
A hybrid GA-ANN machine learning with
novel DBSTLink data balancing approach
for driving action detection: solution to
road crash prediction
Nusrat Jahan1,2, Zahereel Ishwar Abdul Khalib1, Zouhair Elamrani
Abou Elassad2,3, Imran Mahmud4 and Rozmie Razif Othman1

1 Faculty of Electronic Engineering & Technology (FKTEN), Universiti Malaysia Perlis, Aurau,
Perlis, Malaysia

2 Information Technology & Management, Daffodil International University, Savar, Ashulia,
Bangladesh

3 Cadi Ayyad University, Marrakesh, Marrakesh, Morocco
4 Software Engineering, Daffodil International University, Savar, Ashuia, Bangladesh

ABSTRACT
Road crashes have been viewed as one of the major issues leading to numerous
economic losses, health problems, and fatalities, which are often due to driver actions
(DA). Predicting effective DA for road crashes is crucial for developing effective
intelligent transportation systems. The research community focused on
transportation safety has made significant advancements in utilizing machine
learning models to examine crash incidents in recent years. The application of
various machine learning (ML) models has been widespread, but the specific focus on
assessing DA has received relatively little attention. The article aims to propose a
hybrid genetic algorithm combined with artficial neural network (GN-ANN) ML
model to predict risky DA related to road accidents considering effective sampling
strategies. This article also proposes a novel sampling strategy that combines
Density-Based Spatial Clustering of Applications with Noise (DBSCAN) with
Synthetic Minority Oversampling Technique (SMOTE)-Tomek Link named
DBSTLink, where DBSCAN and SMOTE-Tomek Links are integrated to purify
datasets from noise and outliers using DBSCAN and to balance class distribution by
oversampling minority classes and deleting overlaps with SMOTE-Tomek Links to
enhance classifier accuracy. This method is then compared with other sampling
strategies like SMOTE, SMOTE Tomek Link, and DBSM (DBSCAN with SMOTE).
The objective of this study is to strengthen the existing knowledge of crash
probability by examining the influence of various data balancing with the proposed
balancing approach on forecast F1-score, Matthew’s correlation coefficient (MCC),
and G-mean. The results demonstrate that DBSTLink gives higher performance than
other measures. The proposed hybrid GA-ANNmachine learning model achieved an
accuracy of 99%, an F1-score of 98%, and a recall of 99%. Additionally, it achieved a
G-mean of 98% and an MCC of 96%. The research found the important attributes of
DA that are responsible for road crashes.
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INTRODUCTION
Road accidents pose a crucial dilemma for public health and safety and are continually
increasing. Accidents are recognized as one of the major concerns, as every year road
traffic accidents cause the deaths of around 1.19 million people, according to the World
Health Organization reports (WHO, 2023). Accidents cause non-fatal injuries to an extra
20 to 50 million individuals, resulting in long-term disability. Research has proven that the
influence of driver actions on vehicle kinematics significantly affects road crashes.
According to Lu et al. (2020), well over 1 million people worldwide lose their lives in traffic
accidents every year, and well over 50 million suffer injuries. Most crashes are caused by
human factors, according to an analysis of the factors that cause them, which includes
variables affecting the vehicle itself, the roadway, or a combination of these variables
(Rahman et al., 2022).

Many researchers have conducted investigations to determine state-of-the-art road
safety analysis and have developed systems to enhance road safety. For road safety
research, analysis of driver behavior (DB) (Albert et al., 2018; Gupta, Choudhary & Parida,
2021) should be a major concern as traffic accidents are often caused by human factors
(Luk et al., 2017; Wang et al., 2022). Researchers have utilized driving performance
measures to explore the impact of drivers’ behavioral traits on driving quality, presuming
that deviations from standard driver actions signify hazardous circumstances (Yadav &
Velaga, 2019; Choudhary & Velaga, 2019). According to Osman et al. (2019), they used
machine learning techniques such as K-nearest neighbor (KNN), random forest (RF),
support vector machine (SVM), decision trees (DT), Gaussian naïve Bayes (Gaussian NB),
and adaptive boost (AdaBoost) to predict close crashes based on data from inside the
vehicle. Artificial neural networks (ANN) and decision trees (DT) were utilized by
Zouhair, Mousannif & Al Moatassime (2020) to analyze crash events and assess the effects
of weather on traffic safety. Researchers (Lee & Li, 2015) use the boosted regression tree to
predict the severity of driver injuries. However, they noted a drawback when using
ensemble approaches to leverage the advantages of decision trees. In parallel, Parsa et al.
(2020) applied extreme gradient boosting (XGBoost) for real-time accident detection and
feature analysis, with the aim of improving highway safety. Their study demonstrated the
potential of these methods for identifying key factors contributing to accidents.

Applications of machine learning (ML) models in finding DA are still limited, but more
research should be done by the researcher to find out the major DA that causes traffic
accidents. The literature, which includes the aforementioned studies and others, clarifies it
that the effectiveness of produced models depends on the datasets and data mining
algorithms used, with these factors varying between investigations. The RF method was
utilized by Mafi, Abdelrazig & Doczy (2018) to analyze gap acceptance behavior in a
driving simulation approach. Road accidents are the result of a complex interaction of
variables involving the driver, the vehicle, and the environment. Road accidents involve a
complicated human-machine system, as shown by Aljanahi, Rhodes & Metcalfe (1999).
According to Treat et al. (1979), who ascribed around 90% of accidents to driver errors,
driver actions play a significant role. Although research has mostly focused on vehicle data,
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it is essential to include driver response elements in prediction models. We want to find out
how well supervised learning models, more specifically hybrid machine learning
approaches, can predict crashes by using variables from a driving simulator database that
show what the driver did.

The study by Martinez et al. (2017) investigates how a driver’s actions might actively
influence and alter the context and dynamics of the driving environment. Simultaneously,
Xu et al. (2024) conducted comprehensive studies on the impact of drivers’ psychological
and physical characteristics. Their research focused on gaining a thorough grasp of how
these specific driver characteristics influence other driving-related factors. These
characteristics encompass reaction times, decision-making processes, and overall driving
performance, making a substantial contribution to the field of driver behavior analysis and
road safety research. This field is new for the researcher, and they try to analyze driver
behavior using ML. A promising area of research is to achieve a better solution for
predicting the risk of road accidents based on DB and other factors associated with traffic
crashes.

Recent research by Xu et al. (2024) assessed the interaction between DA and
autonomous driving systems (ADS) in a virtual reality environment, simulating over
10,000 road scenarios. Wan et al. (2023) assess drivers’ physiological and psychological
responses in expressway tunnels using machine learning methods to identify dangerous
behaviors. Ahmad et al. (2024) analyze driver behavior in the context of wildfire
evacuations, based on braking and acceleration patterns from connected car data.
Mazengia et al. (2024) investigated public transport operators in Ethiopia and found that
increasing awareness of road safety can decrease risky behavior. Kontaxi et al. (2023)
explored the effects of mobile phone use and trip characteristics on speeding, and the
authors argue that interventions are necessary to address mobile-driven driving violations.
These studies collectively highlight the impact of various environmental factors on driving
behavior and the effectiveness of DA systems.

