extendable output
functions
Aslı Bay
Department of Computer Engineering, Faculty of Engineering and Natural Sciences, Antalya
Bilim University, Döşemealtı, Antalya, Turkey

ABSTRACT
Operations on sensitive datasets from different parties are essential for various
practical applications, such as verifying shopping lists or enforcing no-fly lists.
Traditional methods often require one party to access both datasets, which poses
privacy concerns. Private set operations provide a solution by enabling these
functions without revealing the data involved. However, protocols involving three or
more parties are generally much slower than unsecured methods. Outsourced private
set operations, where computations are delegated to a non-colluding server, can
significantly improve performance, though current protocols have not fully leveraged
this assumption. We propose a new protocol that removes the need for public-key
cryptography. Our non-interactive set intersection protocol relies solely on the
security of an extendable output function, achieving high efficiency. Even in a
ten-client setting with 16,384-element sets, the intersection can be computed in
under 54 s without communication overhead. Our results indicate that substantial
performance improvements can be made without sacrificing privacy, presenting a
practical and efficient approach to private set operations.

Subjects Cryptography, Security and Privacy
Keywords Extendable output functions, Multi-party computation, Private set intersections

INTRODUCTION
Many aspects of our daily lives revolve around set operations, but in some cases, these
operations involve sets held by different parties, and the data in them is sensitive. For
example, finding suitable meeting data across multiple private calendars involves a set
intersection between multiple parties, which must not reveal any information besides when
all parties are available. This problem asks for a multi-party private set intersection
(MPSI), where parties P1; . . . ;Pn each hold a private set X1; . . . ;Xn, and collectively
compute X1 \ . . . \ Xn.

MPSI protocols have a variety of use cases. For example, Bay et al. (2022) mention
online recommendation systems, including dating sites; confidential data sharing, such as
security incident information; border protection against criminal attempts; and network
security operations, such as botnet detection and detecting intrusions by finding the sets’
suspicious internet protocols (IPs) within the sets. Moreover, they are a valuable tool for
solving problems in cyber threat intelligence (Vos, Erkin & Doerr, 2021).

This article considers a special setting to compute the functionality of an MPSI, where
an outsourcing serverPsrv exists that does not collude with any of the other parties, which

How to cite this article Bay A. 2025. Delegated multi-party private set intersections from extendable output functions. PeerJ Comput. Sci.
11:e3141 DOI 10.7717/peerj-cs.3141

Submitted 25 October 2024
Accepted 30 July 2025
Published 29 August 2025

Corresponding author
Aslı Bay, asli.bay@antalya.edu.tr

Academic editor
Vicente Alarcon-Aquino

Additional Information and
Declarations can be found on
page 25

DOI 10.7717/peerj-cs.3141

Copyright
2025 Bay

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.3141
mailto:asli.�bay@�antalya.�edu.�tr
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.3141
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

we shall now refer to as clients. One of the clients receives the result of the operations. We
refer to this client, denoted as Pq, as the querying client or the querier. Previous work has
shown that this setting leads to significant performance improvements (Abadi et al., 2022).

In this article, we investigate the existence of a protocol for outsourced MPSIs that relies
solely on extendable output functions (XOFs), a specific type of hash function. XOFs are
among the most efficient cryptographic primitives, typically relying on weaker security
assumptions. Indeed, we propose such a protocol: which is non-intereactive, but it does
leak information to the server about the size of the intersection and the size of the querying
client’s set. We prove that this protocol is secure in this security model using a
simulation-based proof in the random oracle model, assuming that the communication
channels with the server are private.

At the same time, we raise questions about the validity of this security setting, which we
refer to as the non-colluding server setting. Not only is it hard to realize this setting in
practice, but the security of protocols in this setting relies entirely on secret information
known to all clients never leaking to the server, or the protocol instantly breaks. This is a
fundamental problem of the setting that our protocol highlights. We show that our
protocol and previous work entirely rely on the “free unlinkability” provided by a keyed
hash function or permutation for which the key is unknown to the server.

By showing that this setting allows outsourced MPSI to be performed non-interactively
by relying only on XOFs, we argue that many previous works rely on excessively strong
security assumptions and computationally heavy cryptographic primitives (Abadi, Terzis
& Dong, 2015; Kerschbaum, 2012a; Wang et al., 2021). An exception comes from Feather
(Abadi et al., 2022), among others, which only relies on other symmetric primitives such as
permutations. One downside is that Feather leaks the access pattern of the elements
queried. On the other hand, Feather allows the parties to update the elements in the server
and forget about their own sets.

The protocol we propose relies on secret shares generated non-interactively using
multiple calls to an XOF. By generating shares in this way, we realize collusion resistance
between up to n� 2 clients. These clients encode their sets as Bloom filters and use the
generated secret shares to compute an AND operation between their respective Bloom filters
to retrieve a Bloom filter encoding the intersection. This approach is similar to previous
works on MPSI (Bay et al., 2022; Vos, Conti & Erkin, 2022; Debnath et al., 2021). One key
difference is that the Bloom filter now must rely on a cryptographically secure hash
function rather than a statistical hash function. The reason is that the server may not learn
the relation between hashes and elements. We use the same XOF to instantiate this
cryptographic hash function. To eliminate privacy leakage, we configure our Bloom filters
with a single hash function (h ¼ 1), which prevents the server from inferring which
elements are likely present in the input sets. Despite this restriction, our protocol achieves
high efficiency due to the performance of XOFs. Experimental results show that an
intersection involving ten clients, each holding more than 16,000 elements, can be
computed in only 54 s, excluding communication delays.

Bay (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3141 2/29

http://dx.doi.org/10.7717/peerj-cs.3141
https://peerj.com/computer-science/

To summarize, our contributions are as follows:

. We introduce a novel outsourced MPSI protocol that relies solely on XOFs, eliminating
the need for public-key cryptographic primitives. We provide a formal security proof of
our protocol in the semi-honest model using a simulation-based approach in the
random oracle model.

. We perform a comprehensive performance evaluation of our protocol, including
comparisons with Feather (Abadi et al., 2022), a recent outsourced private set
intersection (PSI) protocol based on symmetric keys. Our results show that our protocol
offers improved scalability and competitive performance, especially as the number of
clients increases.

. We benchmark our protocol with multiple XOFs, including BLAKE3-XOF,
SHAKE128-XOF, and SHAKE256-XOF. The results demonstrate that BLAKE3-XOF
offers significant efficiency advantages, especially in larger-scale scenarios.

. We analyze the effects of network constraints (latency and bandwidth) and show that the
protocol remains practical even under limited communication conditions.

. We draw attention to critical limitations in the non-colluding server model and discuss
its practical challenges, including the consequences of partial collusion.

. We open-source a proof-of-concept implementation of the protocol written in C++.1

In the remainder of this article, we review relevant prior work in “Related Work”.
“Preliminaries” provides background on extendable output functions (XOFs) and Bloom
filters. “Protocol for Intersections Between All Clients” introduces our proposed MPSI
protocol, explaining its design, setup, and operational steps. “Proof of Security” presents a
formal security analysis under the semi-honest model and explores the limitations of the
non-colluding server assumption, including potential collusion risks. “Results” evaluates
the protocol’s performance through extensive experiments. Finally, in “Conclusion”, we
summarize our contributions and discuss directions for future research.

RELATED WORK
Traditional private set intersection protocols
Traditional private set intersection (PSI) protocols enable clients to compute the
intersection of their datasets while keeping their private data local and secure. These
protocols typically involve direct client-to-client or client-to-server interaction, assuming
all parties have sufficient computational resources. Since the introduction of PSI by
Freedman, Nissim & Pinkas (2004), it has been a key focus in privacy-preserving
computations. Their protocol utilizes homomorphic encryption and balanced hashing to
compute set intersections securely.

Following this foundational work, various extensions have been developed with
enhanced security models and functionalities. For instance, Kissner & Song (2005)
implement multiparty intersection computation using the polynomial representation of

1 The implementation can be found at:
https://doi.org/10.5281/zenodo.
15469698

Bay (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3141 3/29

https://doi.org/10.5281/zenodo.15469698
https://doi.org/10.5281/zenodo.15469698
http://dx.doi.org/10.7717/peerj-cs.3141
https://peerj.com/computer-science/

sets combined with additive homomorphic encryption. Building on these advancements,
(Hazay & Lindell, 2008) leverage oblivious pseudorandom functions in their PSI
construction. To enhance security against malicious adversaries, Dachman-Soled et al.
(2009) develop a robust PSI protocol using homomorphic encryption, enhanced Shamir
secret sharing, cut-and-choose techniques, and zero-knowledge proofs. In a similar
direction, Hazay & Nissim (2010) later develop a PSI protocol specifically designed for the
malicious adversarial model, based on Freedman’s earlier work. Moreover, Camenisch &
Zaverucha (2009) introduce a PSI protocol requiring signed input sets, which need
verification from a trusted certifying authority. De Cristofaro, Kim & Tsudik (2010) also
devise an efficient PSI protocol for malicious settings, employing public-key encryption
and hash functions to improve performance. Ateniese, De Cristofaro & Tsudik (2011)
design a protocol that conceals the size of the clients’ input set for added privacy.

In the semi-honest model, Huang, Evans & Katz (2012) propose a garbled circuit-based
PSI protocol, achieving Oðn log nÞ complexity for symmetric key operations, where n
represents the set size. Meanwhile, Many, Burkhart & Dimitropoulos (2012) introduce a
PSI protocol using a Bloom filter, where parties query the filter to obtain the intersection.
However, this method leaks information about the other party’s set, making it insecure.

