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ABSTRACT
In social network analysis, bridges play a critical role in maintaining connectivity and
facilitating the dissemination of information between communities. Despite
increasing interest in bridge structures, a systematic classification of their roles across
various network types remains unexplored. This study introduces a categorization of
bridges into structural and functional types. Structural bridges maintain connectivity
by preventing network fragmentation, whereas functional bridges facilitate the flow
of information between communities. We conducted a comprehensive literature
review and classified existing studies within this framework. The findings clarify the
distinct roles of bridges and provide valuable insight for devising effective strategies
for network design and analysis.

Subjects Algorithms and Analysis of Algorithms, Network Science and Online Social Networks,
Optimization Theory and Computation, Social Computing, Theory and Formal Methods
Keywords Social network analysis, Network connectivity, Graph partitioning, Information
propagation

INTRODUCTION
Social networks have become a crucial area of study due to their ability to model complex
relationships and interactions between individuals, organizations, and systems (Watts,
2004a, 2004b; Easley & Kleinberg, 2010). These networks encompass diverse relationships,
ranging from collaborations to rivalries, providing versatile frameworks to understand
human behavior and dynamics (Easley & Kleinberg, 2010; Roth & Ockenfels, 2002).
Analyzing social networks provides valuable insights into the flow of information,
influence, and resources within and across communities, with significant implications for
fields such as sociology, economics, public health, and computer science. By examining the
nodes and edges of social networks, researchers can uncover patterns, identify influential
nodes, and evaluate structural robustness (Bonacich, 1987; Freeman, 1978; Albert &
Barabási, 2002). Understanding the structural and functional components of these
networks is essential to enhance their efficiency, resilience, and overall functionality.

Social networks are widely analyzed across various domains to uncover meaningful
insights and address complex challenges. In marketing, key influencers are identified to
optimize the dissemination of promotional content (Watts & Dodds, 2007). In healthcare,
interaction patterns within populations are examined to track the spread of infectious
diseases (Christakis & Fowler, 2007). Social media platforms leverage network analysis to
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recommend personalized content and detect community structures (Tang, Aggarwal &
Liu, 2016). Similarly, critical links between genes or proteins are revealed in biological
networks, providing valuable insights into disease mechanisms and potential therapeutic
targets (Barabasi & Oltvai, 2004). In transportation networks, structural bridges enhance
connectivity and prevent cascading disruptions in urban transit systems (Xiao, Huang &
Tang, 2023; Qiang, Wancheng & Xinzhi, 2021). Likewise, in energy networks, bridge-block
structures are optimized to locate disruptions and improve grid stability (Lan & Zocca,
2021; Ódor et al., 2024). These diverse applications highlight the versatility and importance
of social network analysis in multiple domains. While the concept of bridges applies across
diverse network types, this review primarily focuses on social networks. Applications to
biological, transportation, and energy networks are discussed separately in ‘Applications In
Other Domains’.

Bridges are fundamental concepts in social network analysis (Granovetter, 1973;
Papadopoulos et al., 2009; Easley & Kleinberg, 2010; Zhang & Li, 2017). A bridge is typically
defined as an edge whose removal increases the number of disconnected components in
the network, thus linking parts that would otherwise remain separate. More generally, a
bridge can refer to a connection, either an edge or a node, that links distinct
subcomponents of a network. These connections play a crucial role in maintaining
network connectivity (Granovetter, 1973). Understanding the roles of bridges provides
valuable information on the interactions between different parts of the network
(Granovetter, 1973; Burt, 2005; Papadopoulos et al., 2009). Analyzing such connections
also helps identify vulnerabilities that could result in network fragmentation (Albert &
Barabási, 2002; Borgatti & Everett, 2006). Insights obtained from bridge analyses inform
strategies to improve network resilience and improve information flow efficiency (Burt,
2005; Newman, 2003).

In addition to bridges, other fundamental concepts, such as hubs and structural holes,
provide complementary perspectives for understanding network structures. Hubs
(Barabási & Albert, 1999; Freeman, 1978; Kim, Kwon & Lee, 2017; Borgatti & Everett,
2006), structural holes (Burt, 1992, 2005; Burt & Soda, 2021; Lin et al., 2021), and bridges
constitute core concepts in network structure analysis. Hubs act as centers of connectivity,
structural holes create opportunities for intermediaries, and bridges serve as critical
connections that connect distinct communities, enabling the flow of information across
otherwise isolated regions. These concepts provide insights into distinct but
interconnected roles that shape the dynamics of social networks. This article systematically
explores bridges, highlighting their unique roles and contributions to network connectivity
and information flow.

This survey introduces a categorization of bridges, distinguishing them as structural
bridges and functional bridges. Structural bridges represent critical connections in a
network whose removal leads to structural fragmentation, disconnecting previously
connected components. Functional bridges, in contrast, refer to links or nodes that
facilitate the flow of information and resources between communities, even when the
overall network remains structurally intact. The categorization provides a deeper
understanding of the distinct roles that structural and functional bridges play in social
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networks. While structural bridges ensure network connectivity, functional bridges
improve the efficiency of information flow and resource distribution. Table 1 summarizes
the purpose, effects of removal, focus, and common identification methods for structural
and functional bridges, based on a comprehensive analysis of existing literature.

While prior surveys have extensively examined community detection (Fortunato &
Hric, 2016), structural hole theory (Burt, 2005), and node centrality measures (Freeman,
1978), few have provided a systematic synthesis focused specifically on bridges as distinct
structural and functional entities. Existing reviews often treat bridges as peripheral aspects
of broader topics rather than as primary constructs deserving dedicated analysis. In
contrast, this survey contributes a novel perspective by consolidating diverse lines of
research into a unified framework that distinguishes structural and functional bridges,
integrates insights from both signed and unsigned networks, and contextualizes recent
advances in graph embedding and dynamic network analysis. This approach clarifies
conceptual boundaries, highlights underexplored research opportunities, and underscores
the practical relevance of bridges across domains such as infrastructure resilience,
information diffusion, and online social platforms.

