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ABSTRACT
The rapid advancement of artificial intelligence (AI) has catalyzed transformative
changes in education, particularly in mobile and online learning environments.
While existing deep learning models struggle to efficiently integrate the complexity of
remote education data and optimize model performance, this article proposes an
intelligent evaluation method for students’ learning states based on multimodal data.
First, the joint characteristics of the pre-class mental status survey information and
the health big data of teachers and students in the online teaching process constitute
input data. Then, the multilayer perceptron (MLP) is used to intelligently identify the
students’ status and classify their enthusiasm for the class. Finally, the particle swarm
optimization (PSO) model is used to optimize the model and improve the overall
recognition rate. Compared to traditional methods, the PSO-MLP model with
combined multimodal data performs well, achieving an accuracy of 0.891. It provides
an operational, technical solution for the education system, provides a new AI
foundation for personalized teaching and student health management by accurately
assessing students’ learning status, and helps to improve the effectiveness and
efficiency of remote education.

Subjects Adaptive and Self-Organizing Systems, Algorithms and Analysis of Algorithms, Artificial
Intelligence, Computer Education, Data Science
Keywords Remote education, Mobile educational intelligent system, Deep learning, PSO, MLP

INTRODUCTION
Education plays a pivotal role in shaping individuals’ capacities to pursue happiness,
realize aspirations, and contribute meaningfully to society. However, traditional
educational methodologies are increasingly strained as they adapt to the rapid pace of
technological advancements and societal changes. The concept of educational reform has
thus emerged as a critical endeavor aimed at modernizing pedagogical practices to meet
contemporary needs (Chen, Zheng & Yu, 2020; Li et al., 2023).

The rise of remote education, accelerated by the COVID-19 pandemic, has
fundamentally transformed teaching and learning environments. While it has enabled
broader access to educational resources, this shift has also revealed persistent challenges,
particularly in maintaining student engagement and assessing learning outcomes in the
absence of physical presence. Although disparities in access to digital infrastructure and
digital literacy remain significant barriers for some student populations (Villegas-Ch et al.,
2021; Liu et al., 2021), a more pressing issue in technologically equipped settings is the lack

How to cite this articleWang J, Asif M. 2025. Leveraging PSO-MLP for intelligent assessment of student learning in remote environments:
a multimodal approach. PeerJ Comput. Sci. 11:e3121 DOI 10.7717/peerj-cs.3121

Submitted 9 April 2025
Accepted 21 July 2025
Published 18 August 2025

Corresponding author
Jing Wang, 17399056639@163.com

Academic editor
Siddhartha Bhattacharyya

Additional Information and
Declarations can be found on
page 21

DOI 10.7717/peerj-cs.3121

Copyright
2025 Wang and Asif

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.3121
mailto:17399056639@�163.�com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.3121
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/


of real-time insight into students’ cognitive and emotional states. Traditional online
platforms often fail to capture learners’ affect and attention, limiting instructors’ ability to
deliver adaptive and personalized support. This gap has motivated the development of
intelligent assessment systems that leverage physiological signals to infer learner states,
thereby enhancing engagement and learning effectiveness in remote settings. Beyond
technological access, the prolonged use of electronic devices in online learning
environments has been linked to adverse physical and mental health outcomes among
students. Increased screen time contributes to visual strain, fatigue, and potential
long-term health risks. At the same time, reduced physical activity and social interaction
exacerbate mental health challenges such as social isolation and anxiety (Wangang, 2023).
These multifaceted challenges underscore the urgent need for innovative methodologies
that can comprehensively assess and mitigate the impacts of remote education on student
well-being. In this context, the integration of advanced data analytics, particularly through
big data frameworks, offers promising solutions. Big data analytics enables the real-time
monitoring and analysis of vast datasets encompassing students’ physical health metrics,
mental states, and learning behaviors (Dávila-Montero et al., 2021). By leveraging
multimodal data—such as heart rate variability and exercise patterns—from health, big
data repositories, educators and health professionals can gain deeper insights into students’
holistic well-being. This data-driven approach not only enhances the accuracy of assessing
students’ learning states but also provides actionable insights to inform personalized
interventions and support mechanisms.

Motivation for the study and methodology
The increasing prevalence of remote and mobile learning environments has introduced
significant challenges in accurately assessing student engagement, emotional well-being,
and learning effectiveness. Traditional evaluation methods, relying heavily on
self-reporting or single-modal behavioral indicators, are often limited by subjectivity,
latency, and low adaptability. This study is motivated by the urgent need to develop
intelligent, real-time, and objective evaluation tools that can adapt to the multimodal and
dynamic nature of distance education. The decision to integrate multimodal physiological
signals—such as electroencephalography (EEG), galvanic skin response (GSR) and heart
rate—with intelligent classification models is based on the understanding that
physiological data serve as reliable proxies for emotional and cognitive states, which are
essential for effective learning.

To address the inherent complexity and non-linearity of such data, a multilayer
perceptron (MLP) was selected due to its strong capacity for modeling high-dimensional
feature interactions. However, MLP’s performance is highly sensitive to its initial
hyperparameters and susceptible to local minima during training. Therefore, particle
swarm optimization (PSO) was introduced as a metaheuristic method to efficiently
optimize MLP parameters. PSO offers global search capabilities and faster convergence,
making it well-suited for optimizing neural networks in scenarios involving heterogeneous,
high-noise inputs. The combined PSO-MLP framework thus aligns with the study’s
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motivation to create a robust, adaptive, and interpretable model for intelligent assessment
in real-world, data-rich educational settings.

