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ABSTRACT
Machine translation is an important part of natural language processing, helping
people communicate across languages, localise content, and search for information in
different languages. In this article, we introduce a new framework using the
Kolmogorov-Arnold Transformer (KAT) to improve translation quality. We test
KAT on the Bilingual MELD dataset and compare it with both traditional statistical
models and modern neural translation models. Our results show that KAT performs
better, achieving a BLEU-4 score of 42.8, a METEOR score of 45.3, and a TER of 40.5,
all of which are improvements over standard transformer models. We also find that
using a larger vocabulary and adding the Kolmogorov-Arnold network helps
improve translation accuracy. These results suggest that Kolmogorov-Arnold-based
methods can be a valuable addition to machine translation systems.

Subjects Computational Linguistics, Data Mining and Machine Learning, Data Science, Natural
Language and Speech, Neural Networks
Keywords Machine translation, Kolmogorov–Arnold Transformer, Neural machine translation,
Deep learning

INTRODUCTION
In today’s globalised world, effective communication across languages is essential in many
domains, including international business, education, and technology. English–Chinese
translation plays a crucial role in enabling not only trade but also cross-cultural academic
exchange. As China’s global influence grows, the demand for high-quality English–
Chinese translation has risen, making it a key skill for fostering cooperation and mutual
understanding (Xue &Wang, 2023; Fan, 2024). In the business sector, accurate translation
is vital for contract negotiations, product marketing, and partnership development, where
miscommunication can result in financial losses and misunderstandings (Chen, 2020; Lin
& Chen, 2023). In education, translation helps disseminate research findings and supports
academic collaboration between Chinese- and English-speaking institutions (Xue &Wang,
2023; Fan, 2024).

However, translating between English and Chinese is a complex task. English is a
subject-prominent language with a linear structure, while Chinese is topic-prominent and
often presents ideas in a more circular or spiral form (Jun, 2019). This fundamental
difference can lead to errors such as literal word-for-word translation, which often distorts
the original meaning and produces unnatural phrasing in the target language (Deng & Xue,
2017). Additionally, the cultural context embedded in language can be lost in translation,
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requiring translators to possess not only strong linguistic skills but also cultural awareness
(Tian, Wong & Bin Abdullah, 2024; Wang & Gu, 2016). These challenges highlight the
importance of expert bilingual data to support high-quality translation.

Despite notable advances in translation technologies, challenges remain in English–
Chinese translation. Literal translations that ignore grammar and meaning frequently
result in incoherent or awkward outputs (Deng & Xue, 2017). While machine translation
(MT) tools offer convenience, they often fail to capture subtle nuances, leading to
technically correct but contextually inappropriate translations (Gao, 2024; Jiang, 2023).
Overreliance on such tools can perpetuate errors and misunderstandings, underscoring the
continuing need for skilled human translators.

Recent developments in machine learning and deep learning have significantly
improved translation systems. These technologies allow models to learn from vast
amounts of bilingual data, gradually enhancing their performance (Bi, 2020; Guo, 2021).
Additionally, the growth of digital platforms such as social media provides rich sources of
linguistic data that can be used to extract bilingual text pairs for analysing common
expressions and contextual usage (Sun, 2023). Studies show that using domain-specific
bilingual data can greatly improve translation accuracy and fluency (Chen & Yu, 2013;
Bi, 2020).

Machine Translation has evolved through several stages: Rule-Based Machine
Translation (RBMT), Statistical Machine Translation (SMT), and Neural Machine
Translation (NMT). Each stage has contributed to the development of systems capable of
handling structurally different language pairs like English and Chinese. RBMT, which
relies on manually crafted grammar rules and dictionaries, was too rigid and struggled with
the complexity of natural language (Wang, 2024). SMT marked a turning point by using
bilingual corpora to automatically learn translation patterns based on statistical co-
occurrence, improving fluency and accuracy (Kumar et al., 2010). NMT further advanced
the field by using deep neural networks to model translation as an end-to-end process,
capturing long-range dependencies and better handling differences in word order and
syntax between languages (Miao et al., 2021).

Although NMT has led to significant improvements, it still faces difficulties with
complex grammatical structures, particularly when translating between languages with
different syntax, such as English and Chinese. As a result, hybrid approaches that combine
the statistical strengths of SMT with the contextual depth of NMT are gaining attention as
promising strategies for achieving more natural and accurate translations (Wang & Gu,
2016).