The remainder of the article is organized as follows. ‘Survey Methodology’ details the
literature search strategy, selection criteria, and measures to ensure unbiased study
inclusion on bridges in social networks. ‘Preliminaries’ covers basic concepts in social
network analysis, including the distinction between signed and unsigned networks, and the
role of bridges. ‘Bridge Properties’ discusses the details of structural and functional bridges.
‘Research Areas reviews’ three key research areas where bridges are important, along with
key contributions. ‘Applications In Other Domains’ outlines the practical applications of
bridges. ‘Opportunities and Challenges’ addresses challenges, opportunities, and future
research directions. ‘Conclusion’ summarizes the findings and concludes with remarks on
the importance of bridges in network analysis.

SURVEY METHODOLOGY
This study follows a systematic approach to ensure comprehensive and unbiased coverage
of the literature on bridges in social networks. Our methodology involved structured
search strategies, inclusion criteria, and a review process that aligns with best practices for
literature surveys.

Table 1 Comparison of structural and functional bridges.

Feature Structural bridge Functional bridge

Purpose Maintains network connectivity Supports efficient information flow

Effect of removal Causes network fragmentation Reduces efficiency of information diffusion

Focus Structural robustness Information propagation

Typical identification methods Betweenness centrality, articulation points Flow-based metrics, influence spread analysis
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Literature search strategy
We performed a systematic search across multiple academic databases, including Google
Scholar, Web of Science, and Scopus to identify relevant studies. We used a combination of
targeted search queries based on relevant keywords such as “bridge detection in social
networks,” “network connectivity bridges,” “functional and structural bridges,” and
“bridge nodes in signed networks.” Additionally, we reviewed references from key survey
articles to ensure the inclusion of influential studies that are not always identified through
keyword searches.

We applied a structured literature review methodology to ensure the reliability of our
search process. The study selection process includes the removal of duplicate articles, an
initial title and abstract screening, and a full-text review to determine relevance to the
research scope. Studies that did not explicitly define or apply bridges in social networks
were excluded.

Inclusion and exclusion criteria
To ensure a high standard of relevance and quality, the following inclusion criteria are
defined:

. Studies that explicitly examine bridge detection and its structural or functional aspects,
or their applications in network analysis.

. Peer-reviewed journal and conference articles, as well as preprints available in
recognized repositories, published from 2,000 onward.

. Although the main inclusion window began in 2,000, key foundational studies predating
this period were included because they established essential concepts relevant to
subsequent research.

. Articles that present empirical analysis, formal definitions, or algorithmic approaches to
bridge detection.

. Articles that address bridges in both signed and unsigned networks.

We applied the following exclusion criteria:

. Studies that do not provide an explicit definition or application of bridges in social
networks.

. Articles that focus solely on community detection without discussing bridges.

. Duplicates retrieved from multiple databases.

The final selection process involved multiple screening steps, including title and abstract
review, full-text examination, and duplicate removal, to ensure the inclusion of the most
relevant studies.

Ensuring comprehensive and unbiased coverage
We adopted several strategies to maintain a balanced and unbiased literature review. First,
we included studies from multiple domains, such as computational social science, network
theory, and applied machine learning, to prevent disciplinary bias. Additionally, we
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ensured a mix of foundational works (e.g., (Granovetter, 1973; Burt, 2005)) and recent
developments in bridge detection. We implemented clearly defined selection rules and
cross-validated our study inclusion against existing review articles on social network
bridges to enhance objectivity. This approach minimizes the overrepresentation of specific
perspectives while maintaining a comprehensive review.

This survey presents a comprehensive and balanced analysis of bridge structures in
social networks, incorporating key theoretical and empirical contributions. Furthermore,
the categorization framework developed in this study is expected to serve as a valuable
reference for future research in bridge detection algorithms and network analysis. This
structured review supports the continued advancement of methodologies for identifying
and characterizing bridges across different network types.

A total of 24 core studies were included in this review (20 on unsigned networks and
four on signed networks). Additionally, 12 application-oriented articles were selected to
illustrate practical implementations of bridge concepts in diverse domains, including
medicine, health and behavioral sciences, biology, transportation, and energy systems.

PRELIMINARIES
In this section, we introduce key concepts in network analysis to establish a foundation for
understanding bridges in social networks. Positive and negative relationships influence
how bridges are interpreted. Distinguishing between signed and unsigned networks is
crucial for accurate analysis. Accordingly, this survey categorizes networks into unsigned
and signed types based on this distinction.

Basic concepts in network analysis
Network analysis examines the structural and functional properties of networks, which are
typically modeled as graphs consisting of vertices and edges (Newman, 2010; Easley &
Kleinberg, 2010). These graphs vary in complexity, featuring directed or undirected edges
and weighted or unweighted links, depending on the nature of the relationships (Watts,
2004a). Directed edges represent asymmetric relationships, such as one-way
communication or influence, while undirected edges indicate mutual interactions.
Weighted edges reflect the strength or importance of connections, whereas unweighted
edges assume uniform relationships. Understanding these distinctions is essential for
accurately modeling real-world networks and analyzing the roles of bridges across various
graph types.

Key concepts in network analysis include: (i) degree, which represents the number of
edges connected to a node, with high-degree nodes often functioning as hubs (Newman,
2010; Barabási & Albert, 1999); (ii) paths, sequences of edges that connect nodes, crucial
for understanding network efficiency (Newman, 2010); (iii) connected components,
groups of nodes that are mutually reachable from each other (Newman, 2010; Erdös &
Rényi, 1959); and (iv) centrality measures, such as degree centrality and betweenness
centrality, which quantify the importance of nodes within the network (Freeman, 1978;
Borgatti & Everett, 2006; Bonacich, 1987).
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Unsigned networks
Unsigned networks are characterized by edges that lack a sign, representing relationships
without categorizing them as positive or negative. These networks are used when the
nature of the relationship is neutral, unknown, or irrelevant to the analysis. Formally, an
unsigned network is defined as G ¼ ðV; EÞ, where V denotes the set of vertices, and E
represents the set of edges. The focus in unsigned networks is primarily on the structural
properties rather than the polarity of relationships. Although unsigned networks have
primarily been used to study structural properties, they have also served as frameworks for
analyzing polarization phenomena (Morales et al., 2015; Garimella et al., 2018).