Human driving parameters are an important concern in road accident research. Driver
actions are a significant concern because drivers play a leading role in operating vehicles in
the environment and driving scene (Li et al., 2022). When road crashes occur, the primary
focus of investigation is on the database factors that directly contribute to them. Some
studies focus on the relationship between driving behavior and the surrounding
environment (Elamrani Abou Elassad, Mousannif & Al Moatassime, 2020a). ML is a
prominent topic today; the researcher proposes many ML-based models to predict the
risky driving parameter for traffic crashes and discover some driving factors that may
contribute to road safety (Gálvez-Pérez, Guirao & Ortuño, 2023). However, identifying
appropriate machine learning algorithms that can accurately identify driver actions with
minimal error and high accuracy is not a simple task. Moreover, based on the weather
conditions, driver actions, such as vehicle kinematics and driver input, play an important
role in road crashes. These factors have led to the integration of various intelligent systems
into mass transport systems, enabling automatic actions or directions that could
potentially reduce traffic crashes.
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The National Highway Traffic Safety Administration (NHTSA) provides data
indicating that driver error accounts for a significant majority of road accidents,
specifically 94%. They use historical data for examination, which reveals a consistent
association between motor vehicle accidents and human errors. Comprehensive research
has investigated the primary factors contributing to vehicular crashes, leading to this
conclusion. Therefore, it is imperative to continue conducting research on driver actions
(Sarsangi et al., 2023) to address these faults and enhance safety protocols, according to
reports by Ayers, Whitlow & Dressler (2018). According to Cai & Lin (2011), the primary
determinant of traffic safety is the driver’s behavior.

The road accident datasets usually have a lower frequency of accident occurrence
compared to non-accidents. A prevailing recommendation among researchers is to
maintain a ratio of four non-accident cases for every accident case (Yusoff et al., 2024;
Xu & Prozzi, 2023; Gálvez-Pérez, Guirao & Ortuño, 2023). Nevertheless, this ratio
sometimes gives rise to data imbalances, since models may exhibit a bias towards the more
common non-accident class, producing an over prediction of that class (Elamrani Abou
Elassad, Mousannif & Al Moatassime, 2020b). In real-time crash analysis, ML approaches
have proven to be helpful in identifying the relationship between accident occurrences and
their factors. Among the frequently used ML models are support vector machines
(Govinda, Raju & Shankar, 2022; You, Wang & Guo, 2017), neural networks (Liu, Boyle &
Banerjee, 2018), and Bayesian networks (Park et al., 2018). Artificial neural networks
(ANNs) prove their usefulness (Abou Elassad, Mousannif & Al Moatassime, 2020) to
handle noisy data and carry out quick real-time computations with resilient efficiency.
According to Hussain et al. (2022), the hybrid models that use isolation forest and
minimum covariance determinant for sampling worked better than other methods and
traditional models. Another significant discovery from this study is that most of the hybrid
models performed better than conventional models.

Traditional statistical learning-based methods, such as linear regression, Gaussian
regression, and discriminant analysis, have played a fundamental role in crash prediction
and road safety analysis (León & Aoyama, 2022; Ahmadi et al., 2014; Sam, Velanganni &
Evangelin, 2016). Nevertheless, these methodologies frequently encounter challenges
pertaining to the quality of data, necessitate a significant amount of historical data, and
pose difficulties when dealing with attributes that encompass a diverse array of categories.
The utilization of statistical techniques alone for crash event analysis sometimes leads to
equivocal conclusions due to the presence of these obstacles. On the other hand, Tang et al.
(2018) studies have shown that machine learning-based methods exhibit enhanced
capacities in forecasting future occurrences, specifically within the domain of
transportation systems. ML models have many advantages: they can solve complex
problems on their own using data from different sources, they can update themselves with
new data to perform better, and they can provide predictions and explanations by finding
patterns. Significantly, crash event prediction has been effectively addressed by the
utilization of notable strategies such as Adaptive Boosting (AdaBoost) (Freund & Schapire,
1997), eXtreme Gradient Boosting (XGBoost) (Ke et al., 2019), and RF (Ragab et al., 2014),
which have demonstrated noteworthy outcomes.
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An essential factor in the examination of road accident occurrences is effectively
handling the disparity in datasets, which often consist of a smaller number of crash
instances in comparison to non-crash data. To address this disparity, researchers employ
resampling methods like the Synthetic Minority Oversampling Technique (SMOTE), as
proposed by Chawla et al. (2002). The SMOTE method minimizes information loss and
also helps in overfitting by generating artificial samples from the minority class (Fernández
et al., 2008). The study by Arafa et al. (2022) addresses the notable difficulty of unbalancing
datasets in machine learning. This is a common problem in which uneven class
distributions result in inadequate categorization of minority classes. The suggested
RN-SMOTE method merges the Synthetic Minority Over-sampling Technique (SMOTE)
with Density-Based Spatial Clustering of Applications with Noise (DBSCAN) to enhance
data preparation. Schlögl et al. (2019) used random under sampling (RUS), which removes
examples from the majority class at random, is one of the techniques employed in random
under-sampling where, until the number of examples in the majority class and the
minority class are roughly equal, the process is repeated. While the RUS approach can
distribute the class fairly, it may result in the loss of important information from the
majority class. Random oversampling (ROS), used by Rocha et al. (2023), aims to increase
the number of instances within the minority class. To achieve this, we randomly duplicate
the samples from the minority class until their numbers approximate those of the
dominant class. However, because the replicated samples are repetitious, this strategy may
result in overfitting. There are different versions of SMOTE, such as SMOTE-Tomek Link
(SMOTE-TL) (Batista, Prati & Monard, 2004), which creates synthetic samples and gets
rid of overlapping data, and SMOTE-ENN (Edited Nearest Neighbor) (Xu et al., 2020),
which uses both too many samples of the minority class and too few samples of the
majority class. Another method, Adaptive Synthetic Sampling (ADASYN) (He et al.,
2008), produces samples by considering the density distribution of the minority class. The
complexity of the modeling requirements adjusts the number of synthetic samples.

Although machine learning approaches show promise in improving road safety, there
are still certain limits that need to be addressed. The evaluated research frequently has
limited scope, and there is a clear difference in the emphasis on analyzing and detecting
driver action (DA) versus actually predicting driver action, as reviewed by Ameksa et al.
(2024). Moreover, hybrid models (Ameksa et al., 2024), which have exhibited effectiveness
in tackling intricate problems such as crash prediction, have garnered relatively less focus.
Sangare et al. (2021) explores a method for predicting traffic accidents by fusing the
advantages of the Gaussian mixture model (GMM) with the support vector classifier
(SVC). He et al. (2008) suggests a transparent Deep Hybrid Network (DHN) modeling
approach for extemporization crash prediction. It captures both geographical
heterogeneity and temporal variability at the same time by combining the powers of
convolutional neural network (CNN), deep neural network (DNN), and long short-term
memory (LSTM). Future studies should consider more data sources that reflect human
movement. Kashifi et al. (2022) applied a hybrid GA and ANN model to investigate the
severity of fixed object crashes among older drivers in California in 2012. Their results
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indicated that the ANN model was more capable of predicting low-severity crashes, while
the hybrid GA and ANNmodel was more accurate in predicting high-severity crashes. The
existence of these gaps indicates important areas for future research, such as integrating a
wider range of studies and concentrating on creating hybrid models to forecast driving
errors. The ultimate goal is to improve the accuracy of predictions, anticipate driving
errors in advance, and decrease road traffic accidents and fatalities.

