Submitted 14 November 2024
Accepted 29 July 2025
Published 25 August 2025

Corresponding author
Ying Zhao, amengs@imust.edu.cn

Academic editor
Stefano Cirillo

Additional Information and
Declarations can be found on
page 16

DOI 10.7717/peerj-cs.3132

() Copyright
2025 Chen and Zhao

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

MLPruner: pruning convolutional neural
networks with automatic mask learning

Sihan Chen and Ying Zhao

School of Digital and Intelligence Industry, Inner Mongolia University of Science and
Technology, Bao tou, Inner Mongolia Autonomous Region, China

ABSTRACT

In recent years, filter pruning has been recognized as an indispensable technique for
mitigating the significant computational complexity and parameter burden
associated with deep convolutional neural networks (CNNs). To date, existing
methods are based on heuristically designed pruning metrics or implementing weight
regulations to penalize filter parameters during the training process. Nevertheless,
human-crafted pruning criteria tend not to identify the most critical filters, and the
introduction of weight constraints can inadvertently interfere with weight training.
To rectify these obstacles, this article introduces a novel mask learning method for
autonomous filter pruning, negating requirements for weight penalties. Specifically,
we attribute a learnable mask to each filter. During forward propagation, the mask is
transformed to a binary value of 1 or 0, serving as indicators for the necessity of
corresponding filter pruning. In contrast, throughout backward propagation, we use
straight-through estimator (STE) to estimate the gradient of masks, accommodating
the non-differentiable characteristic of the rounding function. We verify that these
learned masks aptly reflect the significance of corresponding filters. Concurrently,
throughout the mask learning process, the training of neural network parameters
remains uninfluenced, therefore protecting the normal training process of weights.
The efficacy of our proposed filter pruning method based on mask learning, termed
MLPruner, is substantiated through its application to prevalent CNNs across
numerous representative benchmarks.

Subjects Computer Vision, Data Mining and Machine Learning, Neural Networks
Keywords Filter pruning, Mask learning, Straight-through estimator

INTRODUCTION

In recent years, the vision community has swiftly enhanced the performance of deep
convolution neural networks (CNNs) across various tasks, including image
classification (He et al., 2016; Jangra et al., 2023), object detection (He et al., 2017), and
semantic segmentation (Girshick et al., 2014). Predominantly, these advancements are
propelled by an escalating parameter load and computational expense. This trend,
unfortunately, renders deep neural networks (DNNs) onerous for deployment on
resource-limited edge devices, such as smartphones and Internet of Things (IoT)
apparatuses. In response, there has been a burgeoning interest in model compression
research (Hubara et al., 2016; Howard et al., 2017; Lin et al., 2020a), aiming to diminish the
model’s size while maintaining comparable efficacy to the original model, thereby
mitigating the deployment challenges of DNNs.

How to cite this article Chen S, Zhao Y. 2025. MLPruner: pruning convolutional neural networks with automatic mask learning. Peer]
Comput. Sci. 11:e3132 DOI 10.7717/peerj-cs.3132

http://dx.doi.org/10.7717/peerj-cs.3132
mailto:amengs@�imust.�edu.�cn
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.3132
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

PeerJ Computer Science

Broadly speaking, DNN compression strategies can coalesce into four distinct
categories: (1) Network quantization achieves compression of an already trained model
through a reduction in the number of bits utilized for the weight parameter representation
(Hubara et al., 2016; Liu et al., 2018; Lin et al., 2020b). (2) Tensor factorization seeks to
approximate the weight tensor with a sequence of low-rank matrices organized in a
sum-product outline (Lin et al., 2018; Hayashi et al., 2019). (3) Compactly designed
networks such as ShuffleNets (Zhang et al., 2018) and MobileNets (Howard et al., 2017;
Sandler et al., 2018) that involves various light-weight convolution module. (4) Network
pruning discards superfluous weights of CNNss in filter/weight/block manner (Han et al.,
2015; Lin et al., 2021; Liu et al., 2019).

In this article, we focus on the last category for CNNs compression, particularly for
CNN:ss filter pruning (Lin et al., 2021; Liu et al., 2019; Zhang et al., 2022). Filter pruning
removes entire convolutional filters in the original CNNs to yield a structured pruned
model, aiming at retaining the performance of the original model while drastically
reducing the FLoat-Point Operations (FLOPs) and parameter burden. It has received
ever-increasing focus due to the practical compression effect as the compressed network
can be well supported by regular hardware and oft-the-shelf basic linear algebra
subprograms (BLAS) library. The existing research on filter pruning can be roughly
divided into two categories, which we specifically depict below.

The first group adheres to a three-step pruning pipeline, which encompasses
pre-training the model, removing unimportant filters, and meticulously fine-tuning the
resulting pruned model. Generally, the majority of methodologies in this domain tend to
prioritize the second stage, deploying a wide range of filter importance estimation
strategies such as /;-norm (Li et al., 2017), geometric data (He et al., 2019), and
activation sparsity (Hu et al., 2016). Though characterized by their simplicity, these
hand-crafted criteria for the quantification of filter importance often fail to accurately
excise filters crucial to the overall performance. In sharp divergence, the secondary
category effectuates filter pruning via training the network with additional sparse
constraints on individual filters (Huang ¢~ Wang, 2018; Luo ¢ Wu, 2020). Consequently,
the pruned model becomes accessible upon the elimination of zero-valued filters or
those becoming beneath a pre-determined threshold. However, these methods often
disrupt the normal training process of the network due to the imposed penalties on
weight norms, thereby also resulting in sub-optimal effects. In summary, how to
automatically identify and eliminate redundant filters during the training process, while
preserving the stable optimization of model parameters, remains a urgent issue in the
community.

In response to the above obstacle, we propose MLPruner, a novel method that performs
automatic mask learning to enable end-to-end filter pruning without any penalty on
weights during training. MLPruner assigns a learnable mask to each convolutional filter,
where the mask length is basically the same as the filter number. In the forward
propagation process, we employ a pre-defined threshold to round the mask to either 0 or 1,
which instructs whether to prune or retain the corresponding filter. During
backpropagation, given the non-differentiable nature of the round function, we further

Chen and Zhao (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3132 2/20

http://dx.doi.org/10.7717/peerj-cs.3132
https://peerj.com/computer-science/

PeerJ Computer Science

employ the straight-through estimator (STE) to update the mask’s gradient. We proved
that such trained masks can effectively reflect the importance of the corresponding filter.
To elaborate, if the mask value is high, the removal of the corresponding filter will have a
significant impact on the network training loss, and vice versa. Consequently, filter
pruning can be seamlessly executed during training, even without the imposition of any ¢,
penalty on weights or interference in forward propagation, given that the filter is always
multiplied by masks in binary form.

Extensive experiments on image classification tasks using many popular classification
networks including VGG-Net (Simonyan ¢ Zisserman, 2015), GoogLeNet (Szegedy et al.,
2015), ResNet-56/110 (He et al., 2016), and Mobilenet-V2 (Sandler et al., 2018)
demonstrate the superiority of our MLPruner over many state-of-the-arts. For instance,
MLPruner removes 54.8% FLOPs of ResNet-56 while still achieving 93.31% top-1 accuracy
on CIFAR-10, surpassing the recent baseline HRank (He et al., 2018a) that reaches 93.17%
accuracy while removing less FLOPs of 50.0%. Our contributions in this article are
summarized as follows:

e We propose MLPruner, a novel CNNss filter pruning method that assigns learnable
masks to automatically prune filters in an end-to-end training manner, without any
weight penalty during training as previous works do.

e We proved that the masks learned by MLPruner can well can well tell the relative
importance between filters, enabling both accurate and automatic filter pruning.