Unsigned networks are widely applied in fields such as social sciences, biology, and
transportation, where connections are essential but do not inherently carry positive or
negative attributes. Research in unsigned networks often focuses on understanding the
overall structure of the network, detecting communities, predicting links, and analyzing
the roles of specific links and nodes, such as bridges. These studies uncover patterns,
optimize performance, and reveal hidden structures in complex systems.

Signed networks
Understanding the distinctions between signed and unsigned networks is essential for
bridge analysis. Unlike unsigned networks, which indicate connections without additional
context, signed networks explicitly represent positive or negative interactions between
nodes. Positive interactions signify cooperative or friendly relationships, while negative
interactions indicate conflict or antagonism. This distinction provides deeper insight into
the structural and functional roles of bridges in networks (Brzozowski, Hogg & Szabo,
2008; Kunegis, Lommatzsch & Bauckhage, 2009; Lampe, Johnston & Resnick, 2007).

Formally, a signed network is defined as G = ðV ;Eþ;E�Þ, where V denotes the set of
nodes, Eþ represents the set of positive edges indicating friendly relationships, and E�

represents the set of negative edges indicating antagonistic relationships. Positive edges in

Eþ are assigned values greater than 0. Negative edges in E� are assigned values less than 0.
Modeling both positive and negative interactions offers a comprehensive framework for

understanding real-world social networks. Signed networks capture broader social
dynamics than unsigned networks by incorporating both cooperative and adversarial
relationships. Positive ties reflect trust or alliances, whereas negative ties highlight conflict
or rivalry. This dual nature of relationships introduces complexities for algorithms
originally designed for unsigned networks, which often struggle with negative links
(Girdhar & Bharadwaj, 2017; Kim et al., 2023). Consequently, specialized approaches are
required for tasks such as community detection, link prediction, and influence modeling in
signed networks to effectively account for both cooperative and adversarial interactions
(Yang et al., 2012; Wang et al., 2017).

Global and local bridges
This section categorizes bridges based on the structural impact of each type: (i) global
bridges and (ii) local bridges. A global bridge is an edge whose removal results in the
disconnection of the networks into separate components (Huang et al., 2019a). As shown
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in Fig. 1A, the blue edge between u1 and u2 represents a global bridge. Its removal divides
the network into two disconnected components. Jensen et al. (2016) used global bridges to
identify critical nodes, such as airports, within air transportation networks. Additionally,
global bridges have been used to identify interdisciplinary nodes in scientometric
networks, highlighting their role in facilitating connectivity across diverse domains.

In contrast, a local bridge is an edge whose removal increases the shortest path distance
between its endpoints to a value greater than 2, without disconnecting the network
(Granovetter, 1973). For example, in Fig. 1B, the red edges fu4; u5g and fu2; u9g are local
bridges. Removing these edges increases the distance between their endpoints, but does not
split the network into separate components. Papadopoulos et al. (2009) demonstrated the
utility of local bridges in community detection, where they are used to identify boundaries
between groups within networks. Methods utilizing local bridging values have been
applied to delineate community structures in real-world networks, such as user-generated
platforms. For simplicity, this article collectively refers to global and local bridges as
bridges.

Importance of bridges
Bridges (Bondy & Murty, 2008; Burt, Kilduff & Tasselli, 2013; Burt & Soda, 2021) are
critical for understanding the structure and functionality of the network, particularly for
analyzing the robustness and resilience of networks. Bridge nodes (or articulation points)
are nodes whose removal increases the number of connected components, often linking
different subgroups and ensuring network cohesion.

Bridge nodes play a pivotal role in extending the reach of 2-hop connections,
particularly when compared to non-bridge nodes. As shown in Fig. 2A, information
originating from a non-bridge node remains confined to a single community. In contrast,
Fig. 2B illustrates how a bridge node facilitates connections between multiple
communities, with blue lines representing bridges. This illustrates the importance of bridge
nodes in expanding connectivity and linking disparate parts of the network. Zhang & Li
(2017) further underscore the importance of bridge nodes in enabling the diffusion of
information and rumors between communities, highlighting their role as critical pathways
in social networks.

Figure 1 (A) Global bridge (blue): Removing bridge disconnects the network. (B) Local bridge (red):
Removing bridge increases the shortest path but keeps the network connected.

Full-size DOI: 10.7717/peerj-cs.3122/fig-1
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BRIDGE PROPERTIES
This section examines different types of bridge and their specific applications. Tables 2 and 3
present studies on bridges in unsigned and signed networks, organized by publication year.
Each study is classified according to its focus on structural or functional bridge types.

Figure 2 (A) 2-hop neighborhood from a non-bridge node and (B) from a bridge node, where the
seed node (red) influences nearby nodes (orange) within 2 hops. Blue edges represent bridges con-
necting communities. Full-size DOI: 10.7717/peerj-cs.3122/fig-2

Table 2 Research areas categorized by bridge types in unsigned networks.