Furthermore, Dong, Chen & Wen (2013) design two different PSI protocols: one for
semi-honest adversaries and another for malicious adversaries, both relying on the garbled
Bloom filter intersection and oblivious transfer, making them scalable for large dataset
processing. Later the same year, Dong et al. (2013) propose a fair mutual PSI protocol
relying on a trusted third party, allowing both parties to receive the output. However, this
approach incurs high costs due to the dependence on zero-knowledge proofs and oblivious
polynomial evaluation.

This line of work is further refined by Debnath & Dutta (2015), making Bloom
filter-based PSI a viable solution for large-scale private set operations. Similarly, Bay et al.
(2022), Vos et al. (2024) have extended these improvements with further optimizations
based on Bloom filters. Moreover, Cuckoo filters (Pinkas et al., 2018; Jiang et al., 2023)
have been widely adopted to reduce memory and computation costs.

In parallel, Pinkas, Schneider & Zohner (2014) propose PSI protocols utilizing IKNP-OT
(Ishai et al., 2003), achieving notable improvements in computational efficiency at the cost
of increased communication. Further efficiency gains are achieved by Kolesnikov et al.
(2016), who leverage Oblivious Transfer Extension (OTE) to construct a batched oblivious
pseudorandom function. Their method achieves two- to three-fold improvement in
computational efficiency for two-party PSI, making it one of the fastest protocols in
high-speed networks. Following these advancements, Rindal & Rosulek (2017) improve
PSI efficiency by utilizing hashing schemes to reduce complexity and by employing the
dual-execution technique from Mohassel & Franklin (2006). Subsequently, Kolesnikov
et al. (2017) pioneer the oblivious programmable pseudorandom function technique,
offering an efficient solution with symmetric-key operations and laying the foundation for
later works like secret-shared PSI by Rindal & Schoppmann (2021).

Bay (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3141 4/29

http://dx.doi.org/10.7717/peerj-cs.3141
https://peerj.com/computer-science/

Furthermore, bitset-based methods combined with homomorphic encryption (Ruan
et al., 2019; Bay et al., 2021) have been proposed. Key agreement protocols such as those in
Rosulek & Trieu (2021), Wei et al. (2024) have also facilitated secure PSI computations
between multiple parties. Finally, the emergence of quantum computing has prompted
researchers to explore quantum PSI protocols, which promise enhanced security against
quantum attacks while reducing communication complexity (Shi et al., 2015; Liu, Zhang &
Shi, 2020).

Overall, traditional PSI protocols rely on direct interaction between parties and do not
support data outsourcing. Hence, each party needs to store its data locally, leading to
significant storage overhead. Furthermore, these protocols require continuous online
participation from all parties throughout the computation, increasing communication
costs and limiting scalability, particularly in distributed or resource-constrained
environments.

Outsourced PSI protocols
Outsourced/delegated private set intersection (OPSI) protocols address scenarios where
clients have limited computational resources by introducing a third-party, typically a cloud
server, to perform the intersection computation. In this model, clients delegate the
computationally intensive set intersection task to the server, thus benefiting from its
storage and processing capabilities.

In this section, we provide a structured overview of existing OPSI protocols,
categorizing them based on their cryptographic foundations into symmetric-based and
asymmetric-based protocols, highlighting their contributions and limitations. A detailed
comparison is presented in Table 1.

Asymmetric-based OPSI protocols
Asymmetric cryptographic tools are widely used in OPSI protocols that rely on public-key
primitives such as Rivest–Shamir–Adleman (RSA), Diffie-Hellman, and bilinear pairings.
These primitives provide strong security guarantees at the cost of introducing
computational overhead.

A well-known example of an outsourced PSI protocol is the one proposed by
Kerschbaum (2012a), which utilizes RSA encryption. In this protocol, a client encrypts and
outsources their dataset to the server, which then computes the intersection on behalf of
the client. However, a key limitation of this approach is that each intersection computation
requires re-encrypting and re-uploading the dataset, making it inefficient for repeated use
scenarios. To enhance efficiency, Kerschbaum (2012b) propose a protocol leveraging
Bloom filters and additively homomorphic encryption (AHE). In this scheme, clients
encrypt their datasets using Bloom filters before sending them to the cloud server, which
then computes the intersection. This approach still requires fresh computations for each
intersection, although it reduces the overall computational overhead compared to the prior
method.

Bay (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3141 5/29

http://dx.doi.org/10.7717/peerj-cs.3141
https://peerj.com/computer-science/

Another significant advancement is O-PSI (Abadi, Terzis & Dong, 2015), which
represents datasets as point-value polynomials and employs AHE to maintain privacy.
However, this scheme has been shown to be vulnerable to man-in-the-middle attacks and
collusion threats, which were later mitigated in Oliaee et al. (2018). Building upon this, the
verifiable delegated private set intersection (VD-PSI) in Abadi, Terzis & Dong (2016)
provides verifiability using an AHE scheme called Paillier PKI, allowing clients to verify
correctness without retaining a local copy. In parallel, the work by Zheng & Xu (2014)
utilizes bilinear mappings and a bilinear map accumulator to verify computational
accuracy, thus contributing to verifiable outsourced PSI research. Yang et al. (2018)
propose a PSI protocol based on the RSA cryptosystem, similar to Abadi, Terzis & Dong
(2015), but eliminate the need for clients to encode their datasets before outsourcing
jointly.

More recent protocols, such as tag-based verifiable delegated private set intersection
(TVD-PSI) (Wang et al., 2022), extend this approach by integrating tag-based
classification. However, this introduces additional computational workload due to the
need to manage tags and handle dynamic data updates. Revocable and verifiable private set
intersection (RV-PSI) (Sun et al., 2023) leverages the General Decision Diffie-Hellman
Exponent problem for non-interactive revocable PSI computation. Its reliance on complex

Table 1 The comparison of delegated PSI protocols.

Functionality Computation Communication Security

n > 2 Rep. Upd. Compl. Only symmetric Compl. Non-interactive Size-hiding Mal. Hardness

Abadi et al. (2022) . . . OðkÞ . OðkÞ . . � PRF

Abadi, Terzis & Dong (2015) . . � OðkÞ � OðkÞ . . � DCR

Kerschbaum (2012a) . � � Oðk2Þ � Oðk2Þ � . � RSA

Wang et al. (2021) � . � OðkÞ � OðkÞ . . � DBDH

Abadi, Terzis & Dong (2016) . . � OðkÞ � OðkÞ . . . AHE

Abadi et al. (2019) . . � OðkÞ . OðkÞ . . � PRF

Kamara et al. (2014) . � � OðkÞ . OðkÞ � . . PRP

Kerschbaum (2012b) � � � Oðk2Þ � Oðk2Þ . . � QR

Kumar et al. (2021) � . � OðkÞ � OðkÞ . . . DDH

Liu et al. (2014) . � � OðkÞ . Oðk2Þ . � � –

Wang et al. (2022) � . . OðkÞ � OðkÞ . � . q-SBDH

Zhang et al. (2017) . � � OðkÞ . OðkÞ . � . LWE

Zheng & Xu (2014) . � � OðzÞ � OðkÞ . � . DL

Yang et al. (2018) . . . Oðk2Þ � OðkÞ . . � RSA

Sun et al. (2023) . . . OðkÞ � OðkÞ . . � GDDHH

Jiang et al. (2024) � � � OðklogkÞ . OðkÞ . � � PRF

Ours . � . OðkÞ . OðkÞ . � � XOF

Note:
n: number of parties, k: set size, z: intersection size, Rep: Repeated, Upd: Updatable, Mal: Malicious, DCR: Discrete Composite Residuosity, AHE: Additively
Homomorphic Encryption, QR: Quadratic Residuosity, PRF: Pseudo-Random Function, DDH: Decional Diffie-Hellman, q-SBDH: Bilinear q-strong Diffie-Hellman,
DBDH: Decisional Bilinear Diffie-Hellman, GDDHH: General Decision Diffie-Hellman Exponent, LWE: Learning with Error, DL: Discrete Logarithm, XOF: Extendable
Output Function

Bay (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3141 6/29

http://dx.doi.org/10.7717/peerj-cs.3141
https://peerj.com/computer-science/

cryptographic primitives makes it resource-heavy, especially for revocation and
verification tasks. Additionally, the protocol exposes the exact number of elements in one
of the intersecting sets, creating a privacy leakage.

More recent protocols such as Kumar et al. (2021) and Wang et al. (2021) further
enhance security by relying on Diffie-Hellman and Decisional Bilinear Diffie-Hellman
(DBDH) assumptions. These solutions are particularly well-suited for malicious security
settings and offer different authorization levels to cloud servers. Despite these
advancements, the main drawback of asymmetric-based protocols is their computational
complexity, making them less efficient for large-scale PSI computations.

Symmetric-based outsourced PSI protocols

To mitigate the inefficiencies of asymmetric-based protocols, researchers have proposed
symmetric-based approaches that use hash functions, pseudorandom permutations, and
symmetric encryption techniques.

An early notable development is the work in Liu et al. (2014), which applies hash
functions and symmetric encryption to delegated PSI. This approach allows repeated
computations but has privacy issues due to vulnerabilities in its set encoding method.
Specifically, by separately performing PSI for multiple clients, the server may infer
intersections without consent. Later, Kamara et al. (2014) explore outsourced PSI on large
datasets using pseudorandom permutations. Despite scalability, communication and
memory usage can become substantial for very large datasets.