To address the persistent challenges in English–Chinese translation, this study proposes
an efficient hybrid model called the Kolmogorov-Arnold Transformer (KAT). By
integrating the structured decomposition capabilities of Kolmogorov-Arnold Networks
into the Transformer architecture, KAT enhances both the expressiveness and efficiency of
neural machine translation systems. This approach not only improves parameter efficiency
and translation fluency but also demonstrates superior performance across multiple
standard metrics. The proposed model aims to advance the state of bilingual translation
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systems, particularly for linguistically distant language pairs, and contribute to more
accurate, fluent, and semantically rich machine-generated translations.

BACKGROUND AND RELATED WORK
Fundamental concepts of deep learning translation
In machine translation, a language model plays an important role in predicting the
probability of a word or phrase to appear based on past context. Therefore, enhancing the
quality of translation largely depends on developing a superior language model. NMT is an
end-to-end learning system that translates an input sequence into an output sequence. The
goal is to achieve accurate prediction of the target sequence from the input source as a
high-level classification problem that places sentences in a shared semantic space. Given a
parallel corpus C of source and target sentence pairs ðx; yÞ, training is focused on
maximization of the likelihood function L over the model parameters q:

Lq ¼
X

ðx;yÞ2C
log pðyjx; qÞ; (1)

where x ¼ x1; . . . ; xn is an input sentence, y ¼ y1; . . . ; ym is its translation, and q is the
learnable set of parameters. The conditional probability of the target sequence y given x is
computed as:

pðyjx; qÞ ¼
Ym
j¼1

pðyjjy < j; x; qÞ; (2)

where yj is the word being output currently, and y < j are the previously generated words.
Beam search is typically employed during inference to get the most probable translation.

Sequence-to-sequence framework
The most common method in NMT is the Sequence-to-Sequence (Seq2Seq) framework, as
shown in Fig. 1. Here, the encoder processes an input sentence sequentially, mapping
words to embeddings and fine-tuning them into contextualized representations. The
encoded representations have the sentence’s meaning and are passed to the decoder. The
decoder used to generate words, constructs new representations that determine the next
output word. The encoder and decoder architectures can be recurrent neural networks
(RNNs) and convolutional neural networks (CNNs).

In the Seq2Seq framework, the encoder processes an input sequence S ¼ ðs1; s2; . . . ; sNÞ
and encodes it into a context representation z. The decoder then generates the
corresponding output sequence T ¼ ðt1; t2; . . . ; tMÞ using z as a reference. The encoder
computes a sequence of hidden states as follows:

hn ¼ fðWesn þ Uehn�1 þ beÞ; (3)

where hn represents the hidden state at step n,We;Ue; be are trainable parameters, and f is
an activation. In the decoder block, each output word is generated iteratively based on
previous outputs and the context:

dm ¼ fðWdtm�1 þ Uddm�1 þ bdÞ (4)
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where dm denotes the decoder’s hidden state at step m. Wd;Ud; bd are trainable
parameters, and f is an activation.

Attention mechanism

Recently, fully attention-driven NMT models have demonstrated exceptional
performance, with attention mechanisms evolving from an auxiliary role to a primary
means of extracting text features. A prime example of this evolution is the Transformer
(Vaswani et al., 2017) architecture, which relies entirely on self-attention and feed-forward
layers. Unlike RNNs or CNNs, the Transformer processes entire sentences simultaneously,
rather than sequentially, resulting in more efficient and accurate translations. Stacking
multiple Transformer layers further enhances translation quality. In self-attention layers,
attention is computed across both the encoder and decoder. The alignment score, which
determines how well different input positions align with a target position, is calculated as
follows:

eji ¼ aðsj�1; hiÞ; aji ¼ expðejiÞPm
k¼1 expðekiÞ

; (5)

where eji is the alignment score and a is a function that calculates how well an input word
at position i aligns with an output word at position j. These calculations are influenced by
the decoder’s previous step hidden state, sj�1, and the encoder’s hidden state, hi. The
attention weights are applied to the encoder’s hidden states to generate a context vector:

cj ¼
Xn
i¼1

ajihi: (6)

This context vector, along with the previous hidden state and generated word, helps
compute the next decoder hidden state:

sj ¼ gðsj�1; yj�1; cjÞ; (7)

where g is an activation function, yj�1 is the embedding of the previous word, and sj�1 is
the last decoder state. Finally, the next target word is predicted using a feed-forward and
softmax layer:

Encoder Decoder

I am a Chinese <BOS>

<EOS>

Figure 1 Overview of the sequence-to-sequence framework for machine translation.
Full-size DOI: 10.7717/peerj-cs.3139/fig-1
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Pðyj j y < j; xÞ ¼ softmaxðf ðsj; yj�1; cjÞÞ: (8)

