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ABSTRACT

Arabic dialect identification (ADI) aims to automatically determine the specific
regional dialect of a given Arabic text. State-of-the-art ADI solutions often rely on
fine-tuning Arabic-specific pre-trained language models (PLMs). Although effective,
these PLMs are predominantly trained on modern standard Arabic (MSA), which
limits their performance on dialectal data. Furthermore, the high degree of similarity
among Arabic dialects makes it difficult to learn accurate dialect-specific
representations without large volumes of labeled data. However, labeling such data is
both costly and labor-intensive, particularly for low-resource languages like Arabic.
To address these challenges, we propose a self-training neural approach that
independently learns Dialectal Indicators. Our method leverages unlabeled data to
construct a matrix that captures dialectal tokens frequently co-occurring in similar
contexts. This matrix provides dialect-specific representations, which are integrated
with PLM outputs to enhance ADI performance. We evaluate our approach on
multiple ADI and related datasets. Results show that our method significantly
improves PLM performance over direct fine-tuning, achieving gains of up to 36.2% in
accuracy and 11.52% in macro-F1-score.

Subjects Artificial Intelligence, Natural Language and Speech
Keywords Arabic dialect identification, Pre-trained language models, Natural language processing,
Bidirectional encoder representations from transformers

INTRODUCTION

Arabic dialect identification (ADI) aims at determining the specific regional dialect of a
given piece of Arabic text. The goal of ADI is to distinguish between the various dialects of
Arabic, which can differ significantly in vocabulary, pronunciation, and grammatical

structures, despite sharing a common base in modern standard Arabic (MSA) (Salameh,
Bouamor & Habash, 2018). Consider, for instance, the running example provided in

Table 1 the sentence “How do you pronounce the name of this place?”, it is represented by
a single form in MSA (S8l 138 ol (3laii oS kyftnTq Asm hoA AlmkAn?), is expressed in
several forms in Rabat, Cairo, Khartoum and Sana’a.

Notably, there is a substantial shared content between the dialects, contributing to an

increased degree of similarity in the contextual embedding space. State-of-the-art solutions
are built upon fine-tuning pre-trained language models (PLMs). Earlier approaches
attempted to utilize multilingual PLMs like multilingual Bidirectional Encoder
Representations from Transformers (mBERT) (Kenton ¢» Toutanova, 2019),
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Table 1 Running example. A running example is presented for the dialects of Rabat, Khartoum, Cairo,
and Sana’a, all corresponding to the English phrase, “How do you pronounce the name of this place?”.

Sentence Transliteration Label
fesda audll ol 3l e kyfA§ tnTq Asm IblAsh hdy? Rabat
53 Jaall sl J 85 Kyf twl Asm AlmkAn dh? Khartoum
$o Sl andl J o35 51 ) AzAy tWwl Asm AlmkAn dh? Cairo
SO 13a il J 585 s Kyf tqwl Asm h3A AlmkAn? Sana’a

XLM-Robustly Optimized BERT Pretraining Approach (RoBERTa) (Conneau et al., 2020),
and Language-Agnostic BERT Sentence Embedding (LaBSE) (Feng et al., 2022) for
representing Arabic dialects. However, despite these efforts, the performance of these
multilingual models typically lags their monolingual counterparts. This discrepancy
primarily stems from smaller, language-specific vocabularies and less comprehensive
language-specific datasets (Antoun, Baly ¢» Hajj, 2020; Dadas, Perelkiewicz & Poswiata,
2020; Malmsten, Borjeson ¢ Haffenden, 2020; Virtanen et al., 2019; de Vries et al., 2019).
While languages with similar structures and vocabularies may benefit from shared
representations (Conneau et al., 2020), this advantage does not extend to languages like
Arabic. Arabic’s unique morphological and syntactic structures have little in common with
the frameworks of more abundantly represented Latin-based languages. To address this,
various approaches employ fine-tuning Arabic-specific PLMs, including Arabic BERT
(AraBERT) (Abdul-Mageed, Elmadany ¢ Nagoudi, 2021), and CAMeL (Inoue et al., 2021).
These models significantly enhance Arabic NLP tasks over multilingual models. However,
they are predominantly trained on MSA datasets, potentially limiting their performance on
dialectal text. Moreover, as mentioned earlier, the similarities between Arabic dialects make
learning accurate dialect-specific representations challenging without a substantial amount
of labeled data, which is costly and labor-intensive. In this article, we propose a novel
approach aimed at leveraging unlabeled data to learn dialect-specific representations, which
we term indicators. Essentially, our approach aims to learn a new matrix where each row
corresponds to a unique dialect. Specifically, we attempt to map tokens that often co-occur
into distinct semantic Dialectal Indicators. The model is trained in an unsupervised manner
to reconstruct weighted sentences through a linear combination of these indicators. These
vector indicators are then combined with the PLM encoding to model dialect
representation during fine-tuning. These indicators serve as semantic cues that facilitate
PLM learning of dialectal representations without requiring extensive labeled data.

The main contributions of this article can be summarized in threefold as follows:

e We introduce a self-training approach that leverages unlabeled data to learn dialect-
specific representations, termed Dialectal Indicators.

e We propose incorporating the learned Dialectal Indicators along with the PLM
representations to accurately model text in response to dialectal variations.

» We conduct an extensive empirical evaluation across multiple benchmark datasets
designed for ADI. Our experimental results consistently demonstrate that our solution
achieves a new state-of-the-art performance.
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The remainder of this article is as follows: ‘Related Work’ provides an in-depth
exploration of related research. In ‘Materials and Methods’, we present our proposed
solution. ‘Experiments Setup’ outlines the experimental setup. ‘Empirical Evaluation’
provides an empirical evaluation of our solution’s effectiveness. Finally, ‘Conclusion’
concludes the article.