Article Year Structural Functional

Granovetter (1973) 1973 ✓

Burt (2005) 1992 ✓

Hwang et al. (2008) 2008 ✓

Papadopoulos et al. (2009) 2009 ✓

Musiał & Juszczyszyn (2009) 2009 ✓

Salathé & Jones (2010) 2010 ✓

Pescher & Spann (2014) 2014 ✓

Gao, Musial & Gabrys (2017) 2017 ✓

Gryllos, Makris & Vikatos (2017) 2017 ✓

Zhang & Li (2017) 2017 ✓

Chen et al. (2018) 2018 ✓

Hu & Dong (2019) 2019 ✓

Corradini et al. (2020) 2020 ✓

Vikatos, Gryllos & Makris (2020) 2020 ✓

Chen et al. (2020) 2020 ✓

Meghanathan (2021) 2021 ✓

Lin et al. (2021) 2021 ✓

Burt & Soda (2021) 2021 ✓

Wang et al. (2022) 2022 ✓

Gao et al. (2023) 2023 ✓
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Structural bridges ensure network connectivity, while functional bridges support efficient
information flow. Some bridges operate in both roles depending on the context.

(i) Structural Bridges: structural bridges also play a pivotal role in tasks such as graph
representation and graph partitioning. In graph representation, these bridges help ensure
that essential inter-cluster connections are preserved when high-dimensional graph data
are embedded into lower dimensions, which is critical for tasks like node classification and
link prediction. Methods such as DeepWalk (Perozzi, Al-Rfou & Skiena, 2014) and
node2vec (Grover & Leskovec, 2016) explicitly emphasize the preservation of structural
features, including bridges, during the embedding process. Bridge edges tend to increase
the probability that random walks traverse between communities, thereby allowing
embedding algorithms such as DeepWalk and node2vec to better capture inter-
community relationships that might otherwise be underrepresented in proximity-based
sampling. In graph partitioning, structural bridges minimize inter-cluster disconnections,
maintaining the coherence of community structures. Approaches such as the Louvain
method (Blondel et al., 2008) and modularity optimization techniques (Newman, 2006)
rely on these bridges to identify well-defined clusters, thus ensuring the integrity of the
overall network topology.

(ii) Functional Bridges: functional bridges enable communication and resource flow
between network regions, fostering cross-community interaction and collaboration. Unlike
structural bridges, which primarily maintain network connectivity, functional bridges
optimize the distribution of information and resources, enabling efficient exchanges
between otherwise isolated regions (Burt, 2005). These bridges are essential for facilitating
information propagation across networks. Functional bridges enable efficient transfer of
knowledge, influence, and resources between communities, often driving the success of
processes such as viral marketing and rumor diffusion. Studies on influence maximization
(Kempe, Kleinberg & Tardos, 2003) have demonstrated how functional bridges accelerate
information dissemination by linking disconnected network components. Similarly,
epidemic models (Pastor-Satorras & Vespignani, 2001) highlight the role of these bridges
in maintaining connectivity during the spread of critical information. By optimizing
communication dynamics, functional bridges enhance network-wide interaction and
ensure effective propagation in dynamic and large-scale systems.

RESEARCH AREAS
This section introduces three main research areas relevant to the study of bridges in social
networks. These areas are categorized into graph representation and graph partitioning,

Table 3 Research areas categorized by bridge types in signed networks.

Article Year Structural Functional

Zhang et al. (2016) 2016 ✓

Ehsani & Mansouri (2023) 2019 ✓

Beers et al. (2023) 2023 ✓

Wu et al. (2023) 2023 ✓
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which are associated with structural bridges, and information propagation, which pertains
to functional bridges. Key concepts, methodologies and significant findings are discussed,
with a distinction made between studies on signed and unsigned social networks.

Structural bridges
Graph representation and partitioning focus on the role of structural bridges in preserving
network connectivity and identifying community structures. Structural bridges are crucial
to maintaining the overall structure of the network by preserving connections between
subcomponents.

Graph representation
Graph representation, also called network embedding, maps nodes to a low-dimensional
space while preserving the structural properties of the network. This representation
facilitates various network analysis tasks, such as node classification, link prediction, and
visualization. In addition, graph clustering algorithms use embeddings to reduce network
complexity and enable efficient analysis (Perozzi, Al-Rfou & Skiena, 2014; Tang et al., 2015;
Grover & Leskovec, 2016; Wang et al., 2018).

In unsigned networks, understanding the roles of bridges is crucial for accurate network
embedding and clustering. Musiał & Juszczyszyn (2009) investigated the properties of
bridges in social networks, focusing on how bridges connect different clusters within a
network and affect embedding. Their analysis demonstrated that bridges are essential to
maintain network connectivity and facilitate efficient information flow. The study also
showed that removing bridges often leads to network fragmentation, underscoring their
role in preserving network cohesion.

Corradini et al. (2020) defined and detected k-bridges in social networks, using the Yelp
dataset as a case study. A k-bridge is an edge whose removal increases the number of
connected components by k or more. This concept extends the traditional notion of
bridges by evaluating the impact on network connectivity with a finer level of granularity.
The authors developed efficient algorithms to identify k-bridges, revealing the underlying
structure and intrinsic community organization within social networks. The findings
highlighted the importance of k-bridges for clustering nodes and understanding
community structures, which are essential for robust network embedding tasks.

In signed networks, Chen et al. (2018) improved embedding in signed directed networks
by identifying and leveraging bridges. The proposed bridge-enhanced embedding
technique focused on detecting bridges to maintain network connectivity. Bridges were
defined by their potential to fragment the network when removed, as their removal
significantly increased the distance between other nodes. The detection process combined
network topology analysis with heuristic algorithms. During the embedding process,
greater importance was assigned to bridges and the edges directly connected to them.

Wu et al. (2023) developed the Signed Directed Attention Network (SDAN) model to
address challenges related to bridges in signed directed networks. The SDAN model
employs a multi-head attention mechanism to adjust node importance based on edge
direction and sign. The model highlights the role of bridges in maintaining connectivity by
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assigning higher weights to them during the encoding process, capturing key structural
features. In addition, the model integrates balance and status theories to better understand
the dynamics of the network. The embeddings preserve essential network characteristics
and model complex relationships within signed networks.