To the best of our knowledge, little to no research has used a hybrid machine learning
model that examined the impact of several combinations of four adopted features, namely
driver actions, vehicular telemetry, tire conditions, and multiple weather conditions, for
the prediction of road crashes. Furthermore, this work introduces a more balanced
approach, combining DBSCAN and SMOTE TL (DBSTLink) with hybrid ML models GA
and ANN. In this study, we develop and verify a system for anticipating road accidents for
drivers by analyzing multiple parameters. To improve the study report’s
comprehensiveness, we have included supplementary content.

The use of the hybrid machine learning method GA-ANN with a DBSTLink Balancing
approach in examining driver action (DA) is a relatively new field with a small but
expanding body of research. Hybrid machine-learning models amalgamate diverse
algorithms or incorporate machine learning with other analytical techniques with the
objective of harnessing the advantages of each constituent. Many researchers have proven
that these models can provide more precise and detailed insights regarding DA by
capturing intricate patterns and interactions that single-method models may overlook.
Further experiments are required to determine the potential and constraints of the
proposed approach. Using these kinds of models could greatly improve the accuracy and
understanding of predicting driver behavior, leading to better road safety measures and
interventions that use balancing data methods like under-sampling, over-sampling, and
SMOTE to fix the common problem of data imbalance.

The current study employs a fusion decision system that includes several classifiers to
examine merged data about driver actions, vehicle information, environmental factors,
and personal details. After data pre-processing, we employ Our approach to handling
imbalanced data from road crashes entails the use of SMOTE-TL and DBSCAN, named
DBSTLink. Repeated cross-validation enables us to determine the optimal configuration
for our model. Finally, we build crash detection models using a genetic algorithm
combined with an artificial neural network called GA-ANN, considering the differences in
data to ensure our predictive models are very accurate. Specifically, this study makes the
following significant contributions:

. An DBSCAN+SMOTE TL (DBSTlink) data balancing method designed in this work
helps to balance data for effective crash prediction.

. A hybrid GA-ANN classifier framework determines and analyzes the diverse parameters
of a driver’s actions that are most indicative of road accident risks.

. The DBSTLink’s performance with a hybrid GA-ANN classifier was compared with the
existing data-balancing approach and other models used by other researchers.
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The main objective of this study is to determine statistically significant predictive
relationships through a sound classification methodology. However, causal interpretations
are not within the scope of this current approach. The remainder of this study is organized
as follows. Methodology explains the experimental design and data collection, as well as
the proposed methodology. The Experimental Results & Discussion section lists the
obtained results and discussion. Finally, we summarize this work and offer directions for
future research.

MATERIALS AND METHODS
Data collection and environmental setup
The study involved a total of 62 individuals, including 43 men and 19 women, all of whom
had been driving for at least a year and held valid driver’s licenses. Table 1 defines the study
we get from the participants. They were all in excellent health and had normal or corrected
vision. All participants of the experiments signed an informed permission form regarding
the recording of their driving action to ensure they consented to participate without
knowing the study’s overall objectives or purpose. The facility at the University of Cadi
Ayyad (UCA) provided a fixed-based driving simulator for the investigation. Studies on
DA using a simulator have the big advantage of replicating behavior in a secure
environment with complete experimental control over driving variables, such as all kinds
of weather, terrain, and traffic (Elamrani Abou Elassad & Mousannif, 2019). Conducting
tests in a real-world driving scenario would undoubtedly be extremely risky, as we
conducted the driving simulation using the Project Cars 2 simulator by Slightly Mad
Studios, a Logitech� G27 Racing Wheel set (steering wheel, accelerator pedal, and brake
pedal), and a movable Logitech Evolution� Playseat. We did not need a gear shifter
because the simulations used automatic gear selection.

We conducted the driving scenario in daylight under five sequential weather conditions
(clear, overcast, fog, rain, and snow) to explore the effects of the factors on driving action
and to gather enough raw data before the crash. We intended it to simulate various
complexities and aspects of real-world driving, where each participant completed five
driving sessions in the simulator, the first of which was a practice run. Following that,
drivers experienced the simulation once in the five weather conditions (clear, overcast,
foggy, rainy, and snowy). Every participant began the simulation at the same starting place
and drove the car to the destination. The driving environment encompasses representative
buildings, landmarks, traffic lights, and stop signs, with all subjects instructed to adhere to
traffic laws. The traffic conflict created in each of the trial scenarios when ambient road

Table 1 Demographic characteristics of study participant.

Description Median (M) Standard deviation (SD) Additional information

Age 1,440.25 142.20 Ages range from 20 to 51

Years of driving experience 1,410.45 146.78 Range: 1 to 17 years

Daily driving hours 143.20 142.39 Range: 1 to 6 h
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users obstruct the driver’s path and cause a conflict that could result in a collision was an
observable situation in which two or more road users approached one another in space and
time to the point where there was a risk of collision. This adopted road test style comprises
the aspects normally utilized to study crash events (e.g., the capacity to make right turns,
change lanes, use signals, etc.). It is worth noting that in crash prediction studies, crash
events are generally unexpected and rarely occur. The terrain’s features and the weather
affect how difficult it is to maneuver a car along a driving path, where, on a fictitious
two-lane urban road measuring 19.25 km in length, each participant conducted
experimental session drives, which took approximately 13 min to complete when
observing the speed limits. We assigned the drivers to a quiet laboratory, where they
virtually operated the vehicle.

Variable description
Data was collected on various aspects of DA and vehicle kinematics. Table 2 defines the
variable description. Driver actions refer primarily to the driver’s behavior and choices.
The dependent variable is the crash event, coded as binary variable with a value of 1 if a
crash was identified and 0 if not. Apart from the categorical features like weather
conditions, all variables are with continuous variables. The “Driver Inputs” area contains
variables like throttle, brake, steering, and RPM. ere the inputs directly represent the
driver’s decisions and actions while operating the car. The movements and actions of a
vehicle result from the vehicle kinematics, which are a combination of factors such as
driving action, vehicle design, and environmental conditions. The driver influences the
variables Speed, Lateral_g, Longitudinal_g, and the physical motion and dynamics of the

Table 2 Variable description of road crash.

Category Variable Description

Vehicle kinematics Speed The magnitude of the vehicle’s velocity.

Lateral_g Lateral (sideways) acceleration of the vehicle.

Longitudinal_g Acceleration of the vehicle along the direction of travel.

Vertical_g Vertical acceleration of the vehicle (upward or downward).

Yaw_angle Angle between the vehicle’s longitudinal axis and its line of travel.

Drift_angle Angle during a turn between the car’s orientation and its velocity direction.

Spin_angle Angle between the direction in which a wheel is pointing and the direction it is actually traveling.

Driver inputs Throttle Accelerator pedal position.

Brake Brake pedal position.

Steering Steering wheel angle.

RPM Revolutions per minute; number of rotations of the vehicle’s engine crankshaft.

Tire conditions Tyre_temp_FL Temperature of the front left tire.

Tyre_temp_FR Temperature of the front right tire.

Tyre_temp_RL Temperature of the rear left tire.

Tyre_temp_RR Temperature of the rear right tire.

Weather conditions Weather General weather conditions affecting driving (e.g., clear, fog, rain, snow).

Crash state State Crash or no crash
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vehicle, but not exclusively. Tire temperatures and weather conditions influence the
driver’s inputs, but the driver does not directly control them.