In a subsequent advancement, Abadi et al. (2019) introduce a relatively new delegated
PSI protocol named EO-PSI. Unlike O-PSI (Abadi, Terzis & Dong, 2015), their protocol
eliminates AHE and relies on hash tables and point-value polynomial representations,
while still supporting repeated delegation. Nevertheless, security weaknesses were
identified in Kavousi, Mohajeri & Salmasizadeh (2020), leading to an improved version
that removes reliance on secure channels.

In a separate line of work, Zhang et al. (2017) propose a protocol based on the hardness
of the Learning with Errors problem, incorporating a reputation system to penalize
protocol violations. While this approach improves security, it introduces high
communication overhead between clients. Moreover, the protocol relies on a strong
security assumption, and its guarantees collapse if collusion occurs between a server and a
client or between two servers.

A recently published protocol named Feather (Abadi et al., 2022) introduces an efficient
symmetric-based MPSI approach, avoiding public-key tools entirely. The protocol is built
upon three main components: a hash table, polynomial-based encodings, and Bloom
filters—enabling efficient private set intersection and dynamic updates. However, one
limitation is its access pattern leakage. Despite this, Feather allows clients to update
elements on the server without maintaining local copies. Additionally, Jiang et al. (2024)
introduce verifiable outsourced private set Intersection (VO-PSI) protocol that ensures
correctness even when cloud servers behave maliciously.

Bay (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3141 7/29

http://dx.doi.org/10.7717/peerj-cs.3141
https://peerj.com/computer-science/

Motivation for our work
To summarize, many outsourced MPSI protocols depend on strong security assumptions
and costly cryptographic operations. Others, like Feather, improve efficiency by using
symmetric cryptography, though they still face limitations in privacy and scalability. Our
work addresses these limitations by introducing a novel protocol that exclusively leverages
extendable output functions (XOFs), ensuring non-interactive secret sharing, efficient
computation, and resistance to collusion among up to n� 2 clients, while preventing
server inference through Bloom filters and secure hashing. Compared to Feather, our
protocol differs in several key aspects mentioned below:

. Privacy: Feather leaks access patterns—revealing which data locations (e.g., memory
cells, Bloom filter bits) are accessed or modified. This can enable a server to infer
sensitive information. Our protocol avoids this by not leaking access patterns, though it
does reveal the intersection size and the querying client’s set size.

. Efficiency: Feather works well in small two-party setups, whereas our protocol scales
more effectively. For instance, ours takes 54 s to finish with 10 clients and 16,384-
element sets, while Feather takes 62.76 s. Our effective XOF-based masking causes this
gap to widen with more clients or larger datasets.

. Security Model: Feather uses permutations and other symmetric tools. Relying solely on
XOFs, our protocol is simpler and removes extra cryptographic dependencies. It also
supports non-interactive secret sharing and addresses core privacy challenges directly in
the non-colluding server setting.

PRELIMINARIES
In this section, we briefly explain how XOFs are used to generate secret shares
non-interactively and how Bloom filters are used to compute set intersections. The
notation we use can be found in Table 2. Note that all variables are zero-indexed except for
the bins in a Bloom filter, so we have that HjðxÞ 2 f0; . . . ;mg.

XOR-sharing using XOFs
An XOF takes an input message and an output size d, and produces a cryptographically
secure digest of d bits. In our delegated PSI protocol, large masks are needed to ensure that
only the intersection of sets is revealed. Consequently, XOFs are effective for this purpose
because they can generate these large masks from secret values, and the masks have the
property that their XOR combination results in zero. Specifically, if each pair of clients
ðPi;Pi0 Þ share a secret value si;i0 ¼ si0;i that only they know, where i; i0 2 f1; . . . ; ng, we
can use XOFs to generate large masks M that combine to zero with high performance,
relying on the self-inverse property of the XOR function:

Mi �
i 6¼i0

XOFdðsi;i0 Þ: (1)

Here, � denotes the bitwise XOR operation applied across all relevant terms, and
XOFdðsi;i0 Þ represents the output of the XOF applied to the secret si;i0 , producing a digest of
d bits.

Bay (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3141 8/29

http://dx.doi.org/10.7717/peerj-cs.3141
https://peerj.com/computer-science/

This technique is essentially a non-interactive version of the dining cryptographer’s
problem (Chaum, 1988), in which each party’s randomness is replaced by a keyed
pseudo-random function in the form of an XOF.

Bloom filters for set intersections
Many previous works perform set intersections privately by first representing the sets as
Bloom filters (Bay et al., 2022; Debnath et al., 2021; Miyaji, Nakasho & Nishida, 2017). A
bloom filter is a data structure with m bins that are either 0 or 1. It is indexed by h hash
functions, so that when queried, the result is only 1 when all indexed bins are indeed 1.
This corresponds to an AND operation. To create a Bloom filter representing a set X, one
iterates over all elements x 2 X and evaluates hashes HjðxÞ 2 f0; . . . ;m� 1g for
j ¼ 1; . . . ; h. The bins indicated by the hash functions are set to 1.

To compute the Bloom filter representing the intersection, we only have to perform an
AND operation between the respective bins of the input Bloom filters. To find the
intersection from its Bloom filter representation, one must perform a query for each
element in one of the original sets. Suppose the intermediate Bloom filter is leaked to any of
the parties. In that case, they can learn the distribution of the elements contained in the
original input sets when the number of hash functions h > 1 (Vos, Conti & Erkin, 2022). We
use cryptographic hash functions in this work to obfuscate the resulting Bloom filter from
the server so that the server does not know the relationship between the 1s in the Bloom
filter and the elements in the universe U. This does reveal information about the
cardinality of the intersection to the server.

Membership queries in Bloom filters are approximate because they might return false
positives. We denote the probability of false positives by e, which is the probability that a
query gives the wrong result. Goel & Gupta (2010) provide an upper bound for e when N
elements have been inserted in a Bloom filter:

e � 1� e�
hðNþ0:5Þ

m�1
� �h

: (2)

Table 2 Summary of the symbols used in this work.

Symbol Definition

n Number of clients

Pi Client number i

Pq The querying client

Psrv The server

Xi Client Pi’s private set

U The universe of possible set elements

k Upper bound for a client’s set size

m Number of bins in the Bloom filter

h Number of hash functions in the Bloom filter

HjðxÞ Hash of element x with seed j, in f0; . . . ;m� 1g
A½ � Indexes vector A

B½ �40 Indexes bitstring B by 40-bit segments

Bay (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3141 9/29

http://dx.doi.org/10.7717/peerj-cs.3141
https://peerj.com/computer-science/

In practice, we only tolerate a maximum probability of false positives e. So, we want to
select the most compact Bloom filter to satisfy this constraint, which leads to a convex
minimization problem (Vos, Conti & Erkin, 2022):

min
h�1
� hðN þ 0:5Þ

ln 1� ffiffiffi
eh
p

� �
þ 1: (3)

PROTOCOL FOR INTERSECTIONS BETWEEN ALL CLIENTS
We present a protocol for outsourced private set intersections between all clients, which
only relies on XOFs. This protocol only requires the clients to communicate with the server
once and the result is given to the querying client Pq. This protocol obtains the
intersection by first representing sets as Bloom filters. The key insight is that we can
efficiently compute the AND operation between these Bloom filters using XOR-secret sharing
because the server is non-colluding. As a result, the server only learns information about
cardinalities when h ¼ 1 rather than the actual elements contained in the intersection.
When h > 1, some information about the distribution of elements is leaked. We provide
and analyze the protocol for the general case of h but for a fair comparison with related
work, h ¼ 1. The clients do not learn anything beyond their input, apart from the querying
client, who receives the final output.

Setup of the protocol
Our protocol relies on private channels between each client and the server, which must be
set up ahead of time. Next, we rely on the fact that there exists a shared random seed
between each pair of clients ðPi;Pi0 Þ, which must stay secret. While it is possible to let a
third party generate these seeds, the parties can also generate them collectively using a
series of pairwise Diffie-Hellman key exchanges. As a consequence, the network topology
would go from a star to a full mesh. In the setup, the clients must also agree on a set of hash
functions Hj for j ¼ 1; . . . ; h, without the server learning them. One possibility is for the
clients to engage in a random coin toss together and use the resulting randomness as a key
for the cryptographic hash functions. Finally, all clients must agree on the size of the Bloom
filter m, which is not secret.

Computing the intersection
Each client Pi, 1 � i � n has input set Xi and collective hash functions H1; . . . ;Hh,
which are unknown to the server. The serverPsrv has no inputs. ClientPq is the querying
client, who receives the final intersection. See Fig. 1 for the depiction of the protocol; the
steps of the protocol are enumerated as follows:

1. Each client Pi encodes their set Xi as a Bloom filter X̂i.

2. Each clientPi transforms all zeroes in X̂i to 40 bits of randomness and all ones to zeroes:

Ŷi½t�40 ri;x if X̂i½t� ¼ 0
0 . . . 0 if X̂i½t� ¼ 1

�
where ri;x 2 f0; 1g40 and t ¼ 0; . . . ;m� 1.

Bay (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3141 10/29

http://dx.doi.org/10.7717/peerj-cs.3141
https://peerj.com/computer-science/

3. Each client Pi computes Mi using Eq. (1), then computes the message:

Ri Ŷ i �Mi|fflfflfflffl{zfflfflfflffl}
40m bits

and sends Ri to the server Psrv.