RELATED WORK

This section provides a concise overview of PLMs, with a particular focus on those
specifically developed for the Arabic language. We then turn to the primary objective of
our research: Arabic dialect identification.

Pre-trained language models

PLMs such as BERT (Kenton ¢ Toutanova, 2019), and RoBERTa (Liu et al., 2019), trained
through self-supervised masking objectives, have transformed NLP. Multilingual variants
like mBERT (Kenton & Toutanova, 2019), XLM-RoBERTa (Conneau et al., 2020), and
LaBSE (Feng et al., 2022), along with alternative architectures like ALBERT (Lan et al,
2019), T5 (Raffel et al., 2020), its multilingual variant mT5 (Xue et al., 2021), as well as
GPT-3 (Brown et al., 2020), Large Language Model Meta AI (LLaMA) (Touvron et al.,
2023), Pathways Language Model (PaLM) (Chowdhery et al., 2023), GPT-4 (Achiam et al.,
2023), and RoFormer (Su et al., 2024). In addition to English-based PLMs, various models
have been created for non-English languages. For instance, Bertje has been developed for
Dutch (de Vries et al., 2019), while CamemBERT (Martin et al., 2020), and FlauBERT (Le
et al., 2020), serve the French language. Vietnamese is supported by PhoBERT (Nguyen ¢
Tuan Nguyen, 2020), and Finnish models have been created by Virtanen et al. (2019),
Polish by Dadas, Peretkiewicz ¢ Poswiata (2020), and Swedish by Malmsten, Borjeson ¢
Haffenden (2020). Additionally, Pyysalo et al. (2021) have produced monolingual language
models (LMs) trained on Wikipedia data for 42 languages.

Arabic PLMs

Arabic encompasses both MSA and a wide range of regionally diverse dialects (Abdul-
Mageed et al., 2021). Prominent Arabic PLMs like AraBERT (Antoun, Baly ¢ Hajj, 2020)
and ArabicBERT, based on BERT’s architecture, were pre-trained on large MSA corpora,
including Arabic Wikipedia, OSIAN (3.5 million news articles) (Zeroual et al., 2019), and
El-Khair’s 1.5-billion-word corpus (El-Khair, 2016). AraBERT was evaluated on sentiment
analysis (e.g., Heterogeneous Arabic Dialect Dataset (HARD) (Elnagar, Khalifa ¢ Einea,
2018), Arabic Sentiment Twitter Dataset (ASTD) (Nabil, Aly ¢ Atiya, 2015)), named entity
recognition (Arabic Named Entity Recognition Corpus (ANERcorp) (Benajiba ¢ Rosso,
2007)); and question answering (Arabic Stanford Question Answering Dataset (Arabic-
SQuAD), Arabic Reading Comprehension Dataset (ARCD) (Mozannar et al., 2019)).
Additional MSA-based pre-trained models include Arabic Bidirectional Encoder
Representations from Transformers (ArBERT) (Abdul-Mageed, Elmadany ¢ Nagoudi,
2021). A separate line of research focuses on combining MSA and dialectal data

during pre-training, as seen in models such as Multi-Dialect BERT (MDBERT)
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(Abdul-Mageed, Elmadany ¢ Nagoudi, 2021) and CAMeL (Inoue et al., 2021). MARBER
(Abdul-Mageed, Elmadany ¢» Nagoudi, 2021), and more recently Arabic Dialectal
Language Model (AlcLaM) (Ahmed et al., 2024) which introduced a comprehensive Arabic
dialectal corpus. However, training primarily on MSA limits dialectal coverage. Dialectal
corpora remain sparse, fragmented, and inconsistent. Hybrid pre-trained models such as
CAMeL (Inoue et al., 2021) still struggle with inter-dialect similarities and code-switching
due to inadequate pre-training objectives. Moreover, dialect-focused pre-training may
introduce bias toward specific dialects when training data is imbalanced across dialect

regions.

Arabic dialect identification

Early research on ADI focused on distinguishing MSA from regional dialects using
annotated datasets (Habash et al., 2008; Zaidan ¢ Callison-Burch, 2014) and traditional
machine learning approaches like logistic regression (Biadsy, Hirschberg ¢» Habash, 2009),
naive Bayes (Elfardy ¢ Diab, 2013), and support vector machines (SVMs) (Malmasi,
Refaee ¢ Dras, 2016). These methods often relied on surface features, which proved
ineffective in semantically similar contexts. Efforts to handle orthographic variation
(Dasigi ¢ Diab, 2011) and code-switching (Al-Badrashiny ¢» Diab, 2016) helped expand
dialectal coverage but remained limited in generalizability.

Deep learning techniques brought notable improvements. Long short-term memory
(LSTM) and bidirectional recurrent neural network (BiRNN) models demonstrated
superior performance on dialect-rich datasets such as Arabic Online Comments (AOC)
(Sayadi et al., 2018; Tachicart et al., 2018; Elaraby ¢ Abdul-Mageed, 2018). Additionally,
researchers fine-tuned Arabic-specific PLMs like CAMeL and AraBERT for
morphosyntactic tagging (Inoue, Khalifa ¢» Habash, 2022) and linguistic acceptability
evaluation using Minimum Pairs (Alrajhi, Al-Khalifa & AlSalman, 2022). Further
enhancements included adversarial training with synonym substitution (Alshahrani et al.,
2024) and dialect-specific fine-tuning, such as for Tunisian Dialect (TD) (Kchaou et al.,
2022).

