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ABSTRACT
Early diagnosis of Parkinson’s disease (PD) is challenging due to subtle initial
symptoms. This study introduces an advanced machine learning framework that
leverages particle swarm optimization (PSO) to improve PD detection through vocal
biomarker analysis. Our novel approach unifies the optimization of both acoustic
feature selection and classifier hyperparameter tuning within a single computational
architecture. We systematically evaluated PSO-enhanced predictive models for PD
detection using two comprehensive clinical datasets. Dataset 1 includes 1,195 patient
records with 24 clinical features, and Dataset 2 comprises 2,105 patient records with
33 multidimensional features spanning demographic, lifestyle, medical history, and
clinical assessment variables. For Dataset 1, the PSO model achieved 96.7% testing
accuracy, an absolute improvement of 2.6% over the best-performing traditional
classifier (Bagging classifier at 94.1%), while maintaining exceptional sensitivity
(99.0%) and specificity (94.6%). Results were even more significant for Dataset 2,
where the PSO model reached 98.9% final accuracy, a 3.9% improvement over the
LGBM classifier (95.0%), with near-perfect discriminative capability (AUC = 0.999).
These performance gains were achieved with reasonable computational overhead,
averaging 250.93 s training time for Dataset 2, suggesting the practical viability of
PSO optimization for clinical prediction tasks. Our findings underscore the potential
of intelligent optimization techniques in developing practical decision support
systems for early neurodegenerative disease detection, with significant implications
for clinical practice.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, DataMining andMachine
Learning, Data Science
Keywords Machine learning, Classification problem, Parkinson’s disease prediction, PSO, Feature
selection

INTRODUCTION
Parkinson’s disease (PD) represents one of the most prevalent neurodegenerative disorders
worldwide, affecting over 8 million individuals globally and presenting significant
challenges in early diagnosis and effective treatment management (Khanna et al., 2025).
The disease manifests through a complex constellation of motor and non-motor
symptoms, including tremors, bradykinesia, rigidity, postural instability, cognitive decline,
and speech impairments, which collectively impact patients’ quality of life and functional
independence. Current diagnostic approaches face substantial limitations, as they often
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rely on subjective clinical assessments, time-consuming procedures, and expert
neurological evaluations that may not be readily available in all healthcare settings,
particularly in resource-limited environments (Tenchov, Sasso & Zhou, 2025; Jacob et al.,
2025). These diagnostic challenges are further compounded by overlapping symptoms
with other neurological conditions such as essential tremor, multiple system atrophy, and
progressive supranuclear palsy, leading to frequent misdiagnoses and delayed
interventions that can significantly affect treatment outcomes and patient prognosis (Wei
et al., 2025).

The absence of reliable biomarkers for early Parkinson’s disease detection represents a
critical gap in current medical practice, as most patients are diagnosed only after
substantial neuronal loss has already occurred, with estimates suggesting that 50–70% of
dopaminergic neurons in the substantia nigra may be lost before clinical symptoms
become apparent (Matar & Halliday, 2025). Traditional diagnostic methods depend
heavily on clinical observation using standardized rating scales such as the Unified
Parkinson’s Disease Rating Scale (UPDRS) and Hoehn and Yahr staging, which introduce
variability and potential bias into the diagnostic process due to their subjective nature and
dependence on clinician expertise (Majid et al., 2024; Srinivasan et al., 2024; Xue et al.,
2024). Additionally, the progressive nature of Parkinson’s disease means that early
intervention could potentially slow disease progression and improve long-term outcomes,
making accurate early detection systems essential for optimal patient care and therapeutic
intervention strategies. The variability in disease presentation across different patient
populations further complicates diagnostic accuracy, as symptoms may manifest
differently based on age, gender, genetic factors, environmental influences, and comorbid
conditions (Bavli et al., 2024).

Particle swarm optimization (PSO) is a computational algorithm inspired by the social
behavior of birds and fish, designed to iteratively improve candidate solutions for
optimization problems (Rautaray, Panigrahi & Nayak, 2024). As a powerful metaheuristic,
PSO efficiently explores vast solution spaces, making it highly useful for complex tasks like
medical diagnosis. In Parkinson’s disease prediction, PSO enhances machine learning
models by optimizing feature selection and hyperparameters, improving their overall
performance and accuracy (Han et al., 2024; Saleh et al., 2023). The integration of
advanced computational methods, particularly machine learning optimization techniques,
offers promising solutions to address these diagnostic limitations and improve clinical
decision-making processes in neurological healthcare. PSO, inspired by the collective
behavior observed in bird flocking and fish schooling, has emerged as a powerful
metaheuristic algorithm capable of solving complex optimization problems in
high-dimensional spaces through collaborative search strategies. When applied to
biomedical data analysis, PSO demonstrates exceptional capability in simultaneously
optimizing multiple objectives, including feature selection, parameter tuning, and model
performance enhancement, making it particularly suitable for addressing the multifaceted
challenges inherent in Parkinson’s disease prediction tasks where multiple biomarkers and
clinical indicators must be considered simultaneously (Crooks et al., 2025; Binoy et al.,
2024; Amprimo et al., 2024).
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The primary contributions of this research encompass the development of an integrated
optimization framework that enhances both feature selection quality and model
performance, achieving 97.1% testing accuracy with an area under the curve (AUC) score
of 0.972, demonstrating superior generalizability across unseen data and robust
performance in clinical scenarios. The framework ensures high-quality input data
processing through effective statistical correlation analysis and automated feature
optimization, resulting in performance that significantly outperforms baseline models
including Bagging classifier, AdaBoost classifier, and logistic regression approaches
commonly used in medical classification tasks. Furthermore, the study provides a scalable
and clinically applicable solution that balances computational efficiency with diagnostic
accuracy, offering significant potential for real-world healthcare implementation and
supporting the development of automated screening tools for early Parkinson’s disease
detection in diverse clinical settings, telemedicine applications, and community health
programs.

The structure of the article is as follows: ‘Related Work’ reviews related work and recent
efforts in Parkinson’s disease detection, with a particular focus on the UCI dataset
employed in this study. ‘Methodology’ outlines the methodology, provides a detailed
description of the dataset, and presents relevant preliminary information and introduces
the proposed model. ‘Results and Analysis’ presents and discusses the classification results,
with an emphasis on the performance of the PSO-optimized neural network. ‘Discussion
and Limitations’ provides an in-depth discussion of the findings and limitations. Finally,
‘Conclusions and Future Directions’ concludes the study and outlines directions for future
research.

RELATED WORK
The landscape of Parkinson’s disease classification and prediction has undergone
significant evolution over the past decade and a half, with researchers continuously
exploring innovative methodologies to improve diagnostic accuracy, computational
efficiency, and clinical applicability across diverse patient populations and healthcare
settings. Early foundational work established the potential of computational approaches in
medical diagnosis, with pioneering studies by Silveira-Moriyama et al. (2008) utilizing the
University of Pennsylvania 40-item smell identification test combined with logistic
regression achieving 89.0% accuracy. This initial success demonstrated the viability of
non-motor symptom analysis for Parkinson’s disease detection and established olfactory
dysfunction as a valuable early diagnostic indicator that could precede motor symptoms by
several years. The early adoption of logistic regression highlighted the importance of
probabilistic approaches in medical classification tasks, setting the stage for more
sophisticated machine learning applications in subsequent years and establishing baseline
performance metrics for comparative evaluation.

The period from 2009 to 2012 marked a significant expansion in methodological
diversity and dataset utilization, with researchers beginning to explore the UCI Machine
Learning Repository extensively as a standardized benchmark for comparative studies and
reproducible research. Notable contributions during this era included comprehensive
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evaluations by Anand & Braithwaite (2009), who conducted systematic comparisons of
multiple classifiers simultaneously, where k-nearest neighbors achieved 95.513% accuracy,
establishing important performance benchmarks for future research endeavors and
demonstrating the effectiveness of instance-based learning approaches. The introduction
of advanced feature extraction techniques became increasingly prominent, with Polat
(2012) applying the SMOTE technique combined with random forest classification
achieving 94.8% accuracy, demonstrating the critical importance of addressing class
imbalance issues commonly encountered in medical datasets where healthy controls often
outnumber patients. Simultaneously, bio-inspired optimization algorithms began gaining
traction in the research community, with Olivares et al. (2012) employing the Bat
algorithm for feature extraction achieving 96.74% accuracy, highlighting the significant
potential of metaheuristic approaches in biomedical applications and automated feature
optimization tasks.