4. The querying client Pq computes:

H fH1ðxÞ; . . . ;HhðxÞg 8x 2 Xq

and sends it to the server Psrv.

5. The server Psrv aggregates all Ri into R �i Ri. We refer to this XOR-based
combination of masked Bloom filters as aggregated masking.

6. The server checks whether the 40-bit segments of R indicated by the querying client are
all zero:

Ix R½H1ðxÞ�40 ¼ 0 . . . 0 ^ . . . ^ R½HhðxÞ�40 ¼ 0 . . . 0

for all x 2 Xq, and sends the result to the querying client Pq.

7. The querying client Pq outputs Z fx 2 Xq j Ix ¼ 1g.
Notice that the output of XOFs plays a crucial role in concealing the 40-bit zeros present

in Ŷi½j�, which indicate the presence of an element in the set. These 40-bit zeros will
effectively disappear when the messages Ri’s from all parties are combined, as
M1 �M2 � . . .�Mn ¼ 0. In the protocol description, we chose to work over 40-bit secret
shares. While it is possible to choose smaller shares, this would result in a higher
probability of a 1 in the Bloom filter accidentally turning into a 0. Such a phenomenon
would lead to false negatives, which makes studying the protocol’s correctness significantly
harder. By choosing 40 bits, the probability of this occurring is negligible at 2�40.

This protocol is correct because the server Psrv only returns the index of x, a data set
element of Pq, when R½HjðxÞ�40 ¼ 0 for all j 2 f1; . . . ; hg, which reflects a Bloom filter

Figure 1 Efficient delegated MPSI protocol using only symmetric primitives, while only leaking
information about jX1 \ . . . \ Xnj and jXqj to the server. Full-size DOI: 10.7717/peerj-cs.3141/fig-1

Bay (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3141 11/29

http://dx.doi.org/10.7717/peerj-cs.3141/fig-1
http://dx.doi.org/10.7717/peerj-cs.3141
https://peerj.com/computer-science/

query. This happens only when x appears in every Xi that is x 2 X1 \ . . . \ Xn. Due to how
we use Bloom filters in our protocol, 1 s are replaced with 40 0 s, and 0 s are replaced with
40-bit random bitstrings. This requires the value coming from all Bloom Filters to be 0 in
that index for an element to exist in the intersected set. If even one is non-zero, a random
number appears where that index is, thereby hiding the elements that are not in the
intersection.

Updating the private sets
In Feather (Abadi et al., 2022), clients can update their inputs held by the server. We can
use a similar trick to update inputs if the server has not yet revealed the intersection. For
one client to update their private set, they must be able to turn a 0 in the set representation
to a 1 or a 1 to a 0. They can do so for bin j by knowing ri;j. The client simply tells the server
which segment j to update and sends along ri;j. The server XORs this value into the
corresponding segment, flipping the encoded bit. This does reveal the access pattern to the
server, as is also the case for Feather.

Efficiency
The computational effort for a client is dominated by the computation of the extendable
output functions. The asymptotic run time of XOFs scales linearly with the number of bits
in the output, which is 40m in our case. As shown in “Concrete Communication Cost
Analysis” of Vos, Conti & Erkin (2022), m ¼ OðkÞ. Since each client must execute n� 1
XOFs, the total asymptotic complexity is OðnkÞ. Communication-wise, each client only
sends one message, which is exactly 40m bits. So, in the same way, the asymptotic
complexity is OðkÞ. The querying client sends another hk elements of at most log2ðmÞ bits,
so its complexity is Oðhk logmÞ.

In theory, the server only has to aggregate h bins of the masked Bloom filters it received
for each element. In other words, in the worst case, the server must perform OðnkhÞ XOR
operations. When it comes to communication, the server receives n messages of length
40m, but it only sends one message back to the querying client, which has length hk in the
worst-case. So, asymptotically, the server sends OðhkÞ bits.

PROOF OF SECURITY
In this section, we prove our protocol to be secure in the semi-honest model for a
non-colluding server with private channels. Here, we do not consider updating the
elements held by the server. We give a simulation-based proof in the random oracle model.
In other words, we replace the XOF and hash functions with random oracles that always
output true randomness unless they are queried for the same element again.

Before we proceed, we prove the following lemma about Eq. (1).
Lemma 1. Given M1; . . . ;Mn from Eq. 1, M02; . . . ;M

0
n2Rf0; 1g40m, and

M01 M02 � . . .�M0n, then it holds that fM1; . . . ;Mng�s fM01; . . . ;M0ng in the random

oracle model.

Bay (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3141 12/29

http://dx.doi.org/10.7717/peerj-cs.3141
https://peerj.com/computer-science/

Proof. We recall that:

Mi �i 6¼i0xofdðsi;i0 Þ
so each shareM2; . . . ;Mn contains one term that does not exist in any of the other shares,
namely XOFdðs2;1Þ; . . . ;XOFdðsn;1Þ, respectively. Since we model the XOF as a random
oracle, these terms are statistically indistinguishable from random. In other words,

M2; . . . ;Mn�s M02; . . . ;M0n2Rf0; 1g40m.
It is trivial to show thatM1 � . . .�Mn ¼ 0 through the self-inverse property of the XOR

operation. In other words,M1 ¼ M2 � . . .�Mn. As a result,M1�s M01. This completes the
proof. □

Simulating a corrupted server
When h ¼ 1, the server does not learn any information from the protocol besides the size
of the intersection jX1 \ . . . \ Xnj and the size of the querier’s set jXqj. We show that this is
true by showing that a server with no access to the other client’s inputs can perfectly
simulate the protocol’s execution.
Theorem 1. There exists a simulator S1 that perfectly simulates the server’s view when
h ¼ 1. In other words, it holds that:

fS1ðjXqj; jX1 \ . . . \ XnjÞgXi	Uji¼1;...;n

�s fviewsrvðX1; . . . ;XnÞgXi	Uji¼1;...;n:

Proof. The view of the server only contains the incoming messages Ri for i ¼ 1; . . . ; n and
H. We construct simulator S1 as follows:
In step 3 of the protocol,Psrv receives Ri for i ¼ 1; . . . ; n, which it must simulate. Knowing

jX1 \ . . . \ Xnj, the simulator randomly samples J f0; . . . ;m� 1gjX1\...\Xnj, which
represent the Bloom filter indices that are set to 1. It then generates R2Rf0; 1g40m. For each
j 2 J , the simulator sets the 40-bit segment to zero: R½j�40 0 . . . 0. Finally, it generates

Ri02Rf0; 1g40m for i0 ¼ 2; . . . ; n, and R1 R2 � . . .� Rn � R.
In step 4 of the protocol, Psrv receives H. The simulator first sets H J , and then insert
random hashes H1ðxÞ2Rf0; . . . ;m� 1g into H until jHj ¼ jXqj.
We then show that these simulated incoming messages are indistinguishable from the
actual messages:
From Lemma 1 we have that fM2; . . . ;Mng�s fR2; . . . ;Rng and that M1�s R2 � . . .� Rn.
If we XOR some x to anyMi for i ¼ 2; . . . ; n it still holds that the result is indistinguishable
from randomness. If we do the same for M1, it holds that M1 � x�s R2 � . . .� Rn � x. In
other words, so long as R�s Ŷ1 \ . . . \ Ŷn, the simulated R1; . . . ;Rn are indistinguishable
from those generated in the actual view.
Indeed, R�s Ŷ1 \ . . . \ Ŷn since for one hash function, the Bloom filter representing the
intersection is identical to the Bloom filter that results from performing the inherent AND
operation between the separately encoded Bloom filters. Since we replace the hash

Bay (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3141 13/29

http://dx.doi.org/10.7717/peerj-cs.3141
https://peerj.com/computer-science/

functions of the Bloom filter by random oracles that the server does not have access to, J is
statistically indistinguishable from the set of actual ones in the Bloom filter.

H exactly corresponds to the hashes of the elements in the intersection. For the other
elements x 2 X, by replacing the hash function of the Bloom filter with a random oracle,
H1ðxÞ are statistically indistinguishable from randomness by definition.

□
When h > 1, the server cannot anymore simulate the protocol’s execution without

knowledge of the distribution of the elements in the parties’ sets. At this point, a protocol
where clients would simply send hashes of their set elements to the server would be
sufficient, and significantly cheaper when it comes to communication. On the other hand,
the Bloom filter does not fully leak this information, so one might trade-off the
performance gain with increasing information leakage as h increases.

Simulating corrupted clients
Finally, we show that n� 2 colluding clients still learn no more information than they
learn from each others’ inputs. Here, we only consider the case where the querying client
colludes because the other case is trivial to simulate since the other parties do not receive
any incoming messages. We show that a set of at most n� 2 colluding clients, including
the querying client, do not learn more information from the protocol than they learn from
each others’ inputs, regardless of h.
Theorem 2. There exists a simulatorS3 that perfectly simulates the view of a set of at most
n� 2 colluding clients, including the querying client. In other words, it holds that:

S3ðXi ji 2 CÞf gXi	U ji¼1;...;n

�s
[
i2C

viewiðX1; . . . ;XnÞ
()

Xi	Uji¼1;...;n
;

for some C
 f1; . . . ; ng with jCj � n� 2 and q 2 C.
Proof. The view of the corrupted parties is comprised of their inputs Xi for i 2 C, the
messages Ix for x 2 Xq received by the server Psrv, and the output Z. Simulator S3 must
therefore simulate all Ix, which it does as follows:

Ix 0 if x =2 Z
1 if x 2 Z

�
:

It is trivial to see that this results in the correct output. Moreover, the simulated Ix are
statistically indistinguishable from the actual Ix; they are in fact identical, because any
other Ix would result in a different output. □

Validity and practical challenges of the non-colluding server setting
The non-colluding server setting is a fundamental assumption in the proposed protocol’s
security framework. First, an important distinction must be made between this
non-colluding server setting and the two non-colluding server model frequently used in

Bay (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3141 14/29

http://dx.doi.org/10.7717/peerj-cs.3141
https://peerj.com/computer-science/

secure multi-party computation (MPC). The first assumes that the server does not collude
with any clients, while the latter only assumes that the two servers do not collude with each
other. The crucial difference is that in the typical setting for outsourced MPSI, the scheme
breaks if the server colludes with anyone, while in the setting commonly used in MPC, the
scheme only breaks if the server colludes specifically with the other server. As such, the
latter leads to a stronger notion of security.