Graph partitioning
Graph partitioning, or community detection, involves dividing a graph into smaller
subgroups or communities. A common approach is edge-cutting, where edges are removed
to reduce connectivity and separate the network. Edge selection is typically based on
measures such as centrality or the role of edges in connecting communities. The removal of
selected edges highlights the structure of the network by separating densely connected
regions. Bridges, which connect distinct communities, are often targeted to identify
community boundaries, which makes them essential for community detection. For
example, Fig. 3 illustrates the graph partitioning process, with a focus on bridges between
different communities. The bridges, highlighted in orange, play a key role in linking the
communities, while the blue lines represent weaker connections facilitated by these
bridges. The figure demonstrates how bridges contribute to maintaining connectivity
between communities.

In unsigned networks, Papadopoulos et al. (2009) introduced the Bridge Bounding
method, a localized approach for efficient community discovery. In this approach, bridges
are defined as nodes that link densely connected subgroups. The Bridge Bounding
algorithm identifies bridges by analyzing local connectivity and structure. It calculates edge
betweenness centrality, which measures the number of shortest paths passing through a
given edge. Nodes connected by edges with high betweenness are identified as potential
bridges. These bridges define the boundaries of communities, reflecting the underlying
topology of the network.

Hu & Dong (2019) proposed a cross-social-network interconnection model based on
bridge communities. The model focuses on the role of bridges in connecting different
social networks. It ranks nodes using centrality measures such as degree, betweenness, and
closeness centrality. High-ranking nodes are matched across networks using similarity

Community 1 Community 2

Bridge node Bridge edge

Figure 3 Bridge nodes and bridge edges divide the graph into distinct communities, with bridges
representing links between communities. Full-size DOI: 10.7717/peerj-cs.3122/fig-3
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measures based on user attributes, such as username, gender, and location. Nodes with
high similarity form bridge communities that act as bridges between networks. The model
strengthens the connections between these nodes to improve interconnectivity. This
process facilitates the dissemination of information and maintains network connectivity.
The framework employs clustering algorithms that account for the enhanced connectivity
provided by bridges. The resulting clusters reflect the true interconnectivity of the
networks. Although the primary objective of this approach is to enhance interconnectivity
across social networks, the clustering component of the framework also contributes to
graph partitioning by identifying community structures reinforced through bridge-based
connections.

Hwang et al. (2008) introduced bridging centrality, a novel metric designed to identify
nodes and edges that serve as critical bridges between network communities. Bridging
centrality combines betweenness centrality with a bridging coefficient, which measures the
likelihood of connecting distinct network modules. This combination captures both local
and global properties, highlighting key elements that maintain network cohesion and
facilitate information flow. The article also presents a graph clustering algorithm that
leverages the bridge centrality to define community boundaries. By iteratively removing
edges with the highest bridging centrality scores, the algorithm identifies clusters with
higher modularity and effectively distinguishes cohesive substructures within the network.

Gao, Musial & Gabrys (2017) proposed a Community Bridge Boosting Prediction
Model (CBBPM), which improves link prediction by using community bridges. The model
categorizes the nodes as within-community or cross-community, depending on whether
they connect different communities. The core idea is to boost the similarity scores of the
bridges, defined as nodes connecting different communities. Bridges are identified based
on their degree and the proportion of connections to different communities. Nodes with
low degrees or those most closely connected to a single community are excluded. Boosting
the similarity scores of the selected bridges improves their importance in the prediction
model, resulting in improved link prediction accuracy across various social networks.
Figure 4 illustrates the crucial role of bridges in the CBBPM model. The red nodes
represent bridges that facilitate connections between communities, while the blue lines
show the predicted potential links between these communities, demonstrating how bridges
enhance link prediction.

In signed networks, Ehsani & Mansouri (2023) introduced the BridgeCut algorithm to
partition signed networks into balanced subgraphs. The algorithm ensures a fair and efficient
partitioning process. BridgeCut, inspired by the Girvan-Newman (Blondel et al., 2008)
community detection method, focuses on negative edges that act as bridges. It calculates edge
betweenness centrality to identify negative edges functioning as bridges. These edges are
iteratively added to the bridge set to improve the network’s balance index. The process
divides the network into two near-balanced partitions, with the remaining nodes assigned
based on their connections. BridgeCut was evaluated on multiple datasets, achieving
balanced partitions with high internal stability and a low proportion of negative edges.
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Functional bridges
Information propagation examines how functional bridges support the flow of
information between communities. These bridges improve communication and resource
distribution between disconnected regions, ensuring efficient interaction across
communities. Table 4 summarizes key studies in these research areas, categorizing them by
bridge types (structural or functional) and highlighting their main focus of research.

Information propagation
Salathé & Jones (2010) analyze the dynamics of disease spread in networks with
community structures. The study identifies community bridges as nodes that connect
different communities and play a critical role in disease transmission. The authors show
that targeting community bridges for immunization is more effective in reducing the
spread of diseases than targeting nodes with high centrality. To identify these nodes
efficiently, they propose a Community Bridge Finder (CBF) algorithm, which uses local
network information.

Zhang & Li (2017) investigate the propagation of rumors in networks with community
structures, focusing on the role of bridge hubs. The study identifies bridge hubs as nodes
with high connectivity within and between communities, which significantly influence the
speed and scale of rumor dissemination. The authors show that selecting bridge hubs as
initial spreaders leads to faster and broader propagation compared to other nodes,
highlighting their importance in cross-community information dissemination.

Gao et al. (2023) propose a multi-feature rumor suppression mechanism that
incorporates community division. The study identifies bridges connecting different

Community 1 Community 2

Community 3

Bridge node Set of bridges

Figure 4 Representation of bridges and their role in enhancing link prediction across communities.
Full-size DOI: 10.7717/peerj-cs.3122/fig-4
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communities as key targets for rumor suppression. The proposed algorithm selects these
bridges to effectively block rumors, reducing their influence across the network. The
simulation results demonstrate that prioritizing these bridges improves the
suppression efficiency.