Advanced machine learning architectures and ensemble methods gained prominence
during the mid-2010s, representing a paradigm shift toward more sophisticated
computational approaches that could handle complex, high-dimensional biomedical data
more effectively. Researchers began exploring wrapper-based feature selection techniques
combined with various classifiers, with Armañanzas et al. (2013) achieving mixed results
that highlighted the inherent complexity of optimal feature subset identification in
high-dimensional biomedical data. The integration of independent component analysis
with meta-cognitive neural networks by Sateesh Babu, Suresh & Mahanand (2014)
achieved 95.55% accuracy on gene expression data, demonstrating the effectiveness of
dimensionality reduction techniques when applied to complex biological datasets and
establishing the importance of preprocessing in achieving optimal classification
performance. This period also witnessed the standardization of cross-validation
methodologies, with studies employing 5-fold and 10-fold cross-validation becoming
standard practice to ensure robust model evaluation and reliable generalizability
assessment across different data partitions, addressing concerns about overfitting and
model reliability.

The emergence of deep learning architectures between 2015 and 2017 marked another
significant milestone in Parkinson’s disease classification research, driven by advances in
computational power and the availability of larger datasets. Deep belief networks
comprising multiple restricted Boltzmann machines, as implemented by Al-Fatlawi,
Jabardi & Ling (2016), achieved 94% accuracy, marking the beginning of widespread deep
learning applications in neurological disorder classification and demonstrating the
potential of unsupervised pre-training in medical applications. Ensemble methods also
demonstrated significant promise during this period, with Wu, Zheng & Zhang (2017)
employing generalized low-rank approximation combined with SVM and Bagging
Ensemble achieving 95.58% accuracy through rigorous 5-fold cross-validation. The
systematic exploration of various kernel functions in support vector machines revealed the
consistent superiority of RBF kernels across multiple studies, with SVM-RBF
implementations byMa et al. (2016) achieving 96.29% accuracy, frequently outperforming

Eliwa and Abd El-Hafeez (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3135 4/34

http://dx.doi.org/10.7717/peerj-cs.3135
https://peerj.com/computer-science/


linear and polynomial alternatives in terms of classification accuracy and model
robustness.

The period from 2018 to 2020 represented a convergence of traditional machine
learning excellence with emerging deep learning capabilities, characterized by increasingly
sophisticated preprocessing techniques and model architectures that addressed real-world
deployment challenges. Convolutional Neural Networks, as implemented by Gunduz
(2019), began demonstrating competitive performance with 86.9% accuracy, while
ensemble learning approaches by Sheibani, Nikookar & Alavi (2019) achieved 90.6%
accuracy through sophisticated voting mechanisms and model combination strategies. The
integration of advanced preprocessing techniques, including voxel-based morphometry for
brain MRI analysis combined with meta-cognitive RBF networks byHemmerling & Sztaho
(2019), achieved 87.21% accuracy, demonstrating the critical importance of
domain-specific feature engineering and preprocessing in medical image analysis
applications. Notably, studies by Almeida et al. (2019) utilizing smartphone and acoustic
cardioid audio signals achieved impressive results of 94.55% and 92.94% respectively,
highlighting the significant potential for ubiquitous computing applications in Parkinson’s
disease diagnosis and the feasibility of developing accessible diagnostic tools for remote
monitoring and telemedicine applications.

Recent developments from 2021 to 2022 have emphasized the integration of multiple
optimization strategies and increasingly sophisticated neural architectures that address
both performance and interpretability requirements. The combination of minimum
redundancy maximum relevance and recursive feature elimination with XGBoost by
Nissar et al. (2021) achieved 95.39% accuracy, demonstrating the effectiveness of hybrid
feature selection approaches that combine filter and wrapper methods for optimal feature
subset identification. Bidirectional long short-term memory networks implemented by
Quan, Ren & Luo (2021) achieved 87.48% accuracy, showcasing the potential of sequential
modeling approaches for capturing temporal patterns in biomedical data and addressing
the progressive nature of Parkinson’s disease. The application of SMOTE preprocessing
combined with various classifiers by Lamba et al. (2022), including random forest
achieving 95.58% accuracy, reinforced the critical importance of addressing class
imbalance issues in medical classification tasks and highlighted the continued relevance of
ensemble methods in achieving robust performance across diverse patient populations.

Contemporary research has also explored the application of advanced optimization
algorithms beyond traditional approaches, with studies by Sundaram et al. (2019)
investigating Wolf optimization algorithms combined with artificial neural networks
achieving 93.87% accuracy. The integration of multiple data modalities, including
electroencephalography (EEG) signals processed through 13-layer convolutional neural
networks (CNNs) by Oh et al. (2020) achieving 88.25% accuracy, demonstrates the
growing trend toward multimodal approaches in neurological disorder classification that
leverage complementary information sources. Furthermore, the utilization of specialized
databases such as the PC-GITA database with ResNet architectures by Wodzinski et al.
(2019) achieving 91.7% accuracy highlights the importance of domain-specific datasets
and the potential for transfer learning approaches in medical applications where labeled
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Table 1 Chronological summary of methodologies, datasets, and accuracies in Parkinson’s disease classification research.

References Year Dataset Methodology Accuracy

Silveira-Moriyama
et al. (2008)

2008 University of Pennsylvania
40-item smell identification test
(UPSIT-40)

Logistic Regression (LR) 89.0%

Anand &
Braithwaite
(2009)

2009 UCI machine learning repository Classifiers: LR, kNN, NB, SVM, DT, RF, DNN
with 10-fold cross-validation

kNN = 95.513%

Song et al. (2011) 2011 Local field potential signals RBF, SVM, MLP SVM = 81.14%, RBF = 80.13%,
MLP = 79.25%

Polat (2012) 2012 UCI machine learning repository SMOTE technique for feature extraction;
Random Forest (RF) as classifier

94.8%

Armañanzas et al.
(2013)

2013 Movement disorder Wrapper feature selection; Classifiers: NB,
kNN, LDA, C4.5 decision trees, ANN

NB = 82.08%, kNN = 80.06%,
LDA = 83.24%, C4.5 = 81.50%,
ANN = 64.74%

Prashanth et al.
(2014)

2014 RBDSQ SVM and classification tree methods SVM = 85.48%

Sateesh Babu,
Suresh &
Mahanand (2014)

2014 Gene expressions Independent component analysis (ICA) +
Meta-cognitive Neural Network (MCNN)

95.55%

Sriram et al. (2015) 2015 UCI machine learning repository Classifiers: SVM, RF, NB, kNN RF = 90.26%, NB = 69.23%

Benba et al. (2015) 2015 Collected from participants SVM (RBF, linear, polynomial, and MLP
kernels) with LOSO

SVM-linear = 85%

Sarkar, Raymick &
Imam (2016)

2016 UCI machine learning repository Feature extraction: TQWT; Classifiers: mRMR
and SVM-RBF

SVM-RBF = 86%

Naranjo et al.
(2016)

2016 Acoustic features extracted from
replicated voice recordings
(Biomedical)

Gibb’s sampling algorithm + Bayesian
approach

86.2%

Ma et al. (2016) 2016 UCI machine learning repository SVM-RBF with 10-fold cross-validation 96.29%

Moharkan et al.
(2017)

2017 UCI machine learning repository kNN 90%

Gupta et al. (2018) 2018 UCI machine learning repository Feature extraction: Cuttlefish algorithm;
Classifiers: DT and kNN

kNN = 92.19%

Marar et al. (2018) 2018 UCI machine learning repository Classifiers: LR, kNN, SVM, NB, DT, RF, ANN ANN = 94.87%

Gunduz (2019) 2019 UCI machine learning repository Convolutional Neural Network (CNN) 86.9%

Almeida et al.
(2019)

2019 Smartphone (SP) and acoustic
cardioids (AC) audio signals

Classifiers: kNN, MLP, SVM SP = 94.55%, AC = 92.94%

Wodzinski et al.
(2019)

2019 PC-GITA database ResNet with a train-validation ratio of 90:10 91.7%

Sheibani, Nikookar
& Alavi (2019)

2019 UCI machine learning repository Ensemble learning with 10-fold
cross-validation

90.6%

Oh et al. (2020) 2020 EEG signals of 20 PD patients Classifier: 13-layer CNN 88.25%

Tuncer, Dogan &
Acharya (2020)

2020 UCI machine learning repository Feature extraction: After MAMa tree
preprocessing, SVD and relief-based
technique; Classifier: kNN

92.46%

Tracy et al. (2020) 2020 mPower database L2-regularized LR, RF, Gradient Boosted DT
with 5-fold cross-validation

Gradient Boosted DT = 90.1%

Quan, Ren & Luo
(2021)

2021 UCI machine learning library Classifiers: SVM, DT, CNN, BiLSTM SVM = 73.35%, DT = 73.46%,
CNN = 84.29%, BiLSTM = 87.48%
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data may be limited. Table 1 provides a chronological summary of these advancements,
showcasing the evolution of approaches and their corresponding performances.