Related work
The evolution of NMT has been marked by significant advancements in model
architectures, training techniques, and the incorporation of linguistic features. Sequence-
to-sequence architectures have been the dominant architecture for NMT models so far,
mapping the source language into a fixed-dimensional representation and then
transforming it into the target language. This foundational approach has been enhanced by
attention mechanisms to allow models to focus on relevant parts of the input sequence
during translating and thus improving the quality of the translation (Klein et al., 2017;
Cheng et al., 2018). One of the primary challenges of English-Chinese and Chinese-English
translation is due to the structural differences between the two languages. English is an
alphabetic language with a subject-verb-object (SVO) structure, while Chinese is
logographic and has a tendency to employ a SVO or topic-comment structure. This tends
to result in word alignment and sentence reordering issues in translation. Zhang et al.
(2017) has shown that the incorporation of linguistic features such as syntactic forms and
word reordering ability has the ability to enhance translation to a great extent. For
instance, Sennrich & Haddow (2016) demonstrated that augmenting NMT systems with
linguistic input features improved their ability to handle complex sentence structures,
thereby reducing errors in translation.

Access to large-scale parallel corpora has also played a crucial role in pushing
English-Chinese NMT systems. The WCC-EC 2.0 corpus contains over 1.6 million
English-Chinese sentence pairs and it is one such contribution of large-scale data towards
translation performance. This web-crawled corpus has been shown to improve the
robustness and accuracy of NMT models, with high BLEU scores achieved in test datasets
(Zhang et al., 2024). Moreover,Wang et al. (2021) showed that the use of monolingual data
in addition to parallel corpora has been explored as a way to further enhance translation
quality, particularly in low-resource settings. In 2023, Wang et al. (2023a) engaged in
attempting to address some of the linguistic phenomena that complicate translations, such
as the pro-drop feature of Chinese. Wang’s study on a pronoun omission solution
recognizes the challenge posed by languages that have a tendency to drop pronouns,
causing fragmented translations when they are translated into English. This work
highlights the necessity of developing tailored models that have the ability to complete
missing information in order to produce fluent translations.

Recently, the developments in model architecture such as the Transformer model have
significantly improved the performance and efficiency of NMT systems. Meng & Zhang
(2019) applied Transformer architecture, founded on self-attention mechanisms to allow
handling of long-distance word relations within sentences, and hence it is best suited to the
intricacies of English-Chinese translation. Hassan et al. (2018) demonstrated that
Transformer-based models outperform traditional RNNs on a variety of translation tasks,
including between English and Chinese. The use of character-level representations has also
been proven to be an efficient approach to enhancing NMT systems for Chinese. Nikolov
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et al. (2018) and Zhang & Komachi (2018) illustrated that character-level models have the
ability to capture the nature of Chinese characters, leading to more precise
English-Chinese translations. This approach addresses the challenge posed by the lack of
systematic correspondence between the linguistic units of two languages. Moreover,
research into multilingual NMT systems has been increasing with the capacity for
knowledge transfer across language pairs. This is particularly beneficial for low-resource
languages where parallel data could be scarce. By leveraging data from different languages,
Dabre, Chu & Kunchukuttan (2020) have shown that NMT systems are able to perform
better in English-to-Chinese and other language pair translations. In terms of evaluation
metrics, the quest for human parity in translation quality has motivated significant
research efforts. Studies have been made to define and measure human parity in
translation, with some NMT systems already found to reach the levels of professional
human translators in some settings, such as Chinese-English news translation by Hassan
et al. (2018). Such accomplishment highlights the potential of NMT to enhance
cross-cultural communication and interaction and develop cross-cultural interaction.

MATERIAL AND METHOD
BMELD dataset
In this study, we focus on the Bilingual MELD (BMELD) (Liang et al., 2021) dataset, a
novel resource designed to enhance the translation quality between English and Chinese.
Building upon the existing MELD corpus, which comprises monolingual English dialogues,
BMELD introduces a multimodal dialogue dataset that integrates emotional and sentiment
annotations. Each entry in the dataset includes detailed information, such as speaker
identity, emotional state, sentiment classification, and contextual details from the popular
TV show “Friends”. The dataset aims to balance the representation of speakers, with 50%
of the dialogues provided in Chinese, ensuring a diverse linguistic context. The Chinese
translations were meticulously crawled and manually post-edited by native speakers,
guaranteeing accuracy and fluency. By leveraging the Stanford CoreNLP toolkit for
sentence segmentation, BMELD facilitates a robust framework for analyzing and
improving translation methodologies. Our research utilizes this rich dataset to explore
advancements in translation techniques, particularly in handling emotional nuances and
context-specific dialogue, ultimately contributing to more sophisticated bilingual
translation systems.