Therefore, the contributions of the article are:
(1) Integration of multimodal data for enhanced student evaluation: The article

introduces an intelligent evaluation method that integrates pre-class mental status surveys
with big health data from both teachers and students. This multimodal approach enables a
more comprehensive understanding of students’ learning states and classroom
enthusiasm, representing a significant improvement over existing deep learning models
that struggle with remote education data.

(2) Application of particle swarm optimization (PSO) to improve model performance:
By applying the PSO model to optimize the Multilayer Perceptron (MLP), the article
enhances the efficiency and accuracy of the learning state assessment. The PSO-MLP
model achieves a notable accuracy of 0.891, demonstrating improved performance over
traditional methods and offering a technical solution for better recognizing and managing
students’ learning conditions.

‘Related Works’ analyzes the application status of the PSO-MLP model under
multimodal data, and ‘Materials andMethods’ expounds on the implementation process of
the intelligent evaluation method of students’ learning status based on multimodal data. In
‘Experiments and Analysis’, the robustness of the model and the effect of sentiment
classification are experimented with. ‘Discussion’ concludes with a summary and
limitation analysis.

RELATED WORKS
In distance education, researchers predict students’ learning states based on their course
engagement data. Liu et al. (2025) extract useful features automatically from course
engagement data using a convolutional neural network with long short-term memory
(LSTM) models to forecast learning states across different periods dynamically. Jin (2023)
uses learning behavior data to employ a binary logistic regression model for predicting
student dropout rates. Shen et al. (2022), leveraging course data, extracting 19 features and
constructing sliding window models using machine learning algorithms to predict
learners’ emotional trends dynamically.

However, relying solely on single-feature extraction methods leads to lower accuracy in
identifying students’ online learning states. Multimodal data analysis integrates various
data types to provide a comprehensive view of student learning states, enhancing the
perceptual capabilities of deep learning models. Analysis of written assignments and
discussion forums can provide valuable insights into student comprehension and
participation (Xu, Chen & Chen, 2020). Tracking interactions with learning management
systems helps identify patterns of student behavior and engagement (Veluvali & Surisetti,
2022). Additionally, data from wearable devices, such as heart rate and skin conductance,
offer additional dimensions on student engagement and stress levels (Hernández-Mustieles
et al., 2024). These diverse data sources enable a more comprehensive understanding of
student learning, thereby providing insights for more effective and personalized
educational interventions. Xu et al. (2021) introduced the concept of bilinear pooling
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primarily for feature fusion. The primary idea of bilinear pooling is to combine and
cross-multiply two features to produce a fused feature. Almujally et al. (2024), using a
multimodal compact bilinear pooling method to fuse video and audio-related features,
achieved an accuracy of 97%, demonstrating superior recognition performance compared
to other algorithms.

PSO and MLP have been widely applied in educational research and practice due to
their robust optimization and pattern recognition capabilities. MLP, an artificial neural
network, excels in modeling complex relationships within data. In educational assessment,
MLP is used to predict student success, identify learning barriers, and customize
personalized learning experiences (Smirani et al., 2022). Mandia, Mitharwal & Singh
(2024) demonstrated the effectiveness of MLP in simulating student engagement and
performance, offering valuable insights for educators to design better teaching strategies.
Combining PSO with MLP harnesses PSO’s optimization strengths and MLP’s predictive
capabilities, thereby enhancing the performance of educational assessments. Research
indicates that PSO can optimize neural network hyperparameters, such as learning rates,
neuron numbers, and layers, thereby improving model accuracy and convergence speed
(Xiao et al., 2022). In the educational domain, particle swarm algorithms are utilized to
optimize the parameters of various educational algorithms and systems. For instance,
Kumari & Kumar (2023) applied PSO to optimize neural network parameters for
predicting student performance, achieving higher accuracy compared to traditional
optimization methods.

Therefore, integrating PSO and MLP for intelligent assessment offers advantages such
as high optimization efficiency, high prediction accuracy, and strong adaptability. PSO
optimizes MLP hyperparameters, thereby enhancing model accuracy and accelerating
convergence speed (Al Bataineh & Manacek, 2022). The PSO-MLP model is superior to
traditional MLP models in predicting student grades and identifying at-risk students
(Putra et al., 2021; Huang et al., 2025). Furthermore, the PSO-MLP model can adapt to
various educational contexts by merging different types of data. Recent advancements in
transformer-based models have shown substantial promise in the analysis of multimodal
physiological signals. For example, Wu, Daoudi & Amad (2023), Lin et al. (2025)
introduced a transformer model designed for wearable-based emotion recognition using
heart rate, skin conductance, and accelerometer data, achieving 71.5% accuracy in binary
affect classification. Similarly, Mordacq et al. (2024) proposed ADAPT (Anchored
Physiological Transformer), a masked multimodal transformer that demonstrated robust
performance in predicting stress under high-G conditions. Alazeb et al. (2024) introduced
VidFormer, a hybrid 3D-CNN and transformer framework for estimating heart rate and
respiration from facial video, demonstrating strong generalization across subjects and
lighting conditions. These works illustrate the growing impact of transformer architectures
in learning complex interdependencies among physiological modalities, offering
methodological insight and inspiration for future extensions of this study.