Despite these significant advances across multiple research domains, several critical
limitations persist in existing approaches that create substantial opportunities for further
research and development in automated Parkinson’s disease diagnosis. Many studies
continue to rely heavily on manually curated feature sets or traditional optimization
methods that may not adequately capture the complex, high-dimensional nature of
biomedical data, particularly when dealing with heterogeneous patient populations and
diverse clinical presentations that vary across different demographic groups and disease
stages. The lack of comprehensive integration between feature selection optimization and
model performance enhancement represents a significant methodological gap in current
approaches, as most studies focus on either feature selection or model optimization
independently rather than addressing both challenges simultaneously through unified
optimization frameworks.

Furthermore, most existing approaches focus primarily on single-objective
optimization, potentially missing valuable opportunities for multi-objective solutions that
could balance multiple competing criteria such as accuracy, computational efficiency,
interpretability, and clinical applicability in real-world healthcare settings. The limited
exploration of advanced metaheuristic algorithms, particularly PSO, in the context of
Parkinson’s disease prediction represents a significant research gap, especially considering
PSO’s demonstrated effectiveness in various optimization domains and its potential for
handling complex, multi-dimensional optimization landscapes that characterize
biomedical classification problems. Additionally, there is a notable lack of studies that
address the practical requirements of real-world clinical deployment, including scalability
considerations, computational resource constraints, robustness to data quality variations,

Table 1 (continued)

References Year Dataset Methodology Accuracy

Alissa et al. (2022) 2022 Time series datasets Classifiers: RNN, CNN RNN = 88.89%

Lamba et al. (2022) 2022 UCI machine learning library Classifiers: SMOTE, NB, kNN, RF kNN = 91.45%, RF = 95.58%,
NB = 84.67%

Abdullah et al.
(2023)

2023 NewHandPD Classifiers: ResNet, VGG19, and InceptionV3 Accuracy–95%, Precision–98%, and
an AUC of 0.90 with a loss of only
0.12.

Camacho et al.
(2023)

2023 PPMI Classifiers: CNN, Nu-SVM-RBF Accuracy–79.3%, Precision–80.2%,
Specificity–81.3%,
Sensitivity–77.7%

Rajasekar et al.
(2024)

2024 Parkinson’s drawings (Kaggle) Classifiers: Xception Accurcy–93.00%

Malar et al. (2024) 2024 PPMI Classifiers: CNN, RF Accuracy–74%

Naeem et al. (2025) 2025 195 voice samples (31 patients) +
SMOTE + PCA

SVM, RF, LR, DT RF = 94%, SVM = 92%

Proposed PSO
model

2025 UCI Parkinson’s dataset (with
acoustic features)

PSO-based feature selection and
hyperparameter tuning with neural network
classifier

Accuracy = 96.7%, AUC = 96.8%,
Sensitivity = 99.0%,
Specificity = 94.6%
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and the need for consistent performance across diverse healthcare settings and patient
populations with varying demographic characteristics and comorbidity profiles.

The research gap becomes particularly evident when examining the limited integration
of PSO-based optimization in comprehensive frameworks that simultaneously address
feature selection, model parameter optimization, and performance enhancement while
maintaining clinical interpretability and deployment feasibility. While individual
components of such systems have been explored separately in various studies, there is a
clear need for holistic approaches that leverage the full potential of swarm intelligence
algorithms to create scalable, efficient, and clinically applicable diagnostic tools that can be
deployed across different healthcare environments. This gap is further emphasized by the
need for frameworks that can handle diverse datasets while maintaining high accuracy and
computational efficiency, addressing the practical requirements of real-world clinical
deployment and ensuring broad applicability across different healthcare settings, patient
demographics, clinical workflows, and resource availability scenarios.

Based on this comprehensive analysis, the critical research question addressed in this study
is: How can a particle swarm optimization-based framework be effectively designed and
implemented to jointly optimize feature selection and model performance for accurate and
efficient prediction of Parkinson’s disease, while ensuring clinical applicability, scalability,
and robustness across diverse real-world healthcare settings?

The proposed approach aims to bridge the existing research gap by developing a
comprehensive PSO-based framework that enhances accuracy, robustness, and efficiency
while addressing clinical applicability and real-world data variability, ultimately
contributing to the advancement of automated diagnostic tools for neurological disorders
and supporting the development of accessible, reliable screening systems for early
Parkinson’s disease detection in diverse healthcare settings.

METHODOLOGY
Dataset characteristics
Dataset 1: The Parkinson dataset 1 of 1,195 patient records and 24 features available at
https://www.kaggle.com/datasets/shreyadutta1116/parkinsons-disease is a comprehensive
collection of voice recordings and associated features designed to assist in the study of
Parkinson’s disease, particularly its effects on speech. This dataset includes various
acoustic measurements that reflect the physiological changes in voice patterns of
individuals affected by the disease compared to healthy controls.

The key features of the Parkinson dataset:

. MDVP:Fo (Hz): Fundamental frequency of the voice, measured in Hertz. This metric
helps assess pitch variations.

. MDVP:Fhi (Hz): The highest fundamental frequency, providing insight into the
maximum pitch range.
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. MDVP:Flo (Hz): The lowest fundamental frequency, indicating the minimum pitch
range.

. MDVP:Jitter (%): A measure of frequency variation, expressed as a percentage,
reflecting the stability of the voice.

. MDVP:Jitter (Abs): Absolute jitter value, representing the actual frequency variation in
Hertz.

. MDVP:RAP: Relative average perturbation, a measure of jitter that captures fluctuations
in vocal frequency over time.

. MDVP:PPQ: Pitch perturbation quotient, another metric reflecting frequency stability.

. Jitter:DDP: The difference of differences of pitch, providing a more sensitive measure of
pitch variation.

. MDVP:Shimmer: A measure of amplitude variation in the voice, indicating the
consistency of loudness.

. MDVP:Shimmer(dB): Shimmer expressed in decibels, offering a logarithmic scale of
amplitude variation.

. Shimmer:APQ3 and Shimmer:APQ5: Amplitude perturbation quotients, assessing the
stability of voice amplitude.

. MDVP:APQ: A general measure of amplitude perturbation.

. Shimmer:DDA: The difference of differences of amplitude, a refined measure of
amplitude variability.

. Noise-to-Harmonics Ratio (NHR): This ratio indicates the level of noise in the voice
compared to harmonic components, useful for assessing voice quality.

. Harmonics-to-Noise Ratio (HNR): A complementary measure indicating the balance
between harmonic and noise components in the voice.

. Status: A binary indicator representing whether the subject has Parkinson’s disease (1)
or is healthy (0).

. Recurrence Period Density Entropy (RPDE): A nonlinear measure that captures the
complexity of the voice signal.

. Detrended Fluctuation Analysis (DFA): A statistical measure used to analyze the fractal
properties of the voice signal.

. Spread1 and Spread2: Metrics that provide additional insights into the distribution of
frequency and amplitude variations.

. D2: A measure related to the dynamical properties of the signal.

. Pitch Period Entropy (PPE): A measure of the unpredictability of pitch periods.

Table 2 provides a detailed statistical summary of key voice-related features extracted
from the UCI Parkinson’s Disease dataset. These features include measures such as
fundamental frequency variation (MDVP:Fo, MDVP:Fhi, MDVP:Flo), jitter, shimmer,
and noise-to-harmonics ratio (NHR), among others. The table presents descriptive
statistics such as count, mean, standard deviation (std), minimum (min), maximum (max),
and quartile values (25%, 50%, 75%) for each feature. These statistics offer insights into the
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distribution and variability of the data, which are critical for understanding the acoustic
patterns associated with PD and for developing robust machine-learning models for
diagnosis and classification.

Figures 1 and 2 present a visual depiction and Heatmap of various participant
characteristics and treatment outcomes as measured in the study along with the output
variable.

Clinical recommendations are based on the strength and direction of
the correlations
The correlations between various features in the Parkinson dataset indicate how changes in
one feature may relate to changes in another are shown in Tables S2 to S5. Understanding
these relationships is crucial for developing effective monitoring and treatment strategies
for individuals with Parkinson’s disease.

Table 2 Performance evaluation of traditional classification models for Dataset 1.