The non-colluding server setting achieves unlinkability efficiently by using a single
cryptographic hash function unknown to the server, avoiding the high computational costs
of techniques like homomorphic encryption or mixnets. However, in our protocol, all
clients must share the same hash function, necessitating a trusted or interactive setup.

Collusion could cause a significant risk in this setting. We analyze the level of breakage if
even just one client Pc colludes with the server. In this case, the collective secret hash
functions Hj for j ¼ 1; . . . ; h are leaked to the server, as well as Xc and the seeds sc;i for
i ¼ 1; . . . ; n. Let the server compute R0 R�Mc, which represents the Bloom filter of the
intersection of all input sets excluding that of the colluding client. From Bloom filter R′, the
colluding parties learn

T
i 6¼c

Xc. Moreover, when h > 1, the colluding parties learn additional

information about the elements contained in any of the other input sets (Vos, Conti &
Erkin, 2022). For parties that collude, this means they can observe which bits are set
and use that information to make inferences by comparing it with their own input
sets. Because the colluding client Pc has access to the collective secret hash
functions and the seeds used for hashing, they can reconstruct how elements are mapped
and deduce with higher probability which elements belong to the other parties’ input sets.
The larger h is, the more bits are influenced per element, making it easier to infer missing
elements through elimination. Additionally, because Bloom filters are merged using
bit-wise AND operation, misaligned 1s from different input sets can accidentally
indicate the presence of elements that are not actually in the intersection, leading to
unintended information leakage. If a colluding client sees a certain pattern of bits in the
Bloom filter, they can infer that a specific element must have originated from another
client’s dataset.

In practical applications, ensuring that the server does not collude with any client poses
considerable challenges. Economic or organizational incentives may drive collusion,
jeopardizing the protocol’s integrity. To address these vulnerabilities, multi-server
architectures that distribute trust across multiple servers under non-collusion assumptions
can enhance resilience. Further improvements can be achieved by incorporating threshold
models, where computations proceed only with agreement from a predefined subset of
servers. This reduces the impact of a small number of colluding servers while retaining the
benefits of distributed trust. Additionally, audit mechanisms, such as zero-knowledge
proofs, enable clients to verify the server’s computations’ correctness without revealing
additional information. However, these enhancements come at the cost of increased
computational and communication complexity, which must be balanced against the
protocol’s efficiency requirements.

Bay (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3141 15/29

http://dx.doi.org/10.7717/peerj-cs.3141
https://peerj.com/computer-science/

RESULTS
Our open-source implementation is written in C++. We evaluate the performance of our
protocol using BLAKE3 (O’Connor et al., 2021), a state-of-the-art extendable output
function. We assign one thread to each client and one thread to the server. All experiments
were executed on a Linux machine with Intel� Xeon� Gold 6130 CPU @ 2.10 GHz and
128 GB of memory, but only a fraction of this memory was used. Moreover, we used one
core for each client and one for the server. We chose the parameters for the Bloom filters
using Eq. (3). We compare the runtime performance of our protocol against Feather
(Abadi et al., 2022), a recently proposed symmetric-key-based PSI protocol. Using its
public implementation (https://github.com/AydinAbadi/Feather/tree/master/Feather-
implementation) , we benchmark both protocols under identical conditions for varying set
sizes and client counts.

Run time without communication delays
We provide an extensive analysis of our protocol, focusing on both breakdown and total
computational costs. We fix the error rate at e ¼ 0:1% for Bloom filters and evaluate the
performance for both h ¼ 1 and h > 1 cases. Table 3 summarizes the per-role breakdown
for the server Psrv, the querying client Pq, and each Pi, highlighting the linear scalability
of our protocol with respect to set sizes, numbers of clients, and hash counts. In particular,
the server computation remains minimal; it stays around 3 s even in the largest
configuration, which involves 216 elements and ten clients. The querying client incurs the
highest cost due to its central role, but the increase in computation is predictable and scales
linearly with input size and hash count.

Table 4 presents the total execution times in various settings. For example, when ten
clients each hold 214 elements and the hash count is h ¼ 10, the total computation time
remains under 54 s. As expected, increasing set sizes impact all parties, especially the
clients and querying client, whose runtime grows proportionally with the input. Similarly,
more clients introduce additional overhead, though the impact remains smooth and
predictable. This demonstrates that even in relatively large-scale scenarios, our protocol
remains practical and efficient for real-world deployment.

Comparison with Feather. Feather performs well for two-client settings with small input
sizes, completing a 210-sized PSI in less than 1 s, as shown in Table 5. Figure 2 illustrates
this scalability difference, comparing the total runtime of Feather and our protocol across
varying clients and set sizes. However, it scales poorly when increasing the number of
clients due to its pairwise intersection model and reliance on modular arithmetic and
permutations.

Using lightweight XOFs and XOR operations, our protocol shows better scalability and
comparable performance in many settings. In addition, our protocol exhibits superior
scalability concerning the number of clients. For instance, at k ¼ 216 and n ¼ 10, our
protocol completes in 212.72 s, compared to Feather’s 253.58 s. While the advantage is
modest at this point, the performance gap continues to widen as n increases, thanks to our
aggregated masking approach, which avoids redundant computations and

Bay (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3141 16/29

https://github.com/AydinAbadi/Feather/tree/master/Feather-implementation
https://github.com/AydinAbadi/Feather/tree/master/Feather-implementation
http://dx.doi.org/10.7717/peerj-cs.3141
https://peerj.com/computer-science/

Table 3 Both computation (run time) and communication breakdown complexities of our MPSI for
h ¼ 1, h ¼ 5, and h ¼ 10.

Computation (s) Communication (MB)

Set size # Hash # Client Psrv Pq Pi Pq Pi

210 1 2 0.01 1.33 1.32 0.08 0.07

3 0.02 2.01 1.83

4 0.02 2.10 1.74

5 0.03 1.80 2.01

10 0.05 3.13 2.76

210 5 2 0.01 1.33 1.32 0.08 0.07

3 0.02 2.01 1.83

4 0.02 2.10 1.74

5 0.03 1.80 2.01

10 0.05 3.13 2.76

210 10 2 0.02 1.3 1.29 0.08 0.07

3 0.02 1.82 1.61

4 0.03 1.58 1.67

5 0.03 1.79 1.88

10 0.06 2.56 2.74

212 1 2 0.05 5.16 5.16 0.3 0.28

3 0.07 5.48 6.16

4 0.08 6.66 6.59

5 0.10 7.49 7.15

10 0.18 11.3 10.79

212 5 2 0.05 5.16 5.16 0.3 0.28

3 0.07 5.48 6.16

4 0.08 6.66 6.59

5 0.10 7.49 7.15

10 0.18 11.3 10.79

212 10 2 0.06 5.83 5.84 0.32 0.28

3 0.08 6.05 6.31

4 0.10 6.58 6.50

5 0.11 7.43 7.23

10 0.19 11.35 11.1

214 1 2 0.18 19.72 19.66 1.22 1.12

3 0.24 25.32 24.71

4 0.29 26.62 25.80

5 0.37 28.24 28.08

10 0.70 45.74 43.56

214 5 2 0.18 19.72 19.66 1.22 1.12

3 0.24 25.32 24.71

4 0.29 26.62 25.80

5 0.37 28.24 28.08

(Continued)

Bay (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3141 17/29

http://dx.doi.org/10.7717/peerj-cs.3141
https://peerj.com/computer-science/

communications. Notice that while Feather has strong performance for n ¼ 2, our
protocol offers more consistent scaling across all values of n and k, maintaining
competitive performance without sacrificing flexibility or simplicity.

We note that the Feather results may not exactly match those in its original publication, as
we used different hardware and the original evaluation parameters were not fully disclosed.

Concrete communication cost analysis
Table 3 presents the per-client communication costs, distinguishing between the querying
clientPq and the regular clientsPi. In our protocol, the serverPsrv sends a single message
toPq, which is included inPq’s total communication. The cost for regular clients remains
constant for a given set size and number of hash functions, whereas Pq’s cost increases
linearly with the number of hash functions due to element replication. For example, in the
largest tested configuration (k ¼ 216, h ¼ 10),Pq transmits approximately 5.18 MB, while
each regular client transmits approximately 4.49 MB. This per-client overhead is
independent of the total number of participants. However, as shown in Table 6, the overall
communication increases linearly with the number of clients, demonstrating the protocol’s
scalability and efficiency in bandwidth-constrained, multi-party scenarios.