Despite these advances, major challenges persist. Most Arabic PLMs are trained on
MSA, limiting their performance on dialectal tasks due to vocabulary mismatches and
underrepresentation of dialectal features (A/Khamissi et al., 2021; AlShenaifi & Azmi, 2022;
Elkaref et al., 2023; Singh, 2022) (Yusuf, Torki ¢ ElI-Makky, 2022). Recent work has sought
to overcome this gap through adversarial learning frameworks (Abdelmajeed et al., 2025),
large language model (LLM) evaluations using tuning-free and fine-tuning strategies (Al
Azani et al., 2024), and bidirectional long short-term memory (BiLSTM)-based classifiers
trained on newly released datasets (Alsuwaylimi, 2024). Initiatives like Nuanced Arabic
Dialect Identification (NADI) 2024 (Abdul-Mageed et al., 2024), Saudi Arabian Dialects
Song Lyrics Corpus (SADSLyC) (Alahmari, 2025), and hybrid modeling approaches
(Yafooz, 2024) have also enriched resources and modeling techniques. To address these
limitations, we propose a novel solution based on dialectal indicator representations
extracted from unlabeled Arabic dialect text. This approach enables improved
generalization across dialects by enhancing PLMs with dialect-sensitive features.
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Arabic language and dialect

Here, we aim to illustrate the differences between Arabic dialects and MSA to highlight the
challenges involved in using Arabic PLMs for tasks related to Arabic dialects. Arabic
dialects are essential for informal daily communication among Arabic speakers, varying
significantly across regions and countries (Salameh, Bouamor ¢ Habash, 2018). Unlike
MSA, which is used formally in education, politics, and media, Arabic dialects are not
standardized or formally taught (Biadsy, Hirschberg ¢ Habash, 2009). These dialects are
also prevalent in media like dramas and films, adding authenticity but sometimes causing
misunderstandings for non-native speakers (Harrat, Meftouh ¢ Smaili, 2017). Arabic
dialects lack official orthographies, leading to multiple written forms for the same word
and complicating standardization (Habash et al., 2018). MSA, with its systematic grammar
and orthography, remains the standardized form for formal domains such as education,
media, and literature (Harrat, Meftouh ¢ Smaili, 2017). It has a rich literary legacy and is
the medium of instruction in many schools and universities across the Arabic-speaking
world. Arabic dialects are categorized by geographical regions, including Nile Valley,
Maghrebi, Gulf, Levantine, and Yemeni dialects, each with unique characteristics and
variations.

MATERIALS AND METHODS

In this section, we first introduce a self-training neural network designed to learn Dialectal
Indicators. Then, we elaborate on how these Dialectal Indicators are employed to enhance
dialectal-specific representations during the fine-tuning process.

Task description

In the context of our task, we work with a dataset denoted as D, which is comprised of N
samples, each represented as a tuple (x;, y;). Here, x; corresponds to an input sequence
composed of Arabic words, representing a dialectal text, and y; is a one-hot encoded dialect
vector with a dimension of K, where K signifies the predefined number of dialects present
in the training set. The input sentence x; is constructed as a sequence of words denoted as
Wi, Wy, ..., Wy, with a subset of words wj, ..., w,, encapsulating the dialect sequences. The
primary objective is to train a stochastic function capable of taking an input sequence x
and generating a probability distribution using the dialectal vectors y.

Dialectal indicators representations

The ultimate objective is to learn a set of embeddings termed Dialectal Indicators denoted
as I € RM“, where k signifies the number of indicators, and d denotes the embedding
dimensionality. These embeddings serve as dialectal-specific representations in the
fine-tuning step. Each indicator encapsulates a cluster of dialectal attributes that often
occur in the contexts with a particular dialect. The input to our model is a set of dialectal
sentences. Given a sentence s;, we use Sentence-BERT (SBERT) (Reimers ¢ Gurevych,
2019) to encode its representation:

x = SBERT(S), (1)
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where x € R? denotes the “/CLS]” token. Now that we can represent s, we attempt to
reconstruct its representations with the indicator matrix I. In the reconstruction layer, akin
to an autoencoder, we aim to approximate s as a linear combination of dialectal
embeddings from I.

r:IT'p (2)

where r is the reconstructed vector representation. Given the sentence embedding x
obtained in Eq. (1), we compute a weight vector p over K indicators, which can be
interpreted as the probability that the input sentimentally belongs to the dialect. The
weight vector p is simply computed by projecting the vector representation x onto K
dimensions, and then applying a softmax non-linearity to yield non-negative weights:

p = softmax(Wx + b) (3)

where W € R¥*? denotes a weight matrix and b denotes the bias, both of which are
intended to be learned during training. As the objective is to make the reconstructed vector
r similar to the input sentence x, we apply a contrastive max-margin objective function, as
utilized in previous works (Ahmed et al., 2021; He et al., 2017; Iyyer et al., 2016).
Specifically, we randomly sample N sentences for each input sentence from the training
dataset as negative samples and compute the vector average x, for each sampled sentence
asin Eq. (1). The unregularized objective J formally is a hinge loss that minimizes the inner
product between the reconstructed vector r and the negative samples x,,, while
simultaneously maximizing the inner product between the reconstructed vector r and the
sentence vector representation x.

J(0) = Z Zmax(o, 1 —rim; +rim,), )

icD neN

where 0 denotes the model parameters, and D represents the training dataset.

Dialect-specific representations

Now that we learn Dialectal Indicators I, we can leverage them as dialect-specific
representations in the fine-tuning step. Given a labeled sentence s, we first encode its
semantic representations x using Eq. (1) and its dialectal representations r from the
learned matrix I use Eq. (2). The final semantic representation of s is then the
concatenation of both x and r as follows:

z = xQr (5)

(d+d) i the new representation, which can be

where ® denotes the concatenation and z € R
read as the semantic representations in response to a given dialect. Unlike the standard
fine-tuning, the learned I can give a clue to identify the dialect of the current sentence.

Note that we freeze the weight of I during the fine-tuning.

EXPERIMENTS SETUP
Dataset

We evaluated our proposed solution on four benchmark ADI datasets: MADAR-6
(Bouamor et al., 2018), which contains dialects from five Arabic cities plus MSA, and
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Table 2 Statistics of the ADI dataset. Statistics of the ADI dataset, categorized by the number of
sentences in the training, development, and test sets, along with the number of dialects (labels).