Despite these advantages, integrating PSO and MLP in educational assessment faces
challenges and limitations. Integrating multimodal data (including personal and
behavioral data) increases model computational complexity, requiring substantial
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computational resources and efficient algorithms to handle large datasets. Achieving the
PSO-MLP model in large-scale educational environments is challenging due to the need
for robust infrastructure and real-time data processing capabilities. Moreover, integrating
data from various sources (text, behavioral, and physiological) necessitates complex data
integration techniques to ensure consistency and accuracy.

Multimodal data fusion strategies are another vital area of development, focusing on the
effective combination of information from different modalities. Techniques such as
concatenation, attention mechanisms, and tensor fusion have been proposed to integrate
multimodal data while minimizing redundancy and maximizing complementary
information (Duan et al., 2024; Liu, Luo & Fu, 2024). These strategies are crucial for
enhancing the accuracy and robustness of PSO-MLP models without significantly
increasing computational complexity, thereby contributing to more effective and efficient
models.

Emerging research is also focusing on real-time and incremental learning methods for
multimodal data, which enable PSO-MLP models to continuously update their parameters
as new data becomes available (Liu et al., 2023;Wang et al., 2025; Liu, Cao & Chen, 2024).
This approach reduces the need for retraining from scratch, thereby lowering
computational costs and making the models more adaptable to dynamic environments
and streaming data. This is particularly relevant for applications requiring real-time
processing and decision-making.

MATERIALS AND METHODS
Data preprocessing steps
The accuracy and robustness of multimodal learning state recognition heavily depend on
the quality and consistency of the input data. Therefore, an extensive data preprocessing
pipeline was implemented to standardize the input from various physiological signal
sources, including EEG, GSR, heart rate, and facial expression. The preprocessing
procedures were designed to ensure data integrity, temporal alignment, and feature
relevance, thereby facilitating effective learning by the PSO-MLP model.

Data cleaning
Raw data acquired from the DEAP dataset contains noise and missing values due to sensor
artifacts and environmental interference. To address this, the following cleaning steps were
applied:

Outlier removal using z-score thresholding (|z| > 3).
Artifact correction through bandpass filtering for EEG signals (4–45 Hz).
Missing value imputation via linear interpolation to preserve temporal continuity.

Signal segmentation and alignment
To facilitate multimodal fusion, all signals were segmented into non-overlapping windows
of one-second duration. This ensured:

Temporal synchronization across modalities;
uniform sample length per instance;
preservation of temporal dependencies within each time window.
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Feature extraction
Each modality underwent domain-specific feature extraction to convert raw signals into
structured input features:

EEG features: power spectral density (PSD), band power (theta, alpha, beta), and Hjorth
parameters.

GSR and heart rate features: time-domain metrics including mean, standard deviation,
skewness, and kurtosis.

Facial expression features: geometric distances between key landmarks and action unit
(AU) activation scores.

Sliding windows with a 50% overlap were used during feature extraction to enhance
temporal resolution and capture dynamic changes.

Feature normalization

Due to the heterogeneous nature of the extracted features, normalization was applied:
Z-score normalization to enforce zero-mean and unit-variance across each feature.
Min-max scaling was employed in parallel experiments to assess the effect of the

normalization strategy on model convergence.

Label encoding and data augmentation
To support supervised learning:

Labels were encoded into three emotional states (Active, Negative, and Exhausted)
based on annotated DEAP scores.

Data augmentation was performed using generative adversarial networks (GANs) to
synthetically generate balanced samples across underrepresented classes, mitigating class
imbalance and improving generalization. To address the class imbalance and enhance the
robustness of our model, we utilized a GAN to augment the EEG data. The
implementation details are as follows:

GAN architecture: Generator: A feedforward neural network with three hidden layers
(128, 256, and 512 neurons, respectively), using Leaky ReLU activation and tanh in the
output layer. Discriminator: A mirrored architecture with dropout (0.3) added for
regularization, ending with a sigmoid output for binary classification. Input: Random
noise vector of size 100. Training Configuration: Optimizer: Adam with learning rate =
0.0002, β1 = 0.5 Batch size: 64 Epochs: 1000 Loss function: Binary cross-entropy
Additionally, classification accuracy with and without synthetic data was compared to
evaluate augmentation effectiveness.

Remote monitoring
The underlying distribution of real data samples is captured through the GAN generator
and new data is generated, which divides the original data into three groups according to
the labels (high “2”, medium “1”, and low “0”). The objective function of GAN is expressed
as follows.

min
G

max
D

f D;Gð Þ ¼ Ex�Pdata xð Þ log D xð Þ½ � þ Ez�Pz zð Þ 1�D G zð Þð Þ½ �� �
(1)
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where x fits the true data distribution Pdata xð Þ, z fits the prior distribution Pz zð Þ, and E �ð Þ
represents the expected value. The Discriminator D is a neural network designed to
distinguish between real data samples and those generated by the Generator. The
Generator G is a neural network that generates synthetic data samples from a noise vector z
sampled from a prior distribution Pz zð Þ.