Data preprocessing
The preprocessing of bilingual data follows a structured pipeline approach to ensure
high-quality input for the translation model. This process involves multiple steps,
including data loading, tokenization, vocabulary generation, sequence encoding, and batch
preparation. The dataset consists of parallel English-Chinese sentence pairs, with each line
containing an English sentence alongside its corresponding Chinese translation. To
facilitate model training, tokenization is applied to each sentence, incorporating special
tokens: BOS (Beginning of Sentence) and EOS (End of Sentence). English sentences
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undergo lowercasing before tokenization, while Chinese sentences are segmented at the
character level.

To enhance neural network training, separate vocabularies are constructed for English
and Chinese. The most frequent words, up to a maximum of 30,000, are retained, whereas
less frequent words are substituted with a special UNK (unknown) token. Each token is
then mapped to a unique numerical identifier, forming a word-to-index dictionary. A
reverse index is also established to facilitate decoding. Sentences are subsequently
converted into sequences of numerical IDs according to the constructed dictionaries. To
improve training efficiency, sentences are sorted by length before batching, thereby
minimizing unnecessary padding. For mini-batch training, sentences are grouped into
fixed-size batches. As sentence lengths may vary within a batch, padding is applied to
standardize their length. Additionally, a mask is generated to differentiate actual tokens
from padding elements. This step ensures that the model processes data efficiently while
reducing redundant computations on padded tokens. Finally, the dataset is split into
10,477 sentences for training, 1,177 for validation, and 2,763 for testing. This stratification
ensures that the model has sufficient data to learn while allowing for performance tuning
and unbiased evaluation on unseen examples.

Model development
Kolmogorov-Arnold networks
The Kolmogorov-Arnold network (KAN) is a neural network architecture inspired by the
Kolmogorov-Arnold representation theorem. This theorem states that any multivariate
continuous function defined on a bounded domain can be expressed as a finite
composition of continuous univariate functions and addition. This leads to a novel
approach in neural network design, where nonlinear transformations are performed
through learnable univariate functions. In KAN, each layer consists of a set of learnable
univariate functions acting as activation functions on the edges. Specifically, a
Kolmogorov-Arnold layer with din-dimensional inputs and dout-dimensional outputs is
defined as:

f ðxÞ ¼ � � x ¼
Xdin
i¼1

fi;1ðxiÞ � � �
Xdin
i¼1

fi;doutðxiÞ;
" #

(9)

where � is a matrix of univariate functions fi;j, to enable a learnable nonlinear mapping of
the input. A KAN is built by stacking several such layers, resulting in sequential
compounding of transformations:

KANðx0Þ ¼ �L�1 � �L�2 � � � � � �0 � x0: (10)

To enhance the flexibility of the learnable univariate functions, KAN parameterizes
fðxÞ as a combination of the SiLU activation function and a B-spline function:

fðxÞ ¼ wb � siluðxÞ þ ws � splineðxÞ; (11)

where
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siluðxÞ ¼ x
1þ e�x

; splineðxÞ ¼
X
i

ciBiðxÞ: (12)

Justification for model choice
Typical NMT models, such as Transformer-based architectures, have achieved remarkable
success in English-Chinese translation. However, they perform poorly in capturing
long-range dependencies, handling complex syntactic structures, and maintaining
translation consistency across linguistically distant language pairs. Studies based on the
self-attention mechanism allow models to capture global context; however, they do not
effectively model hierarchical or compositional linguistic structures, which often results in
inconsistent translations. In addition, most previous models still face challenges in
computational efficiency as well as accuracy when translating long documents or operating
under high-speed processing demands. To address these limitations, we employ the
Kolmogorov-Arnold Transformer (KAT), a novel architecture whose purpose is to boost
the expressiveness and efficiency of deep learning models in sequence-to-sequence tasks.

KAT is a hybrid architecture that integrates the strengths of Transformers and
Kolmogorov–Arnold Networks, enabling the representation of complex functions through
a structured decomposition process. This capability is particularly advantageous in
machine translation, where capturing intricate relationships between source and target
languages is essential. As a result, KAT can handle long sentences in both English and
Chinese, enhancing the model’s ability to produce accurate and contextually coherent
translations. This architecture improves parameter efficiency and reduces the risk of
overfitting while maintaining high fidelity in translation. It is especially adept at capturing
syntactic and semantic relationships in Chinese due to challenges such as word
segmentation and character-based representation. By leveraging KAT, we aim to enhance
translation quality through improved contextual understanding, reduced computational
complexity, and greater fluency in both English and Chinese. This choice offers a robust,
scalable, and interpretable approach to machine translation, advancing the capabilities of
current NMT systems.