Table 3 (continued)

Computation (s) Communication (MB)

Set size # Hash # Client Psrv Pq Pi Pq Pi

10 0.70 45.74 43.56

214 10 2 0.21 20.57 20.42 1.3 1.12

3 0.28 23.98 22.87

4 0.34 26.64 25.85

5 0.41 25.50 28.39

10 0.73 39.6 38.53

216 1 2 0.75 76.04 76.92 4.87 4.49

3 1.05 90.39 98.27

4 1.30 106.09 105.88

5 1.68 114.77 113.51

10 3.08 188.3 173.74

216 5 2 0.75 76.04 76.92 4.87 4.49

3 1.05 90.39 98.27

4 1.30 106.09 105.88

5 1.68 114.77 113.51

10 3.08 188.3 173.74

216 10 2 0.92 82.36 82.08 5.18 4.49

3 1.22 100.76 94.87

4 1.52 105.58 102.72

5 1.79 118.76 113.93

10 3.25 175.52 173.67

Bay (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3141 18/29

http://dx.doi.org/10.7717/peerj-cs.3141
https://peerj.com/computer-science/

Comparison with Feather. We further compare the communication efficiency of our
protocol with Feather (Abadi et al., 2022), as summarized in Table 6 and illustrated in
Fig. 3, using identical evaluation settings. Feather achieves low and stable communication
overhead for small set sizes, but its cost increases sharply with larger datasets, even with a

Table 4 Total run time for h ¼ 1, h ¼ 5, and h ¼ 10 when communication is instant, averaged over 5
experiments. An intersection with ten clients, each with more than 16,000 elements, requires only 54 s to
compute.

Set size # Client Run Time (s)

h ¼ 1 h ¼ 5 h ¼ 10

210 2 1.74 1.42 1.39

3 2.13 2.12 1.94

4 2.43 2.25 1.86

5 2.42 2.53 2.33

10 3.58 3.68 3.54

212 2 6.61 5.55 6.23

3 6.94 6.98 7.18

4 7.27 7.78 7.48

5 9.12 8.93 8.92

10 13.91 13.28 13.61

214 2 25.20 21.23 22.08

3 26.81 28.80 27.30

4 30.48 29.69 29.86

5 35.85 34.09 34.16

10 53.73 53.46 53.08

216 2 94.60 82.76 88.46

3 120.54 110.07 112.12

4 128.28 128.86 115.24

5 144.14 172.14 140.28

10 212.38 215.42 212.72

Table 5 Feather protocol performance results (in s).

Set size # Client Run Time (s) Set size # Client Run Time (s)

210 2 0.74 214 2 9.89

3 1.06 3 16.73

4 1.47 4 23.25

5 1.87 5 29.74

10 3.91 10 62.76

212 2 2.51 216 2 40.15

3 4.14 3 65.81

4 5.92 4 93.38

5 7.47 5 120.10

10 15.57 10 253.58

Bay (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3141 19/29

http://dx.doi.org/10.7717/peerj-cs.3141
https://peerj.com/computer-science/

Figure 2 Total run time comparison between Feather and our MPSI when communication is instant, averaged over five experiments (h = 10).
Full-size DOI: 10.7717/peerj-cs.3141/fig-2

Table 6 Total communication cost comparison (in MB) between Feather and our MPSI for h ¼ 10.

Set size # Client Our MPSI (MB) Feather (MB)

210 2 0.14 0.2

3 0.21 0.2

4 0.28 0.2

5 0.35 0.2

10 0.7 0.2

212 2 0.56 1.4

3 0.84 1.4

4 1.12 1.4

5 1.4 1.4

10 2.81 1.4

214 2 2.25 5.8

3 3.37 6.0

4 4.49 6.0

5 5.62 6.0

10 11.23 6.2

216 2 8.99 23.8

Bay (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3141 20/29

http://dx.doi.org/10.7717/peerj-cs.3141/fig-2
http://dx.doi.org/10.7717/peerj-cs.3141
https://peerj.com/computer-science/

fixed number of clients. In contrast, our protocol incurs slightly higher per-client
communication but scales linearly and predictably with both the number of clients and the
set size. This makes it more suitable for large-scale deployments where bandwidth
predictability and scalability are critical.

As shown in Table 3, increasing the number of hash functions h does not consistently
improve computational performance. In some smaller configurations, higher h values
show marginal improvements. However, for larger set sizes, computation time tends to
increase or plateau. These observations suggest that while increasing h may reduce false
positives, it does not provide meaningful performance gains and may even introduce
additional computational overhead in practice.

Table 6 (continued)

Set size # Client Our MPSI (MB) Feather (MB)

3 13.48 24.0

4 17.97 24.0

5 22.47 24.2

10 44.93 25.0

Figure 3 Total communication complexity comparison between feather and our protocol when communication is instant, averaged over five
experiments (h ¼ 1). Full-size DOI: 10.7717/peerj-cs.3141/fig-3

Bay (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3141 21/29

http://dx.doi.org/10.7717/peerj-cs.3141/fig-3
http://dx.doi.org/10.7717/peerj-cs.3141
https://peerj.com/computer-science/

Figure 4 Our total run time when communication incurs latency and bandwidth delays, averaged
over five experiments. The numbers above the bars indicate the latency. An intersection with 10
clients, each holding 16,384 elements requires less than 150 s to compute when bandwidth is limited to
1 MB/s and latency is 1 s. Full-size DOI: 10.7717/peerj-cs.3141/fig-4

Figure 5 Run time of different XOFs vs number of clients for selected dataset sizes. Full-size DOI: 10.7717/peerj-cs.3141/fig-5

Bay (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3141 22/29

http://dx.doi.org/10.7717/peerj-cs.3141/fig-4
http://dx.doi.org/10.7717/peerj-cs.3141/fig-5
http://dx.doi.org/10.7717/peerj-cs.3141
https://peerj.com/computer-science/

Run time with simulated communication delays
One often-overlooked aspect of outsourced private set intersection protocols is the impact
of communication delays. To address this, we analyze the runtime of our protocol under
varying download bandwidth and latency constraints, which are uniformly applied across
all communication channels in the star topology. We conduct experiments with n ¼ 10
clients and a set size of k ¼ 214, fixing the Bloom filter error rate at e ¼ 0:1% and focusing
on cases where h > 1. As shown in Fig. 4, bandwidth limitations significantly affect
efficiency. For h ¼ 10, the resulting Bloom filter size is approximately m ¼ 235; 568 bins,
meaning each client sends about 40m bits, or roughly 1.12 MB (see Table 3). Since we
simulate download bandwidth, the server must process incoming data sequentially,
introducing delays. In contrast, latency has minimal effect, as the protocol requires only a
single round-trip interaction and thus incurs latency just twice. Detailed numerical results of
these latency and bandwidth experiments are provided in Table A1 in the Appendix.

Performance evaluation of BLAKE3-XOF
All analyses in this study use the BLAKE3-XOF (O’Connor et al., 2021) function, which
offers a modern cryptographic design characterized by strong security guarantees and a
high potential for parallelization. As illustrated in Fig. 5, comparative runtime
performance measurements reveal that BLAKE3-XOF consistently outperforms both
SHAKE128-XOF and SHAKE256-XOF (National Institute of Standards and Technology
(NIST), 2015) (see also Table A2) across a wide range of data set sizes and client numbers.
While SHAKE-based XOFs offer strong cryptographic security and are well-established,
the performance advantage of BLAKE3-XOF is evident even at small dataset sizes and low
party counts. It becomes increasingly pronounced as both parameters grow. This suggests
excellent scalability and low computational overhead, making it a highly efficient choice
for large-scale or concurrent applications.

Although integrating BLAKE3’s SIMD-friendly design could have accelerated the
protocol, we used the same setup of hash functions in Feather to ensure a fair comparison.
Future work may explore BLAKE3-specific optimizations.

CONCLUSION
Private set intersections are a crucial functionality in everyday applications, yet executing
these protocols remains costly. In this work, we demonstrate that with a trusted,
non-colluding server, the problem becomes far more efficient to evaluate. However, we
also highlight the challenges associated with this assumption. Specifically, the unlinkability
property—ensuring the server learns nothing about the set elements—only holds if no
client colludes with the server. We show that under this assumption, our protocol can
intersect five datasets with 16,000 elements in just 35 s. Moreover, if minor information
leakage regarding the distribution of elements among parties is tolerated, the runtime can
be further optimized. Lastly, we have open-sourced our proof-of-concept implementation
to facilitate future research and advancements in this area. In future work, we aim to
explore multi-server architectures to mitigate collusion risks and investigate techniques to
reduce or eliminate the leakage of intersection size and access patterns without sacrificing

Bay (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3141 23/29

http://dx.doi.org/10.7717/peerj-cs.3141
https://peerj.com/computer-science/

performance. Additionally, we plan to explore parallel implementations using BLAKE3-
XOF to further improve run time scalability.

APPENDIX: DETAILED PERFORMANCE TABLES

Table A2 Comparison of the run time (in s) of our MPSI for different XOFs across various set sizes
and party counts.

Set size # Client BLAKE3-XOF SHAKE128-XOF SHAKE256-XOF

210 2 1.73 1.90 1.80

3 1.82 1.98 1.91

4 2.19 2.39 2.39

5 2.33 2.59 2.79

10 3.82 4.45 4.65

212 2 5.82 7.82 7.12

3 7.24 8.92 8.12

4 7.32 8.92 8.12

5 8.85 9.26 9.20

10 13.70 14.82 14.66

214 2 21.66 24.93 26.85

3 28.11 36.95 34.83

4 30.43 22.32 22.94

5 33.64 38.25 38.60

10 52.80 58.71 57.74

216 2 87.99 106.36 108.08

3 105.55 124.58 121.98

4 121.60 139.19 132.06

5 144.94 168.37 160.36

10 218.09 237.25 232.00

Table A1 Run time (in s) under varying network conditions for set size 214 with 10 clients and
BLAKE3-XOF (h = 10).