 Extensive experiments on pruning representative models have demonstrated the
advantages of our proposed MLPruner for compressing CNNs when compared with a
wide range of pruning methods.

RELATED WORK

This section covers the spectrum of studies on pruning CNNs that closely related to
our work. A more comprehensive overview can be found in the recent survey
(Hoefler et al., 2021).

Network sparsity

By eliminating superfluous network weights (LeCun, Denker ¢ Solla, 1989; Han et al.,
2015; He, Zhang ¢» Sun, 2017), network sparsity/pruning has evolved into a contemporary
tool for acquiring lightweight sparse models. The practice of discarding individual weights
at random positions, fine-grained sparsity, successfully boasts a high sparse ratio whilst
maintaining performance assurance (Han et al., 2015; Evci et al., 2020). RigL (Evci et al.,
2020) periodically alternates between the removal and reinstatement of weights,
determined by magnitudes and gradients. Sparse Momentum (Dettmers ¢ Zettlemoyer,
2019) takes into account the average momentum magnitude within each layer to reallocate
weights. Regrettably, the consequent unstructured sparse weights struggle to effectuate
acceleration on standard hardware. Unstructured sparsity proved successful in preserving
performance, even with a high sparsity exceeding 95% (Liu et al., 2021). However, the
ensuing irregular sparse tensors resulted in negligible speed improvements on common

Chen and Zhao (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3132 3/20

http://dx.doi.org/10.7717/peerj-cs.3132
https://peerj.com/computer-science/

PeerJ Computer Science

hardware (Wang, 2020). Coarse-grained sparsity, which typically removes an entire weight
block (Ji et al., 2018; Meng et al., 2020) or convolution filter (Liu et al., 2019; Lin et al.,
2020a), bears more hardware compatibility. Contrasted with fine-grained sparsity, the
compressed model enjoys a substantial speed increase, albeit at the cost of considerable
performance degradation. In this article, our focus lies on filter pruning, an aspect of
coarse-grained sparsity, with the objective of simultaneously preserving the performance
of DNN models and enabling hardware acceleration.

Filter pruning

Filter pruning eliminates entire convolutional filters from the initial CNNs, yielding a
structured pruned model (Liu et al., 2017; Lin et al., 2020a; He et al., 2019; Lin et al., 2021).
Filter pruning aims to uphold the original model’s performance while significantly
decreasing both the FLOPs and parameter burden. It draws mounting attention for the
practical compression effect as the compressed network receives adequate support from
conventional hardware and readily accessible basic linear algebra subprograms (BLAS).
The mainstram research on filter pruning bifurcates approximately into two distinct
classes, as illustrated further.

The first group adheres to a three-step pruning pipeline, which encompasses
pre-training the model, removing unimportant filters, and meticulously fine-tuning the
resulting pruned model. Predominantly, most methodologies in this sphere tend to
underscore the second stage, deploying a diverse array of filter importance estimation
strategies. For instance, Li et al. (2017) elected to prune filters exhibiting smaller /; norm
values. He et al. (2019) considered the next layer’s construction error as a pivotal criterion
and proceeded with layer-by-layer pruning. Wang et al. (2019) employed attention
modules to derive the scaling factor for each filter and leveraged it as a benchmark for
determining filter importance. Despite their innate simplicity, these hand-crafted
benchmarks for the quantification of filter importance frequently stumble in accurately
eliminating filters integral to the comprehensive performance.

Contrarily, the secondary category catalyzes filter pruning by training the network,
supplementing the sparse constraints on individual filters (Huang ¢» Wang, 2018; Luo ¢
Wu, 2020). As a result, the pruned model becomes available through the removal of
zero-valued filters or those falling below a specified threshold. For instance, Huang ¢
Wang (2018) presented a scaling factor to augment the output of a defined structure,
thereby enhancing sparsity on such factors. Luo ¢» Wu (2020) incorporated an “automatic
pruner” layer into the convolutional layer to execute filter pruning autonomously. Xiao,
Wang ¢ Rajasekaran (2019) pruned CNN models utilizing gradient-based update rules.
Tang et al. (2021) turther delved into prevalent information to dynamically identify filter
redundancy within CNNs. However, these methods routinely interfere with the standard
training procedure of the network due to the penalties imposed on weight norms, leading
to sub-optimal outcomes. Our proposed MLPruner aims to execute filter pruning during
training without incurring any weight penalty, thus alleviating the restrictions imposed by
the mentioned sets of pruning methods.

Chen and Zhao (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3132 4/20

http://dx.doi.org/10.7717/peerj-cs.3132
https://peerj.com/computer-science/

PeerJ Computer Science

Besides, an emerging class of methods primarily focuses on the architecture of pruned
networks, specifically the pruning rate of each layer (Liu et al., 2019; He et al., 2018b;
Lin et al., 2020c). For instance, He et al. (2018b) proposed utilizing reinforcement learning
to automate the search process. Similarly, Liu et al. (2019) pre-trained a PruningNet to
predict the weights of potential networks and incorporated an evolutionary algorithm to
scout for the finest candidate. In addition, several methodologies automatically identify
optimal network architectures by designing differentiable operators (Ning et al., 2020;
Guo et al., 20205 Li et al., 2023). For instance, DMCP models channel pruning as a
differentiable Markov process to learn the significance of each layer. Our proposed
MULPruner is orthogonal to these architecture search-based methods. To explain,
MLPruner can apply a global pruning based on the learned masks to automatically
determine the pruning rate for each layer or directly utilize the structure obtained from
existing architecture search-based methods and perform local pruning from each layer.

Recent surveys (Verma et al., 2024) comprehensively analyze the evolution from static
to dynamic neural architectures. Gao et al. (2024) proposed a unified dynamic and static
channel pruning method based on two-layer optimization (BilevelPruning/UDSP), which
evaluates the static subnetwork and jointly learns the channel selection of both from
dynamic subnetwork to end-to-end, which retains the storage-saving advantage of static
pruning and compensates for the performance constraints of the fixed subnetwork with
the help of dynamic pruning, and at the same time, directly sets the parameter and
computational constraints without manually fusing the functions. The parameters and
computational constraints are set directly, eliminating the need for manual fusion
functions. In parallel, some recent works attempt to unify pruning with architectural
search or dynamic mask generation. Wu et al. (2024) proposed Auto-Train-Once (ATO), a
single-shot framework that uses a controller network to dynamically generate pruning
masks. ATO removes the need for fine-tuning and comes with convergence guarantees.
Our MLPruner contributes to this direction by incorporating dynamic mask learning into
training while maintaining a static, hardware-efficient architecture for deployment. Our
MLPruner contributes to this evolving landscape by incorporating dynamic mask learning
into the pruning process, while retaining a static and hardware-friendly deployment
structure.