Model architecture
In this article, we propose the customed transformer architecture by replacing FFN with a
KAN layer to enhance the expressiveness of the transformation. Overview of this
architecture is described in Fig. 2.

Given an input sequence X consisting of word-tokenized representations, discrete
tokens are initially mapped into dense vector spaces through an embedding layer.
Positional encodings are incorporated to preserve order information, as the Transformer
model does not inherently capture positional dependencies:

X ¼ EmbeddingLookupðXÞ þ PositionalEncodingðXÞ; (13)

where X 2 Rbatch size�seq len�embed dim. The core component of the Transformer is the
self-attention mechanism, which enables the model to capture long-range dependencies
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between words. The input X is projected into Query (Q), Key (K), and Value (V)
representations. These representations are then used to compute the self-attention output:

a ¼ SelfAttentionðQ;K;VÞ; Q ¼ XWQ; K ¼ XWK ; V ¼ XWV ; (14)

where WQ;WK ;WV are learnable weights. To facilitate stable training and prevent
gradient vanishing, we incorporate residual connections followed by layer normalization:

Xnorm ¼ LayerNormðXattention þ aÞ: (15)

Next, each token representation is then passed through a KAN that is explained in next
subsection and a final residual connection and normalization step is applied:

English
sentence

Chinese
sentence

KAT

Cross Entropy
LossTokenize

Tokens

Predicted
Tokens

Tokenize

Embedding

Sofmax

Detokenize

KAT

Multi-Head
Attention

Add & Norm

KAN

Positional
Encoding

Add & Norm

Enlish
embedding

KAN

Masked Multi-
Head

Attention

Add & Norm

Multi-Head
Attention

Add & Norm

Positional
Encoding

Chinese
embedding

Figure 2 KAT model: architectural overview and implementation details.
Full-size DOI: 10.7717/peerj-cs.3139/fig-2
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Xhidden ¼ KANðXnormÞ: (16)

At the end of multiple encoder layers, the output representation Xout captures rich
contextual information, which is then passed to the decoder for translation.

Xout ¼ LayerNormðXhidden þ XnormÞ: (17)

This structured processing allows the model to effectively encode syntactic and semantic
dependencies, making it well-suited for NMT tasks.

Implementation details
Our model is implemented using PyTorch. The network undergoes training with a batch
size of 128 and utilizes a cross-entropy loss function over 50 epochs. The training process is
conducted on a GPU 3070 with 24 GB of RAM. We employ the Adam optimizer with a
learning rate of 0:0001, momentum parameters b1 ¼ 0:9 and b2 ¼ 0:98, and e ¼ 10�9.
The chosen hyperparameters are summarized in Table 1.

Our model is implemented using PyTorch. The network undergoes training with a
batch size of 128 and utilizes a cross-entropy loss function over 50 epochs. The training
process is conducted on a GPU 3070 with 24 GB of RAM and an Intel Core i9-12900K 16-
core CPU, 32 GB of system RAM, and running Ubuntu 22.04 LTS. The hyperparameters
during training were chosen based on a balance between learning efficiency and the
system’s practical computational capacity. A batch size of 128 maximizes the GPU’s
parallel processing capability while ensuring stable updates of the network weights.
Training over 50 epochs was determined through prior experimentation to give the model
sufficient time to converge without overfitting. The learning rate of 0.0001 was selected
after multiple trials with different learning rates, optimizing for the best performance.
Along with the momentum parameters b1 ¼ 0:9, b2 ¼ 0:98, and e ¼ 10�9, these settings
were chosen for their ability to automatically adjust the learning step, helping the model
converge quickly and stably on the dataset. These parameters are also recommended in
many recent studies on similar deep learning models, as they help prevent gradients from
becoming too large or too small. The chosen hyperparameters are summarized in Table 1.
On this setup, the average training time per epoch is approximately 2.4 min, resulting in a

Table 1 The adjustable training settings.

Parameters Description Default value

src_vocab_size English vocabulary size 30,522

tgt_vocab_size Chinese vocabulary size 21,128

batch Batch size 128

num_epochs Number of epochs 30

hidden_dimensions Feature dimensions of the model 256

n_head Number of attention head of model 4

num_encoder_layers Number of encoder layers 2

num_decoder_layers Number of decoder layers 1

optimizer The optimizer for training Adam
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total training time of around 2 h for the full 50 epochs. During testing, the average
inference time per sample is approximately 2.1 s.