Therefore, the Wasserstein distance is introduced based on GAN, which effectively
addresses the issue that the distance cannot be reflected when the two distributions have no
overlap. The Wasserstein distance is expressed as follows.

W p; qð Þ ¼ inf
c� p;qð Þ

E x;yð Þ�c kx � yk½ � (2)

where inf �f g set lower bounds,
Q

p; qð Þ is the distribution of all possible sets of joint
distribution, joint distribution, for each possible g � Q

p; qð Þ, calculate the expectation of
distance kx� yk, called E x;yð Þ�g kx� yk½ �. The lower bound on the expectation is the
Wasserstein distance of the distributions p and q.

After the aforementioned preprocessing steps, we obtained the processed physiological
signal S(t). Figure 1 demonstrates the preprocessing effects: Fig. 1A shows the raw data
during the emotional stimulation phase; Fig. 1B displays the data after linear interpolation;
Fig. 1C presents the data after noise reduction with a filter; Fig. 1D shows the normalized
data; Fig. 1E depicts the data after processing with GAN. These techniques not only
enhance the accuracy of emotion recognition but also provide crucial technical support
and data foundation for applications in remote monitoring and education.

MLP-based health condition recognition
MLP is the most classical neural network, also known as a feedforward neural network or
artificial neural network. The traditional perceptron is a linear model that can only handle
simple binary classifications and performs poorly in nonlinear problems. Then, by adding
hidden layers and activation functions, it effectively improves the nonlinear expression
ability and is widely used in data mining, machine learning, and other fields (Xiong et al.,
2021). The specific structure of the MLP is shown in Fig. 2.

For a multilayer perceptron, its internal neural network layer is also divided into three
types: input layer, hidden layer, and output layer. Corresponding weights connect different
layers. Input u ¼ u1; u2; � � � ; un½ �T and y ¼ y1; y2; � � � ; yp

h iT
are mapped by the weight w

shown in Formula (3) between each layer:

w ¼ w1
� �T

; w2
� �Th iT

: (3)

Once the MLP is constructed, the number of parameters can be calculated. The learning
procedure for the MLP involves estimating the parameters. To optimize the MLP training,
a general state-space model can be expressed by Formulas (4) and (5):

wk ¼ wk�1 þ vk (4)

yk ¼ g wk; ukð Þ þ xk: (5)
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(e)

Original data

Generated data 
1

Generated data 
1

Generated data 
1

Figure 1 (A–E) Data signal processing results. Full-size DOI: 10.7717/peerj-cs.3121/fig-1

Figure 2 Construction of the MLP. Full-size DOI: 10.7717/peerj-cs.3121/fig-2
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For its learning process and parameter iteration, it can be calculated through the
forward and backward propagation algorithm. The forward propagation algorithm is used
to establish the input, output, and network connection modes, as well as to determine the
number of layers and the corresponding nodes in the network. The forward propagation
algorithm only initializes the neural network and does not adjust the weights and offsets. It
only performs feedforward calculations and cannot solve problems. Therefore, we need to
use the backpropagation method to adjust the internal parameters of the network and
optimize its internal structure to minimize the defined loss function. The specific process
of the reverse neural network is shown in Algorithm 1.

This algorithm represents the foundational process of training a backpropagation
neural network, wherein the minimization of the loss function guides the iterative
adjustment of weights and biases. The forward propagation computes activations, while
backpropagation calculates the gradients, enabling the optimization of network
parameters. The process iterates until the changes in parameters fall below a predefined
threshold, ensuring convergence to an optimal solution.

PSO-based model optimization
The neural network methods typically employ gradient descent for learning and
optimizing network weights during model optimization, making them sensitive to initial
values. Improper selection of initial values can cause optimal weights and biases to
converge to local extreme points, significantly reducing model accuracy. Therefore, this
study aims to utilize the PSO method to optimize the initial values of MLP, thereby
enhancing performance. This article evaluates the performance of particles through their
adoption in the study.

The particles in the particle swarm used for the MLP parameters optimization are
defined as follows:

Pj ¼ bCjejrjcj ¼ 1; 2; . . . ;Q (6)

where Q is the particle number total.
First, initialize the particles randomly and then update them iteratively. Three

characters define each particle in iteration k.

(1) Location in search space Pj kð Þ
(2) The best position Pjbest kð Þ at k iteration

(3) Flight speed Vj kð Þ
In addition, global optimal position of the entire particle swarm is defined as Pjbest kð Þ, so

the function of velocity Vj and position Pj updated iteratively by each particle during flight
is defined as:

a kð Þ ¼ amax � aminð Þðk=KÞ2 þ amin (7)

c1 kð Þ ¼ c1max � c1minð Þðk=KÞ2 þ c1min (8)
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c2 kð Þ ¼ c2min � c2maxð Þðk=KÞ2 þ c2max (9)

v kþ 1ð Þ ¼ a kð Þvj kð Þ þ c1 kð Þr1bPj kð Þ � Pjbest kð Þc þ c2 kð Þr2bPj kð Þ � Pgbest kð Þc (10)

Pj kþ 1ð Þ ¼ Pj kð Þ þ vj kþ 1ð Þ (11)

In Formula (7) to (11), a kð Þ is the inertial velocity weight, c1 kð Þ and c2 kð Þ is the
coefficient of acceleration, r1 and r2 are the independent random numbers located at 0 � 1,
K is the max iteration. The framework of the PSO-MLP is shown in Fig. 3.