METHOD

Background

We first describe necessary preliminaries for CNNs filter pruning. Denote an L-layer CNN
model’s parameters as W = {W! W2 W? ... W}, the convolution kernel weights of a

! 1 1wl .
Cyt X Ci, xK'xK' , where Cl C@ Kl symbohze

out? ~in?’

distinct layer / can be represented as W' € R
the number of output filters, input filters, and the kernel size, respectively. Let

I' € RBXC,<H'xW' be the input feature map for layer I. Here, B acts as the batch size, H' and

W' represent the dimensions of the input image. The output from layer [is predicated
upon:

o' = oW, (1)

Chen and Zhao (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3132 5/20

http://dx.doi.org/10.7717/peerj-cs.3132
https://peerj.com/computer-science/

PeerJ Computer Science

! The bias and batch normalization layer
are omitted for simplicity.

where the convolution operator is represented as ® '. Considering a batch of training
image set X paired with class labels set Y, the training loss manifests as:

min Z(X, W;Y), (2)

where . (-) operates as the loss function, usually taking the form of cross-entropy loss. For
filter pruning, a subset of output filters in W' is excised to yield the pruned kernel

W! € RCuxCxKxK qubject to C.,, < C} . and 61,1 < Cl constraints. It is worthwhile to

out — o [}

highlight that the associated input channels of W' are also expelled. We can hence
transpose Egs. (1) and (2) for the pruned network as follows:

0'=7'oW!, (3)
min (X, W;Y). (4)
w

However, restoring the performance of pruned models, i.e., minimizing Eq. (4), is
challenging due to the elimination of pre-trained weights. Early research often utilized
various criteria to remove insignificant filters, such as ¢;-norm (Li et al., 2017), geometric
data (He et al., 2019), and activation sparsity (Hu et al., 2016). Recent research have
developed training-aware pruning methods have been proposed to automatically
identifying non-essential filters (Ding et al., 2018; Zhang et al., 2022). This class of methods
typically achieves filter pruning by gradually penalizing some filter weights during the
training process via the imposition of ¢, regularization constraints on the original weights.
However, such regularization constraint may affect the normal training objective in
Eq. (4), thereby influencing the final performance of the pruned network.

MLPruner

In this article, we present MLPruner to mitigate the aforementioned issue, with its core
innovation falls into optimizing a learnable mask M = {M! , M? M?, ..., M*} to
automatically locate essential filters without weight penalty. The framework of MLPruner
is illustrated in Fig. 1. In the following, we particularly introduce the optimization process
for M, as well as validate how the learned mask aptly reflects the corresponding filter’s
significance.

Mask forward. During forward propagation within a specific layer I, we leverage the mask
Cl xCL xKIxK!

out

M' to obtain a binary indicator B! € {0,1}
preserve of corresponding filters. This is achieved using a pre-defined pruning rate p' to

that guides the removal or

round M’ to 0 or 1 s, where 0 indicate pruning corresponding weights, and vice versa.
Formally, we first accumulate M in a filter-wise manner as:

M= (M i =12, 2

out*

Then, the binary indicator is derived as

- N
gl =00if M! in the top-p' smallest values of M, (6)
b 1, otherwise.

Chen and Zhao (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3132 6/20

http://dx.doi.org/10.7717/peerj-cs.3132
https://peerj.com/computer-science/

PeerJ Computer Science

Mask (Range: Floating point

Numbers from 0 to 1) mask
paw|
® Element-wise Multiplication
Round
—_— @ Convolution Operation
STE
STE Straight Through Estimator

Convolution g
Kernel z Feature Map
]
a
o
S
el
o
Q
S
g
O] ®
Element-wise Multiplication i
Backward Propagation
Gin xKxK HxW HxW

Figure 1 The framework of MLPrunner method. For better representation, we have chosen one of the
channels for description. Our method assigns a learnable mask to the channel, performs a round
operation on the mask using a pre-defined pruning rate, and multiplies it with the weight W to determine
whether the channel needs to be pruned. Then, a feature map is generated through convolution operation
to determine the model. (Note: Considering the non differentiable nature of the round function, which
prevents the gradient accepted by mask from being updated in a timely manner, we have adopted STE for
backpropagation to solve this problem). Full-size Ka] DOT: 10.7717/peerj-cs.3132/fig-1

Finally, we use the binary indicator to prune the dense weights during forward
propagation as:

0'=2® B ow), (7)
where © denotes the point-wise multiplication.

Mask backward. The above forward phase enables automatic filter pruning by looking at
value of mask M/, yet Eq. (7) is non-differentiable due to the round operation, making the
mask unable to be updated, i.e., the gradient can not passed from B’ to M'. To address this,
we use the straight-through estimator (STE) (Bengio, Léonard & Courville, 2013) as an
alternative to approximate the mask gradient of M' as:
0 0¥ OB oW)B
oM oB' eow) B M
0 dB oW

N R W (®z) 1. (8)

OB'GW) 0B
0¥ W

o(B' ® W)

Chen and Zhao (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3132 7/20

http://dx.doi.org/10.7717/peerj-cs.3132/fig-1
http://dx.doi.org/10.7717/peerj-cs.3132
https://peerj.com/computer-science/

PeerJ Computer Science

In this manner, the mask can be jointly optimized with the weight during training.
Notably, such mask learning process brings no gradient distortion to the weights as
traditional training-aware pruning methods do. Furthermore, such learned masks can well
tell the importance of corresponding filters, which we analyze below.

Tractability of optimization. We take a specific filter Wg,:,:,: to show that our learned mask
score can well reflect the relative importance of filter weights.

Omitting the update schedule including learning rate and momentum, we can
represented the learned mask Mé.:,:,: as

where T denotes the total training iterations.
Now, let us turn our focus to the loss variation A.¥ (Wf .) when removing Wl .Itcan

be derived using the Taylor expansion (Molchanov et al., 2017) as

AW Y=2(W . =0 —2(W)

l7$7

%
~ g(Wf) - f]
o (W
g S (10)
+ R, (Wl B 0) g(wi,;)
! 0¥
which leads Eq. (9)
T
M., =) AZW). (11)

Here we can observe that the trained mask Mg,:-:,: is the accumulation of loss change for
removing weights Wl_“_ A small score denotes less loss increase thus the corresponding
candidate can be safely removed. Thus, our introduced mask learning can be used to
measure the relative importance between convolution filters, and preserving filters with
larger mask value can well decrease the loss after pruning. The learned masks directly
correlate with filter importance through the accumulated loss gradient Eq. (9). Unlike
weight-penalty methods that distort gradients via L2 regularization, MLPruner’s masks
provide unbiased importance estimates while preserving original weight optimization.

The overall pipeline of MLPruner is outlined in Algorithm 1. In particular, we set a
mask training epochs 7 to learn the masks for filter pruning. After that, we stop
optimizing masks and obtain the pruned weight W by extracting the corresponding filter
from W according to the binary indicator B. Finally, we fine-tune the pruned model to
further recover its performance. It can be inferred that MLPruner does not bring any
weight penalty during training, but automatically learns masks that can well reflect the
importance of filters with respect to the training loss, achieving holistic filter pruning in an
end-to-end manner. MLPruner fundamentally differs from weight-penalty approaches in

Chen and Zhao (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3132 8/20

http://dx.doi.org/10.7717/peerj-cs.3132
https://peerj.com/computer-science/

PeerJ Computer Science

Algorithm 1 Algorithm description of MLPruner.

Input: An L-layer CNN with weight W, mask training epochs .7
Output: The pruned model weight W
/! Joint mask and weight training

1 forh=1— 7 do

2 for each training iteration do

3 Get binary indicator B via Eqs. (6) and (5);
4 Forward propagation via Eq. (7);

5 Backward propagation via Eq. (8);

6 end

7 end

// Obtain the pruned weights
8 for/=1—1do
9 w! = squeeze(Bl oOWH 1/ squeeze () denotes extract non-zero filters
10 end
11 Fine-tune W to recover performance.

three ways: (1) Our masks provide unbiased importance estimates without distorting
weight gradients as M! directly measures W’s true contribution to loss minimization,
uncontaminated by auxiliary penalties, (2) The pruning decision is based on accumulated
loss impact rather than instantaneous magnitude, and (3) We maintain the original
training objective without additional regularization terms, delivering better generalization
ability as weight updates follow the original loss gradient Vw.# (Eq. 10), maintaining the
model’s intrinsic generalization dynamics.