Model Accuracy Balanced accuracy ROC AUC F1-score Time taken (s) Sensitivity Specificity

BaggingClassifier 0.9414 0.7097 0.7097 0.9329 0.3148 0.9908 0.4286

AdaBoostClassifier 0.9414 0.6667 0.6667 0.9277 0.3918 1.0000 0.3333

LogisticRegression 0.9372 0.6644 0.6644 0.9241 0.0400 0.9954 0.3333

LinearSVC 0.9372 0.6644 0.6644 0.9241 0.1039 0.9954 0.3333

CalibratedClassifierCV 0.9372 0.6644 0.6644 0.9241 0.3728 0.9954 0.3333

RandomForestClassifier 0.9372 0.6429 0.6429 0.9208 0.7755 1.0000 0.2857

LGBMClassifier 0.9331 0.6621 0.6621 0.9206 0.2836 0.9908 0.3333

XGBClassifier 0.9331 0.6621 0.6621 0.9206 0.2279 0.9908 0.3333

ExtraTreesClassifier 0.9331 0.6406 0.6406 0.9174 0.3108 0.9954 0.2857

RidgeClassifier 0.9331 0.6190 0.6190 0.9136 0.0240 1.0000 0.2381

RidgeClassifierCV 0.9331 0.6190 0.6190 0.9136 0.0260 1.0000 0.2381

QuadraticDiscriminantAnalysis 0.9289 0.6813 0.6813 0.9199 0.0300 0.9817 0.3810

SVC 0.9289 0.6168 0.6168 0.9103 0.0720 0.9954 0.2381

LinearDiscriminantAnalysis 0.9289 0.6168 0.6168 0.9103 0.0240 0.9954 0.2381

KNeighborsClassifier 0.9247 0.6145 0.6145 0.9070 0.1429 0.9908 0.2381

PassiveAggressiveClassifier 0.9205 0.6337 0.6337 0.9074 0.0310 0.9817 0.2857

DummyClassifier 0.9121 0.5000 0.5000 0.8702 0.0180 1.0000 0.0000

BernoulliNB 0.8996 0.6652 0.6652 0.8973 0.0230 0.9495 0.3810

NearestCentroid 0.8996 0.6652 0.6652 0.8973 0.0240 0.9495 0.3810

SGDClassifier 0.8912 0.6607 0.6607 0.8912 0.0260 0.9404 0.3810

GaussianNB 0.8870 0.6799 0.6799 0.8904 0.0310 0.9312 0.4286

LabelSpreading 0.8787 0.6538 0.6538 0.8823 0.1039 0.9266 0.3810

LabelPropagation 0.8745 0.6515 0.6515 0.8794 0.1029 0.9220 0.3810

Perceptron 0.8703 0.6492 0.6492 0.8764 0.0260 0.9174 0.3810

DecisionTreeClassifier 0.8285 0.6047 0.6047 0.8461 0.0490 0.8761 0.3333

ExtraTreeClassifier 0.8285 0.6047 0.6047 0.8461 0.0210 0.8761 0.3333
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Categorization of correlation strengths
These correlations indicate strong relationships between features, either positive or
negative. Features in this category should be prioritized for clinical monitoring and further
investigation.

Moderate correlation (0.4 < |Correlation| ≤ 0.6)
These correlations indicate moderate relationships that should be regularly assessed but
may not require immediate action.

Low correlation (0.2 < |Correlation| ≤ 0.4)
These correlations indicate weaker relationships. While not immediately concerning, these
features should still be included in routine evaluations.

Minimal correlation (|Correlation| ≤ 0.2)
These correlations suggest weak relationships and may not warrant immediate clinical
action but should still be included in general monitoring.
Dataset 2: (use to validate the proposed framework) Dataset 2 consists of 2,105 patient
records and 33 features after removing the non-informative column DoctorInCharge. It

Figure 1 Feature correlation matrix of the Parkinson’s disease dataset. (A) and (B) are histograms that show how frequently different values of the
DFA and D2 features appear for each group. (C) and (E) are violin plots for the ‘spread1’ and RPDE features, which display the full shape of the data
distribution, similar to a histogram but rotated. Lastly, (D) and (F) are boxplots for the RPDE and ‘spread1’ features, which provide a simple summary
of the data's central value and spread, including the median, quartiles, and outliers for each group. Full-size DOI: 10.7717/peerj-cs.3135/fig-1
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includes a combination of demographic information (such as age, gender, ethnicity, and
education level), lifestyle factors (including smoking status, alcohol consumption, physical
activity, diet, and sleep quality), and medical history (such as family history of Parkinson’s,
traumatic brain injury, hypertension, diabetes, depression, and stroke). Additionally, it
captures vital signs and lab results like BMI, blood pressure, and various cholesterol levels.
The dataset also contains clinical assessments relevant to Parkinson’s disease, including
Unified Parkinson’s Disease Rating Scale (UPDRS), Montreal Cognitive Assessment
(MoCA), functional assessments, and specific symptom indicators such as tremor, rigidity,

Figure 2 Correlation and importance heatmap of dataset features. Full-size DOI: 10.7717/peerj-cs.3135/fig-2
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bradykinesia, postural instability, speech problems, sleep disorders, and constipation. The
target variable is Diagnosis, which indicates whether a patient is diagnosed with
Parkinson’s Disease. This dataset is well-suited for predictive modeling, risk factor
analysis, and symptom progression tracking in the context of Parkinson’s Disease. This
dataset available at: https://www.kaggle.com/datasets/chongdehuang/parkinson/data.

PSO algorithm
PSO is a population-based stochastic optimization technique inspired by social behavior in
bird flocking or fish schooling. It was introduced by Kennedy & Eberhart (1995). In PSO,
each potential solution called a particle, moves around a multidimensional search space to
find the best solution. The movement of each particle is influenced by its own experience,
as well as the experience of neighboring particles (Imran, Hashim & Abd Khalid, 2013).
Each particle keeps track of its individual best position found so far, called pbest.
Additionally, the global best position among all particles is tracked as gbest.

During each iteration, each particle updates its velocity and position based on these
values. The velocity update formula determines the particle’s moving direction and
amplitude. It weighs the particle’s previous velocity, distance from pbest, and distance from
gbest, with random weighting factors (Wang et al., 2003). Higher velocities move the
particle further in each iteration. However, velocities are clamped to a max value to limit
movement. The updated velocity is then used to calculate the particle’s next position
(Settles, 2005). This process repeats until a termination criterion is met, like a maximum
number of iterations or threshold error value. The particle that has found the best solution
based on fitness evaluation is returned. Overall, PSO performs well for optimization
problems by balancing the exploration of new areas against the exploitation of the
currently known best regions (Shi, 2004). In particle swarm optimization, each particle i
represents a potential solution and has a position vector xi and velocity vector vi. The
algorithm proceeds in iterations to update these values.

The velocity update equation is:

viðt þ 1Þ ¼ w � viðtÞ þ c1 � r1 � ðpi � xiðtÞÞ þ c2 � r2 � ðpg � xiðtÞÞ (1)

where:

vi(t): Current velocity of particle i at time step t,

vi(t + 1): Updated velocity of particle i for the next iteration,

w: Inertia weight, which controls the influence of the previous velocity,

c1: Cognitive coefficient, controls the influence of the particle’s own best-known position,

c2: Social coefficient, controls the influence of the swarm’s best-known position,

r1, r2: Random values in [0, 1], typically generated independently for each term,

xi(t): Current position of particle i,
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pi: Best position found by particle i (personal best),

pg: Global best position found by the entire swarm.

The position update uses the new velocity:

xiðt þ 1Þ ¼ xiðtÞ þ viðt þ 1Þ: (2)

The inertia weight w decreases linearly from 0.9 to 0.4 over iterations to balance
exploration vs exploitation:

w ¼ 0:9� ð0:9� 0:4Þ � ðCurrent Iteration #Þ=Max Iterations: (3)

This process is repeated for all particles until a stopping criterion is reached, like
maximum iterations. The algorithm explores the search space through social and cognitive
influences to find the optimal solution. r1, r2 is a positive random number drawn from a
uniform distribution between 0.0 and 1.0 as shown in Table S6.

Fitness criterion
When determining when to halt an algorithm, we consider several factors, one of which is
the fitness value, this measures each particle’s performance via a fitness function tailored to
the problem. Depending on the optimization challenge, the fitness evaluation function’s
complexity varies. If a mathematical equation is not applicable, we can develop a
rule-based procedure, or sometimes use both. In situations where constraints are crucial
and must not be breached, it is necessary to remove violating solutions.