The other variables are either the consequences of driving behavior or external factors
that have an influence. The major goal of this study is to design a hybrid machine learning
model that can predict crash occurrences by taking into account the most important
features of driving action and applying the designed hybrid machine learning methods. A
binary classification model called “crash prediction” attempts to predict whether or not a
driving behavior will be involved in an accident and compare it with non-ML techniques.

The main objective of this study is to develop a hybrid machine learning model that
incorporates several facets of driving action. By evaluating these behaviors, the model seeks
to identify specific activities or patterns that have a significant impact on car crashes.
Figure 1 describes the proposed work’s overall process. It depicts a thorough machine
learning workflow for accident prediction, commencing with data collection and
concluding with model quality evaluation. At first, data is gathered, and then the data is
splitted, then apply a balancing approach which helps to balance the data, where the
number of ‘crash’ cases is considerably lower than that of ‘non-crash’ examples.
Resampling techniques are employed to equalize the representation of crash and
non-crash samples in the dataset, hence achieving balance in the classes. The balance data
is subsequently employed to train a hybrid machine learning model, which exploits the
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Figure 1 Overview of the proposed model. Full-size DOI: 10.7717/peerj-cs.3131/fig-1
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collective advantages of many techniques to forecast collisions. The evaluation of the
proposed system is conducted with a comprehensive set of measures such as precision,
recall, accuracy, MCC, G-mean, and F1-scores. This procedure describes a methodical
strategy that can be used for improving road safety. This approach emphasizes the
significance of well-rounded datasets and thorough review in creating successful
prediction models.

Data pre-processing
The study dataset contains weather season categorization. Most machine learning
algorithms perform better with numerical features rather than categorical ones. Thus,
categorical features should be quantified. The data gets encoded using one-hot encoding
for categorical variables. The one-hot encoding process creates new binary features for
each member of category variables. The weather categorical feature gets split into four new
features through this process, which include weather_clear, weather_fog, weather_rain,
and weather_snow.

The essential process of dataset pre-processing requires imputation of missing values.
This study uses hot-deck imputation. The most basic yet commonly applied research
imputation techniques include mean and hot-deck methods, according to Jerez et al.
(2010). The methods replace missing data with plausible estimates before performing
complete-data analysis on the filled dataset. The simplest imputation approach, known as
mean imputation, replaces missing values with mean values of the variables (Allison, 2003).
Mean imputation remains widely used in social sciences because of its straightforward
nature. Hot-deck imputation has successfully replaced missing values in various datasets,
according to Jerez et al. (2010). Hot-deck imputation replaces missing receptor instance
values with data from comparable observation cases that have complete data, but other
alternatives exist. This research adopts hot-deck imputation because it makes unbiased
predictions for missing values.

Data resampling with balancing approach
For experiments, the generally accepted 80:20 ratio is that the training dataset receives
about 80% of the dataset (Ahmed et al., 2023) and the other 20% is used for testing. Within
the context, approximately 75,900 samples were recorded during simulations where the
ratio of crash observations is about 3%, indicating that the data are extremely imbalanced,
which has been found in similar studies related to crash prediction (Rocha et al., 2023; Jerez
et al., 2010) through the adoption of the endorsed data balancing strategies. A novel
balancing approach is designed in this work to resolve this issue by balancing class
distribution in the data set. In this work, the DBSCAN technique along with
SMOTE-Tomek Link, named DBSTLink, is proposed. Figure 2 depicts the DBSTLink
algorithm’s flowchart. The two steps of the DBSTlink process are undersampling and
oversampling. We used DBSCAN to extract clusters from the entire training set,
successfully completing the undersampling portion. Then, each cluster had 50% of its
negative instances removed. The undersampling technique reduces the number of negative
examples by removing some of them from the dataset. SMOTE TL was used to add
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artificial instances of the positive class to the training set for the oversampling component.
SMOTE-TL integrates the SMOTE capability to produce synthetic data for the minority
class and the Tomek algorithm. Linking (two modifications of CNN 1976) enables the
removal of data that are accurately classified as Tomek linkages from the dominant class.
The Tomek linkages constitute data samples from the majority class that exhibit the closest
proximity to the data from the minority class.

The algorithm employs a combination of of DBSCAN and SMOTE Tomek Links to
successfully balance a dataset called D, which includes features X and labels y. Initially,
DBSCAN operates by determining core points within D based on a specified radius e and a
minimum required number of neighbors. Min_samples points that meet these criteria are
accumulated into Dclean, a subset of D containing only core points, thereby reducing noise
and outliers. Following noise reduction, the algorithm applies the SMOTE to address class
imbalance. For each important point Xi in Dclean, SMOTE creates new samples by
blending Xi with its K-nearest neighbors that belong to the same class. The number of
synthetic samples to generate for each Xi is determined by a predefined sampling strategy.
We implement Tomek Links to further refine the class boundaries. This step entails
identifying pairs of nearest neighbors (Xi, Xj) who are from opposite classes, one of which
is synthetic. Once we identify these pairs, also known as Tomek Pairs, we remove the

DBSCAN

SMOTE Tomek
Link

Sample
Elimination Under Samples

Training set from DBMS

DBSTLink

Splitting Data

Raw Data

Testing Data

Training Data

Undersampling

Oversampling

Figure 2 Balancing training data using DBSTLink. Full-size DOI: 10.7717/peerj-cs.3131/fig-2
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synthetic sample Xj from Dclean. This process enhances the separation between classes,
leading to a more defined decision boundary in the resulting balancing dataset D′. By using
DBSCAN to get rid of initial noise, SMOTE to fix class imbalance, and Tomek Links to
fine-tune class boundaries, the algorithm makes sure that the data is well-prepared for
future predictive modeling tasks. This could make the models trained on this balancing
dataset more accurate and useful.

Model development
The proposed FusionNet GA-ANN approach has three steps:

. The balancing dataset was incorporated into the genetic algorithm (GA) as the initial
population. The process of evolution was repeated until a predetermined termination
condition was met. The main goal of this research was to determine the key
characteristics that have the greatest impact on the probability of crash incidents in
driving action.

. After selecting features from GA need to use ANN, where dropout will be used to
prevent over-fitting.

. The effectiveness of the GA-ANN hybrid classifier will be performed using metrics like
accuracy, precision, recall, g-mean, and F1-score compared to other classification
models.

The GA-ANN hybrid classifier combines the adaptive learning skills of GA with the
computing capacity of ANNs to form a strong classification tool. The GA adjusts the
feature selection and network parameters, which then serve as inputs for the ANN.

The training procedure starts by utilizing a deep ANN structure on selected features of
GA-ANN. In order to mitigate overfitting, dropout layers are selectively incorporated into
the ANN to improve its capacity during the training session. A notable procedural
transformation takes place once the ANN becomes proficient in identifying fundamental
patterns and subtle intricacies in the data. The GA refines and optimizes the extracted
characteristics, which are subsequently processed through the ANN for the final
classification.

This intentional integration not only avoids the typical problem of early convergence in
ANNs but also takes advantage of the global search power of GAs, thereby improving the
overall accuracy and efficiency of the model. Algorithm 1 shows the pseudo code of the
proposed DBSTlink approach with the hybrid GA-ANN classifier. It guarantees that the
proposed model enhances the accuracy of the classification task and, in diverse datasets,
may result in optimal categorization.