Remark. In our description of MLPruner, we take the layer-wise pruning rate p; to be a
known quantity. In practical scenarios, we can employ global sorting for the learned mask
to acquire the binary indicator for each layer. In such case, the layerwise pruning rate is
automatically derived, thereby showcasing the ease-of-use proffered by MLPruner.
Furthermore, it is also worth noting that the existing structure-searching pruning methods
(Lin et al., 2020c; Liu et al., 2019) hold orthogonality to MLPruner, which means that we
could utilize the pruning rates identified from each layer to locally sort the mask and obtain
the binary indicator. We manifest the comparative performance achieved through diverse
layerwise pruning rates in the experiment section.

EXPERIMENT

Experimental settings

Datasets and networks. We conducted experiments on representative image classification
datasets CIFAR-10, CIFAR-100 (Krizhevsky ¢ Hinton, 2009), and ImageNet (Deng et al.,
2009) to demonstrate the effectiveness of the proposed MLPruner. CIFAR-10 is comprised
of 60,000 distinct 32 x 32 color images, spread evenly across 10 various classes, with each
class housing 6,000 images. The CIFAR-100 dataset, designed parallel to CIFAR-10,

Chen and Zhao (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3132 9/20

http://dx.doi.org/10.7717/peerj-cs.3132
https://peerj.com/computer-science/

PeerJ Computer Science

departs only in its increased class count, featuring 100 distinct classes, each containing 600
images. We elect representative convolutional networks to validate the efficacy of
MULPruner, including VGGNet-16 (Simonyan ¢ Zisserman, 2015), GoogLeNet (Szegedy
et al, 2015), ResNet (He et al., 2016), and MobileNet-V2 (Sandler et al., 2018).

Implementation details. We set the mask training epochs 7~ = 30 for CIFAR-10/100 and
7 = 10 for ImageNet, with all masks initialized to 1s. After training masks, we directly
conduct global sort on the masks to obtain layer-wise pruning rates and then prune filters
based on the learned masks. All our pruned models are fine-tuned employing the
stochastic gradient descent (SGD) optimizer, paired with a momentum of 0.9 and a batch
size of 256. On CIFAR-10, Each pruned network is fine-tuned for 300 epochs,
incorporating a weight decay factor of 5 x10~* and an initial learning rate of 0.1. This rate
undergoes a subsequent reduction to 0.01 and then to 0.001 after specific intervals of

50 and 100 epochs respectively. On ImageNet, we give 90 epochs for tine-tuning with
weight decay of 1 x 107*. The learning rate is initialized to 0.1 and decayed by cosine
annealing schedule. Besides, we employ random crop and horizontal flip to the input
images. All experiments is implemented based on PyTorch and executed on NVIDIA
3090 GPUs.

Performance metrics and baselines. MLPruner is juxtaposed with several state-of-the-art
pruning methods (He, Zhang ¢» Sun, 2017; Huang ¢ Wang, 2018; Li et al., 2017; Lin et al.,
2020a, 2020c, 2019; Yu et al., 2018; Zhao et al., 2019). We report the top-1 accuracy to
facilitate a quantitative comparison among various methods. The computing costs and
storage demands are reflected in the number of FLOPs and parameters, accompanied by
their corresponding pruning rates (PR), forming the basis for assessing the efficacy of our
MLPruner and other methods used for comparison.

CIFAR-10

VGGNet-16. We first incorporate our MLPruner to prune the 16-layer VGGNet model, a
classic CNN comprising 13 sequential convolutional layers and 3 fully-connected layers.
Evident from Table 1, MLPruner markedly surpasses the current state-of-the-art methods
across all performance indicators. Our MLPruner accomplishes a parameter compression
of 89.1%, thereby enhancing the computation by 71.9% along with a negligible accuracy
decrease of 0.03%. This substantial improvement proves instrumental in deploying the
VGGNet model on resource-restricted devices.

GoogLeNet. We further demonstrate the effectiveness of MLPruner in pruning
GoogLeNet, a prevailing network with inception structure. Table 2 substantiates that
notwithstanding marginal drops in top-1 accuracy (94.78% for MLPruner vs. 95.03% for
the baseline), MLPruner significantly curtails the FLOPs by 62.5% and parameters by
61.3%. When juxtaposed with the superior state-of-the-art, i.e., HRank, MLPruner not
only surpasses in accuracy performance but also substantially reduces the quantity of
FLOPs and parameters. Consequently, MLPruner excels in diminishing the superfluity of
networks with intricate multi-branch structures.

Chen and Zhao (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3132 10/20

http://dx.doi.org/10.7717/peerj-cs.3132
https://peerj.com/computer-science/

PeerJ Computer Science

Table 1 Pruning results of VGG-16 (Simmonyan & Zisserman, 2015) on CIFAR-10.

Model Top-1 (%) FLOPs (PR) Parameters (PR)
Baseline 93.02 314.04M (0.0%) 14.73M (0.0%)
SSS (Huang & Wang, 2018) 93.02 183.13M (41.6%) 3.93M (73.8%)
Zhao et al. (2019) 93.18 190.00M (39.1%) 3.92M (73.3%)
GAL-0.05 (Lin et al., 2019) 92.03 189.49M (39.6%) 3.36M (77.6%)
HRank (Lin et al., 2020a) 92.34 108.61M (65.3%) 2.64M (82.1%)
ABC (Lin et al,, 2020¢) 92.51 92.45M (70.6%) 1.75M (88.2%)
RGP (Chen et al., 2023) 92.76 78.8M (74.89%) 3.68M (75.00%)
MLPruner 92.99 87.98M (71.9%) 1.62M (89.1%)

Table 2 Pruning results of GoogLeNet (Szegedy et al., 2015) on CIFAR-10.

Model Top-1 (%) FLOPs (PR) Parameters (PR)
Baseline 95.03 1.53B (0.0%) 6.17M (0.0%)

¢, (Li et al., 2017) 94.54 1.02B (32.9%) 3.51M (42.9%)
GAL-0.05 (Lin et al., 2019) 93.93 0.94B (38.2%) 3.12M (49.3%)
HRank (Lin et al., 2020a) 94.53 0.69B (54.9%) 2.74M (55.4%)
ABC (Lin et al., 2020¢) 94.55 0.71B (53.9%) 2.89M (52.1%)
RGP (Chen et al., 2023) 94.61 0.54B (64.8%) 2.55M (58.7%)
MLPruner 94.78 0.59B (62.5%) 2.45M (61.3%)

ResNet. We also evaluate the network pruning performances of various methods on
ResNet (He et al., 2016), a predominant deep CNN with residual modules, as shown in
Table 3. Notably, our MLPruner enhances the original ResNet-56 performance by 0.05%,
successfully eliminating approximately 54.8% of FLOPs. This efficiency contrasts sharply
with other methods, which invariably experience an accuracy reduction to varying degrees,
despite achieving fewer reductions in FLOPs. Furthermore, our MLPruner exhibits
remarkable superiority when applied to ResNet-110. Despite a robust 65.8% reduction in
FLOPs, it generates a performance improvement of 0.08%, significantly outpacing
competing methods.