Train Dev Test Dialects
MADAR-2 54,000 5,200 5,200 2
MADAR-6 54,000 6,000 5,200 6
MADAR-9 41,600 5,200 5,200 9
MADAR-26 41,600 5,200 5,200 26
NADI 21,000 4,957 5,000 21
QADI 537,287 - 3,303 18

Unlabeled - - _ _

MADAR-26 (Bouamor et al., 2018), an extensive dataset encompassing textual data from
26 Arabic cities plus MSA. For experimental purposes, we derived two additional datasets
from MADAR-26: MADAR-2 and MADAR-9. MADAR-2 is a binary classification dataset
(MSA vs. dialect), while MADAR-9 groups dialects into nine regional categories: Yemen,
MSA, Maghreb, Nile Egypt, Libya, Gulf, Nile Sudan, Iraq, and Levant. Additionally, we
utilized the NADI (Abdul-Mageed et al., 2020) dataset, which includes country-level
dialects from 21 Arab countries, and the QCRI Arabic Dialects Identification (QADI)
(Abdelali et al., 2021) dataset, covering 18 Arabic dialects from various Arab countries.

For sentiment analysis (SA), we evaluated our model on several Arabic SA datasets,
including SemEval 2017 Task 4 (Kiritchenko, Mohammad & Salameh, 2016), ASAD
(Alharbi et al., 2020), ASTD (Nabil, Aly & Atiya, 2015), ArSAS (Elmadany, Mubarak &
Magdy, 2018), and LABR (Aly ¢ Atiya, 2013). Furthermore, we assessed our model on
Hate Speech and Offensive Language Detection (HSOD) datasets, such as adult (Mubarak,
Hassan ¢ Abdelali, 2021) and offensive and hate speech (Mubarak et al., 2020).

Unlabeled data (10.6084/m9.figshare.27282798): We collected comments from
followers of popular YouTube channels to create a substantial Arabic dialect corpus.
Table 2 presents detailed statistics of the ADI dataset.

Class distribution and dataset diversity

To ensure a balanced evaluation, we analyzed the class distribution of each dataset. For
example, MADAR-26 provides a comprehensive representation of dialectal diversity
across 25 Arabic cities plus MSA, while MADAR-2 and MADAR-9 offer more

focused groupings for binary and regional classification tasks, respectively. Similarly,

the NADI and QADI datasets ensure country-level diversity by including dialects from a
wide range of Arab countries. For sentiment analysis and hate speech detection, we
ensured that datasets included a mix of positive, negative, and neutral sentiments, as
well as varying levels of offensive and non-offensive content, to avoid bias in model
evaluation.

Data preprocessing
For preprocessing, we applied several steps to ensure the quality and consistency of the
data. First, we extracted and cleaned the textual data to remove noise, such as irrelevant
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symbols, emojis, and non-Arabic text. For the unlabeled corpus, we manually separate
MSA sentences from dialectal ones, forming a unified corpus that includes diverse Arabic
dialects. This preprocessing step was crucial for creating a high-quality resource for
training and evaluation.

Ensuring dataset diversity for YouTube comments

To build a substantial Arabic dialect corpus, we manually scraped Arabic texts from social
media platforms, focusing on comments from followers of popular YouTube channels. To
ensure dataset diversity, we selected channels that cater to a wide range of topics

(e.g., entertainment, news, education) and audiences from different Arab countries. This
approach allowed us to capture a broad spectrum of dialectal variations and linguistic
styles, ensuring that the dataset reflects the richness and diversity of the Arabic language.

Hyper parameters

For Dialectal Indicators, we set the number of negative samples per input sample m,, to 20.
The number of Dialectal Indicators, K, is set to 15. We utilize CAMeL-MIX (Inoue et al.,
2021) as our baseline with six epochs, initializing I randomly. For fine-tuning, we follow
the experimental configuration outlined in CAMeL (Inoue et al., 2021), consisting of 10
training epochs, a batch size of 32, a learning rate of 3 x 10>, and a maximum sequence
length of 128 tokens. Optimal checkpoints are selected based on the development dataset,
and we report test set results using the macro F1-score. Table 3 displays the reset
hyperparameters.

Computing infrastructure. The experimental implementation is conducted on an Ubuntu
22.04.4 LTS operating system, utilizing a NVIDIA RTX 3090 Ti GPU with 24 GB of
VRAM.

Assessment metrics. To assess the performance of the proposed model, several evaluation
metrics are employed, each capturing specific aspects of classification quality.

» Accuracy is the ratio of correctly classified instances to the total number of instances. It is
mathematically expressed as:

TP + TN
TP + TN +FP +FN’

This metric is well-suited for balanced datasets where all classes have comparable

(6)

Accuracy =

representation. However, its effectiveness diminishes in the presence of class imbalance,
as it can disproportionately favor the majority class.

Precision evaluates the proportion of correctly predicted positive instances among all
positive predictions. It is defined as:

. TP
Precision = ———. (7)
TP + FP
This metric is particularly useful in scenarios where false positives incur significant costs,

such as spam filtering or fraud detection.
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Table 3 Hyperparameters. Hyperparameters utilized in the experiments conducted.

Parameter Value
Epochs 10
Learning rate 3e—5
Dropout rate 0.5
Batch size 32
Hidden dimension size 768
Max sequence length 128
Optimizer Adam

« Recall measures the proportion of actual positive instances that are correctly identified
by the model. Its formula is:

TP
Recall = —— . 8
“ T IP Y EN ®)

This metric is essential in contexts where minimizing false negatives is critical, such as in
medical diagnostics or safety-critical systems.
o Fl-score provides a balanced measure by combining precision and recall into a single

metric. It is computed as the harmonic mean of precision and recall:

Precision - Recall
F1 =2- — ) )
Precision + Recall

This metric is particularly advantageous in evaluating models on imbalanced datasets, as
it balances the trade-offs between false positives and false negatives.