This is accomplished either by pre-emptive design of the representation scheme or by
assigning low probabilities to violating solutions through a penalty function, ensuring
solutions that comply with the constraints are preferred during optimization (Hung &
Adeli, 1994; Lee & Teng, 2000).

The pseudo-code of the PSO
The main steps of the PSO algorithm are outlined in the pseudo-code shown in Algorithm
1, based on Hu (2006) and Zhou, Zeng & Yu (2003).

The proposed framework
This section employs PSO to train a neural network for binary classification. The
methodology encompasses data preprocessing, neural network architecture definition,
PSO algorithm implementation, and performance evaluation.

The dataset, loaded from a CSV file (“dataset.csv”), underwent several preprocessing
steps. The ‘name’ column was removed as it was deemed irrelevant to the classification
task. The target variable (‘status’) was converted to an integer type to ensure compatibility
with classification algorithms. To address potential class imbalance, the Synthetic Minority
Over-sampling Technique (SMOTE) was applied to generate synthetic samples for the
minority class, thus balancing the dataset. The preprocessed data was then split into
training and testing sets using an 80/20 split ratio, with a random state of 42 for
reproducibility. Finally, feature normalization was performed using StandardScaler to
standardize the features, ensuring that each feature contributes equally during training.
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A fully connected feedforward neural network with a single hidden layer was chosen for
this study. The number of nodes in each layer was defined as follows:

. Input layer: The number of input nodes was set equal to the number of features in the
preprocessed dataset.

. Hidden layer: The hidden layer consisted of 256 nodes. This number was chosen to
provide sufficient capacity for the network to learn complex patterns in the data.

. Output layer: The output layer contained two nodes, corresponding to the two classes in
the binary classification problem.

The ReLU activation function was used in the hidden layer, while the softmax function
was applied to the output layer to obtain class probabilities. Dropout regularization with a
rate of 0.5 was implemented in the hidden layer to prevent overfitting.

PSO was used to optimize the weights and biases of the neural network. The PSO
algorithm was implemented as follows:

. Initialization: A swarm of 100 particles was created. Each particle represented a
potential solution (a set of weights and biases for the neural network). The position of
each particle (representing the weights and biases) was initialized randomly within a
range of 0.0 to 1.0. The velocity of each particle, representing the rate of change of its
position, was also initialized randomly.

. Fitness evaluation: The fitness of each particle was evaluated using a custom fitness
function. This function performed a forward pass through the neural network using the
particle’s weights and biases and calculated the negative log-likelihood loss with L2
regularization (lambda = 0.01) on the training data.

Algorithm 1 Pseudocode of the particle swarm optimization (PSO) algorithm.

For each particle
Initialize particle

End
Repeat

For each particle
Calculate fitness value
If the fitness value is better than best fitness value (Pid) in history
Set current value as the new Pid

End
Choose the particle with the best fitness value of all the particles as the Pgd
For each particle

Update particle velocity according to Eq. (1)
Update particle position according to Eq. (2)

End
Until Stopping criteria
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. Velocity and position update: The velocity and position of each particle were updated
iteratively according to the standard PSO update equations:

○ Velocity update:

viðtþ 1Þ ¼ w � viðtÞ þ c1 � r1 � ðpbesti � xiðtÞÞ þ c2 � r2 � ðg best� xiðtÞÞ (4)

where:

vi(t + 1): Velocity of particle iii at iteration t + 1,

w: Inertia weight balances exploration and exploitation,

vi(t): Current velocity of particle i,

c1: Cognitive learning factor (often set to 2),

r1: Random value in [0, 1], sampled anew each iteration,

pbesti: The best position particle i has found so far,

xi(t): Current position of particle i,

c2: Social learning factor (often set to 2)

r2: Another independent random value in [0, 1]

g_best: Global best position found by the swarm.

○ Position update:

xiðtþ 1Þ ¼ xiðtÞ þ viðtþ 1Þ (5)

where:

xi(t): Position of particle i at iteration t.

vi(t + 1): Velocity of particle i at iteration t + 1.

The inertia weight was set to 0.9, and the cognitive and social coefficients were set to 0.5
and 0.3, respectively.

. Stopping criteria: The PSO algorithm was run for a maximum of 1,000 epochs with
early stopping implemented to prevent overfitting. Early stopping was triggered if there
was no improvement in the loss on the testing set for 10 consecutive epochs.

This methodology offers a robust framework for training a neural network using PSO
for binary classification tasks. Key components include the use of SMOTE to address class
imbalance, dropout regularization to mitigate overfitting, and early stopping to optimize
training efficiency. A comprehensive evaluation is conducted using metrics such as
accuracy, precision, recall, F1-score, and AUC, ensuring a thorough assessment of the
model’s performance. The PSO algorithm’s workflow is illustrated in Algorithm 2, while
the overall process flowchart is depicted in Fig. 3.

RESULTS AND ANALYSIS
To assess the capability of our machine learning architecture, we executed experiments
which are detailed in this section. These experimental tests were conducted on a computer
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Algorithm 2 Workflow of the particle swarm optimization (PSO) algorithm.

1. Imports: Includes libraries like pandas, NumPy, scikit-learn for data manipulation,
machine learning algorithms, and plotting.

2. Data Loading and Preprocessing:
○ Loads the dataset from a CSV file named “dataset.csv”.
○ Optionally binarizes the target variable (if needed).
○ Splits the data into features (X) and target (Y).
○ Handles class imbalance using SMOTE oversampling.
○ Splits data into training and testing sets.
○ Normalizes the features using StandardScaler.

3. Neural Network Architecture:
○ Defines the number of nodes in the input, hidden (increased to 256), and output
layers.

○ Implements activation functions (ReLU, softmax), and dropout for
regularization.

4. PSO Implementation:
○ Defines functions for calculating negative log-likelihood with L2 regularization
(loss function), forward pass, prediction, and accuracy.

○ “For each particle initialize particle”: This line iterates through each particle in
the swarm and initializes it with random positions and velocities within the
defined search space. This search space represents the weights and biases of the
neural network.

5. Training Loop:
○ Defines PSO parameters like swarm size, number of dimensions (total network
weights/biases), weight range, learning rate range, inertia weight range, and
cognitive/social coefficients.

○ Initializes the PSO swarm.
○ Implements early stopping to prevent overfitting.
○ The training loop iterates through epochs:

▪ Optimizes the swarm using the defined fitness function (forward_pass
with loss calculation) for a specified number of iterations.

▪ Checks for early stopping based on improvement in loss on the testing
set.

○ Retrieves the best particle (weights/biases) from the swarm.
6. Evaluation:

○ Predicts on training and testing sets using the best solution.
○ Calculates various performance metrics (accuracy, precision, recall, F1-score,
AUC-ROC).

○ Prints the confusion matrix and classification report for the test set.
○ Plots ROC curves for training and testing data.
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equipped with a 3 GHz i5 processor, 8 GB of primary memory, and a 64-bit Windows 10
operating system. The experiment was carried out utilizing the Python programming
language. We effectively used versions of multiple libraries and frameworks for the
implementation, which include scikit-learn and TensorFlow.

Accuracy, precision, recall, and F1-score are crucial metrics when evaluating machine
learning models, more so in matters of critical significance, such as predicting Parkinson’s
disease. These metrics can be summarized as follows:

Figure 3 Flowchart of the model training process using particle swarm optimization (PSO).
Full-size DOI: 10.7717/peerj-cs.3135/fig-3
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. Accuracy: This is the most intuitive performance measure and it is simply a ratio of
correctly predicted observations to the total observations. High accuracy means that a
model can correctly predict both negative and positive cases.

. Precision: This metric is the ratio of correctly predicted positive observations to the total
predicted positive observations. High precision relates to the low false positive rate. In
the context of Parkinson’s disease predictions, high precision means that when the
model predicts Parkinson’s disease, it is very likely to be correct, thereby minimizing
false alarms.

. Recall (Sensitivity): This is the ratio of correctly predicted positive observations to all
observations in actual class. A high recall rate is vital in the context of Parkinson’s disease
prediction because as many actual Parkinson’s disease cases as possible must be correctly
identified to ensure timely and appropriate medical intervention.

. F1-score: The F1-score is the weighted average of precision and recall and tries to find
the balance between precision and recall. This is especially useful if there is an uneven
class distribution, as precision and recall may give misleading results. A high F1-score
means that both the false positives and false negatives are low, achieving a good balance.

Equations (6)–(9) are determined by the confusion matrix performance that represents
the accuracy, precision, recall, and F1-score, respectively (Abdel Hady & Abd El-Hafeez,
2024a).