MobileNet. MobileNet-v2 (Sandler et al., 2018), an advancing network, exemplifies
compact design via its depth-wise separable convolution. Given its minuscule
computational cost, pruning MobileNet-v2 proves to be an exceptionally challenging task.
Nevertheless, as illustrated in Table 4, in comparison with its competitors, MLPruner
impressively maintains a superior top-1 accuracy of 95.31%, whilst achieving a more
significant pruning of FLOPs by 31.5%. Therefore, the results underscore the notable
preeminence of our MLPruner in CNN pruning, unflinchingly handling even highly
compact network models.

CIFAR-100

We further demonstrate the efficacy of MLPruner for pruning VGGNet-19 on the more
complex dataset CIFAR-100. Table 5 shows the comparative performance of MLPruner

Chen and Zhao (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3132 11/20

http://dx.doi.org/10.7717/peerj-cs.3132
https://peerj.com/computer-science/

PeerJ Computer Science

Table 3 Pruning results of ResNet-56/110 (He et al., 2016) on CIFAR-10.

Model Top-1(%) FLOPs (PR) Parameters (PR)
ResNet-56 93.26 126.56M (0.0%) 0.85M (0.0%)
¢, (Li et al, 2017) 93.06 90.90M (27.6%) 0.73M (14.1%)
GAL-0.6 (Lin et al., 2019) 92.90 78.30M (37.6%) 0.75M (11.8%)
FPGM (He et al., 2019) 93.26 59.40M (52.6%) -

ABC (Lin et al., 2021) 93.19 73.36M (41.5%) 0.50M (41.2%)
LEPC (He et al., 2020) 93.24 59.10M (52.9%) -

HRank (Lin et al., 2020a) 93.17 62.72M (50.0%) 0.49M (42.4%)
RGP (Chen et al., 2023) 92.92 57.99M(54.2%) 0.47M (44.8%)
MLPruner 93.31 57.23M (54.8%) 0.43M (49.5%)
ResNet-110 93.57 254.99M (0.0%) 1.73M (0.0%)
¢, (Li et al, 2017) 93.30 155.00M (38.7%) 1.16M (32.6%)
GAL-0.5 (Lin et al., 2019) 92.55 130.20M (48.5%) 0.95M (44.8%)
HRank (Lin et al., 2020a) 93.36 105.70M (58.2%) 0.70M (59.2%)
LEPC (He et al., 2020) 93.07 101.00M (60.3%) -

ABC (Lin et al., 2020c) 93.44 92.84M (63.3%) 0.69M (59.9%)
RGP (Chen et al., 2023) 93.51 91.59M (64.1%) 0.63M (63.7%)
MLPruner 93.65 87.11M (65.8%) 0.61M (64.8%)

Table 4 Pruning results of MobileNet-v2 (Sandler et al., 2018) on CIFAR-10.

Model Top-1 (%) FLOPs (PR) Parameters (PR)
Baseline 94.47 98.05M (0.0%) 2.29M (0.0%)
WM (Howard et al., 2017) 94.02 71.57M (27.0%) 1.81M (20.9%)
DCP (Zhuang et al., 2018) 94.69 71.57M (27.0%) 1.81M (20.9%)
MDP (Guo, Ouyang & Xu, 2020) 95.14 69.90M (28.7%) -

White-Box (Zhang et al., 2022) 95.28 69.41M (29.2%) 1.77M (22.3%)
MLPruner 95.31 67.16M (31.5%) 1.56M (23.4%)

under analogous pruning rates vs. other methodologies. Observable from these
comparisons, MLPruner outperforms the state-of-the-art (SOTA) alternatives across
varying pruning rates. Emphasizing further, MLPruner successfully minimizes the FLOPs
to a fraction of 70.7%, simultaneously achieving a top-1 accuracy of 73.45%. Conversely,
the recent SOTA, HRank (Lin et al., 2020a), demands greater computation to yield subpar
top-1 accuracy at 72.91%. Undeniably, these results accentuate the distinct advantage of
employing our MLPruner in pruning CNNs on more challenging datasets.

ImageNet

In the challenging ImageNet dataset, we compared MLPruner with current state-of-the-art
pruning technologies. Key performance indicators, as observed in Table 6, reveal that
MLPruner demonstrates a significant advantage in many core metrics. Firstly, MLPruner
achieved a Top-1 accuracy of 75.62%, which not only surpasses most of the listed methods

Chen and Zhao (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3132 12/20

http://dx.doi.org/10.7717/peerj-cs.3132
https://peerj.com/computer-science/

PeerJ Computer Science

Table 5 Pruning results of VGGNet-19 (Szegedy et al., 2015) on CIFAR-100.

Model Top-1 (%) FLOPs (PR) Parameters (PR)
Baseline 73.43 399.12M (0.0%) 20.04M (0.0%)
¢, (Li et al, 2017) 72.52 171.51M (42.9%) 5.17M (74.2%)
HRank (Lin et al., 2020a) 7291 154.06M (61.4%) 4.08M (80.2%)
ABC (Lin et al., 2020c) 73.04 145.67M (63.5%) 3.54M (82.3%)
White-Box (Zhang et al., 2022) 73.33 127.31M (68.1%) 2.38M (86.4%)
MLPruner 73.45 116.94M (70.7%) 2.18M (88.1%)

Table 6 Pruning results of ResNet-50 (He et al., 2016) on ImageNet. { means we follow EagleEye to
start from a pre-trained model and give 120 epochs for fine-tuning.

Model Top-1 (%) FLOPs (PR) Parameters (PR)
Baseline 76.15 4.10G (0%) 25.56M (0%)
ThiNet (Luo, Wi & Lin, 2017) 72.04 1.62G (60.2%) 14.55M (43.0%)
SFP (He et al., 2018a) 74.61 2.38G (58.2%) -

GAL (Lin et al., 2019) 71.95 2.33G (43.0%) 21.25M (16.9%)
HRank (Lin et al., 2020a) 74.98 2.29G (44.1%) 16.17M (36.7%)
White-Box (Zhang et al., 2022) 75.32 2.23G (45.5%) 16.49M (35.5%)
DSA (Ning et al., 2020) 75.10 2.46G (40.0%) -

CLR-RNF (Lin et al,, 2022) 74.85 2.44G (40.3%) 16.91M (33.8%)
MLPruner 75.62 221G (46.0%) 14.47M (43.4%)
EagleEye (Li et al., 2020) 76.40 2.00G (51.2%) -

Pas (Li et al., 2022) 76.70 2.00G (51.2%) -

MLPrunert 76.89 1.97G (51.9%) 13.98M (45.6%)

such as White-Box, DSA, and CLR-RNF—with accuracies of 75.32%, 75.10%, and 74.85%,
respectively—but also shows considerable improvements over ThiNet at 72.04% and GAL
at 71.95% Top-1 accuracy. This enhancement is particularly crucial as it demonstrates the
capability to balance the reduction of computational resources while maintaining model
performance during the pruning process. Further, MLPruner outperforms EagleEye by
1.2% accuracy at similar FLOPs because: (1) Our mask learning adapts to training
dynamics rather than using fixed heuristics, (2) Joint optimization prevents the greedy
local decisions EagleEye makes, and (3) The gradient-based importance measure better
preserves critical filters.