Bandwidth (MB/s) Latency (ms) Run Time (s) Bandwidth (MB/s) Latency (ms) Run Time (s)

1 1 131.92 100 1 54.96

10 136.24 10 55.28

100 137.32 100 54.98

1,000 148.01 1,000 60.04

10 1 57.98 1,000 1 56.01

10 56.94 10 53.85

100 58.30 100 54.82

1,000 65.44 1,000 59.61

Bay (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3141 24/29

http://dx.doi.org/10.7717/peerj-cs.3141
https://peerj.com/computer-science/

ACKNOWLEDGEMENTS
QuillBot was used for paraphrasing and improving the clarity and fluency of the language
during the manuscript revision process. We sincerely thank Dr. Zekeriya Erkin and
Dr. Jelle Vos for their invaluable insights and encouragement, which greatly influenced the
direction and substance of our work.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The author has received no funding for this work.

Competing Interests
The author declares that they have no competing interests.

Author Contributions
. Aslı Bay conceived and designed the experiments, performed the experiments, analyzed
the data, performed the computation work, prepared figures and/or tables, authored or
reviewed drafts of the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

Raw data and code is available at GitHub: https://github.com/aslibay/Outsourced-
MPSI-May25.

REFERENCES
Abadi A, Dong C, Murdoch SJ, Terzis S. 2022. Multi-party updatable delegated private set

intersection. In: Financial Cryptography and Data Security: 26th International Conference, FC
2022, Grenada, May 2–6, 2022, Revised Selected Papers. Berlin, Heidelberg: Springer-Verlag,
100–119.

Abadi A, Terzis S, Dong C. 2015. O-PSI: delegated private set intersection on outsourced datasets.
In: Federrath H, Gollmann D, eds. ICT Systems Security and Privacy Protection-30th IFIP TC 11
International Conference, SEC 2015, Hamburg, Germany, May 26–28, 2015, Proceedings, volume
455 of IFIP Advances in Information and Communication Technology. New York: Springer,
3–17.

Abadi A, Terzis S, Dong C. 2016. VD-PSI: verifiable delegated private set intersection on
outsourced private datasets. In: Grossklags J, Preneel B, eds. Financial Cryptography and Data
Security-20th International Conference, FC 2016, Christ Church, Barbados, February 22–26,
2016, Revised Selected Papers, volume 9603 of Lecture Notes in Computer Science. New York:
Springer, 149–168.

Abadi A, Terzis S, Metere R, Dong C. 2019. Efficient delegated private set intersection on
outsourced private datasets. IEEE Transactions on Dependable and Secure Computing
16(4):608–624 DOI 10.1109/tdsc.2017.2708710.

Ateniese G, De Cristofaro E, Tsudik G. 2011. (if) size matters: size-hiding private set intersection.
In: Catalano D, Fazio N, Gennaro R, Nicolosi A, eds. Public Key Cryptography–PKC 2011. Berlin,
Heidelberg, Berlin Heidelberg: Springer, 156–173.

Bay (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3141 25/29

https://github.com/aslibay/Outsourced-MPSI-May25
https://github.com/aslibay/Outsourced-MPSI-May25
http://dx.doi.org/10.1109/tdsc.2017.2708710
http://dx.doi.org/10.7717/peerj-cs.3141
https://peerj.com/computer-science/

Bay A, Erkin Z, Alishahi M, Vos J. 2021. Multi-party private set intersection protocols for
practical applications. In: di Vimercati SDC, Samarati P, eds. Proceedings of the 18th
International Conference on Security and Cryptography, SECRYPT 2021, July 6–8, 2021. Setúbal,
Portugal: SCITEPRESS, 515–522.

Bay A, Erkin Z, Hoepman J, Samardjiska S, Vos J. 2022. Practical multi-party private set
intersection protocols. IEEE Transactions on Information Forensics and Security 17:1–15
DOI 10.1109/tifs.2021.3118879.

Camenisch J, Zaverucha GM. 2009. Private intersection of certified sets. In: Dingledine R, Golle P,
eds. Financial Cryptography and Data Security. FC 2009. Lecture Notes in Computer Science.
Vol. 5628. Berlin, Heidelberg: Springer DOI 10.1007/978-3-642-03549-4_7.

Chaum D. 1988. The dining cryptographers problem: unconditional sender and recipient
untraceability. Journal of Cryptology 1(1):65–75 DOI 10.1007/bf00206326.

Dachman-Soled D, Malkin T, Raykova M, Yung M. 2009. Efficient robust private set intersection.
International Journal of Applied Cryptography 2(1):289–303
DOI 10.1007/978-3-642-01957-9_8.

De Cristofaro E, Kim J, Tsudik G. 2010. Linear-complexity private set intersection protocols
secure in malicious model. In: Abe M, ed. Advances in Cryptology—ASIACRYPT 2010.
ASIACRYPT 2010. Lecture Notes in Computer Science. Vol. 6477. Berlin, Heidelberg: Springer
DOI 10.1007/978-3-642-17373-8_13.

Debnath SK, Dutta R. 2015. Secure and efficient private set intersection cardinality using bloom
filter. In: López J, Mitchell CJ, eds. Information Security-18th International Conference, ISC 2015,
Trondheim, Norway, September 9–11, 2015, Proceedings, volume 9290 of Lecture Notes in
Computer Science. New York: Springer, 209–226.

Debnath SK, Stanica P, Kundu N, Choudhury T. 2021. Secure and efficient multiparty private set
intersection cardinality. Advances in Mathematics of Communications 15(2):365–386
DOI 10.3934/amc.2020071.

Dong C, Chen L, Camenisch J, Russello G. 2013. Fair private set intersection with a semi-trusted
arbiter. In: Wang L, Shafiq B, eds. Data and Applications Security and Privacy XXVII. Berlin,
Heidelberg: Springer, 128–144.

Dong C, Chen L, Wen Z. 2013. When private set intersection meets big data: an efficient and
scalable protocol. In: Proceedings of the 2013 ACM SIGSAC Conference on Computer &
Communications Security, CCS ’13. New York, NY, USA: Association for Computing
Machinery, 789–800.

Freedman MJ, Nissim K, Pinkas B. 2004. Efficient private matching and set intersection.
In: Cachin C, Camenisch JL, eds. Advances in Cryptology-EUROCRYPT 2004. Berlin, Heidelberg:
Springer, 1–19.

Goel A, Gupta P. 2010. Small subset queries and bloom filters using ternary associative memories,
with applications. In: Misra V, Barford P, Squillante MS, eds. SIGMETRICS 2010, Proceedings of
the 2010 ACM SIGMETRICS International Conference on Measurement and Modeling of
Computer Systems, New York, New York, USA, 14–18 June 2010. New York: ACM, 143–154.

Hazay C, Lindell Y. 2008. Efficient protocols for set intersection and pattern matching with
security against malicious and covert adversaries. In: Canetti R, ed. Theory of Cryptography.
Berlin, Heidelberg: Springer, 155–175.

Hazay C, Nissim K. 2010. Efficient set operations in the presence of malicious adversaries.
In: Nguyen PQ, Pointcheval D, eds. Public Key Cryptography–PKC 2010. Berlin, Heidelberg:
Springer, 312–331.

Bay (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3141 26/29

http://dx.doi.org/10.1109/tifs.2021.3118879
http://dx.doi.org/10.1007/978-3-642-03549-4_7
http://dx.doi.org/10.1007/bf00206326
http://dx.doi.org/10.1007/978-3-642-01957-9_8
http://dx.doi.org/10.1007/978-3-642-17373-8_13
http://dx.doi.org/10.3934/amc.2020071
http://dx.doi.org/10.7717/peerj-cs.3141
https://peerj.com/computer-science/

Huang Y, Evans D, Katz J. 2012. Private set intersection: are garbled circuits better than custom
protocols?, The Internet Society. In: 19th Annual Network and Distributed System Security
Symposium, NDSS 2012, San Diego, California, USA, February 5–8, 2012. Geneva, Switzerland:
The Internet Society.

Ishai Y, Kilian J, Nissim K, Petrank E. 2003. Extending oblivious transfers efficiently. In: Boneh D,
ed. Advances in Cryptology-CRYPTO 2003. Berlin, Heidelberg: Springer, 145–161.

Jiang Z, Guo X, Yu T, Zhou H, Wen J, Wu Z. 2023. Private set intersection based on lightweight
oblivious key-value storage structure. Symmetry 15(11):2083 DOI 10.3390/sym15112083.

Jiang G, Zhang H, Lin J, Kong F, Yu L. 2024. Optimized verifiable delegated private set
intersection on outsourced private datasets. Computers and Security 141(4):103822
DOI 10.1016/j.cose.2024.103822.

Kamara S, Mohassel P, Raykova M, Sadeghian S. 2014. Scaling private set intersection to
billion-element sets. In: Christin N, Safavi-Naini R, eds. Financial Cryptography and Data
Security. Berlin, Heidelberg,: Springer, 195–215.

Kavousi A, Mohajeri J, Salmasizadeh M. 2020. Improved secure efficient delegated private set
intersection. ArXiv DOI 10.48550/arXiv.2004.03976.