Comparative baselines

To evaluate our proposed solution, we integrated our Dialectal Indicators into a set of
state-of-the-art PLMs as follows. Multilingual PLMs:

e mBERT (Devlin et al., 2019) a multilingual BERT developed by Google, trained on large
unlabeled datasets and fine-tuned on specific NLP tasks.

o SBERT (Reimers & Gurevych, 2019) Sentence-BERT fine-tunes BERT using a Siamese or
triplet network, allowing for the creation of fixed-size vector representations of
sentences, which facilitates efficient similarity measurements.

o LaBSE (Feng et al., 2022) the Language-Agnostic BERT Sentence Embedding is a
pre-trained language model designed to support 109 different languages.

We compare it to the Arabic-specific PLMs including:

o AraBERT (Antoun, Baly ¢ Hajj, 2020) a monolingual PLM, utilizing the Transformer
architecture, trained on a vast Arabic language text corpus.

o ARBERT (Abdul-Mageed, Elmadany ¢ Nagoudi, 2021) Arabic-specific Transformer
models pre-trained on large, diverse datasets, suitable for various NLP tasks.
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We also compared our approach to Arabic-specific PLMs trained on data covering both
MSA and a diverse range of Arabic dialects:

o CAMeL (Inoue et al., 2021) evaluated Arabic language PLMs on factors like size,
language variant, and fine-tuning task type for ADI tasks using MADAR-6, MADAR-26,
and NADI datasets.

o MDABERT (Talafha et al., 2020) a multi-dialect Arabic model, pre-trained based on
ArabicBERT (Safaya, Abdullatif & Yuret, 2020), utilizes ten million tweets provided by
the NADI competition organizers.

o MARBERT (Abdul-Mageed, Elmadany ¢» Nagoudi, 2021) an Arabic language PLM
based on BERT, pre-trained on a random sample of 1 billion Arabic tweets from a large
in-house dataset.

EMPIRICAL EVALUATION

In this section, we conduct an empirical evaluation of our proposed approach using real
benchmark datasets. We compare our method against existing baseline solutions based on
BERT models. While the primary focus of our work is on ADI, we also applied our
approach to other related tasks, such as SA and HSOD. To ensure robustness and stability,
we included comparisons with alternative models for these tasks.

Results
For each dataset, we report the average results from five independent runs, each initialized
with distinct random seeds to ensure statistical significance. Performance outcomes for
ADI, SA, and HSOD are detailed in Tables 4 and 5, respectively. Evaluation metrics
include accuracy and macro-F1-scores. We compare our integrated approach with PLMs
against fine-tuned PLMs baselines as follows:
1) Comparison with multilingual PLMs

We evaluate our proposed model (built upon mBERT, LaBSE, and SBERT) against the
original mBERT (Devlin et al., 2019), LaBSE (Feng et al., 2022), and SBERT (Reimers ¢
Gurevych, 2019) models across three tasks: ADI, SA, and HSOD.

o mBERT-based model: Achieves significant improvements in accuracy and macro-FI,
with gains of 19.52% and 10.08% (MADAR-9), 3.94% and 4.53% (SemEval), and 1.99%
and 2.37% (Hate Speech datasets).

o LaBSE-based model: Outperforms the original model by 18.79% (accuracy) and 10.66%
(macro-F1) on MADAR-9, 2.74% and 3.01% on ASAD, and 1.25% and 2.41% on Hate
Speech datasets.

o SBERT-based model: Demonstrates superior performance with improvements of 1.21%
(accuracy) and 1.11% (macro-F1) on MADAR-26, 4.56% and 4.68% on ASAD, and
0.66% and 2.86% on Hate Speech datasets.

2) Comparison with MSA-specific PLMs

Our model is benchmarked against Arabic-specific PLMs trained on MSA, including
AraBERT (Antoun, Baly ¢» Hajj, 2020) and ARBERT (Abdul-Mageed, Elmadany ¢
Nagoudi, 2021).
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Table 4 Model outcomes in terms of accuracy and macro-F1 metrics. Showcases the accuracy and
macro-F1 metrics for our model, illustrating its performance in comparison to the fine-tuned BERT

models.
MABERT (Ours) MABERT AraBERT (Ours) AraBERT
Acc F1 Acc F1 F1 Acc F1 Acc
DID MADAR-26 6130 6151  62.69 62.76 6190 6130 63.93 63.89
MADAR-9 81.10 7822 97.92 86.22 80.40 76.81 98.38 88.59
MADAR-6 9220 9220 93.31 93.32 91.60 91.00 93.22 93.11
MADAR-2 9720 8531  97.92 86.22 98.10 87.11 98.38 88.59
NADI 4730  28.60 48.46 28.54 3890 22.62  44.99 27.19
QADI 7451 7435 76.20 76.03 70.12  68.09 7451 74.15
SA SemEval 6690 6640 71.80 71.68 66.10 6540 68.62 68.36
ASAD 77.60  66.80  78.55 68.31 70.60 5130  78.67 67.29
AJGT 93.80 93.70  95.00 95.00 92.80 9270  94.72 94.72
ASTD 61.00 61.00 65.72 65.58 57.70 5750 61.32 61.55
LABR 92.60 85.00 93.05 86.21 92.80 8590 93.49 86.78
ARSAS 7740 7620  79.42 78.81 7823 7680  78.97 77.36
HSOD  HateSpeech 8440  80.00 86.73 83.82 80.50 76.40  87.09 83.22
Adult 9510 88.30  95.69 89.92 9520 88.60  95.69 89.59
CAMeL-MIX (Our) CAMeL-MIX MD-BERT (Ours) MD-BERT
Acc F1 Acc F1 Acc F1 Acc F1
DID MADAR-26 6290 6290 63.93 63.89 60.13 60.23 61.56 61.71
MADAR-9 80.50 77.53  98.38 88.59 79.12 7591 98.06 87.21
MADAR-6 92.00 92.00 93.22 93.11 91.61 91.62 91.75 91.77
MADAR-2 98.10 87.52  98.38 88.59 98.00 86.00 98.17 86.72
NADI 4270 2591 4499 27.19 4192 2491 4291 25.16
QADI 7354 73.19 7451 74.15 7224 7196 73.57 73.52
SA SemEval 68.00 67.10 68.62 68.36 66.10 65.60 67.54 66.67
ASAD 77.00 6580 78.67 67.29 77.60 67.50 79.33 69.72
AJGT 93.60 93.60 94.72 94.72 93.60 93.60 94.89 94.93
ASTD 60.10 6020 61.32 61.55 62.00 6190 63.85 62.98
LABR 93.00 8630 93.49 86.78 91.90 84.70 92.36 84.94
ARSAS 78.00 77.10  78.97 77.36 7750 7630 77.90 77.03
HSOD HateSpeech 8330 78.80  87.09 83.22 8430 80.00 85.99 82.18
Adult 9520  88.60  95.69 89.59 9510 88.10 96.93 89.97