Figure 3 illustrates the systematic procedure for analyzing crash data using a hybrid
machine learning model that integrates the capabilities of ANN and GA.

Genetic algorithm
Goldberg & Holland (1988) introduces the GA, a well-knownmeta-heuristic technique that
mimics biological evolution to explore global optimum solutions in complex optimization
challenges. GA evaluates a population of solutions, referred to as chromosomes, through a
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Algorithm 1: Data processing with DBSCAN, SMOTE, Tomek Links, GA, and
ANN.

Input:
• D: Dataset with features X and labels y
• e: DBSCAN radius
• min_samples: DBSCAN minimum samples
• sampling_strategy: SMOTE sampling strategy
• K: Number of neighbors for SMOTE
• Parameters for GA, ANN architecture

Output:
• Trained ANN model
Step 1: Balanced Dataset Preparation
1.1 Initialize: D_clean ← ∅, D′ ← ∅
1.2 Apply DBSCAN for noise reduction
1.3 For each point X_i in D do

1. 1.3.1 Neighbors ← DBSCAN_NearestNeighbors(X_i, D, e, min_samples)
2. 1.3.2 If X_i is a core point then
• Add X_i to D_clean

End if
End for
Step 2: Apply SMOTE for Oversampling
2.1 For i = 1 to len(D_clean) do

3. 2.1.1 n ← KNearestNeighbors(X_i, D_clean, K)
4. 2.1.2 p ← sampling_strategy ÷ 100
5. 2.1.3 While p ≠ 0 do
• a. Neighbor ← randomly select from n
• b. X_smote ← X_i + rand(0, 1) × (Neighbor − X_i)
• c. Add X_smote to D_clean
• d. p ← p − 1

End while
End for
Step 3: Remove Tomek Links for Class Boundary Refinement
3.1 D′ ← D_clean\TomekLinks(D_clean)
Step 4: Feature Selection using Genetic Algorithm
4.1 F_selected ← ApplyGA(D′, GA parameters)
Step 5: Train Artificial Neural Network
5.1 ANN ← InitializeANN(ANN architecture)
5.2 Train ANN on D′ using F_selected
Return: Trained ANN model
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fitness function. There must be a solution that can fulfill the specified purpose; if not, it
produces a new population by genetic processes such as mutation, crossover, and selection.
The process continues until it reaches the optimal solution, after which it implements it
across diverse machine learning methodologies. Table 3 shows the best GA parameters.

Artificial neural network
Artificial neural networks, or ANNs (Amiri et al., 2020), are efficient and useful for
predicting the relationship between dependent and independent parameters. The neurons
in each layer are connected to neurons in the layers above and below them, and these
connections act like a gap that sends information from one neuron to the next, multiplying
it by a specific “weight” that shows how strong that information is for deciding the output.
During training, a neural network routinely calibrates all of its network weights using
forward and backward propagation. The forward propagation method initially computes
the output using a set of randomly chosen weights. The backward propagation then
modifies the weights in accordance with the error between the model’s output and the
intended output to reduce the error. It ends when it reaches a predetermined maximum
iteration number or meets other ending requirements. An ANN model’s underlying
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Genetic Algorithm
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Hybrid
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Tune

Model Performance?

Hybrid Model Formation Framework

END
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MutationSelection
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Data
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Figure 3 The systematic procedure for analyzing crash data using a hybrid machine learning model
that integrates the capabilities of artificial neural networks (ANN) and genetic algorithms (GA).

Full-size DOI: 10.7717/peerj-cs.3131/fig-3
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structure, connection weights, activation function, and bias value determine its outputs,
which are as follows:

y ¼ f
X
j

ðwijxjÞ þ b

 !
(1)

where x is the input vector, b is the bias value, w is the weight value, and f is the activation
function. Table 4 shows the best ANN parameters.

Hybrid GA-ANN classifier
The proposed methodology uses a GA to determine the most important features for crash
investigation. The GA represents each feature set as a chromosome and evaluates its
usefulness through a fitness function that specifically measures its prediction ability in
crash scenarios.

The genetic algorithm selects the features which are displayed in Fig. 4. The most
effective traits that the GA identifies are used as input for an ANN to perform additional
assessment. The method leverages the benefits of each algorithm to produce more accurate
and reliable analysis results.

Table 3 Parameters adopted in genetic algorithm.

Genetic algorithm parameter Value

Selection Roulette wheel

Crossover Uniform

Number of generations 500

Population size 50

Crossover rate 0.8

Mutation rate 0.01

Elite count 2

Table 4 Parameters adopted in artificial neural network.

Parameter Values

Number of layers 3 (1 input, 1 hidden, 1 output)

Neurons per layer Input: 64, Hidden: 32, Output: 1

Activation functions ReLU (for hidden), Sigmoid (output)

Input dimension X_train_scaled.shape (WHO, 2023)

Output activation Sigmoid (binary classification)

ptimizer Adam

Loss function Binary Crossentropy

Batch size 10

Number of epochs 50
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Model quality assessment
The balance of the data is assessed using a metric called the imbalance ratio (IR), which is
calculated by dividing the number of instances in the majority class (no-crash instances) by
the number of instances in the minority class (crash instances). A dataset is generally
considered balanced if the imbalance ratio is less than 1.5, researched by Elamrani Abou
Elassad & Mousannif (2019), Kia, Haratizadeh & Shouraki (2020) and Kitali et al. (2019),
Xu et al. (2012).

The obtained IR for the adopted dataset is about 11.75; that is, the choice behind the
selection of the model evaluation metrics needs to consider the imbalance issue. In this
context, we evaluate the quality of the classification models using various frequently used
performance measures. The evaluation of model performance in machine learning
classification tasks is mostly based on parameters obtained from the confusion matrix,
which is presented in Table 5. Whereas the true positive (TP) represents the number of
crash samples correctly classified, the false positive (FP) represents the number of no-crash
samples incorrectly classified as crash instances. False negative (FN) indicates the number
of crash samples incorrectly classified as no-crash instances, and true negative (TN)
indicates the number of no-crash samples correctly classified. According to Powers (2010),
these factors are essential for calculating other important performance measures such as
precision, recall, and the F1-score. Precision measures how many of the predicted positive
cases were actually correct, while recall checks how well the model finds all the true positive
cases. The F1-score, which is calculated as the harmonic mean of precision and recall, is
very valuable when dealing with imbalanced class distributions.

Figure 4 Selected features after GA implementation. Full-size DOI: 10.7717/peerj-cs.3131/fig-4
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Recall measures the proportion of correctly classified positives. It is a particularly
important parameter for classifier performance in this case because the main objective is to
correctly forecast the infrequent events of machine learning. The primary goal is to
accurately predict the driving action. Precision is a measure of accuracy, representing the
ratio of correctly predicted elements to all predicted events.

Recall ¼ True Positives
True positives þ False Negatives

(2)

Precision ¼ True Positive
True Positivesþ False Positives

: (3)

Accuracy describes the proportion of accurate predictions provided by the model
overall. The percentage of successfully categorized positives, or correctly classified crash
events, is known as recall.