Chen et al. (2020) proposed the iBridge model, which improves link prediction by using
community detection and positive unlabeled (PU) learning to detect bridge links that
connect nodes across communities, allowing information propagation between
disconnected groups. Using PU learning, the model effectively handles a predominance of
positive examples and numerous unlabeled cases, improving the accuracy of bridge link
predictions. The integration of community-specific features and a robust framework
allows iBridge to significantly refine inter-community link prediction, outperforming
traditional methods that neglect community structure. Figure 4 demonstrates the focus of
the iBridge model on bridge links (shown as blue lines) that connect nodes in different
communities (orange nodes), thus facilitating information diffusion and improving link
prediction accuracy.

Table 4 Research areas categorized by bridge types.

Bridge type Article Research focus

Structural Granovetter (1973) Role of weak ties in connecting isolated communities

Hwang et al. (2008) Bridging centrality to detect key community links

Papadopoulos et al. (2009) Identifying boundaries between communities via bridges

Musiał & Juszczyszyn (2009) Analyzing bridges in network partitioning

Gao, Musial & Gabrys (2017) Understanding community structure through bridge links

Chen et al. (2018) Embedding methods emphasizing inter-community links

Hu & Dong (2019) Cross-network community interconnections via bridges

Corradini et al. (2020) K-bridge detection for clustering and community boundaries

Meghanathan (2021) Neighborhood-based centrality for identifying bridges

Ehsani & Mansouri (2023) Balanced network partitioning using BridgeCut

Wu et al. (2023) Embedding-based signed bridge detection

Functional Burt (2005) Information brokerage through structural holes

Salathé & Jones (2010) Spread of diseases through community bridges

Pescher & Spann (2014) Product-related information diffusion across groups

Gryllos, Makris & Vikatos (2017) Bridges for optimizing marketing reach

Zhang & Li (2017) Rumor propagation through cross-community bridges

Vikatos, Gryllos & Makris (2020) Cross-community message dissemination in multiplex networks

Chen et al. (2020) Efficient information propagation using iBridge links

Lin et al. (2021) Role of structural holes in information dissemination

Burt & Soda (2021) Organizational information exchange through brokers

Wang et al. (2022) Social bridges sharing brand content

Gao et al. (2023) Rumor suppression using multi-feature bridges

Zhang et al. (2016) Trust hole identification for conflict resolution

Beers et al. (2023) Bridges connecting polarized communities during elections
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Pescher & Spann (2014) examine the role of bridging positions in product-related
information diffusion. The study reveals that actors in bridging positions access diverse
information sources and influence cross-cluster knowledge transfer. However, these actors
are less likely to share product-related information, suggesting that bridging positions may
not significantly contribute to the spread of marketing messages.

Gryllos, Makris & Vikatos (2017) present a methodology to extract bridges from social
networks to optimize marketing campaign targeting. Bridges, defined as nodes that link
disparate communities within the network, are essential to improve information flow and
maximize the reach of marketing messages. The authors propose a process that involves
identifying influential nodes, detecting bridges, and leveraging these bridges to amplify the
spread of marketing campaigns. This approach emphasizes the importance of bridges in
maintaining network connectivity and facilitating the dissemination of information across
different parts of the network.

Vikatos, Gryllos &Makris (2020) propose a methodology to improve the targeting of the
marketing campaign by identifying bridges within multiplex social networks. Bridges are
critical for linking different communities and facilitating the flow of information across
diverse groups. The methodology involves several key steps: social network crawling to
collect data, community detection and ranking to identify influential communities, link
prediction to anticipate potential connections, and campaign targeting to optimize
message dissemination. By analyzing bridges across multiple network layers, the authors
demonstrate the pivotal role these nodes play in efficiently spreading marketing messages.

Wang et al. (2022) examine the role of social bridges in content sharing between distinct
groups within social networks. Their study demonstrates that individuals with high
betweenness centrality are more likely to share brand content, influenced by motivations
such as self-identity signaling. In contrast, these individuals are less likely to share deal
content due to its lower exclusivity and relevance to self-presentation. The findings suggest
that the position of social bridges within a network affects the type of content they are
motivated to share, highlighting the nuanced role of the network structure in content
dissemination.

Lin et al. (2021) provides a comprehensive overview of the structural hole (SH) theory,
which posits that individuals who bridge structural holes between different communities
gain significant advantages by controlling the flow of information. These individuals,
termed SH spanners, play a crucial functional role in social networks by acting as brokers
that connect otherwise disconnected groups. The review highlights how SH spanners
benefit from access to diverse information and opportunities, thus enhancing their social
capital and influence within the network. The article categorizes SH spanner detection
algorithms into two main types: information flow-based algorithms and network
centrality-based algorithms.

Burt & Soda (2021) expand on this concept by examining the role of brokerage within
social networks, particularly in bridging structural holes. Brokers serve as intermediaries,
facilitating the exchange of information and resources between otherwise disconnected
groups. Similarly to SH spanners, brokers fulfill a functional role by enabling interaction
and collaboration among separated communities within a network. In signed networks,
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bridges, like brokers, are responsible not only for managing positive exchanges but also for
mitigating conflicts, ensuring the network’s operational stability and adaptability. This
makes bridges, or functional bridges, crucial for sustaining the coherence of the network
and fostering innovation between diverse groups.

Further supporting these ideas, Beers et al. (2023) analyze co-engagement networks
during the 2020 US election, emphasizing the role of bridges in maintaining interactions
between polarized communities. These bridges facilitate communication between
politically distinct groups, such as supporters of opposing parties, by enabling the flow of
information and perspectives. In signed networks, bridges similarly bridge divided
communities, helping to preserve network cohesion while managing potential conflicts.
Their function is critical in maintaining functional bridges that support both information
exchange and conflict resolution between various groups.