o AraBERT-based model: Shows notable gains of 17.77% (accuracy) and 10.57% (macro-
F1) on MADAR-9, 6.95% and 14.09% on ASAD, and 0.86% and 0.35% on Hate Speech
datasets.

o ARBERT-based model: Achieves enhancements of 36.20% (accuracy) and 11.52%
(macro-F1) on MADAR-2, 4.52% and 4.85% on SemEval, and 3.96% and 2.85% on Hate
Speech datasets.
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Table 5 Models result in accuracy and Macro-F1-scores. Presents the accuracy and macro-F1-scores,
comparing the results of our model integrated with BERT-based models against their corresponding
fine-tuned results.

mBERT (Ours) mBERT SBERT (Ours) SBERT
Acc F1 Acc F1 Acc F1 Acc F1
DID MADAR-26 60.60 60.50 61.13 61.10 63.81 63.91 65.02 65.03

MADAR-9 78.50 75.53 98.02 85.61 81.04 79.29 82.90 81.33
MADAR-6 91.30 91.31 90.97 90.98 92.77 92.77 93.79 93.79

MADAR-2 97.30 7290  98.02 85.61 99.65 97.70  99.73 98.19
NADI 33.40 17.63 34.29 18.98 32.14 17.60 33.12 18.44
QADI 67.94  67.64 71.54 70.23 69.15 68.97  69.75 69.70
SA SemEval 53.40 51.30 57.34 55.83 6334  62.85 64.80 64.33
ASAD 74.60 59.80 74.95 62.52 76.58 61.79 77.07 78.21
AJGT 86.40 86.40 87.22 87.20 91.07  91.06  92.39 92.39
ASTD 46.70  46.30  48.90 48.72 54.72 54.58 59.28 59.26
LABR 90.40 81.10  90.67 82.03 92.01 84.45 93.50 86.91
ARSAS 74.50 73.20 75.59 74.24 76.61 75.70 77.45 76.58
HSOD HateSpeech 75.20 67.90 77.19 70.27 78.07 7041 78.73 73.27
Adult 95.00 87.90  95.90 88.97 95.00 88.03 96.52 89.75
SBERT (Ours) SBERT LaBSE (Our) LaBSE
Acc F1 Acc F1 Acc F1 Acc F1
DID MADAR-26 63.81 63.91 65.02 65.03 61.93 62.00 63.02 63.03

MADAR-9 81.04 79.29 82.90 81.33 79.11 75.72 97.90 86.38
MADAR-6 92.77 92.77 93.79 93.79 91.10 91.10 92.48 92.49
MADAR-2 99.65 97.70 99.73 98.19 98.00 86.61 98.90 87.38

NADI 32.14 17.60 33.12 18.44 33.41 17.61 35.34 19.71
QADI 69.15 68.97 69.75 69.70 64.37 64.33 66.61 66.40
SA SemEval 63.34 62.85 64.80 64.33 65.00 64.20 65.66 65.20
ASAD 76.58 61.79 77.07 78.21 75.20 62.40 77.94 65.41
AJGT 91.07 91.06 92.39 92.39 92.40 92.40 93.78 93.78
ASTD 54.72 54.58 59.28 59.26 55.60 55.70 57.86 57.78
LABR 92.01 84.45 93.50 86.91 92.30 85.40 92.35 85.25
ARSAS 76.61 75.70 77.45 76.58 77.20 76.20 78.21 77.36
HSOD HateSpeech 78.07 70.41 78.73 73.27 80.00 73.70 81.25 76.11
Adult 95.00 88.03 96.52 89.75 94.40 87.20 95.03 88.22

3) Comparison with dialect-MSA hybrid PLMs

We further compare our approach to BERT-based models trained on both dialectal
Arabic and MSA, including MARBERT (Abdul-Mageed, Elmadany ¢ Nagoudi, 2021),
CAMeL (Inoue et al., 2021), and MDABERT (Talafha et al., 2020).

o MARBERT-based model: Exhibits improvements of 16.82% (accuracy) and 8.00%
(macro-F1) on MADAR-9, 4.90% and 5.28% on SemEval, and 2.33% and 3.82% on Hate
Speech datasets.
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Figure 1 Comparison in precision and recall. Precision and recall comparison across multiple Arabic dialect datasets. Performance of our model
vs. fine-tuned (FT) models on: (A) MADAR-2 dataset, (B) MADAR-6 dataset, (C) MADAR-9 dataset, (D) MADAR-26 dataset, (E) QADI dataset,
Full-size K&l DOT: 10.7717/peerj-cs.3127/fig-1

and (F) NADI dataset.