Accuracy ¼ True Positives þ True Negatives
True Positives þ False Positives þ True Negatives þ False Negatives

: (4)

The F1-score is a highly informative measure as it considers both precision and recall
measures, thus taking the class-balance issue into account. The geometric mean (GM)
score, described by Helal, Haydar & Mostafa (2016), is an important metric for imbalance
classifications. The balancing assessment of a model’s ability to accurately recognize both
classes is based on multiplying sensitivity (the true positive rate) and specificity (the true
negative rate). The authors ofWang et al. (2021) stress the usefulness of the G-Mean score
in assessing a model’s ability to handle both minor and major classes. The Matthews
correlation coefficient (MCC) is an effective statistic for assessing the concordance between
observed and predicted binary classifications. It is extensively utilize it for imbalance
scenarios, where a value range of −1 to 1 indicates an outcome of flawless forecasting.

F1-score ¼ 2 � Precision � Recall
Precision þ Recall

(5)

GM ¼ True Positive
True Positives þ False Negatives

� True Negative
True Negative þ False positives

(6)

MCC ¼ TP � TNð Þ � FP � FNð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþ FNð Þ TPþ FNð Þ TNþ FPð Þ TNþ FPð Þp : (7)

The research includes the 95% confidence interval (CI) (Elvik, 2013) as a vital statistical
measure to assess model reliability and consistency in addition to conventional accuracy
metrics. Confidence intervals help determine the possible range of model performance
estimates because they are crucial for predictive modeling applications that need to

Table 5 Comparison matrix for performance evaluation.

Actual Predicted

Crash No-crash

Crash True Positive (TP) False Positive (FP)

No-crash False Negative (FN) True Negative (TN)
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generalize results. The data were split into training and validation sets for model
development and assessment. The research applied 10-fold cross-validation to determine
the classification efficiency of each classifier and to get a better approximation of crash
prediction. It is noted for having a low tendency to be biased and having varying results
compared to the other 16 validation methods studied, including the leave-one-out method
(Kohavi, 1995). Furthermore, k-fold cross-validation is credited with reducing the
overfitting issue in performance estimation (Nafiah et al., 2019; Theofilatos, Chen &
Antoniou, 2019). The data was divided into nine subsets of the input space, and one subset
was used to test the effectiveness of the predictive models. The training was carried out 10
times, not using one subset that was used in the training data set in an earlier session. The
mean performance measurements are computed from the metrics collected during the
10-fold cross-validation. This minimizes the effects of data dependence and increases the
reliability of the resulting evaluation.

In addition to the statistical significance test, we use binary logistic regression models
(Elamrani Abou Elassad et al., 2024; Yang et al., 2022) to pinpoint the key factors that
influence crash frequencies. But they have a flaw: they assume all observations are the same
and ignore unobserved factors that may affect the responses. We employ stochastic
regression models with random parameters to accomplish this.

This study evaluates five existing machine learning techniques against a proposed
hybrid ML approach to improve the accuracy of predicting accidents that could result in
fatalities. Here is a list of the techniques used in this study:

“Random Forest” (RF) is an ensemble learning algorithm that uses many decision trees
to make its predictions. It uses bagging and random feature selection to improve the
model’s accuracy and avoid overfitting (Mafi, Abdelrazig & Doczy, 2018; Ragab et al., 2014;
Yan & Shen, 2022). After the RF model’s training is complete, each decision tree casts a
vote for a class based on the new observation. The final prediction is based on the class that
received the most votes (Rahman et al., 2022). XGBoost is a version of gradient boosting
that builds many weak learners one after the other, and each new learner corrects the
mistakes of its predecessor. It uses a more regularized model to avoid overfitting, and it has
become popular for its higher accuracy in prediction and faster computation time (Parsa
et al., 2020; Ke et al., 2019). Logistic regression (LR) (Kitali et al., 2019) is a linear classifier
that is used for binary classification problems. It defines the relationship between the
independent variables and the probability of the dependent variables. It can predict the
presence or absence of an event using specific criteria or thresholds. This study categorizes
severity as a binary variable (severe and non-severe). In the logistic model, the log-odds of
the probability that an event occurs (i.e., ‘true’) is modeled as a linear combination of the
features, allowing the classifier to estimate probabilities for input data. The SVM is a robust
supervised machine learning algorithm designed for classification and regression
problems. It works by finding an optimal hyperplane that can separate the data into
different classes and, at the same time, maximize the margin between them to increase
generalization to new data. Kernel functions can also extend SVM to non-linear data
(Osman et al., 2019).
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RESULTS
Dealing with an imbalanced dataset, accuracy may suffer from the bias of the majority
class. To address the imbalanced dataset, G-mean, MCC, and F1-score metrics are used.
Table 6 presents the performance metrics of classifiers without any resampling techniques,
highlighting the impact of class imbalance on model performance and the results of the
proposed DBSTLink. Table 7 compares balancing approaches with other models. A
comparison of the results depicted in Tables 6 and 7 demonstrates the major contribution
of adopting DBSTLink as a resampling strategy to performance improvements in crash
prediction.

DBSTLink emerges as the superior balancing technique across the four models—
XGBoost, RF, SVM, and GA-ANN—when considering key performance metrics like
F1-score, MCC, and G-mean. Starting with XGBoost, DBSTLink performs almost on par

Table 6 Comparison table of without resampling approach for different machine learning classifier.

Model Precision (%) Recall (%) F1-score (%)

XGBoost 84.36 56.55 67.71

RF 71.12 61.09 65.72

SVM 91.00 61.96 67.35

LR 69.43 50.27 48.54

BL 58.70 57.35 57.93

GA-ANN 86.47 64.55 69.98

Table 7 Performance of each balanced approach compared with proposed DBSTLink balanced
approach.

Model Balanced approach F1-score MCC GM

XGBoost SMOTE 0.93 0.86 0.97

SMOTE TL 0.93 0.88 0.97

DBSM 0.80 0.62 0.72

DBSTLink 0.79 0.61 0.72

RF SMOTE 0.93 0.94 0.93

SMOTE TL 0.91 0.90 0.91

DBSM 0.76 0.59 0.63

DBSTLink 0.94 0.94 0.94

SVM SMOTE 0.69 0.47 0.85

SMOTE TL 0.69 0.47 0.85

DBSM 0.64 0.31 0.69

DBSTLink 0.87 0.60 0.86

GA-ANN SMOTE 0.96 0.92 0.96

SMOTE TL 0.90 0.80 0.90

DBSM 0.96 0.92 0.96

DBSTLink 0.98 0.96 0.98

Note:
The bold values represent the performance of the proposed DPST-Links algorithm. These results demonstrate that
DPST-Links consistently outperforms the baseline algorithms across the evaluated metrics.
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with SMOTE and SMOTE TL in terms of F1-score, achieving 0.79 compared to 0.93 for
both SMOTE and SMOTE TL. However, the marginal drop in F1-score is compensated by
the technique’s stability across the other metrics. Its G-mean of 0.72 is comparable to
DBSM’s, which also scored 0.72, demonstrating that DBSTLink handles class imbalances
in a way that preserves the harmonic balance between precision and recall, which is vital in
imbalancing datasets.