Moreover, in terms of computational efficiency, MLPruner’s performance is equally
impressive. It reduced the total number of floating-point operations (FLOPs) by 46.0%,
achieving only 2.21G. This figure is not only lower than the baseline model’s 4.10G but also
slightly better compared to other methods like DSA’s 2.46G and CLR-RNF’s 2.44G,
indicating that MLPruner effectively lessens the computational load while preserving a
relatively high accuracy. To sum up, Compared to other pruning methods, MLPruner not
only reduces parameters more efficiently but also maintains better performance, even on
more challenging dataset.

Chen and Zhao (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3132 13/20

http://dx.doi.org/10.7717/peerj-cs.3132
https://peerj.com/computer-science/

PeerJ Computer Science

93.51

§ 93.0

>

O

O 925

>

O

<

— 92.0

IS —#+— FLOPs (PR)=65.8%
91.5 FLOPs (PR)=51.2%

FLOPs (PR)=39.4%

91.0' 5 50 100 200

Mask Training (Epochs)

Figure 2 Effect of the mask learning epochs within MLPruner.
Full-size K&l DOT: 10.7717/peerj-cs.3132/fig-2

We conclude with a discussion on the pruning efficiency. Traditional methods, such as
ThiNet and HRank, typically determine layer-wise pruning rates through manual design,
which incurs significant human effort. On the other hand, search-based approaches, such
as EagleEye and ABCPruner, often employ evolutionary algorithms or specific evaluation
metrics to explore optimal architectures, which still demand substantial computational
time. In contrast, our proposed MLPruner achieves automatic mask training with only
one-tenth of the fine-tuning cost, enabling end-to-end optimization of both layer-wise
pruning rates and critical filter identification, thereby enhancing pruning efficiency
compared to existing methods.

Performance analysis
In this section, we prune ResNet-56 and test its performance on CIFAR-10 as an example
to analysis the performance of MLPruner w.r.t. its different components.

Mask learning epochs. Initially, we scrutinize the import of learning epochs .7~ for masks.
Figure 2 delineates the performance nuances when utilizing varying epochs at diverse
pruning ratios. Manifestly, enhancing the epochs of mask learning significantly augments
the model’s efficacy, particularly under conditions of high sparsity. This phenomenon is
intuitively understandable as a higher sparsity demands the removal of multiple filters,
thereby necessitating an amplified number of mask training epochs to discern the priority
between diverse filters. Concurrently, it should be noted that the performance gains of
increasing epochs possess a ceiling effect, and an abundance of epochs can incur inflated
training overhead. Therefore, we configure the mask training for 30 epochs.

Chen and Zhao (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3132 14/20

http://dx.doi.org/10.7717/peerj-cs.3132/fig-2
http://dx.doi.org/10.7717/peerj-cs.3132
https://peerj.com/computer-science/

PeerJ Computer Science

Table 7 Top-1 accuracy comparison for pruning ResNet-56 on CIFAR-10 under different layerwise
pruning rate configuration. ‘Manual’, ‘ABCPruner’, ‘Global’ means we use manually-defined (Lin et al,
2020a), searched results by ABCPruner (Lin et al., 2020c), and directly conduct global sorting for the
masks, respectively.

Setting Top-1 accuracy(%) FLOPs(PR)
Manual 93.02 53.3%
ABCPruner 93.49 41.2%
Global 93.31 54.8%

Table 8 Top-1 accuracy comparison for pruning ResNet-56 on CIFAR-10 with or without weight
penalty.

Setting Top-1 accuracy(%) FLOPs(PR)
w. Penalty 92.89 53.9%
w.o. Penalty (MLPruner) 93.31 54.8%

Layerwise pruning rate. We further investigated the impact of layerwise pruning rate on
MLPruner’s performance. Table 7 exemplifies the effect on FLOPs reduction and overall
performance when employing different strategies to distribute the layerwise pruning rate.
Interestingly, direct global ranking based on the learned mask can even yield better results
than a manually set procedure, which underscores MLPruner’s efficiency. Furthermore,
the use of a searched layerwise pruning rate can lead to enhanced performance, albeit at
increased costs. This demonstrates MLPruner’s scalability, remaining orthogonal to the
pruning methods predicated on architecture search.

Weight penalty. At last, we examine the impact of weight penalties on mask training
within MLPruner, a widely adopted approach in training-aware filter pruning methods
(Huang & Wang, 2018; Xiao, Wang ¢ Rajasekaran, 2019). Specifically, we imposed an L1
penalty on the mask during its training course, with results displayed in Table 8. As can be
seen, the introduction of a sparsity regularization term resulted in performance
degradation. This can be attributed to the fact that our mask training strategy already
accurately identifies critical filters, and the penalty item inevitably hinders the optimization
of the mask.

FUTURE WORK

In this section, we discuss some future works that warrant exploration. First, the current
mask learning process in MLPruner relies on a fixed threshold for binarization, which may
not optimally adapt to varying layer-wise pruning sensitivities. Future work could explore
dynamic or learnable threshold mechanisms to enhance flexibility. Second, the method
primarily focuses on filter pruning for CNNs, leaving room for extension to other
architectures (e.g., transformers), particularly considering the structural differences in
attention mechanisms and positional encodings. Third, the increased computational
overhead during mask training requires optimization for larger-scale models. Fourth,
while demonstrated on classification tasks, applicability to dense prediction tasks

Chen and Zhao (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3132 15/20

http://dx.doi.org/10.7717/peerj-cs.3132
https://peerj.com/computer-science/

PeerJ Computer Science

(e.g., segmentation) needs further validation. Lastly, the theoretical connection between
mask values and filter importance could be further formalized to guide more principled
pruning decisions. Addressing these limitations could broaden the applicability and
robustness of the approach.

CONCLUSION

Filter pruning emerges as a research hotspot in both industrial and academic realms,
intended to minimize the deployment and inference overhead of CNNs. In this article, we
introduce a novel MLPruner methodology, which autonomously learns mask through
threshold-based rounding forward and STE-based backward. The learned masks by
MLPruner has been demonstrated to reflect a corresponding filter’s significance, even in
the absence of weight penalty that previous methods impose. Extensive experiments
highlights the effectiveness of MLPruner in pruning popular CNN architectures as
compared to a series of state-of-the-art filter pruning methods.

ACKNOWLEDGEMENTS
The authors thank all participants.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

This work is supported by the National Natural Science Foundation of China (81460279,
61841204); the Inner Mongolia Natural Science Foundation (2024LHMS08045,
2018LH08066); the Inner Mongolia Autonomous Region High School Science Research
Foundation (NJZY145). The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures

The following grant information was disclosed by the authors:

National Natural Science Foundation: 81460279, 61841204.

Inner Mongolia Natural Science Foundation: 2024LHMS08045, 2018LH08066.
Inner Mongolia Autonomous Region High School Science Research Foundation:
NJZY145.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions

e Sihan Chen conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

* Ying Zhao conceived and designed the experiments, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

Chen and Zhao (2025), Peerd Comput. Sci., DOI 10.7717/peerj-cs.3132 16/20

http://dx.doi.org/10.7717/peerj-cs.3132
https://peerj.com/computer-science/

PeerJ Computer Science

Data Availability
The following information was supplied regarding data availability:

Code and raw data are available in the Supplemental Files.

The CIFAR-10 dataset is available at the University of Toronto: https://www.cs.toronto.
edu/~kriz/cifar.html.

The CIFAR-100 dataset is available at: https://www.image-net.org/download.php.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.3132#supplemental-information.

REFERENCES

Bengio Y, Léonard N, Courville A. 2013. Estimating or propagating gradients through stochastic
neurons for conditional computation. ArXiv DOI 10.48550/arXiv.1308.3432.