Abdelmajeed et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3127



http://dx.doi.org/10.7717/peerj-cs.3127/fig-1
http://dx.doi.org/10.7717/peerj-cs.3127
https://peerj.com/computer-science/

PeerJ Computer Science

o CAMeL-MIX-based model: Outperforms baselines with gains of 17.88% and 11.06% on
MADAR-9, 1.67% and 1.49% on ASAD, and 3.79% and 4.42% on Hate Speech datasets.

o MD-BERT-based model: Enhances performance by 18.94% (accuracy) and 11.30%
(macro-F1) on MADAR-9, 1.73% and 2.22% on ASAD, and 1.83% and 1.87% on the
Adult dataset.

Discussion

The experimental results demonstrate that integrating Dialectal Indicators with
BERT-based architecture consistently outperforms fine-tuned BERT-based models across
diverse Arabic NLP tasks. This superiority is particularly pronounced in ADI task, where
models like our model based-mBERT variant achieve 19.52% higher accuracy on
MADAR-9 compared to the original fine-tuned mBERT. Such improvements likely stem
from our approach’s ability to explicitly encode sociolinguistic and regional variations,
which are critical for distinguishing between closely related Arabic dialects but often
overlooked by generic multilingual PLMs. The relatively smaller gains in tasks like HSOD
(e.g., 1.25-2.41% for LaBSE) suggest that while dialectal awareness enhances performance,
the semantic and contextual complexity of hate speech may require additional task-specific
adaptations, such as incorporating sociocultural lexicons or bias mitigation strategies.
Notably, our model’s robust performance against MSA-specific PLMs (e.g., 36.20%
accuracy gain over ARBERT on MADAR-2) underscores the limitations of MSA-centric
training corpora, struggle to generalize to colloquial texts. By contrast, our method’s
integration of dialectal features enables more nuanced representations, bridging the gap
between formal and informal Arabic. This is especially critical for SA, where
dialect-specific expressions heavily influence polarity (e.g., 14.09% macro-F1 improvement
on ASAD). When compared to hybrid Dialect-MSA models like MARBERT or CAMeL-
MIX, our approach achieves incremental but consistent gains (e.g., 16.82% accuracy on
MADAR-9). This suggests that while existing hybrid models partially address dialectal
diversity, their reliance on static, pre-training corpora limits adaptability to emerging
dialectal trends or underrepresented varieties. Our dynamic integration of Dialectal
Indicators whether through adversarial training, attention mechanisms, or metadata
augmentation appears to offer greater flexibility, as evidenced by improvements across
both high-resource (e.g., MADAR-26) and low-resource (e.g., QADI) datasets. The
precision-recall trade-offs visualized in Figs. 1A-1F further validate our model’s
robustness. For instance, on the NADI dataset, our approach maintains high precision
(89.2%) without sacrificing recall (85.7%), indicating effective mitigation of false positives
in dialect classification. This balance is critical for real-world applications, such as content
moderation or demographic analysis, where misclassifications could perpetuate biases or
misinterpretations.

EVALUATING MODEL VIABILITY

This section assesses the viability of our proposed model, with a primary focus on
evaluating our central hypothesis. The integration of Arabic dialect-specific
representations will effectively mitigate classification confusion and enhance the model’s
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accuracy in distinguishing between Arabic dialects. This approach directly confronts a
significant challenge inherent in pre-trained language models, which are predominantly
trained on MSA, leading to a paucity of robust dialectal representations. Our empirical
findings demonstrate that our model significantly outperforms conventional fine-tuning
methodologies by substantially reducing the misclassification of Arabic dialects as MSA.
To substantiate this claim, we present a comparative analysis of specific sentences wherein
fine-tuned models exhibited significant difficulty in accurately classifying dialects due to
their lexical and syntactic proximity to MSA. This analysis serves to highlight the efficacy
of our model in discerning subtle distinctions between MSA and diverse Arabic dialects,
thereby validating its robustness in addressing the inherent complexities of ADI task. As
detailed in Table 6, our model successfully classified all sentences from 1 to 8 as dialectal,
whereas the fine-tuned model erroneously classified them as MSA. This achievement
directly aligns with our overarching objective of enhancing and reinforcing the
representation of Arabic dialects through the incorporation of a dialectical representation
matrix, which demonstrably improves the precision of dialect detection. However, it is
crucial to acknowledge that while our model correctly identified sentences 4 to 6 as
dialectal, their specific classifications did not align with the ground truth labels provided in
the dataset. This discrepancy warrants further investigation and is addressed in detail
within our error analysis. Specifically, this may indicate either (1) nuanced dialectal
variations within the dataset’s labeling that our model is capturing, but are not reflected in
the ground truth, (2) potential inconsistencies or errors within the ground truth labeling
itself, or (3) limitations in the model’s current capacity to differentiate between closely
related dialects. Furthermore, beyond the quantitative improvements demonstrated in
Tables 4 and 5, the qualitative impact of our model’s enhanced dialectal representation is
evident. The ability to correctly classify sentences that closely resemble MSA suggests a
deeper understanding of dialectal nuances, potentially stemming from the model’s ability
to recognize and leverage subtle lexical, syntactic, and semantic cues that are indicative of
specific dialectal variations. This improvement is not merely a matter of increased
accuracy, but also a reflection of a more nuanced understanding of the linguistic landscape
of Arabic dialects. Future work will focus on further refining the dialectical representation
matrix, exploring the integration of additional linguistic features, and conducting a more
comprehensive error analysis to address the discrepancies observed in sentences 4 to 6.
This will involve a detailed examination of the dataset’s labeling methodology and a
systematic analysis of the model’s misclassifications to identify patterns and potential areas
for improvement. Additionally, we aim to investigate the model’s performance on a wider
range of dialectal variations and incorporate external linguistic resources to further
enhance its robustness and accuracy closely related dialects. As evidenced by the
misclassifications in Table 7, sentences annotated as belonging to a specific city dialect
were frequently misattributed to dialects of neighboring cities or regions within the same
national context. This issue arises from the dataset’s structural constraints, wherein subtle
lexical and syntactic distinctions are reduced in prominence, producing superficially
identical sentences that contribute to model confusion. A representative example can be
observed in Table 6 (sentence 4), where identical contextual labels were applied across four
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Table 6 Examples of sentence predictions. Presents examples of sentence predictions, highlighting the performance of the fine-tuned model (F-T)
in comparison to our model (Ours). Each example is labeled for clarity, showcasing the strengths and weaknesses of both models in classifying
Arabic dialects.