The article by Zhang et al. (2016) on trust holes in signed networks explores the role of
specific nodes in bridging trust and distrust between communities. Trust holes are
identified as critical structures that mediate interactions between polarized groups by
connecting otherwise disconnected regions within the network. Using the SCROLL
framework, the study quantitatively evaluates the impact of trust holes on community
cohesion and interaction costs, providing a robust mechanism to optimize community
detection and reduce conflict. Furthermore, the findings demonstrate that removing trust
holes can significantly fragment the network, leading to weakened inter-community
connectivity and disrupted information flow.

APPLICATIONS IN OTHER DOMAINS
The concept of bridges, as discussed in earlier sections, is studied in various fields. This
section examines their roles in medical networks, health and behavioral sciences, and
biological networks.

Medical networks
Bridge symptoms function as critical bridges in psychological networks, facilitating the
co-occurrence and interaction of mental disorders by linking distinct clusters of
symptoms. These functional bridges maintain connectivity within disorder clusters,
enabling interactions that perpetuate comorbid conditions.Groen et al. (2020) explored the
comorbidity between depression and anxiety using a dynamic psychological network
perspective. The study identified bridge mental states, such as “worrying” and “feeling
irritated,” which act as critical links connecting distinct symptom clusters. These bridge
symptoms facilitate the persistence of comorbidity and exacerbate both conditions over
time, highlighting their potential as targets for therapeutic interventions.

Jones, Ma & McNally (2021) introduced the concept of bridge centrality to quantify the
importance of symptoms that connect different mental disorders within symptom
networks. Four network metrics—bridge strength, bridge betweenness, bridge closeness,
and bridge expected influence—were developed to measure these bridges. Applying these
metrics to 18 group-level comorbidity networks demonstrated how bridge symptoms can
drive the progression from one disorder to another. Together, these studies underscore the
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value of identifying bridge symptoms to inform intervention strategies and improve
mental health outcomes.

Health and behavioral sciences
Recent studies have used network analysis to identify bridge symptoms and traits that
connect diverse psychological and behavioral conditions. Zhao et al. (2023) modeled
relationships between internet addiction (IA) and depression, identifying bridge
symptoms such as “guilty” and “escape” that link symptom clusters across both conditions.
Qu et al. (2024) applied cross-lagged panel network analysis to examine associations
between short video addiction and depressive symptoms, highlighting “conflict” and “sad
mood” as key bridges connecting these domains.

Blasco-Belled (2023) analyzed the interplay between character strengths and mental
health indicators, identifying traits like “love”, “hope”, and “gratitude” as bridge nodes
connecting positive and negative aspects of mental health. Jurado-González et al. (2024)
investigated comorbidity among anxiety, depression, and somatic symptoms, showing
how bridge symptoms such as “low energy” and “sad mood” sustain co-occurring
conditions. These insights emphasize that targeting bridge symptoms and traits can
disrupt maladaptive interactions and support more effective interventions.

Biological networks
In unsigned networks, Cheng, Huang & Sun (2008) defined bridge motifs as weak links
connecting distinct modules in biological systems. Their detection method uncovers global
statistical properties and local connection structures that are functionally significant.
Applied to gene regulation networks, bridge motifs were shown to highlight topological
patterns distinguishing species.

Panni & Rombo (2015) proposed strategies for identifying disease modules composed of
interconnected genes or proteins linked to specific diseases. These disease modules act as
functional bridges between different disease pathways, aiding the understanding of
comorbidities and revealing therapeutic targets. For example, bridges linking drug-target
modules to disease clusters can inform repositioning efforts by identifying shared
molecular mechanisms underlying multiple conditions. Together, these studies illustrate
how bridge structures can uncover complex relationships among biological entities.

Transportation networks
In transportation networks, bridges play a critical role in maintaining connectivity and
mitigating cascading failures. Xiao, Huang & Tang (2023) proposed a quantitative
framework to assess the importance and correlation of urban bridges and roads for
evaluating road network vulnerability. The study introduced measurement indicators such
as node degree, proximity centrality, intermediary centrality, and interrupt centrality to
capture the structural significance of bridges. By modeling road networks using dual
representations and applying grey correlation analysis, the authors demonstrated that
bridge nodes often exhibit the highest correlation with overall network performance,
underscoring their pivotal role in sustaining system resilience.
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Qiang, Wancheng & Xinzhi (2021) focused on seismic vulnerability and retrofit
prioritization of bridge networks under budget constraints. They developed multiple
bridge importance ranking methods combining topological and fragility considerations
and formulated the selection of retrofit strategies as a 0–1 knapsack optimization problem.
Simulation results revealed that retrofitting strategies prioritizing both network topology
and structural fragility achieved superior improvements in post-seismic reliability
compared to methods relying solely on individual criteria. These findings highlight that the
strategic reinforcement of critical bridges is essential for enhancing the resilience and
reliability of transportation networks in seismic regions.

Energy networks and power systems
In energy networks, bridges play an essential role in improving stability and preventing
cascading failures. Lan & Zocca (2021) proposed a bridge-block decomposition refinement
framework that partitions power grids into smaller sub-networks by selectively switching
off transmission lines. This process increases the number of bridge-blocks, which act as
barriers to failure propagation, thereby improving robustness against cascading line
failures. The authors introduced a novel Mixed-Integer Linear Programming
(MILP)-based optimization approach using DC power flow models, as well as an
efficient AC recursive tree partitioning method, demonstrating that these strategies can
significantly enhance failure localization while minimizing line congestion.

Ódor et al. (2024) analyzed European high-voltage power grids using large-scale
Kuramoto swing equation simulations to study how adding or removing bridges affects
network synchronization and cascade dynamics. Their results show that well-placed
bridges improve synchronization and reduce cascade sizes near the synchronization
transition region, where self-organization drives power grid behavior. Conversely, bridge
removals or poorly placed additions can exacerbate failures due to Braess’s paradox. The
study emphasizes that bridge placement must consider both topological and dynamical
factors to achieve optimal resilience and prevent large-scale blackouts.