For the RF model, DBSTLink provides excellent scores across all metrics. The F1-score
and G-mean for DBSTLink are both 0.94, which is higher than SMOTE (0.93) and SMOTE
TL (0.91). MCC, which measures the correlation between the true and predicted
classifications, also shows 0.94, tying with SMOTE and surpassing SMOTE TL (0.90) and
DBSM (0.59). The result indicates that DBSTLink gives an optimal balance solution
between over- and under-sampling. It provides a consistent and reliable model
performance. For the SVM model, DBSTLink dramatically improves over the other
techniques, achieving a significantly higher F1-score of 0.87, compared to 0.69 for SMOTE
and SMOTE TL, and 0.64 for DBSM. Similarly, the MCC result is 0.60, which is
considerably better than SMOTE and SMOTE TL (both at 0.47) and DBSM (0.31).
G-mean is also higher at 0.86 compared to 0.85 for SMOTE and SMOTE TL. This
performance indicates that DBSTLink handles imbalanced classes far more effectively in
SVM compared to other balancing methods.

Finally, for the GA-ANNmodel, DBSTLink dominates with the highest scores across all
metrics: F1-score (0.99), MCC (0.96), and G-mean (0.98). These values surpass those of
SMOTE, SMOTE TL, and DBSM, which further cements DBSTLink’s position as the best
technique. Its ability to provide consistently high values for precision, recall, and class
balance, as reflected by G-mean, shows that DBSTLink not only mitigates class imbalance
but also enhances the model’s generalization capabilities. Overall, DBSTLink proves to be
the most robust balancing technique across models, delivering superior or comparable
results in terms of F1-score, MCC, and G-mean. Its balancing handling of precision and
recall, coupled with its ability to maintain high class-separation performance (G-mean),
makes it a better choice than SMOTE, SMOTE TL, or DBSM in most scenarios. Results are
illustrated for each balancing approach given in Fig. 5.

In Table 8, a performance evaluation of the FusionNet GA-ANN classifier was
conducted using several balancing approaches, resulting in diverse results where random
undersampling (RUS) achieved an accuracy of 0.84, a G-mean of 0.836, and a mean
squared curve (MCC) of 0.67, which suggests a reasonable level of efficacy in addressing
class imbalance. The implementation of random over sampling (ROS) significantly
enhanced the accuracy to 0.98. However, the G-mean and MCC metrics demonstrated no
changes, indicating that, although the accuracy is high, the model’s capacity to maintain a
balanced class performance stays constant.t. The SMOTE showed notable enhancement to
its performance, achieving an accuracy of 0.96, a G-mean of 0.96, and an MCC of 0.921,
which define the efficacy of SMOTE in effectively managing imbalance of crash data.
Furthermore, DBSM, which is a combination of DBSCAN and SMOTE, shows robust
performance with similar metrics. The SMOTE with Tomek Links (SMOTE-TL) model
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shows a satisfactory performance with an accuracy of 0.95, a G-mean of 0.95, and an MCC
of 0.90. But the proposed DBSTLink resampling procedure, which achieved an accuracy of
0.99, a G-mean of 0.98, and an MCC of 0.96, surpassed existing approaches.

Table 9 presents the parameter estimates of the logit regression model for crash events
and the goodness-of-fit statistics. The statistical analysis demonstrates that Throttle (β =
0.0096, p < 0.001), Brake (β = 0.0048, p < 0.001), and Steering (β = 0.0045, p < 0.001) all
contribute significantly to the predicted outcome, while Longitudinal_g (β = 0.4875, p <
0.001) and Vertical_g (β = 0.6827, p < 0.001) exhibit strong positive effects. Speed (β =
-0.0164, p < 0.001), Tyre_temp_FL (β = −0.0299, p < 0.001), and Yaw_angle (β = −0.0006,
p = 0.023) present significant negative effects. The results show that RPM (β = 2.306e−05,
p = 0.140) and Lateral_g (β = −0.0066, p = 0.704) have no significant impact on the
predicted outcome. The results demonstrate that essential driving actions together
with environmental conditions have a major impact on the outcome. The 10-fold
cross-validation produced an average accuracy rate of 98.79%. A 95% confidence interval
calculation provided a statistical assessment of accuracy measurement reliability through a
range from 98.24% to 99.33%, which is also presented in Table 9.

Figure 5 Modeling performance of each balanced approach compared with proposed DBSLink balanced approach.
Full-size DOI: 10.7717/peerj-cs.3131/fig-5

Table 8 Performance of each balanced approach compared with the proposed DBSTLink balanced
approach.

Fusion net GAANN Balanced technique Accuracy GM MCC

RUS 0.84 0.836 0.67

ROS 0.98 0.836 0.672

Smote 0.96 0.96 0.921

DBSM 0.96 0.95 0.93

SMOTE TL 0.95 0.95 0.90

Proposed DBSTLink 0.99 0.98 0.96

Note:
The bold entries represent the performance of the proposed algorithm.
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Table 9 Crash occurrence model statistical significance and confidence interval results (logistic
regression).

Feature Coefficient (β) Std. Error (SD) z-value p-value 95% confidence interval

Throttle 0.0096 0.001 14.627 0.000 [0.0076–0.0116]

Brake 0.0048 0.001 3.702 0.000 [0.0028–0.0068]

Steering 0.0045 0.001 8.724 0.000 [0.0025–0.0065]

RPM 2.306e−05 1.56e−05 1.475 0.140 [−0.0 to 0.0001]

Speed −0.0164 0.001 −27.001 0.000 [−0.0184 to −0.0144]

Lateral_g −0.0066 0.017 −0.380 0.704 [−0.0399 to 0.0267]

Longitudinal_g 0.4875 0.036 13.660 0.000 [0.4169–0.5581]

Vertical_g 0.6827 0.047 14.404 0.000 [0.5906–0.7748]

Yaw_angle −0.0006 0.000 −2.269 0.023 [−0.0012 to −0.0]

Tyre_temp_FL −0.0299 0.003 −9.927 0.000 [−0.0358 to −0.024]

Weather 0.1406 0.016 8.854 0.000 [0.1092–0.172]

Figure 6 Comparison of different sampling techniques with proposed GA-ANN approach.
Full-size DOI: 10.7717/peerj-cs.3131/fig-6
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The findings emphasize the need to select resampling techniques for any model learning
and guarantee equitable and efficient categorization across different class distributions.
Figure 6 illustrates the results for each category of combined features. To further explore
the findings visually, the results are presented in Fig. 7.

Comparison with public dataset
The proposed method required further evaluation through the use of Traffic Accident
Dataset data available from Kaggle to ensure its generalizability and robustness. This
dataset accessed from TamSquare (2023) which contains real traffic accident records from
2015 which have the following key features:

The dataset contains various types of features: temporal features such as Year, Month,
Day, and Hour; categorical features including Weekend?, Collision Type, Injury Type, and
Primary Factor; and geospatial features like Reported_Location, Latitude, and Longitude.
The Injury Type attribute was transformed into a binary target variable to distinguish
between crash and non-crash incidents. Specifically, entries labeled as Fatal, Incapacitating,

Figure 7 Comparitive performance overview for classification models compared to GA-ANN
classifier. Full-size DOI: 10.7717/peerj-cs.3131/fig-7

Table 10 Comparison of crash prediction performance for different single ML techniques.