Chen Z, Xiang J, Lu Y, Xuan Q, Wang Z, Chen G, Yang X. 2023. RGP: neural network pruning
through regular graph with edges swapping. IEEE Transactions on Neural Networks and
Learning Systems 35(10):14671-14683 DOI 10.1109/tnnls.2023.3280899.

Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L. 2009. ImageNet: a large-scale hierarchical
image database. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
Piscataway: IEEE, 248-255.

Dettmers T, Zettlemoyer L. 2019. Sparse networks from scratch: faster training without losing
performance. In: Advances in Neural Information Processing Systems (NeurIPS).

Ding X, Ding G, Han J, Tang S. 2018. Auto-balanced filter pruning for efficient convolutional
neural networks. In: AAAI Conference on Artificial Intelligence (AAAI), Vol. 32.

Evci U, Gale T, Menick J, Castro PS, Elsen E. 2020. Rigging the lottery: making all tickets winners.
In: International Conference on Machine Learning (ICML), 2943-2952.

Gao S, Zhang Y, Huang F, Huang H. 2024. BilevelPruning: unified dynamic and static channel
pruning for convolutional neural networks. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. Piscataway: IEEE, 16090-16100.

Girshick R, Donahue J, Darrell T, Malik J. 2014. Rich feature hierarchies for accurate object
detection and semantic segmentation. In: IEEE International Conference on Computer Vision
(ICCV). Piscataway: IEEE, 580-587.

Guo J, Ouyang W, Xu D. 2020. Multi-dimensional pruning: a unified framework for model
compression. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
Piscataway: IEEE, 1508-1517.

Guo S, Wang Y, Li Q, Yan J. 2020. DMCP: differentiable markov channel pruning for neural
networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. Piscataway: IEEE, 1539-1547.

Han S, Pool J, Tran J, Dally W. 2015. Learning both weights and connections for efficient neural
network. Advances in Neural Information Processing Systems 28:1135-1143.

Hayashi K, Yamaguchi T, Sugawara Y, Maeda S-I. 2019. Exploring unexplored tensor network
decompositions for convolutional neural networks. Advances in Neural Information Processing
Systems 32:5552-5562.

He Y, Ding Y, Liu P, Zhu L, Zhang H, Yang Y. 2020. Learning filter pruning criteria for deep
convolutional neural networks acceleration. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2009-2018.

Chen and Zhao (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3132 17/20

http://dx.doi.org/10.7717/peerj-cs.3132#supplemental-information
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.image-net.org/download.php
http://dx.doi.org/10.7717/peerj-cs.3132#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.3132#supplemental-information
http://dx.doi.org/10.48550/arXiv.1308.3432
http://dx.doi.org/10.1109/tnnls.2023.3280899
http://dx.doi.org/10.7717/peerj-cs.3132
https://peerj.com/computer-science/

PeerJ Computer Science

He K, Gkioxari G, Dollar P, Girshick R. 2017. Mask R-CNN. In: IEEE International Conference on
Computer Vision (ICCV). Piscataway: IEEE.

He Y, Kang G, Dong X, Fu Y, Yang Y. 2018a. Soft filter pruning for accelerating deep
convolutional neural networks. In: International Joint Conference on Artificial Intelligence
(IJCAI), 2234-2240.

He Y, Lin J, Liu Z, Wang H, Li L-J, Han S. 2018b. AMC: automl for model compression and
acceleration on mobile devices. In: Proceeding European Conference on Computer Vision,
784-800.

He Y, Liu P, Wang Z, Hu Z, Yang Y. 2019. Filter pruning via geometric median for deep
convolutional neural networks acceleration. In: IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). Piscataway: IEEE, 4340-4349.

He K, Zhang X, Ren S, Sun J. 2016. Deep residual learning for image recognition. In: IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 770-778.

He Y, Zhang X, Sun J. 2017. Channel pruning for accelerating very deep neural networks. In: IEEE
International Conference on Computer Vision (ICCV). Piscataway: IEEE, 1389-1397.

Hoefler T, Alistarh D, Ben-Nun T, Dryden N, Peste A. 2021. Sparsity in deep learning: pruning
and growth for efficient inference and training in neural networks. Journal of Machine Learning
Research 22:1-124 DOI 10.48550/arXiv.2102.00554.

Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, Andreetto M, Adam H.
2017. Mobilenets: efficient convolutional neural networks for mobile vision applications. ArXiv
DOI 10.48550/arXiv.1704.04861.

Hu H, Peng R, Tai Y-W, Tang C-K. 2016. Network trimming: a data-driven neuron pruning
approach towards efficient deep architectures. ArXiv DOI 10.48550/arXiv.1607.03250.

Huang Z, Wang N. 2018. Data-driven sparse structure selection for deep neural networks. In:
European Conference on Computer Vision, 304-320.

Hubara I, Courbariaux M, Soudry D, El-Yaniv R, Bengio Y. 2016. Binarized neural networks.
Advances in Neural Information Processing Systems 29.

Jangra M, Dhull SK, Singh KK, Singh A, Cheng X. 2023. O-WCNN: an optimized integration of
spatial and spectral feature map for arrhythmia classification. Complex & Intelligent Systems
9(3):2685-2698 DOI 10.1007/s40747-021-00371-4.

Ji Y, Liang L, Deng L, Zhang Y, Zhang Y, Xie Y. 2018. TETRIS: tile-matching the tremendous
irregular sparsity. Advances in Neural Information Processing Systems 31.

Krizhevsky A, Hinton G. 2009. Learning multiple layers of features from tiny images. Technical
report, University of Toronto.

LeCun Y, Denker J, Solla S. 1989. Optimal brain damage. Advances in Neural Information
Processing Systems 2:598-605.

Li H, Kadav A, Durdanovic I, Samet H, Graf HP. 2017. Pruning filters for efficient convnets. In:
Proceeding International Conference on Learning Representations.

Li Y, van Gemert JC, Hoefler T, Moons B, Eleftheriou E, Verhoef B-E. 2023. Differentiable
transportation pruning. In: Proceedings of the IEEE/CVF International Conference on Computer
Vision. Piscataway: IEEE, 16957-16967.

Li B, Wu B, Su J, Wang G. 2020. EaglEeye: fast sub-net evaluation for efficient neural network
pruning. In: Proceeding European Conference on Computer Vision, 639-654.

Li Y, Zhao P, Yuan G, Lin X, Wang Y, Chen X. 2022. Pruning-as-search: efficient neural
architecture search via channel pruning and structural reparameterization. In: International
Joint Conference on Artificial Intelligence (IJCAI).

Chen and Zhao (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3132 18/20

http://dx.doi.org/10.48550/arXiv.2102.00554
http://dx.doi.org/10.48550/arXiv.1704.04861
http://dx.doi.org/10.48550/arXiv.1607.03250
http://dx.doi.org/10.1007/s40747-021-00371-4
http://dx.doi.org/10.7717/peerj-cs.3132
https://peerj.com/computer-science/

PeerJ Computer Science

LinM, Cao L, Li S, Ye Q, Tian Y, Liu J, Tian Q, Ji R. 2021. Filter sketch for network pruning. IEEE
Transactions on Neural Networks and Learning Systems 33(12):7091-7100
DOI 10.1109/tnnls.2021.3084206.

Lin M, Cao L, Zhang Y, Shao L, Lin C-W, Ji R. 2022. Pruning networks with cross-layer ranking &
k-reciprocal nearest filters. IEEE Transactions on Neural Networks and Learning Systems
34(11):9139-9148 DOI 10.1109/TNNLS.2022.3156047.