Evaluation method
Evaluation metrics
In this study, we use evaluation metrics including Bilingual Evaluation Understudy
(BLEU), METEOR, Translation Edit Rate (TER), and Character-level F-score (ChrF) to
assess the performance of our translation models. BLEU focuses on n-gram overlap
between the translation and reference, making it suitable for overall evaluation but
potentially overlooking semantic and contextual aspects. METEOR supplements this by
incorporating synonym matching and sentence-level analysis, providing a better reflection
of translation accuracy and fluency. TER measures the number of edits required to
transform the system output into the reference translation, offering insight into
post-editing effort and specific differences. ChrF, based on character-level F-score, enables
finer-grained evaluation of minor errors and is especially suitable for languages with
complex word structures. Comparing and combining these metrics offers a more
comprehensive perspective on translation quality, thereby enhancing the accuracy of
model performance assessment. They characterize their mathematical formulas as:

BLEU ¼ exp
XN
n¼1

wn log pn

 !
�minð1; e1�r=cÞ; (18)

where pn represents the precision of n-grams, wn is the weight assigned to each n-gram, r is
the reference translation length, and c is the candidate translation length.

METEOR ¼ Fmean � ð1� penaltyÞ; (19)

where Fmean is a weighted harmonic mean of precision P and recall R, and the penalty term
accounts for the number of chunks that are not in the correct order.

TER ¼ E
R
; (20)

where E represents the number of insertions, deletions, substitutions, and shifts needed,
and R is the total number of words in the reference translation. A lower TER score
indicates a more accurate translation.

ChrF ¼ ð1þ b2Þ � Precision� Recall

b2 � Precisionþ Recall
; (21)

where Precision and Recall are calculated over character-level n-grams, and b is a
parameter balancing the two measures.

Comparative analysis
Following the guidelines for comparative studies on various network models, the hardware
and software environments, along with other experimental parameters, remain constant,
with the network model being the only variable. This study employs a statistical machine
translation model (Osborne, 2011) as the baseline system. In addition, various neural
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network architectures, including RNNs (Datta et al., 2020), long short-term memory
(LSTM) networks (Ramaiah, Datta & Agarwal, 2022), and bidirectional LSTM (BiLSTM)
(Tanvir et al., 2023) models, hybrid models such as RNN+Attention (Shi, Meng & Wang,
2019), LSTM+Attention (Wu & Xing, 2024), convolutional sequence to sequence learning
(CSSL) (Gehring et al., 2017), BART (Lewis et al., 2019) and Transformer (Badawi, 2023)
model are also analyzed and evaluated. These models developed under the same
environment and parameter settings.

The training configurations for all baseline models were kept consistent to ensure fair
comparison. Specifically, we used the Adam optimizer with a learning rate of 1e−4, a batch
size of 128. The hidden dimension was set to 256, and for attention-based models
(Transformer, BART), we used four attention heads. Encoder-decoder models (RNN,
LSTM, CSSL) followed a 2-layer encoder and 1-layer decoder architecture. These settings
were applied uniformly unless otherwise specified for a particular model.

Benchmarking KAN integration
To assess the impact of incorporating KAN into the KAT architecture, we conducted
comparative experiments against a baseline Transformer model. The models were
evaluated on the Bilingual MELD dataset using standard translation quality metrics,
including BLEU-4, METEOR, TER, and ChrF. BLEU-4 measures n-gram precision against
reference translations, METEOR evaluates alignment based on synonymy and word order,
TER quantifies the number of edits needed to match the reference, and ChrF assesses
character-level translation quality. Performance improvements across all four metrics were
used to validate the effectiveness of the KAN integration.

Evaluating the impact of vocabulary size
To investigate the effect of vocabulary size on translation performance, we trained KAT
models with varying vocabulary sizes of 10, 20, and 30 K. The models were evaluated on
the Bilingual MELD dataset using BLEU-4, METEOR, TER, and ChrF metrics. BLEU-4
and METEOR scores were used to assess translation fluency and adequacy, while TER
measured the amount of post-editing required, and ChrF evaluated character-level
accuracy. Performance trends across different vocabulary sizes were analysed to determine
the trade-offs between translation quality and computational efficiency.