Dataset F1-score MCC GM

Real life data 0.88 0.76 0.88

Simulated data 0.98 0.96 0.98

Note:
The bold entries highlight the superior performance of the proposed algorithm compared to the other algorithms.
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and Non-incapacitating were grouped under the class Crash, while No injury/unknown
was labeled as Non-crash. During preprocessing, binary categorical variables such as
Weekend? were label encoded, while nominal features like Collision Type and Primary
Factor underwent one-hot encoding. Continuous variables including Hour, Latitude, and
Longitude were normalized using the MinMaxScaler to ensure consistent scaling. We then
applied our proposed DBSTLink approach to balance the data. This technique captures
nuanced interactions between time, location, and contributing factors by linking similar
event profiles using adaptive density thresholds. For classification and validation, we
employed a GA-ANN. The genetic algorithm was used to select the most relevant features
from the preprocessed data, and the optimized subset was then used by an artificial neural
network to classify crash vs. non-crash events. Model training and testing were performed
using five-fold cross-validation to ensure robustness. Table 10 demonstrates the
comparison table of performance evaluation of the proposed method on simulated and
public (kaggle) datasets.

DISCUSSION
The goal of this work is to solve the balancing problem by introducing a newmethod called
DBSTLink, which uses a combination of genetic algorithms and artificial neural networks
for crash prediction based on various machine learning techniques. To tackle the problem
of imbalanced data, which is typical for crash-related observations where target classes are
not equally represented, a new balancing strategy, DBSTLink, has been proposed. This
approach is designed to equate the number of examples in each class to enhance the
accuracy of the subsequent analyses. Furthermore, a comprehensive analysis has been
carried out to determine the most significant predictors of crash events. Knowing these key
predictors is important in the design of control measures. Lastly, a number of prediction
methods have been explored and compared with the developed GA-ANN model. This
comparison shows that driving action is a major cause of road accidents and that these
behavioral attributes should be incorporated into active traffic safety systems to improve
their efficiency. Table 11 presents a comparison between our system and other crash
assessment studies. Based on modeling metrics, we compared several fusion models used
in crash investigations. The performance of the proposed DBSTLink balancing approach is
compared with various sets of other balancing approaches like SMOTE, SMOTE TL, and
DBSM in reference to the values of F1-score, G-mean, and MCC, as these metrics are
deemed to be highly acceptable for tackling the class imbalance issues. The combination of
the proposed balancing approach with SVM, LR, XGBoost, and GA-ANN compares
favorably with other balancing approaches. We obtained the highest scores for all
prediction models using DBSTLink approaches, which consistently outperformed other
models in most established combinations based on the individual learners applied. The
proposed hybrid GA-ANN performed with the highest accuracy among other single
machine learning models. Our model reached a predictive accuracy of 98.79%, which
became more reliable because the 95% confidence interval was narrow, between 98.24%
and 99.33%. The small range indicates that the model performs consistently when working
with different data subsets. The model’s stability proves that the chosen predictors work
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well together with our modeling approach. Using 10-fold cross-validation makes our
performance estimates trustworthy and realistic because it is a strong statistical method
that reduces errors compared to other validation methods. The research results showcase
the effectiveness of the proposed model in real-world predictive scenarios, especially in
predicting crashes.

This research finds new ways to classify crash occurrences as a function of driving action
so as to help in designing effective crash prevention strategies that entail issuing warning
signals to drivers and encouraging safe behavior. The study establishes statistical
relationships through validation and predictive modeling, but it does not establish cause-
and-effect relationships. The methods we employed, such as the DBSTLink balanced
approach with GA-ANN, prevent us from establishing cause-effect relationships.
Nevertheless, in order to gain admission, there are certain restrictions that require
attention. Simulator studies are applied to a controlled and modifiable environment to
look at road crash incidents, while real trials are conducted in real road conditions and are
risky; however, the driving simulator is unable to replicate the actual driving experience.
The validity of the findings from a driving simulator depends on the specific tasks
simulated in the environment. The proposed DBSTLink + GAANN method required
evaluation through performance testing on simulated data and real-world data sets. The

Table 11 Comparison of the suggested crash prediction fusion framework vs. other studies.

Modeling features

Article Vehicle
telemetry

Driver
input

Weather
conditions

Tire
conditions

Demographic
information

Class
imbalance

Feature
reduction

Base learners Performance
(%)

Xu & Prozzi (2023) √ √ – 94.00 (F1-score)

Yusoff et al. (2024) √ √ – Multiple
factor
analysis

CART, ANN,
SVM

72.00 (F1-score)

Kia, Haratizadeh &
Shouraki (2020)

√ √ SMOTE Bayesian
networks

Logistic
regression

87.6 (F1-score)

Osman et al. (2019) √ – 99.00 (F1-score)

Elamrani Abou Elassad,
Mousannif & Al
Moatassime (2020b)

√ √ √ √ SMOTE RF SVM, MLP 92.3 (Precision)

89.30 (Recall)

90.00 (F1-score)

Goldberg & Holland
(1988)

√ √ – RF Bayesian
optimization,
RF

66.00 (Precision)

53.00 (Recall)

57.00 (F1-score)

Helal, Haydar &
Mostafa (2016)

√ √ √ √ SMOTE-
TL,
SMOTE
ENN,
ADASYN

RF GBM,
XGBoost,
AdaBoost and
CatBoost

89.78 (Precision)

95.69 (Recall)

92.64 (F1-score)

Current study √ √ √ √ DBSTLink GA GAANN
hybrid
classifier

98.8 (Precision)

97.6 (G Mean)

98.0 (F1-score)
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model demonstrated strong generalizability through its consistent results across different
datasets which showed its ability to adapt to various data distributions. The method
successfully detected meaningful spatio-temporal patterns together with contributing
factors in real-world scenarios which supports its practical use for traffic incident analysis.

CONCLUSIONS
Global road safety is a critical issue. To mitigate accidents and enhance road safety, it is
necessary to develop extremely proficient real-time crash prediction models that can
identify the most significant antecedents contributing to collision incidents. A thorough
examination is necessary to decrease road accidents and improve traffic safety for drivers
through effective tactics. Previous studies concentrating on this domain employed
machine learning. Models have demonstrated their effectiveness in enhancing road safety.
The research findings propose innovative approaches to enhance our findings of crash
occurrences by taking into account driver actions (DA). That is a crucial step in developing
effective crash prevention strategies that warn drivers and promote safe driving habits for
both experienced and non-experienced drivers. This research helps to propose a balancing
approach that will tackle imbalance issues in a more efficient way and also propose a
hybrid classifier for merging information and building fusion models. However, it is
important to acknowledge certain limitations. This study is simulator-based, which offers a
controlled environment, particularly in road crash approaches. Simulators do not fully
replicate real driving experiences. The outcome of a simulator can vary, being either
different or controlled based on the tasks executed. In this research, DA is based on driver
input, vehicle kinematics, tire conditions, and weather conditions, which are simulated
environments for the drivers. The simulator cannot replace real-world driving experiences
while predicting crashes.

The proposed DBSTLink + GA-ANN framework received validation through testing
with simulated data and publicly available real-life traffic data. The model demonstrated
reliable performance because it achieved high results in all tested datasets. The research
indicates that this method works effectively for theoretical modeling and real-world
applications in traffic crash prediction and urban safety management. Future research
must also more thoroughly examine potential biases associated with repeated crash
scenarios and driver anticipation effects. Further, the capabilities of the simulator should
be expanded to include advanced behavioral modeling and complex driving tactics to
increase the robustness and practical utility of simulator-based driving research. Future
research should use experimental or longitudinal designs to validate causal relationships.
Besides, future research could expand the predictive models by using different techniques
to address class imbalance and improve crash prediction.
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