Lin S, Ji R, Chen C, Tao D, Luo J. 2018. Holistic CNN compression via low-rank decomposition
with knowledge transfer. IEEE Transactions on Pattern Analysis and Machine Intelligence
41(12):2889-2905 DOI 10.1109/tpami.2018.2873305.

Lin M, Ji R, Wang Y, Zhang Y, Zhang B, Tian Y, Shao L. 2020a. Hrank: filter pruning using
high-rank feature map. In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). Piscataway: IEEE, 1529-1538.

Lin M, Ji R, Xu Z, Zhang B, Wang Y, Wu Y, Huang F, Lin C-W. 2020b. Rotated binary neural
network. In: Proceeding Advances in Neural Information Processing Systems, 7474-7485.

Lin S, Ji R, Yan C, Zhang B, Cao L, Ye Q, Huang F, Doermann D. 2019. Towards optimal
structured CNN pruning via generative adversarial learning. In: Proceeding Advances in Neural
Information Processing Systems, 2790-2799.

Lin M, Ji R, Zhang Y, Zhang B, Wu Y, Tian Y. 2020c. Channel pruning via automatic structure
search. In: International Joint Conference on Artificial Intelligence (IJCAI), 673-679.

Liu S, Chen T, Chen X, Atashgahi Z, Yin L, Kou H, Shen L, Pechenizkiy M, Wang Z, Mocanu
DC. 2021. Sparse training via boosting pruning plasticity with neuroregeneration. Advances in
Neural Information Processing Systems 34:9908-9922.

Liu Z, Li J, Shen Z, Huang G, Yan S, Zhang C. 2017. Learning efficient convolutional networks
through network slimming. In: Proceedings of the IEEE International Conference on Computer
Vision. Piscataway: IEEE, 2736-2744.

Liu Z, Mu H, Zhang X, Guo Z, Yang X, Cheng TK-T, Sun J. 2019. MetaPruning: meta learning
for automatic neural network channel pruning. In: IEEE International Conference on Computer
Vision (ICCV). Piscataway: IEEE, 3296-3305.

Liu Z, Wu B, Luo W, Yang X, Liu W, Cheng K-T. 2018. Bi-Real Net: enhancing the performance
of 1-bit CNNs with improved representational capability and advanced training algorithm. In:
Proceedings of the European Conference on Computer Vision (ECCV), 722-737.

Luo J-H, Wu J. 2020. AutoPruner: an end-to-end trainable filter pruning method for efficient deep
model inference. Pattern Recognition (PR) 107(10):107461 DOI 10.1016/j.patcog.2020.107461.

Luo J-H, Wu J, Lin W. 2017. ThiNet: a filter level pruning method for deep neural network
compression. In: IEEE International Conference on Computer Vision (ICCV). Piscataway: IEEE,
5058-5066.

Meng F, Cheng H, Li K, Luo H, Guo X, Lu G, Sun X. 2020. Pruning filter in filter. Advances in
Neural Information Processing Systems 33:17629-17640.

Molchanov P, Tyree S, Karras T, Aila T, Kautz J. 2017. Pruning convolutional neural networks
for resource efficient inference. In: International Conference on Learning Representations (ICLR).

Ning X, Zhao T, Li W, Lei P, Wang Y, Yang H. 2020. DSA: more efficient budgeted pruning via
differentiable sparsity allocation. In: European Conference on Computer Vision (ECCV). Cham:
Springer, 592-607.

Sandler M, Howard A, Zhu M, Zhmoginov A, Chen L-C. 2018. MobileNetV2: inverted residuals
and linear bottlenecks. In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). Piscataway: IEEE, 4510-4520.

Chen and Zhao (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3132 19/20

http://dx.doi.org/10.1109/tnnls.2021.3084206
http://dx.doi.org/10.1109/TNNLS.2022.3156047
http://dx.doi.org/10.1109/tpami.2018.2873305
http://dx.doi.org/10.1016/j.patcog.2020.107461
http://dx.doi.org/10.7717/peerj-cs.3132
https://peerj.com/computer-science/

PeerJ Computer Science

Simonyan K, Zisserman A. 2015. Very deep convolutional networks for large-scale image
recognition. In: International Conference on Learning Representations (ICLR).

Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich
A. 2015. Going deeper with convolutions. In: Proceeding IEEE Conference on Computer Vision
and Pattern Recognition. Piscataway: IEEE.

Tang Y, Wang Y, Xu Y, Deng Y, Xu C, Tao D, Xu C. 2021. Manifold regularized dynamic
network pruning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. Piscataway: IEEE, 5018-5028.

Verma PR, Singh NP, Pantola D, Cheng X. 2024. Neural network developments: a detailed survey
from static to dynamic models. Computers and Electrical Engineering 120(1):109710
DOI 10.1016/j.compeleceng.2024.109710.

Wang Z. 2020. SparseRT: accelerating unstructured sparsity on GPUs for deep learning inference.
In: Proceedings of the ACM International Conference on Parallel Architectures and Compilation
Techniques (ICPACT), 31-42.

Wang W, Fu C, Guo J, Cai D, He X. 2019. COP: customized deep model compression via
regularized correlation-based filter-level pruning. In: Proceedings of the Twenty-Eighth
International Joint Conference on Artificial Intelligence (IJCAI-19), 3785-3791.

Wu X, Gao S, Zhang Z, Li Z, Bao R, Zhang Y, Wang X, Huang H. 2024. Auto-train-once:
controller network guided automatic network pruning from scratch. ArXiv
DOI 10.48550/arXiv.2403.14729.

Xiao X, Wang Z, Rajasekaran S. 2019. Autoprune: automatic network pruning by regularizing
auxiliary parameters. In: Proceeding Advances in Neural Information Processing Systems,
13681-13691.

Yu R, Li A, Chen C-F, Lai J-H, Morariu VI, Han X, Gao M, Lin C-Y, Davis LS. 2018. Nisp:
Pruning networks using neuron importance score propagation. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 9194-9203.

Zhang Y, Lin M, Lin C-W, Chen J, Wu Y, Tian Y, Ji R. 2022. Carrying out CNN channel pruning
in a white box. IEEE Transactions on Neural Networks and Learning Systems (TNNLS)
34(10):7946-7955 DOI 10.1109/tnnls.2022.3147269.

Zhang X, Zhou X, Lin M, Sun J. 2018. ShuffleNet: an extremely efficient convolutional neural
network for mobile devices. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). Piscataway: IEEE, 6848-6856.

Zhao C, Ni B, Zhang J, Zhao Q, Zhang W, Tian Q. 2019. Variational convolutional neural
network pruning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). Piscataway: IEEE, 2780-2789.

Zhuang Z, Tan M, Zhuang B, Liu J, Guo Y, Wu Q, Huang J, Zhu J. 2018. Discrimination-aware
channel pruning for deep neural networks. In: Proceeding Advances in Neural Information
Processing Systems, 875-886.

Chen and Zhao (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3132 20/20

http://dx.doi.org/10.1016/j.compeleceng.2024.109710
http://dx.doi.org/10.48550/arXiv.2403.14729
http://dx.doi.org/10.1109/tnnls.2022.3147269
http://dx.doi.org/10.7717/peerj-cs.3132
https://peerj.com/computer-science/

	MLPruner: pruning convolutional neural networks with automatic mask learning
	Introduction
	Related work
	Method
	Experiment
	Future work
	Conclusion
	flink7
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