OPPORTUNITIES AND CHALLENGES
In this section, we explore the opportunities and challenges presented by signed and
unsigned networks, which are crucial for advancing the field of network analysis.

Unsigned networks
In unsigned networks, which lack edge signs but may still include edge weights, local
bridges are defined as edges whose removal increases the shortest path between two nodes
by at least two (Granovetter, 1973). However, this definition implicitly assumes
unweighted graphs, treating all connections as equally important regardless of their
strength. In practice, bridges causing larger increases in effective distance or occupying
more central structural positions can contribute more significantly to network connectivity
and information flow. This oversimplification reduces the ability to effectively evaluate the
diverse roles of bridges that strengthen community cohesion and facilitate information
propagation.
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This issue is not limited to local bridges but applies to broader bridge definitions. Equal
treatment of all bridges overlooks differences in their contributions to network
functionality, which depend on factors such as network position and the relative
significance of the connections. Incorporating metrics that reflect these varying
contributions could improve the assessment of community cohesion, information
dissemination, and network resilience (Opsahl, Agneessens & Skvoretz, 2010).

Beyond the foundational definition by Granovetter (1973), recent studies have extended
the analysis of network connectivity and robustness by incorporating weighted metrics and
meso-scale structures. Opsahl, Agneessens & Skvoretz (2010) introduced measures
accounting for both edge weights and connectivity patterns, while Rombach et al. (2017)
proposed a framework for detecting core-periphery structures, which can reveal cohesive
cores critical for maintaining overall connectivity. However, despite these advances, there
remains a need to integrate bridge-centric and core-periphery perspectives to develop
unified metrics that can better quantify the role of critical connections in supporting
resilience, information diffusion, and structural cohesion in complex networks.

Building upon applications described in prior sections (Xiao, Huang & Tang, 2023;
Qiang, Wancheng & Xinzhi, 2021), recent studies have demonstrated the importance of
identifying critical bridges to improve resilience in transportation networks. However,
most existing approaches remain static and do not consider temporal fluctuations in traffic
loads or network topology. Future research could develop predictive models that integrate
structural indicators with real-time flow data to dynamically assess bridge vulnerability
and support proactive intervention strategies under disruptions.

Signed networks
Signed networks reflect dual relationships with positive and negative edges (Tang et al.,
2016; Leskovec, Huttenlocher & Kleinberg, 2010; Yang et al., 2012). Structural bridges in
signed networks influence inter-community dynamics by facilitating cooperation through
positive connections or highlighting conflicts through negative connections. These
characteristics distinguish signed networks from unsigned networks and highlight the need
to reconsider how key structural elements are defined (Yang, Cheung & Liu, 2007; Derr,
Ma & Tang, 2018).

The definition of bridges in unsigned networks, which focuses solely on maintaining
connectivity, cannot be directly applied to signed networks due to the duality of positive
and negative edges. Algorithms designed for unsigned networks do not capture the unique
complexities of signed relationships (Kunegis et al., 2010). The duality of edges complicates
the identification of structural elements, such as bridges. Table 3 illustrates the absence of a
widely accepted definition of bridges in signed networks. Balance Theory (Heider, 1946)
and Status Theory (Leskovec, Huttenlocher & Kleinberg, 2010) offer foundations for
analyzing signed relationships but lack integration into bridge definitions.

Recent advances have proposed signed graph neural networks and embedding methods
(Derr, Ma & Tang, 2018; Huang et al., 2019b; Liu, 2022; Zhou & Yan, 2025), which aim to
capture the dual nature of positive and negative relationships. However, these approaches
primarily focus on node classification and link prediction, with limited attention to the
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identification and characterization of structural bridges. Developing a comprehensive
framework that integrates sign-aware embedding with structural metrics could improve
the quantification of bridge importance and enable tracking of their temporal evolution.
This refined perspective may support practical applications such as polarization
mitigation, conflict prediction, and resilience assessment in online social platforms.

General considerations for bridge analysis
In addition to the specific challenges in unsigned and signed networks, several general
considerations apply to both types of networks. Bridges in directed networks require an
analysis of edge directionality, as their removal may impact flows in one direction while
preserving the opposite flow (Malliaros & Vazirgiannis, 2013). In weighted networks, the
importance of bridges depends on edge weights, where high-weight bridges often play
more significant roles in information diffusion (Opsahl, Agneessens & Skvoretz, 2010;
Riascos & Mateos, 2021). Bridge detection in large-scale networks requires algorithms that
remain computationally efficient while processing large datasets (Perozzi, Al-Rfou &
Skiena, 2014; Harenberg et al., 2014; Tang et al., 2015). Furthermore, time-varying
networks introduce additional complexity, which requires adaptive algorithms that can
efficiently handle real-time updates at nodes and edges (Xue et al., 2022; Rossetti &
Cazabet, 2018).

Recent advances in dynamic graph learning (Pareja et al., 2020; Chen et al., 2024) have
introduced frameworks capable of modeling evolving topologies and time-dependent
interactions, which could be adapted to improve bridge detection in temporal networks.
Future research may explore the integration of dynamic embedding techniques with bridge
importance metrics to support applications such as early warning systems in infrastructure
networks and adaptive content moderation in online platforms.

CONCLUSION
In this article, the concept of bridges in social networks was systematically reviewed. The
discussion highlighted both structural and functional roles of bridges. Findings across
diverse domains were synthesized to provide a comprehensive perspective. Consolidation
of existing research clarifies conceptual boundaries and reveals open questions for future
work. For example, bridge-aware embedding methods represent promising directions for
improving community detection and modeling information diffusion. Dynamic bridge
analysis may also support the understanding of evolving network resilience. This survey
aims to provide a foundation for developing advanced models and tools to analyze bridges
and their impact on social and information networks.
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