Kerschbaum F. 2012a. Collusion-resistant outsourcing of private set intersection. In: Proceedings
of the 27th Annual ACM Symposium on Applied Computing, SAC ’12. New York, NY, USA:
Association for Computing Machinery, 1451–1456.

Kerschbaum F. 2012b. Outsourced private set intersection using homomorphic encryption.
In: Proceedings of the 7th ACM Symposium on Information, Computer and Communications
Security, ASIACCS ’12. New York, NY, USA: Association for Computing Machinery, 85–86.

Kissner L, Song D. 2005. Privacy-preserving set operations. In: Shoup V, ed. Advances in
Cryptology–CRYPTO 2005. Berlin, Heidelberg: Springer, 241–257.

Kolesnikov V, Kumaresan R, Rosulek M, Trieu N. 2016. Efficient batched oblivious prf with
applications to private set intersection. New York, NY, USA: Association for Computing
Machinery.

Kolesnikov V, Matania N, Pinkas B, Rosulek M, Trieu N. 2017. Practical multi-party private set
intersection from symmetric-key techniques. In: CCS’17: Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security. New York: ACM, 1257–1272.

Kumar SD, Sakurai K, Dey K, Kundu N. 2021. Secure outsourced private set intersection with
linear complexity. In: 2021 IEEE Conference on Dependable and Secure Computing (DSC).
Piscataway: IEEE, 1–8.

Liu F, Ng WK, Zhang W, Giang DH, Han S. 2014. Encrypted set intersection protocol for
outsourced datasets. In: 2014 IEEE International Conference on Cloud Engineering. Piscataway:
IEEE, 135–140.

Liu B, Zhang M, Shi R. 2020. Quantum secure multi-party private set intersection cardinality.
International Journal of Theoretical Physics 59(7):1992–2007 DOI 10.1007/s10773-020-04471-8.

Many D, Burkhart M, Dimitropoulos X. 2012. Fast private set operations with SEPIA.
In: TIK-Report No. 345. Communication Systems Group ETH Zurich, Switzerland.

Miyaji A, Nakasho K, Nishida S. 2017. Privacy-preserving integration of medical data-A practical
multiparty private set intersection. Journal of Medical Systems 41(3):37
DOI 10.1007/s10916-016-0657-4.

Mohassel P, Franklin M. 2006. Efficiency tradeoffs for malicious two-party computation.
In: Yung M, Dodis Y, Kiayias A, Malkin T, eds. Public Key Cryptography-PKC 2006. Berlin,
Heidelberg: Springer, 458–473.

Bay (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3141 27/29

http://dx.doi.org/10.3390/sym15112083
http://dx.doi.org/10.1016/j.cose.2024.103822
http://dx.doi.org/10.48550/arXiv.2004.03976
http://dx.doi.org/10.1007/s10773-020-04471-8
http://dx.doi.org/10.1007/s10916-016-0657-4
http://dx.doi.org/10.7717/peerj-cs.3141
https://peerj.com/computer-science/

National Institute of Standards and Technology (NIST). 2015. FIPS 202: Sha-3 standard:
permutation-based hash and extendable-output functions. Available at https://csrc.nist.gov/
publications/detail/fips/202/final (accessed 20 March 2024).

Oliaee MM, Delavar M, Ameri MH, Mohajeri J, Aref MR. 2018. On the security of O-PSI: a
delegated private set intersection on outsourced datasets (extended version). The ISC
International Journal of Information Security 10(2):117–127 DOI 10.1109/iscisc.2017.8488358.

O’Connor J, Aumasson J-P, Neves S, Wilcox-O’Hearn Z. 2021. Blake3: one function, fast
everywhere. Available at https://blake3.io (accessed 20 May 2025).

Pinkas B, Schneider T, Weinert C, Wieder U. 2018. Efficient circuit-based PSI via cuckoo
hashing. In: Nielsen J, Rijmen V, eds. Advances in Cryptology—EUROCRYPT 2018.
EUROCRYPT 2018. Lecture Notes in Computer Science. Vol. 10322. Cham: Springer, 125–157
DOI 10.1007/978-3-319-78372-7_5.

Pinkas B, Schneider T, Zohner M. 2014. Faster private set intersection based on OT extension.
In: Fu K, Jung J, eds. Proceedings of the 23rd USENIX Security Symposium, San Diego, CA, USA,
August 20–22, 2014. Berkeley: USENIX Association, 797–812.

Rindal P, Rosulek M. 2017. Malicious-secure private set intersection via dual execution.
In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’17. New York, NY, USA: Association for Computing Machinery, 1229–1242.

Rindal P, Schoppmann P. 2021. VOLE-PSI: fast OPRF and circuit-PSI from vector-OLE.
In: Advances in Cryptology–EUROCRYPT 2021: 40th Annual International Conference on the
Theory and Applications of Cryptographic Techniques. Zagreb, Croatia, Berlin, Heidelberg:
Springer-Verlag, 901–930.

Rosulek M, Trieu N. 2021. Compact and malicious private set intersection for small sets.
In: Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’21. New York, NY, USA: Association for Computing Machinery, 1166–1181.

Ruan O, Wang Z, Mi J, Zhang M. 2019. New approach to set representation and practical private
set-intersection protocols. IEEE Access 7:64897–64906 DOI 10.1109/access.2019.2917057.

Shi R, Mu Y, Zhong H, Cui J, Zhang S. 2015. An efficient quantum scheme for private set
intersection. Quantum Information Processing 15(1):363–371 DOI 10.1007/s11128-015-1165-z.

Sun J, Zhou F, Wang Q, Jiao Z, Zhang Y. 2023. Flexible revocation and verifiability for outsourced
private set intersection computation. Journal of Information Security and Applications
73(3):103438 DOI 10.1016/j.jisa.2023.103438.

Vos J, Conti M, Erkin Z. 2022. Fast multi-party private set operations in the star topology from
secure ANDs and ORs. Cryptology ePrint Archive, Paper 2022/721. Available at https://eprint.
iacr.org/2022/721.

Vos J, Erkin Z, Doerr C. 2021. Compare before you buy: privacy-preserving selection of threat
intelligence providers. Cryptology ePrint Archive, Paper 2021/1260. Available at https://eprint.
iacr.org/2021/1260.

Vos J, Pentyala S, Golob S, Maia R, Kelley D, Zekeriya E, De Cock M, Nascimento A. 2024.
Privacy-preserving membership queries for federated anomaly detection. In: Proceedings on
Privacy Enhancing Technologies, 186–201.

Wang Y, Huang Q, Li H, Xiao M, Ma S, Susilo W. 2021. Private set intersection with
authorization over outsourced encrypted datasets. IEEE Transactions on Information Forensics
and Security 16:4050–4062 DOI 10.1109/tifs.2021.3101059.

Wang Q, Zhou F, Xu J, Peng S. 2022. Tag-based verifiable delegated set intersection over
outsourced private datasets. IEEE Transactions on Cloud Computing 10(2):1201–1214
DOI 10.1109/tcc.2020.2968320.

Bay (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3141 28/29

https://csrc.nist.gov/publications/detail/fips/202/final
https://csrc.nist.gov/publications/detail/fips/202/final
http://dx.doi.org/10.1109/iscisc.2017.8488358
https://blake3.io
http://dx.doi.org/10.1007/978-3-319-78372-7_5
http://dx.doi.org/10.1109/access.2019.2917057
http://dx.doi.org/10.1007/s11128-015-1165-z
http://dx.doi.org/10.1016/j.jisa.2023.103438
https://eprint.iacr.org/2022/721
https://eprint.iacr.org/2022/721
https://eprint.iacr.org/2021/1260
https://eprint.iacr.org/2021/1260
http://dx.doi.org/10.1109/tifs.2021.3101059
http://dx.doi.org/10.1109/tcc.2020.2968320
http://dx.doi.org/10.7717/peerj-cs.3141
https://peerj.com/computer-science/

Wei L, Liu J, Zhang L, Wang Q, Zhang W, Qian X. 2024. Efficient multi-party private set
intersection protocols for large participants and small sets. Computer Standards and Interfaces
87(12):103764 DOI 10.1016/j.csi.2023.103764.

Yang X, Luo X, Wang XA, Zhang S. 2018. Improved outsourced private set intersection protocol
based on polynomial interpolation. Concurrency and Computation: Practice and Experience
30(1):e4329 DOI 10.1002/cpe.4329.

Zhang E, Li F, Niu B, Wang Y. 2017. Server-aided private set intersection based on reputation.
Information Sciences 387(1):180–194 DOI 10.1016/j.ins.2016.09.056.

Zheng Q, Xu S. 2014. Verifiable delegated set intersection operations on outsourced
encrypted data. Cryptology ePrint Archive, Paper 2014/178. Available at https://eprint.iacr.org/
2014/178.

Bay (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3141 29/29

http://dx.doi.org/10.1016/j.csi.2023.103764
http://dx.doi.org/10.1002/cpe.4329
http://dx.doi.org/10.1016/j.ins.2016.09.056
https://eprint.iacr.org/2014/178
https://eprint.iacr.org/2014/178
http://dx.doi.org/10.7717/peerj-cs.3141
https://peerj.com/computer-science/

	Delegated multi-party private set intersections from extendable output functions
	Introduction
	Related work
	Preliminaries
	Protocol for intersections between all clients
	Proof of security
	Results
	Conclusion
	Appendix: detailed performance tables
	flink9
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