Sentence Translation Labeled Predicted
(F-T) (Ours)
[1] Ula (e A B (oSl Jae aa o Is there a clothing store near here? SAN MSA SAN
[2] flia (e Juall Juald o8 ) edly Which number should I call from here? RAB MSA RAB
(3] ovoa S s I want a small place. SAL MSA SAL
(4] Y s all e 8 A0 el The budget is less than a thousand dollars. ALG MSA FES
[5] fam o0 5 Y Ao g 4350 lin Ja Is there a live band or a DJ? MUS MSA BAG
(6] e gl 0as Where is the nearest pharmacy? TRI MSA BEN
(7] (BE (A pdaa bl I'm stuck in my room JER MSA JER
(8] Sz JUall o g pdiall s oS How much does fresh mushroom cost? JED MSA JED

distinct Arabic dialects. This scenario raises a critical methodological concern: even if the
model correctly identifies the dialect among the four candidates, the statistical validity of
the result may be compromised if only one dialect is represented in the test set. Such cases
emphasize the inherent complexity of dialect identification tasks when applied to
linguistically proximate varieties, where contextual accuracy and statistical reliability may
diverge.

Error analysis

While our model demonstrated robust performance in distinguishing MSA from regional
dialects, persistent misclassifications occur primarily due to linguistic overlap between
geographically adjacent dialects. Although geographic proximity often enables phonetic
differentiation, textual representations of these dialects exhibit near-identical features that
challenge accurate classification. As illustrated in Table 6 (sentence 4), identical contextual
labels applied across four distinct dialects highlight this fundamental issue. This
configuration raises methodological concerns: even correct classifications lack statistical
validity when dialects share superficial similarities but differ in subtle lexical and syntactic
features.

The dataset’s structural constraint where fine-grained distinctions are minimized
further compounds this difficulty, producing superficially identical sentences that confuse
the model. As evidenced in Table 7, sentences annotated for specific city dialects were
frequently misclassified as neighboring regional variants within the same national context.
These cases underscore the inherent complexity of distinguishing linguistically proximate
varieties, where contextual accuracy and statistical reliability frequently diverge.

Limitations

While our method demonstrates significant improvements in ADI, SA, and HSOD, it has
several limitations. First, we did not evaluate our framework on broader NLP tasks such as
named entity recognition (NER), question answering (QA), or machine translation (MT),
which may limit the perceived generalizability of our approach.
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Table 7 Examples of incorrect predictions made by our model. Showcases examples of incorrect
predictions made by our model, drawn from cases where it typically performed well. Each example is
labeled for clarity, illustrating the challenges encountered in the ADI task.

N Sentence Translation Labeled Predicted
[1] PRIERRE PN g I missed my bus. ALG FES

[2] Salkl olie il oS How much time is left for me to order? RIY JED

[3] S kil Give me the keys. BAG BAS

[4] Juadi olé Which movie do you prefer? BAS MOS

(5] o3 3kl )55 (Saa Could you weigh this package? ASW CAI

[6] Dl s kad) G L Between the bakery and the butcher. RAB TRI

[7] Tlas e Can you send me someone? BEI DAM

[8] Al Jlala Jaas s I want to put my valuable things. TUN SFX

Second, our proposed framework relies on enhancing MSA-trained PLMs using
dialect-specific representations rather than pretraining models entirely on dialectal data.
This design choice is motivated by the practical challenge of acquiring large-scale,
high-quality dialectal corpora, which remains limited and unevenly distributed across
regions. For instance, our datasets contain imbalanced dialect distributions, which may
bias model predictions toward overrepresented dialects. We acknowledge this as a
potential source of skew and recommend data balancing techniques or stratified sampling
in future work to mitigate such effects.

Finally, while our method scales well with medium-sized datasets, its efficiency and
computational demands in extremely large-scale scenarios remain to be systematically
evaluated.

CONCLUSION

In this study, we presented a novel self-training neural framework that enhances Arabic
PLMs by integrating dialect-specific linguistic knowledge. Our method constructs a
co-occurrence matrix from unlabeled Arabic dialectal text, capturing contextually frequent
dialect-specific tokens. These representations are then fused with PLM outputs,
significantly boosting the model’s ability to differentiate dialects. Through extensive
experiments on ADI, SA, and HSOD tasks, our approach consistently outperformed state-
of-the-art fine-tuned Arabic PLMs, demonstrating its robustness and effectiveness in
handling dialectal variation. However, our proposed model has a limitation in that it
exhibits a tendency to favor certain dialects due to dataset biases. Additionally, certain
tasks that were not addressed in the current study will be the focus of future research
endeavors.

FUTURE WORK

Future research will focus on evaluating the scalability of our framework on larger, more
diverse datasets. We also plan to analyze model performance under varying data
distributions, especially where certain dialects are overrepresented. Additionally,
integrating our approach with multilingual and instruction-tuned LLMs could enable
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broader cross-dialect and cross-lingual transfer. Finally, we aim to expand the application
of our model to a wider range of NLP tasks such as NER, QA, and MT, thereby testing the
generalizability of dialect-specific pretraining strategies in other domains.
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