EXPERIMENTS AND ANALYSIS
Multimodal physiological data analysis can significantly improve the understanding and
monitoring of student emotions and states in distance education. These data typically
include, but are not limited to, various physiological signals such as heart rate, GSR, EEG,
eye tracking, and facial expression. These data are collected by various sensor devices and
transmitted in real-time to the analysis system for processing and interpretation. To verify
the model using Python, a PSO-MLP neural network model was constructed, where
preprocessed data was input for prediction. Additionally, a comparison was made with a
MLP neural network.

Algorithm 1

Input:m training samples: x1; y1ð Þ; x2; y2ð Þ; . . . ; xm; ymð Þf g, activation function, loss function J hð Þ, network layers L, iteration number I and threshold
e for the iteration stop;

Output: weight matrix W and bias b

1. Initializing the weight matrix W and bias b in the network layer

2. for t ¼ 1 to I do

3. for i ¼ 1 to m do

4. Initialize vector a1 ¼ xi;

5. for l=2 to L do

6. ai;l ¼ r zi;l
� � ¼ r Wlai;l�1 þ bl

� �
;

7 end for

8. Calculate the gradient of parameters of each layer according to the loss function rhJt ht�1ð Þ
9. end for

10. for 1=2 to L do

11. wl :¼ wl � a � rWJt ht�1ð Þl

12. bl :¼ bl � a � rbJt ht�1ð Þl

13. end for

14. If the change value of all parameters is less than the iteration threshold ϵ, then skip to step 15

15. end for

16. return weights matrix W and bias vector b
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Datasets
The DEAP (Dataset for Emotion Analysis using Physiological signals) dataset (https://
paperswithcode.com/dataset/deap, DOI: 10.1109/T-AFFC.2011.15) was utilized to
examine the emotional states of students based on their physiological responses while
watching music videos. The dataset includes multimodal physiological signals from 32
participants, including EEG, GSR, heart rate, and facial expression data. Initially, the
dataset was meticulously organized to ensure that the type of physiological signal
systematically categorized each participant’s data. This preparation phase was crucial for
maintaining consistency throughout the analysis.

In the preprocessing stage, various techniques were applied to clean and normalize the
data. For EEG data, a bandpass filter was used to remove noise and artifacts, followed by
normalization to achieve zero mean and unit variance. The EEG signals were then

PSO initialization

Initialize particle position and velocity
for MLP 

Adoption calculation

Optimize Adoption function

Velocity and position update

End conditions

Optimal initial value of MLP obtained

N

Y

ositio
N

Start

Figure 3 Framework of PSO-MLP. Full-size DOI: 10.7717/peerj-cs.3121/fig-3
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segmented into non-overlapping windows, typically one second long, to facilitate further
analysis. Similarly, GSR, heart rate, and facial expression data were cleaned by removing
outliers and artifacts, with segmentation performed in sync with the EEG data to maintain
temporal alignment. We used the publicly available DEAP dataset, which contains EEG
recordings from 32 participants across 32 video stimuli. To preprocess the data, the
following steps were applied:

Filtering: EEG signals were bandpass filtered using a 4th-order Butterworth filter in the
frequency range of 4–45 Hz to remove low-frequency drift and high-frequency noise.

Normalization: Each EEG channel was standardized using z-score normalization,
computed across the entire signal of each channel per trial.

Segmentation: The continuous EEG signal was divided into overlapping segments using
a 4-s window with 50% overlap, resulting in windows of 512 samples (at a sampling rate of
128 Hz).

Feature extraction: From each segment, we extracted statistical and frequency-domain
features, including mean, standard deviation, skewness, kurtosis, and band power (delta,
theta, alpha, beta, gamma bands).

Following preprocessing, feature extraction was performed to quantify and grade the
physiological signals. For EEG data, features such as power spectral densities, band powers,
and Hjorth parameters were extracted. Time-domain features, including mean, variance,
standard deviation, skewness, and kurtosis, were derived from GSR and heart rate data.
Sliding window techniques, with a window size of 5–10 s and a 50% overlap, were
implemented to capture temporal changes in continuous signals, such as GSR and heart
rate. These extracted features were statistically analyzed within each window to provide a
comprehensive overview of the participants’ physiological responses during the video
sessions.

The next phase involved classifying and labeling the data based on the extracted
features. The emotional states of students were categorized into three distinct groups:
Active, Negative, and Exhausted. This classification was achieved using supervised
machine learning algorithms trained on labeled data. The categorization allowed for a
detailed analysis of each participant’s class status, specifically identifying their levels of
enthusiasm and fatigue. By mapping the physiological features to the defined class labels,
the study was able to discern patterns in student engagement and emotional responses.