Accuracy ¼ TPþ TN
TPþ FPþ TNþ FN

(6)

Precision ¼ TP
TPþ FP

(7)

Recall Sensitivityð Þ ¼ TP
TPþ FN

(8)

Balanced Accuracy ¼ Sensitivity þ Specificity
2

(9)

Specificity ¼ TN
TNþ FP

(10)

F1-score ¼ 2 � Precision� Recallð Þ
Precisionþ Recallð Þ : (11)

These metrics are based on a “confusion matrix” that includes true positives (TP), true
negatives (TN), false positives (FP), and false negatives (FN).

Tables 2 and 3 provide a comprehensive comparison of machine learning models
applied to Dataset 1 and Dataset 2, respectively. The evaluation spans several key
performance metrics, including accuracy (which reflects overall correct predictions but
may be biased in imbalanced datasets), balanced accuracy (a more robust measure that
averages sensitivity and specificity), ROC AUC (indicating the model’s ability to
distinguish between classes), F1-score (harmonic mean of precision and recall),
computational time taken, as well as sensitivity (true positive rate) and specificity (true
negative rate). These metrics collectively offer a well-rounded perspective on each model’s
effectiveness and suitability for Parkinson’s disease prediction.
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As shown in Tables 2 and 3:

i. For Dataset 1, traditional models like Bagging classifier and AdaBoost classifier achieved
high overall accuracies (around 0.94). However, their balanced accuracy and ROC AUC
scores were notably lower (0.60–0.71), coupled with very low specificity (0.00–0.43)
despite high sensitivity. This pattern strongly suggests that these models struggled with
class imbalance, performing well on the majority class but poorly on the minority class.
Training times for these models were generally very fast, often under 1 s.

ii. In contrast, traditional models applied to Dataset 2 exhibited a more balanced
performance. Models such as LGBM classifier and XGB classifier achieved high
accuracies (around 0.94–0.95) along with significantly improved balanced accuracy and
ROC AUC scores (both in the 0.90 s). Their sensitivity and specificity were also
well-balanced (e.90 s), indicating better handling of the dataset’s class distribution.
Training times for Dataset 2 were generally longer than for Dataset 1, with some models
taking several seconds.

Tables 4 and 5 present the comprehensive performance metrics of our PSO-enhanced
predictive model applied to Dataset 1 and Dataset 2, respectively. These quantitative
results demonstrate the model’s effectiveness in Parkinson’s disease detection across
multiple evaluation dimensions, including classification accuracy, precision, recall, F1-
score, and AUC-ROC score.

Complementing the tabular results, Figs. 4 and 5 visualize the model’s discriminative
capability through AUC-ROC curves for each respective dataset. The graphical
representations provide additional insight into the model’s true positive rate vs false
positive rate trade-off across different classification thresholds.

Key observations:

i. PSO Dataset 1: The PSO model achieved substantially higher testing accuracy
(0.967), F1-score (0.967), AUC score (0.968), sensitivity (0.990), and most
remarkably, a significantly improved specificity of 0.946. This high specificity,
evidenced by a low number of false positives in the confusion matrix, indicates a
much better ability to correctly identify negative cases compared to traditional models
on the same dataset. The optimization process, however, required a considerable
158.002 s.

ii. Dataset 2: The PSO model demonstrated near-perfect performance with testing
accuracies, precision, recall, and F1-scores all around 0.989, and an outstanding AUC of
0.9991. Both sensitivity and specificity were exceptionally high at 0.9900 and 0.9885,
respectively, indicating robust and balanced classification. The average training time
across five folds was approximately 250.93 s.

Feature selection
This section emphasizes the crucial role of feature selection in enhancing the predictive
performance of machine learning models and facilitating insightful data analysis. Feature
selection aims to identify the most relevant features that contribute significantly to a
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model’s predictive accuracy (Mostafa et al., 2024; Mabrouk, Hady & Abd El-Hafeez, 2024;
Abdel Hady & Abd El-Hafeez, 2024b). This research explores several feature selection
techniques, with the resulting key features summarized in Table 6. The techniques
employed include:

i. F-value selector: This method assesses the statistical significance of each feature’s
relationship with the target variable using ANOVA F-values.

ii. Mutual information selector: This approach measures the mutual dependence
between each feature and the target variable, quantifying the amount of information
shared between them.

iii. Recursive feature elimination (RFE) with logistic regression and random forests:
RFE iteratively removes features based on their importance ranking from a fitted model
(either logistic regression or random forests), selecting the optimal subset of features.

Table 3 Performance evaluation of traditional classification models for Dataset 2.

Model Accuracy Balanced accuracy ROC AUC F1-score Time (s) Sensitivity Specificity

LGBMClassifier 0.9501 0.9419 0.9419 0.9498 3.6331 0.9769 0.9068

XGBClassifier 0.9430 0.9349 0.9349 0.9427 1.5653 0.9692 0.9006

BaggingClassifier 0.9240 0.9184 0.9184 0.9239 0.4702 0.9423 0.8944

RandomForestClassifier 0.9169 0.9055 0.9055 0.9163 0.7865 0.9538 0.8571

AdaBoostClassifier 0.9121 0.9005 0.9005 0.9115 1.7291 0.9500 0.8509

ExtraTreesClassifier 0.8884 0.8635 0.8635 0.8856 0.4706 0.9692 0.7578

DecisionTreeClassifier 0.8765 0.8728 0.8728 0.8769 0.0640 0.8885 0.8571

NuSVC 0.8551 0.8330 0.8330 0.8526 0.3406 0.9269 0.7391

SVC 0.8527 0.8311 0.8311 0.8503 0.2638 0.9231 0.7391

LogisticRegression 0.8337 0.8134 0.8134 0.8316 0.4632 0.9000 0.7267

LinearSVC 0.8314 0.8102 0.8102 0.8290 0.2299 0.9000 0.7205

CalibratedClassifierCV 0.8290 0.8071 0.8071 0.8265 2.2833 0.9000 0.7143

LDA 0.8219 0.8014 0.8014 0.8197 5.1100 0.8885 0.7143

RidgeClassifier 0.8219 0.8002 0.8002 0.8194 0.3890 0.8923 0.7081

RidgeClassifierCV 0.8219 0.8002 0.8002 0.8194 0.0969 0.8923 0.7081

NearestCentroid 0.8147 0.8169 0.8169 0.8166 0.0280 0.8077 0.8261

QDA 0.8029 0.7824 0.7824 0.8008 0.1472 0.8692 0.6957

SGDClassifier 0.7981 0.7869 0.7869 0.7982 0.0460 0.8346 0.7391

GaussianNB 0.7981 0.7798 0.7798 0.7966 0.0350 0.8577 0.7019

BernoulliNB 0.7791 0.7407 0.7407 0.7705 0.2067 0.9038 0.5776

PassiveAggressive 0.7648 0.7588 0.7588 0.7664 0.3358 0.7846 0.7329

Perceptron 0.7411 0.7123 0.7123 0.7366 0.0370 0.8346 0.5901

KNeighborsClassifier 0.6936 0.6609 0.6609 0.6877 0.6934 0.8000 0.5217

ExtraTreeClassifier 0.6651 0.6354 0.6354 0.6611 0.0380 0.7615 0.5093

DummyClassifier 0.6176 0.5000 0.5000 0.4716 0.0360 1.0000 0.0000

LabelSpreading 0.6105 0.5936 0.5936 0.6125 0.3778 0.6654 0.5217

LabelPropagation 0.6105 0.5936 0.5936 0.6125 1.1356 0.6654 0.5217
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iv. Selection frommodel with random forests: This technique directly utilizes the feature
importance scores provided by a trained random forest model to select the most
important features.

v. Variance thresholding: This simple method removes features with low variance,
assuming that features with little variation contain less discriminatory information.

vi. Feature importance with random forests: This approach ranks features based on their
contribution to reducing impurity (e.g., Gini impurity or entropy) in the random forest
model, providing a measure of their relative importance.

Based on analyzing the feature selection results:
The results in Table 6 highlight key features identified by various methods for

classifying Parkinson’s disease. MDVP-related features, such as MDVP:Jitter (Abs),
MDVP:PPQ, and MDVP:RAP, consistently emerged as important across multiple
techniques, especially those using random forests and RFE with logistic regression,
suggesting their strong influence on the target variable. Shimmer-related features, like
Shimmer:APQ3, and Harmonic-to-Noise Ratio (HNR) were also identified by several
methods. Despite different selection criteria across techniques, the convergence on MDVP
jitter features emphasizes their significance. The choice of method depends on the goals of
statistical significance, non-linear relationships, or minimal feature set. Starting with
features selected by RFE with random forests or select from model with RF is
recommended, while mutual information may be useful if complex relationships are
suspected. Empirical evaluation of model performance with different feature subsets is
essential for optimal selection.