RESULTS AND DISCUSSION
Comparative results
The results in Table 2 demonstrate that neural network-based models significantly
outperform the SMT baseline across all evaluation metrics. The BLEU-4 score for the
baseline system is 21.5, which is considerably lower than that of the RNN-based models
and even more so compared to transformer-based architectures. Among the recurrent
neural network models, BiLSTM exhibits the best performance with a BLEU-4 score of
30.5. When the attention mechanism is incorporated, both RNN+Attention and LSTM
+Attention show notable improvements, with the latter achieving 34.8 in BLEU-4 and 38.2
in METEOR, highlighting the effectiveness of attention mechanisms in translation tasks.
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The standard Transformer model further enhances translation quality, surpassing
RNN-based models by a large margin with a BLEU-4 score of 39.2. This improvement
aligns with previous research, confirming the efficiency of self-attention mechanisms in
capturing long-range dependencies in sequential data. Notably, the Kolmogorov-Arnold
Transformer achieves the highest performance across all metrics, with a BLEU-4 score of
42.8 and a significant reduction in TER (40.5). These results suggest that incorporating
Kolmogorov-Arnold transformations allows for more effective feature extraction and
representation learning in translation tasks. The improvement in ChrF (65.4) further
supports that this model in handling character-level details, which is crucial for
morphologically rich languages such as Chinese. In addition, the CSSL-based model
achieves competitive results, with a BLEU-4 score of 37.0 and a METEOR score of 39.8,
compared to BART’s scores of 40.6 (BLEU-4), 42.3 (METEOR). To directly address the
effectiveness of KAT in long-sequence translation, we provide several representative
examples from the test set in Table 3. These qualitative results highlight specific
improvements made by KAT compared to conventional models, particularly in preserving
long-range dependencies and maintaining translation coherence across extended
sequences. This analysis further supports the claim that KAT is a promising approach for
bilingual machine translation tasks involving long-form content.

Impact of KAN
Table 4 presents the performance metrics for different configurations of KAN-enhanced
translation models. The results demonstrate that KAN improves translation fluency and
adequacy by leveraging a more sophisticated representation of the input data.

The incorporation of KAN leads to a BLEU-4 score increase from 39.2 to 44.3, which
highlights its ability to better capture linguistic details. Furthermore, the METEOR score
improves significantly, indicating better alignment with human translation references. The
reduction in TER suggests fewer necessary post-editing changes, and the increase in ChrF
indicates superior handling of character-level variations, which is particularly beneficial for
complex language pairs. Theoretically, KAT builds upon the foundation of KAN, which
employs Kolmogorov-Arnold representations to enhance the approximation of complex

Table 2 Performance comparison of different translation models on the test set.

Model BLEU-4 METEOR TER ChrF

Statistical MT (Baseline) 21.5 25.3 60.4 45.7

RNN 26.7 30.1 55.2 50.5

RNN + Attention 32.1 35.5 49.8 56.0

LSTM 28.9 32.4 53.1 52.8

BiLSTM 30.5 34.2 51.3 54.3

LSTM + Attention 34.8 38.2 47.5 58.3

Transformer 39.2 41.7 43.8 62.1

CSSL 37.1 39.8 45.2 60.3

BART 40.6 42.3 42.6 62.9

Kolmogorov-Arnold Transformer 42.8 45.3 40.5 65.4
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nonlinear functions. This approach enables the model to learn deeper and more structured
semantic representations from the input data. Specifically, KAT improves the
Transformer’s ability to capture nonlinear dependencies and compositional structures—
fact attention mechanisms to model effectively. As a result, it produces more accurate
contextual representations, thereby improving the fluency and semantic adequacy of
translations, as reflected in the BLEU, METEOR, TER, and ChrF scores. These findings
reinforce the potential of KAN as an effective enhancement to existing transformer-based
translation models, offering a promising direction for future research in neural machine
translation.

Impact of vocabulary size
Table 5 shows the impact of different vocabulary sizes on model performance. The results
indicate that increasing vocabulary size leads to improvements in translation quality, as
evidenced by higher BLEU-4 and METEOR scores and reduced TER. However, beyond
30 K vocabulary size, the improvements become marginal while computational costs
increase significantly. Thus, selecting an optimal vocabulary size is essential to balancing
performance and efficiency in machine translation models.

Table 3 Example translations generated by different models for qualitative comparison.

Source sentence Target sentence Transformer CSSL BART Ours

Long sentences

Why do all your coffee mugs have
numbers on the bottom?

咖啡杯底为什么都

有编号？
为什么你的咖啡杯

底下都有数字？
你的咖啡杯底下

怎么都有编

号？

你的咖啡杯为什

么底下有数字？
你的咖啡杯底为什么

都有编号？

Oh. That’s so Monica can keep
track. That way if one on them is
missing, she can be like, Where’s
number 27?!