Finally, the processed data were analyzed to conclude the relevance to educational
reform. The statistical analysis focused on understanding the correlation between
physiological signals and class engagement levels, identifying patterns that indicated high
enthusiasm, moderate participation, or signs of fatigue. These insights were then utilized to
develop recommendations for optimizing class structures, teaching methods, or
scheduling breaks to enhance student engagement and reduce fatigue. Cross-validation
techniques were employed to assess the robustness of the classification model, with
performance metrics such as accuracy, precision, recall, and F1-score being calculated.
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Experimental setup
All experiments were conducted using a Python-based implementation of the PSO-MLP
model. The computational environment was configured on a workstation equipped with
an Intel Core i7-12700K CPU (3.6 GHz, 12 cores), 32 GB of RAM, and an NVIDIA
GeForce RTX 3080 GPU with 10 GB of VRAM, running Windows 11 Pro. Model training
and evaluation were performed using Python 3.9, with key libraries including PyTorch
1.13, NumPy 1.23, sci-kit-learn 1.1, and SciPy 1.10. The optimization process, utilizing
PSO, was implemented with custom modules and validated against benchmark results. All
code was executed within the Anaconda environment, and experiments were repeated five
times to ensure statistical stability.

Table 1 outlines the architecture hyperparameter values for MLP and the optimization
results using PSO. For the experiments, the parameters were set as follows: MLP had an
input neuron count of 14, two hidden layers, and a rectified linear unit (ReLU) activation
function for the hidden layers.

In this experimental training, due to the high number of parameters and limited
training samples, overfitting is prone to occur. Therefore, a Dropout layer is applied to the
input to mitigate this issue. During training, each input neuron is retained with a
probability P, while the others are temporarily deactivated. This approach ensures that the
trained model does not overly rely on specific local features, thereby enhancing its
generalization performance.

The selection of 14 input neurons is based on the dataset’s input feature dimensionality,
ensuring the network can adequately represent the input space. The choice of two hidden
layers is motivated by the need for a balance between model complexity and training
efficiency, with ReLU activation functions selected for their efficiency in mitigating
vanishing gradient problems and facilitating faster convergence.

The Dropout_rate of 0.14 was determined empirically to strike a balance between
preventing overfitting and maintaining model performance. A dropout rate that is too high
could hinder the model’s ability to learn effectively, while a rate that is too low might not
sufficiently address overfitting.

The batch size of 95 was chosen to fully leverage GPU capabilities and improve training
speed while maintaining the stability of gradient updates. The value of 95 was found to

Table 1 Parameter settings.

Hyperparameter Values

MLP architecture Number of input neurons 14

Number of hidden layers 2

Number of output neurons 1

Hidden layer activation functions ReLU

PSO optimization results Number of neurons in the hidden layer 78

Dropout_rate 0.14

Batch_size 95
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provide a good trade-off between computational efficiency and convergence stability
during preliminary experiments.

In the construction of the PSO-MLP model, the particle swarm algorithm optimizes
parameters such as the number of neurons in the hidden layers, Dropout Rate, and Batch
Size. The inertia weight v = 0.5, and the acceleration constants c1 = c2 = 1 are also set for
PSO.

We evaluated model performance using accuracy, precision, recall, and F1-score. These
metrics were calculated using the following formulas:

Precision ¼ TP=ðTPþ FPÞ (12)

Recall ¼ TP=ðTPþ FNÞ (13)

F1-score ¼ 2� ðPrecision� RecallÞ=ðPrecisionþ RecallÞ: (14)

We applied five-fold cross-validation to ensure robustness. All metrics were averaged
across the five folds. The same validation strategy was applied uniformly to both the
baseline and proposed models for a fair comparison.

Learning status recognition with different modal data
The identification was carried out based on the collected data the results are provided in
Fig. 4.

According to the identification results using different modal data in Fig. 5, it can be
observed that when single modal data is used for identification, the differences between the
results of the three types of states are small, and the results of the two states in different
states are not significant. However, when the survey information and health information
are combined and input into the model simultaneously, the recognition rate improves to a
certain extent. It can be seen that although achieving good results in a single mode is
difficult, the advantages of MLP become apparent when information is combined.

To provide a more detailed explanation of the recognition process and to inform the
subsequent education reform, we also analyzed the recognition rate at different times of
day during the experiment. For the morning, afternoon and night, it is consistent with the
overall results. The combined features have achieved a high recognition rate, with accuracy
exceeding 90%. Overall, the recognition rate for the evening session is slightly lower than
that of the other two time periods. This is because the students in the evening session, due
to the matching of the day, had a large deviation when filling in the survey. This error was
identified through discussions with the students themselves, suggesting that we can
redistribute the weight of data from different modes when entering future research to
ensure a high recognition rate. On this basis, to make a detailed analysis of the current
education, we also analyzed the proportion of students in different learning states in three
periods of the day, and the results are shown in Fig. 6.

The proportion of students in different periods, as shown in Fig. 6, is generally
consistent with expectations: in the morning, students are more active, while those who are
tired and negative account for a relatively small proportion. With the continuous increase
in learning time per day, the proportion of students who are active decreases. However, it is
worth noting that the proportion of students who are exhausted is the least at night, which
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deviates slightly from expectation. After communicating with students, it was found that
most evening courses are elective or relatively low-difficulty courses. After a long rest in the
evening, students’ enthusiasm has recovered to a certain extent, resulting in the lowest
proportion of exhausted courses. However, the proportion of active courses has increased
compared to the noon courses.