DISCUSSION AND LIMITATIONS
The PSO-based framework developed in this study demonstrates significant advancements
in Parkinson’s disease (PD) prediction, achieving an exceptional balance between
predictive accuracy (97.1%) and computational efficiency (158.3 s training time). Our
comprehensive evaluation reveals that the PSO-optimized neural network substantially
outperforms traditional machine learning approaches across all key performance metrics.
Compared to the best-performing traditional model (Bagging classifier with 94.1%
accuracy), our PSO model shows a 3.0% absolute improvement in accuracy, a 26.1%
increase in balanced accuracy, and a 26.2% enhancement in ROC AUC score. Perhaps
most notably, the model achieves a 120% improvement in specificity (94.6% vs 42.9%),
addressing a critical limitation in existing PD prediction approaches where high sensitivity
often comes at the expense of specificity.

Statistical analyses confirm these performance differences are both significant and
meaningful. Paired t-tests reveal statistically superior accuracy (t(24) = 8.17, p = 0.008) and
ROC AUC (t(24) = 9.23, p = 0.007) compared to traditional models. Non-parametric
Wilcoxon tests similarly demonstrate significant improvements in balanced accuracy
(W = 325, p = 0.013) and F1-scores (W = 310, p = 0.012). Multivariate analysis through
one-way ANOVA (F(5,144) = 8.23, p < 0.001) with post-hoc Tukey HSD testing confirms
the PSO model’s superiority over all traditional approaches (all adjusted p-values < 0.01),

Eliwa and Abd El-Hafeez (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3135 22/34

http://dx.doi.org/10.7717/peerj-cs.3135
https://peerj.com/computer-science/


Table 4 Performance metrics of the PSO-optimized model for Dataset 1.

Metric category Metric Value

Optimization metrics Time consumed (s) 158.002

Training performance Accuracy 0.973

Precision 0.974

Recall 0.972

F1-score 0.973

AUC score 0.972

Sensitivity 0.993

Specificity 0.952

Testing performance Accuracy 0.967

Precision 0.966

Recall 0.968

F1-score 0.967

AUC score 0.968

Sensitivity 0.990

Specificity 0.946

Confusion matrix (Test) True negatives 211

False positives 12

False negatives 2

True positives 195

Classification report Class 0 precision 0.99

Class 0 recall 0.95

Class 0 F1-score 0.97

Class 1 precision 0.94

Class 1 recall 0.99

Class 1 F1-score 0.97

Overall accuracy 0.97

Macro Avg precision 0.97

Macro Avg recall 0.97

Macro Avg F1-score 0.97

Weighted Avg precision 0.97

Weighted Avg recall 0.97

Weighted Avg F1-score 0.97

Table 5 Performance metrics of the PSO-optimized model for Dataset 2.

Metric category Metric Value

Optimization metrics
5-folds validation

Training time (Fold 5) 250.90 s

Avg training time 250.93 s

Training performance Accuracy (Fold 1) 0.9464

AUC (Fold 1) 0.9779

Accuracy (Fold 2) 0.9310

AUC (Fold 2) 0.9696

(Continued)
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with large effect sizes (η2 = 0.36) indicating substantial practical significance beyond
statistical significance as shown in Table 7.

The clinical implications of these findings are particularly noteworthy. While the PSO
model requires greater computational resources (5-500 × longer training times than
traditional methods), this trade-off is justified by the critical need for both high sensitivity
(99.0%) and specificity (94.6%) in PD diagnosis. The model’s robust performance across
validation folds (SD = 0.012 for accuracy) and consistent superiority on two distinct
datasets further support its potential clinical utility. Future research directions should
focus on optimizing the computational efficiency of the PSO approach while maintaining
these demonstrated performance advantages, as well as clinical validation studies to assess
real-world diagnostic performance across diverse patient populations. These results

Table 5 (continued)

Metric category Metric Value

Accuracy (Fold 3) 0.9349

AUC (Fold 3) 0.9736

Accuracy (Fold 4) 0.9367

AUC (Fold 4) 0.9777

Accuracy (Fold 5) 0.9251

AUC (Fold 5) 0.9697

Testing performance Final accuracy 0.9893

Final precision 0.9885

Final recall 0.9900

Final F1-score 0.9893

Final AUC 0.9991

Sensitivity 0.9900

Specificity 0.9885

Confusion matrix (Test) True negatives 1,289

False positives 15

False negatives 13

True positives 1,291

Classification report Class 0 precision 0.99

Class 0 recall 0.99

Class 0 F1-score 0.99

Class 1 precision 0.99

Class 1 recall 0.99

Class 1 F1-score 0.99

Macro Avg precision 0.99

Macro Avg recall 0.99

Macro Avg F1-score 0.99

Weighted Avg precision 0.99

Weighted Avg recall 0.99

Weighted Avg F1-score 0.99
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position PSO optimization as a valuable tool for advancing PD prediction models,
particularly in clinical settings where diagnostic accuracy is paramount.

Comparison with existing literature: Comparing our results with the existing literature
(Table 1), a clear trend emerges. Early studies, such as the 2008 study using the University
of Pennsylvania 40-item smell identification test (UPSIT-40) dataset, achieved an accuracy
of 89% using logistic regression. Subsequent research employed various machine learning

Figure 4 Receiver operating characteristic (ROC) curve of the PSO-optimized model for Dataset 1.
Full-size DOI: 10.7717/peerj-cs.3135/fig-4

Figure 5 Receiver operating characteristic (ROC) curve of the PSO-optimized model for Dataset 2.
Full-size DOI: 10.7717/peerj-cs.3135/fig-5
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techniques, including k-nearest neighbors (kNN), support vector machines (SVM), and
random forests, demonstrating improvements in accuracy. For example, the 2009 study
using the UCI dataset achieved 95.513% accuracy with kNN. More recent studies have
explored deep learning architectures, such as CNNs and recurrent neural networks
(RNNs), and feature engineering techniques like SMOTE and wavelet transforms,
resulting in improved performance. While some studies achieved high accuracy, often
exceeding 95%, our framework stands out by incorporating PSO for both feature selection
and hyperparameter optimization.

Our approach differs significantly from many existing methods. While some studies
focus on feature extraction using algorithms like the bat algorithm or feature selection
methods like recursive feature elimination (RFE), our framework directly optimizes the
entire pipeline. The PSO optimization process allows for a more robust and
comprehensive solution than manually selecting features or relying on traditional
optimization techniques. This is particularly important given the high dimensionality and
complexity of biomedical data. This is reflected in our superior performance metrics
compared to many existing methods.

Limitations: Several limitations should be acknowledged. The study relies on the UCI
Machine Learning Repository. While this dataset is widely used and provides a good
starting point, generalizability to other datasets needs further validation with independent
data. Future research should explore the robustness of our framework on different datasets
and with varying amounts of data. While PSO offers strong optimization capabilities, it
may require fine-tuning of its own parameters and can be sensitive to initialization. We
have also noted the need for external validation on larger, multi-center datasets to further
assess the model’s robustness in real-world clinical settings. Additionally, while our study
demonstrates high accuracy, the clinical impact of these results needs further investigation.
Understanding the specific features identified by PSO as important for prediction could
offer valuable insights into the underlying mechanisms of PD.

Privacy and ethics
This study utilizes a publicly available, tabular dataset comprising de-identified voice
features collected from individuals diagnosed with Parkinson’s disease and healthy

Table 6 Feature selection approaches and top-ranked features.

Method Selected features

F-value selector MDVP:Fo (Hz), Shimmer:APQ3, HNR, spread1, spread2

Mutual information selector MDVP:Jitter (%), MDVP:Jitter (Abs), MDVP:RAP, MDVP:PPQ, PPE

Chi-squared selector MDVP:Fo (Hz), MDVP:Fhi (Hz), MDVP:Flo (Hz), Shimmer:APQ3, spread1

RFE with logistic regression MDVP:Jitter (%), MDVP:Jitter (Abs), MDVP:PPQ, Shimmer:APQ3, spread2

Select from the model with RF MDVP:Jitter (Abs), MDVP:RAP, MDVP:PPQ, MDVP:Shimmer, MDVP:APQ

Variance thresholding MDVP:Fo (Hz), MDVP:Fhi (Hz), MDVP:Flo (Hz), HNR, spread1, D2

RFE with random forests MDVP:Jitter (Abs), MDVP:RAP, MDVP:PPQ, MDVP:APQ, spread1

Feature importance with RF MDVP:Jitter (Abs), MDVP:PPQ, Shimmer:APQ3, MDVP:RAP, MDVP:Jitter (%)
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Table 7 Statistical significance of PSO-based neural network compared to ML models.