这样莫妮卡才方便

追踪.要是少了一

个, 她就可以

说"27号杯呢？

哦, 这样莫妮卡可

以知道哪个不见

了, 她就会问: 27
号在哪？

这样莫妮卡能追

踪, 如果少了一

个, 她就会说,
27号呢？

哦, 这样莫妮卡就

能知道少了哪

个, 她会说: 27
号去哪了？

哦, 这样莫妮卡可以

追踪.这样如果少

了一个, 她可以说,
27号呢？

Short sentences

You know what? 你知道吗？ 你知道吗？ 你知道吗？ 你知道吗？ 你知道吗？

Come on, Lydia, you can do it. 加油, 莉迪亚, 你办

得到.
加油, 莉迪亚, 你

一定可以.
加油, 莉迪亚, 你

能做到.
加油, 莉迪亚, 你

行的.
加油, 莉迪亚, 你可

以的.

Push them out, push them out,
harder, harder.

用力, 再加油. 把他们推出去, 再

用点力.
推出去, 用力点,
更用力.

用力, 推出去, 更

用力！
把他们推出去, 再用

力！

Let’s get, I was just. Yeah, okay. 我们,我只是……好

吧.
我们, 我只是…好

吧.
我们, 我只是…

好吧.
我们, 我只是…好

吧.
我们, 我只是…好吧.

Table 4 Effect of KAN on translation performance.

Model BLEU-4 METEOR TER ChrF

Transformer 39.2 41.7 43.8 62.1

Kolmogorov-Arnold transformer 42.8 45.3 40.5 65.4
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LIMITATIONS AND FUTURE RESEARCH
Despite the promising performance of our approach, several limitations warrant attention.
First, while the Bilingual MELD dataset serves as a useful benchmark, it may not
sufficiently capture the full diversity of linguistic structures, idioms, and domain-specific
expressions encountered in real-world translation tasks. This could hinder the
generalizability of KAT across broader language settings. Second, the high computational
demands of KAT pose scalability challenges. Training and inference require substantial
hardware resources, which could limit accessibility for low-resource environments.
Another limitation involves the reliance on automated metrics (BLEU, METEOR, TER),
which do not fully capture translation fluency or semantic adequacy. Future studies should
incorporate human evaluation to better understand fluency, adequacy, and contextual
appropriateness.

Future extensions of KAT will explore multilingual generalisation by integrating
insights from domain adaptation, such as multilevel distribution alignment strategies
proposed by Ning et al. (2025), and dynamic label alignment techniques exemplified in
DyLas by Ren et al. (2025). These approaches may enhance KAT’s robustness across
diverse linguistic domains and shifting data distributions. Incorporating continual
learning mechanisms, such as the dual-channel collaborative transformer developed by
Cai et al. (2025), could help prevent catastrophic forgetting when fine-tuning on evolving
bilingual corpora. Additionally, contrastive representation learning, as demonstrated by
Nguyen et al. (2024) in multimodal molecular property prediction, offers a compelling
strategy for refining latent language representations. Expanding KAT to support
multimodal translation—especially in video and dialogue contexts—may benefit from
attention-based architectures like TASTA (Wang et al., 2023b) and generation models like
AttriDiffuser (Song et al., 2025), which capture spatial-temporal and semantic alignment in
text-to-image tasks. Such techniques could improve context awareness in complex,
real-world translation scenarios. Moreover, incorporating domain-specific linguistic
features, inspired by findings in Chinese EFL learner studies (Zhang & Chen, 2024), could
refine KAT’s handling of culturally and structurally distinct expressions. Large language
model augmentation, as explored in the Fg-T2M++ framework byWang et al. (2025), may
further support nuanced text generation in translation. Lastly, the application of learned
molecular representations in bio-cheminformatics (Nguyen-Vo et al., 2024) suggests
promising parallels in encoding structured language information, which KAT could adopt
to enrich its vocabulary modelling and translation consistency over longer sequences.

Table 5 Effect of vocabulary size on translation performance.

Vocabulary size BLEU-4 METEOR TER ChrF

10 K 35.1 38.9 48.2 57.1

20 K 38.7 41.2 44.5 60.3

30 K 43.5 46.0 40.2 64.8
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CONCLUSIONS
This article presented a novel architecture that integrates the Kolmogorov-Arnold network
into a Transformer framework to improve English-Chinese machine translation.
Evaluated on the Bilingual MELD dataset, the proposed model achieved superior
performance compared to both traditional models and modern neural translation systems,
with a BLEU-4 score of 42.8, a METEOR score of 45.3, and a TER of 40.5. These results
highlight the effectiveness of incorporating structured mathematical representations into
neural architectures. Furthermore, we showed that increasing vocabulary size and
incorporating Kolmogorov-Arnold-based components contributed to notable gains in
translation accuracy. Overall, this study demonstrates the potential of the framework as a
powerful approach for enhancing the quality of bilingual translation systems.
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