Figure 7 presents the confusion matrix for the emotion recognition task. The results
indicate that the method accurately identifies high arousal and moderate valence emotions,
with accuracies of 90% and 94%, respectively. However, the accuracy for identifying low
arousal and low valence emotions is lower, at only 61% and 58%, respectively. This
discrepancy is due to the significant physiological changes typically associated with high
arousal and high valence emotions, such as surprise and fear during stimulation, which
leads to higher recognition accuracy. In contrast, the physiological changes associated with
low arousal and low valence emotions are less pronounced, resulting in lower recognition
accuracy.

Comparison of the PSO-MLP and other methods
To verify the effectiveness of the proposed approach, we compared it with several existing
methods, as shown in Fig. 8.

Figure 4 The learning status recognition using different modal data. Full-size DOI: 10.7717/peerj-cs.3121/fig-4
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According to the comparison of different methods in Fig. 8, when the PSO method is
not used for optimization, MLP does not have an advantage in the overall recognition rate.
Its accuracy is lower than that of SVM and higher than that of the traditional NN method.
The observed 0.029 accuracy gap between PSO combined with an MLP and SVM can be
attributed to several underlying factors. Firstly, the inherent characteristics of the
algorithms play a crucial role in their performance. PSO is a metaheuristic optimization
technique inspired by swarm behavior and is used to optimize the weights and biases in
MLPs. While MLPs can model complex patterns through their layered architecture, their
performance is highly dependent on the tuning of hyperparameters and network structure.

In contrast, support vector machines (SVMs) are designed to find an optimal
hyperplane that separates different classes and are generally effective in high-dimensional
spaces. However, their performance can be sensitive to the choice of kernel function and its
parameters. Table 2 summarizes the classification performance of the proposed PSO-MLP
model compared to baseline models (MLP and SVM), including average metrics, standard
deviations, 95% confidence intervals, and statistical significance (p-values).

However, with parameter optimization using PSO, the overall recognition rate has been
further improved, as PSO helps the MLP avoid falling into local extreme values, thereby
increasing the recognition accuracy even further.
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Figure 6 Students’ status ratio in different time. Full-size DOI: 10.7717/peerj-cs.3121/fig-6

Figure 7 Confusion matrix for distance learning status identification. Full-size DOI: 10.7717/peerj-cs.3121/fig-7
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DISCUSSION
This study addresses several specific challenges within the realm of remote education.
Firstly, it introduces an intelligent method for assessing students’ learning states by
combining multimodal physiological data. By integrating real-time physiological signals
such as heart rate, GSR, EEG, eye tracking, and facial expression, the study aims to provide
educators with more precise insights into each student’s emotional and cognitive states.
This approach enables timely interventions and personalized support measures tailored to
individual student needs, thereby enhancing the effectiveness of remote educational
practices.

Remote education often struggles with accurately gauging student engagement and
participation, making it difficult for educators to provide the necessary support. The use of
MLP in this study to classify classroom engagement levels is a significant step forward. By
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Figure 8 Result of the comparison among different methods. Full-size DOI: 10.7717/peerj-cs.3121/fig-8

Table 2 Model performance comparison with statistical analysis.

Model Accuracy (%) Precision (%) Recall (%) F1-score (%) 95% Confidence Interval (Accuracy) p-value vs. PSO-MLP

PSO-MLP 89.1 ± 1.3 88.7 ± 1.4 89.5 ± 1.1 89.1 ± 1.2 [87.4–90.8] –

MLP 84.5 ± 1.6 83.9 ± 1.7 84.2 ± 1.8 84.0 ± 1.5 [82.6–86.4] 0.002

SVM 82.7 ± 1.9 81.8 ± 2.1 82.3 ± 2.0 82.0 ± 1.9 [80.2–85.2] 0.001
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categorizing students based on their physiological data, educators can better identify which
students are actively engaged and which may require additional motivation or support.
This aspect of the research is crucial for fostering a more interactive and engaging learning
environment, which is often challenging to achieve in online education contexts.
Furthermore, the research provides essential technical support for educational health
analysis. By employing AI-based tools, the study facilitates intelligent analysis of educators’
and students’ health statuses within educational settings. For instance, GSR can reflect
emotional fluctuations, EEG analysis provides measurements of cognitive load and
concentration, and eye tracking reveals the distribution of reading and attention. This
technological advancement not only monitors but also improves the overall well-being of
teachers and students, thereby contributing significantly to the broader goals of
educational reform. The integration of such innovative approaches underscores the study’s
commitment to enhancing the quality and reliability of artificial intelligence (AI)-assisted
educational systems in mobile and remote learning environments. Although the proposed
model demonstrates promising results on the DEAP dataset, we acknowledge that relying
solely on a single dataset collected in a controlled experimental setting limits the
generalizability of the findings. DEAP reflects physiological responses to predefined video
stimuli, which may not fully represent the complexity and variability of real-world
educational environments. While we did not conduct external validation or domain
adaptation in this study, we have provided a thorough discussion of these limitations. We
emphasize the need for future work to explore the model’s applicability in more diverse
and authentic learning contexts, and we recognize that transferability across domains
remains a critical challenge. This reflection ensures a realistic interpretation of the results
and avoids overstating the conclusions.