Model Dataset Metric Traditional model PSO-based model Statistical test p-value Significant
(p < 0.05)

Bagging D1 Accuracy 0.9414 0.967 Paired t-test 0.008 ✓ Yes

Balanced accuracy 0.7097 0.970 Wilcoxon signed-rank test 0.013 ✓ Yes

ROC AUC 0.7097 0.968 Paired t-test 0.007 ✓ Yes

F1-score 0.9329 0.967 Wilcoxon signed-rank test 0.012 ✓ Yes

D2 Accuracy 0.9240 0.9893 Paired t-test 0.002 ✓ Yes

Balanced accuracy 0.9184 0.9893 Wilcoxon signed-rank test 0.006 ✓ Yes

ROC AUC 0.9184 0.9991 Paired t-test 0.001 ✓ Yes

F1-score 0.9239 0.9893 Wilcoxon signed-rank test 0.003 ✓ Yes

AdaBoost D1 Accuracy 0.9414 0.967 Paired t-test 0.009 ✓ Yes

Balanced accuracy 0.6667 0.970 Wilcoxon signed-rank test 0.011 ✓ Yes

ROC AUC 0.6667 0.968 Paired t-test 0.006 ✓ Yes

F1-score 0.9277 0.967 Wilcoxon signed-rank test 0.010 ✓ Yes

D2 Accuracy 0.9121 0.9893 Paired t-test 0.003 ✓ Yes

Balanced accuracy 0.9005 0.9893 Wilcoxon signed-rank test 0.005 ✓ Yes

ROC AUC 0.9005 0.9991 Paired t-test 0.002 ✓ Yes

F1-score 0.9115 0.9893 Wilcoxon signed-rank test 0.004 ✓ Yes

Random forest D1 Accuracy 0.9372 0.967 Paired t-test 0.005 ✓ Yes

Balanced accuracy 0.6429 0.970 Wilcoxon signed-rank test 0.009 ✓ Yes

ROC AUC 0.6429 0.968 Paired t-test 0.005 ✓ Yes

F1-score 0.9208 0.967 Wilcoxon signed-rank test 0.008 ✓ Yes

D2 Accuracy 0.9169 0.9893 Paired t-test 0.003 ✓ Yes

Balanced accuracy 0.9055 0.9893 Wilcoxon signed-rank test 0.005 ✓ Yes

ROC AUC 0.9055 0.9991 Paired t-test 0.002 ✓ Yes

F1-score 0.9163 0.9893 Wilcoxon signed-rank test 0.004 ✓ Yes

Logistic regression D1 Accuracy 0.9372 0.967 Paired t-test 0.004 ✓ Yes

Balanced accuracy 0.6644 0.970 Wilcoxon signed-rank test 0.010 ✓ Yes

ROC AUC 0.6644 0.968 Paired t-test 0.004 ✓ Yes

F1-score 0.9241 0.967 Wilcoxon signed-rank test 0.007 ✓ Yes

D2 Accuracy 0.8337 0.9893 Paired t-test 0.001 ✓ Yes

Balanced accuracy 0.8134 0.9893 Wilcoxon signed-rank test 0.004 ✓ Yes

ROC AUC 0.8134 0.9991 Paired t-test 0.001 ✓ Yes

F1-score 0.8316 0.9893 Wilcoxon signed-rank test 0.003 ✓ Yes

XGBoost D1 Accuracy 0.9331 0.967 Paired t-test 0.006 ✓ Yes

Balanced accuracy 0.6621 0.970 Wilcoxon signed-rank test 0.011 ✓ Yes

ROC AUC 0.6621 0.968 Paired t-test 0.006 ✓ Yes

F1-score 0.9206 0.967 Wilcoxon signed-rank test 0.009 ✓ Yes

D2 Accuracy 0.9430 0.9893 Paired t-test 0.003 ✓ Yes

Balanced accuracy 0.9349 0.9893 Wilcoxon signed-rank test 0.005 ✓ Yes

ROC AUC 0.9349 0.9991 Paired t-test 0.002 ✓ Yes

F1-score 0.9427 0.9893 Wilcoxon signed-rank test 0.004 ✓ Yes
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controls. Each instance in the dataset represents a single voice recording, with no
personally identifiable information. The dataset includes only numerical acoustic
biomarkers (e.g., jitter, shimmer, fundamental frequency), ensuring complete anonymity
and compliance with ethical data usage standards. As the research is computational and
involves secondary analysis of anonymized data, it does not require additional ethical
approval or informed consent. However, we acknowledge the broader ethical implications
of AI applications in healthcare. Future work involving prospective data collection or
integration with electronic health records will adhere to institutional review board (IRB)
protocols and patient consent procedures. The model development process emphasized
fairness, transparency, and reproducibility, using stratified sampling, balanced evaluation
metrics, and publicly shareable code to support ethical and responsible deployment.

Medical relevance
Parkinson’s disease is a chronic neurodegenerative disorder that presents diagnostic
challenges, especially in its early stages. Traditional diagnosis relies heavily on subjective
clinical assessments and observable motor symptoms, which may delay early intervention.
Voice abnormalities, however, can appear in the prodromal phase of PD and offer a
promising non-invasive biomarker for early screening. This study introduces a
PSO-optimized neural network framework that utilizes tabular acoustic features to
accurately predict the presence of PD. Our model achieved a testing accuracy of 96.7%,
sensitivity of 99.0%, and specificity of 94.6%, demonstrating strong generalization and
clinical relevance. The confusion matrix further supports this, showing 195 true positives
and only two false negatives. These results outperform traditional classifiers, particularly in
handling class imbalance and optimizing both precision and recall. Additionally, the total
model training time was under 3 min (158 s), showcasing computational efficiency suitable
for real-time applications. The use of readily available voice data makes this approach
highly adaptable to mobile health solutions and telemedicine platforms, particularly
beneficial in resource-limited or rural settings. The proposed system provides a cost-
effective, scalable, and accessible tool to aid clinicians in early PD diagnosis and patient
monitoring, potentially improving long-term outcomes through timely intervention.

CONCLUSIONS AND FUTURE DIRECTIONS
This study developed and presented a PSO-based framework for predicting Parkinson’s
disease, directly addressing the critical need for accurate and efficient early diagnostic
tools. This study establishes PSO optimization as a powerful enhancement for Parkinson’s
disease prediction across datasets of varying complexity. The evaluation on Dataset 1
(1,195 records, 24 features) and Dataset 2 (2,105 records, 33 features) demonstrated
consistent superiority over traditional methods, with particular effectiveness on richer
multidimensional data. The publicly available Dataset 2, with its comprehensive inclusion
of demographic, lifestyle, and clinical assessment variables, proved especially suitable for
showcasing the PSO model’s ability to handle complex medical data. These results suggest
PSO-optimized models could significantly improve early Parkinson’s detection in clinical
practice, particularly when leveraging comprehensive patient data that includes both
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traditional clinical measures and broader health indicators. Future research should explore
hybrid PSO approaches and clinical validation studies using similarly rich datasets to
further establish real-world diagnostic utility.

Future research should focus on extending the framework’s real-world applicability and
enhancing its diagnostic precision. This involves validating the proposed framework across
diverse and larger datasets to confirm its robustness and generalizability, ensuring it
performs consistently across various patient populations. Furthermore, integrating
multimodal data, such as medical imaging and genetic information, could significantly
boost the model’s predictive capabilities, offering a more comprehensive and accurate tool
for Parkinson’s Disease diagnosis. Exploring other metaheuristic algorithms in
conjunction with or as alternatives to PSO may also yield valuable insights into novel
optimization strategies that could further elevate the framework’s performance metrics.

TABLE OF ABBREVIATIONS

AI Artificial Intelligence

AUC Area Under the Curve

CNN Convolutional Neural Network

DBN Deep Belief Network

DFA Detrended Fluctuation Analysis

EEG Electroencephalography

HNR Harmonics-to-Noise Ratio

ICA Independent Component Analysis

ML Machine Learning

MRI Magnetic Resonance Imaging

NHR Noise-to-Harmonics Ratio

PD Parkinson’s Disease

PPE Pitch Period Entropy

PSO Particle Swarm Optimization

RPDE Recurrence Period Density Entropy

SMOTE Synthetic Minority Over-sampling Technique

SVM Support Vector Machine

UPDRS Unified Parkinson’s Disease Rating Scale

XGBoost eXtreme Gradient Boosting
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