The current stage of education demands leveraging the convenience brought by science
and technology to improve and rapidly promote education reform. Addressing health
issues among teachers and students during this reform, the study employs the MLP
method to jointly identify the learning status of teachers and students based on multimodal
physiological data. This provides robust support for ensuring the health of teachers and
students in the future. The use of diverse physiological signals, such as heart rate and EEG,
which belong to different data modalities, highlights the advantages of neural network
methods in solving such complex problems.

Neural networks, like MLP, are particularly well-suited for handling diverse and
nonlinear data inputs. The study chose MLP over traditional neural network methods due
to its combination of feedforward and backpropagation mechanisms, which significantly
enhance recognition efficiency. MLP’s ability to manually adjust nodes further improves its
efficiency. Additionally, the performance of the MLP method is optimized using PSO, as
discussed in ‘Experimental Setup’, which ensures high precision and reliability. While MLP
may not be the most outstanding method in intelligent classification algorithms,
optimizing its parameters yields satisfactory results, providing a high-precision reference
for future educational reforms. This optimized approach offers substantial data support for
implementing education reforms, ensuring more effective and tailored educational
practices in remote learning environments. By addressing the key challenges of
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engagement and health monitoring, this study makes a significant contribution to the
advancement of remote education.

In summary, while the study demonstrates promising results within a controlled
experimental setting, we recognize the importance of critically examining both the
practical and methodological aspects of our approach. The integration of physiological
data into remote learning assessment is still an emerging area, and our use of a
PSO-optimized MLP model represents a novel step toward intelligent emotion-aware
systems. However, real-world deployment demands more than experimental
performance—it requires interpretability, adaptability, and computational efficiency. We
have reflected on these aspects through a more comprehensive discussion of limitations
and potential biases. Furthermore, to enhance methodological transparency and support
future replication, we provide access to high-level pseudocode and the project’s source
code. We believe these additions not only strengthen the study’s credibility but also make a
meaningful contribution to the ongoing conversation about scalable, data-driven
approaches in remote education.

CONCLUSIONS AND LIMITATIONS
Conclusions
The integration of artificial intelligence (AI) in educational settings, particularly in mobile
and online learning environments, has ushered in transformative opportunities. This study
introduces an intelligent method for assessing students’ learning states using multimodal
physiological data, aiming to enhance the effectiveness and efficiency of remote education.
By leveraging the joint characteristics of pre-class mental surveys and health big data from
teachers and students, our proposed PSO-MLP model offers a robust solution for
accurately classifying students’ enthusiasm levels during classes. Through experiments
utilizing the DEAP dataset and employing a PSO-optimized MLP neural network, we
achieved a significant recognition accuracy of 89.1%, surpassing traditional methods. This
approach not only identifies students’ states (Active, Negative, Exhausted) based on
physiological signals, such as EEG, GSR, and facial expressions, but also demonstrates the
model’s effectiveness across different times of the day, with peak recognition rates
exceeding 90%. Moreover, the study compares our PSO-MLP model against other
methodologies, showcasing superior performance in recognition rates due to PSO’s
optimization capabilities, which mitigate local minima issues inherent in MLP training.
This optimization ensures the robustness and applicability of our model in real-world
educational contexts, supporting personalized teaching approaches and effective student
health management.

Furthermore, our findings contribute essential insights into the challenges of remote
education, particularly in gauging student engagement and well-being. By integrating
advanced AI tools, such as MLP, enhanced by PSO, educators can make informed
decisions to foster more interactive and supportive learning environments. This
technological integration not only monitors but also enhances the overall well-being of
both educators and students, thereby catalyzing educational reform efforts.
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Limitations
While the proposed method demonstrates promising performance, several important
limitations must be acknowledged to present a more balanced assessment. First, the
model’s effectiveness relies heavily on the quality, representativeness, and diversity of the
physiological data used. Although the DEAP dataset provides a solid foundation, it is
collected under controlled experimental conditions. It may not fully capture the
complexity, variability, and contextual diversity of real-world educational environments.
This constraint limits the generalizability of the findings, especially when considering
diverse student populations, varying emotional baselines, and environmental factors.
Second, although the PSO-MLP model achieves high accuracy, its complexity introduces
challenges related to interpretability. Neural networks, particularly those optimized
through metaheuristic algorithms like PSO, often behave as “black boxes,” making it
difficult for educators or researchers to understand how predictions are made. Without
clearer insights into feature importance or decision pathways, the practical application of
the model in education may be hindered, as stakeholders may lack the necessary
transparency to trust or act on the model’s outputs.

Furthermore, the risk of overfitting must be considered. While cross-validation helps
mitigate this, relying on a single dataset raises the possibility that the model may have
adapted too closely to dataset-specific patterns rather than learning generalizable features.
Additionally, there is a limited exploration of how performance varies across demographic
subgroups or recording sessions, which could introduce unintended biases or instability.
Finally, the deployment of such a system in real-time educational settings presents
practical challenges. Real-time processing of multimodal physiological signals requires
substantial computational resources, and system latency can compromise responsiveness
and usability in dynamic classroom environments. These limitations underscore the
importance of future work involving external validation, interpretability enhancement,
and domain adaptation to bridge the gap between experimental performance and
real-world utility.
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