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ABSTRACT
Terrain Aided Navigation (TAN) systems hold significant potential for delivering
accurate navigation for Uncrewed Aerial Vehicles (UAVs). However, a major
limitation of conventional TAN systems lies in the time-consuming correlation
technique used to search the a priori map, specifically the Digital Elevation Maps
(DEM). This article presents a fuzzy heuristic method for the mean absolute
deviation (MAD) correlation scheme (FH-MAD), aimed at reducing the
computational complexity and execution time of the TAN algorithm. The fuzzy logic
system uses heading and roll angle data from onboard sensors to determine the
aircraft’s matching area. The output membership functions are designed based on
parameters that depend on terrain features. Additionally, the proposed method
incorporates an error state Kalman Filter (ESKF) as the navigation algorithm to
estimate the UAV’s position under various maneuvering conditions. To evaluate the
effectiveness of the proposed system, tests were conducted using two distinct DEMs
with varying topographical characteristics and dimensions. The results demonstrate
improved position accuracy and a significant reduction in computation time
compared to traditional TAN methods, making the approach suitable for real-time
UAV navigation applications.

Subjects Algorithms and Analysis of Algorithms, Autonomous Systems, Computer Networks and
Communications, Spatial and Geographic Information Systems, Internet of Things
Keywords Unmanned aerial vehicles (UAVs), Error state Kalman filter (ESKF), Localization,
Terrain aided navigation (TAN), Terrain features

INTRODUCTION
Uncrewed Aerial Vehicles (UAVs) have become one of the most important and promising
area for both civilian as well as military-based applications. In this perspective, the
localization and tracking information of a UAV are vital to provide the UAV with a
complete navigation solution (Yigit & Yilmaz, 2022; Ali et al., 2021; Abdelkader et al.,
2025). The main purpose of a navigation system is to determine the geographical position,
altitude, orientation and velocity of an aircraft in order to accomplish its flight from one
point to another and good control performance (Bousbaine et al., 2023). The Inertial
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Navigation System (INS) is one of the most popular technologies for providing direct
aircraft navigation. This system is employed to measure navigation parameters including
the three dimensional position, velocity and acceleration (PVA) information. The main
advantage of the system is that it is robust towards external influences. The drawback of
the system is that the outputs are computed using integration methods resulting in the
path integral errors which accumulate over time (Han et al., 2018). Another navigation
system is the Global Positioning System (GPS), which is a satellite-based navigation
technology. The GPS was designed to overcome the deficiencies of other positioning
systems. These systems have been used in conjunction with the INS and the Kalman Filter
(Liouane et al., 2022) technology to correct the INS positioning errors (Yousuf & Kadri,
2020). The GPS is prone to signal loss, jamming issues and multi-path errors (Carroll &
Canciani, 2021). Therefore, in order to cope with the disadvantages of both the sensors, the
systems based on Terrain Reference Navigation (TRN) have become an attractive
alternative solution for aircraft positioning and localization which is the main motivation
for the study conducted in this work.

TRN systems are passive systems which are independent of GPS and therefore are
resistant to the external factors (Lee & Bang, 2018a), hence these systems are attractive
towards the requirements for military-based localization applications. Furthermore, the
most important feature of TRNs is that it can operate in all weather conditions, day and
night as well as lower and higher altitudes (Vaman, 2012). The performance and accuracy
of these systems is mainly limited by the terrain features for instance, the terrain roughness
and uniqueness characteristics. More recently, the concept of fuzzy logic (FL) has been
applied to increase the positioning accuracy of a TRN system (Shaukat, Moinuddin &
Otero, 2021; Lin, Yu & Wu, 2021). The FL theory is effective in providing flexibilities for
reasoning, considering the factors such as uncertainty, inaccuracy, subjectivity and
imprecision. Also, it has an excellent ability to deal with unreliable or incomplete
knowledge bases (Gallab et al., 2019). In this article, the problem of positioning accuracy
and computational complexity of the Terrain Contour Matching (TERCOM) algorithm
for a UAV is studied, utilizing a fuzzy-based approach. In this method, a fuzzy-based
heuristic mean absolute deviation (MAD) algorithm is designed for TERCOM strategy.
For aircraft navigation, the method based on error state Kalman Filtering (ESKF)
technology is employed. Since, in most of the cases the error profile of the non-linear
system (such as a UAV), the system states have complex behavior, hence error in the states
can be predicted using ESKF. In studies, it has been reported that the ESKF is more robust
than the conventional EKF filter (Xu et al., 2022; Lee & Bang, 2018b). In the literature,
several advantages of ESKF have been reported compared to the EKF (Shaukat, Moinuddin
& Otero, 2021; Wang et al., 2020): (1) Singularity issues: in an ESKF, the singularity issues
are avoided in the covariance matrices which result due to redundancy and over
parameterization. (2) validity of linearization: the ESKF is always operated close to origin,
therefore, the issues related to gimbal lock issues, parameter singularities are avoided. This
guarantees that the validity of the linearization assumption holds at all times. (3) Faster
computation of jacobians: in an ESKF, the computation of the Jacobians is fast since the
error states are very small and hence all the second order products are negligible.
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(4) Observability of errors: the ESKF correction rates are slower than the predictions rate.
This is due to the fact that the error dynamics itself are slower and the large scale dynamics
are incorporated in the nominal state. This means that the corrections are made less
frequently as compared to the EKF-based estimation method. (5) Retuning of covariance
matrices: the greatest advantage of the ESKF model is that it does not requires the
re-tuning of the process, measurements and the error noise covariance irrespective of the
different suite of aircraft maneuvers. This is in contrast to the EKF model which requires
retuning for the type of the flight maneuver an aircraft performs.

State of the art review
The terrain contour matching (TERCOM) is a class of TRN algorithm which uses
pre-stored terrain elevation data to determine the current location of the aircraft. The
history of the TERCOM system dates back fundamentally to the design of a cruise missile
system in the late 1950s. The cruise missile system is a pilotless, continuously powered and
a dispensable vehicle, which is specifically used for delivering the nuclear devices. One of
the major advantages of the TERCOM technique is that it can achieve faster localization
with accuracy in cases of large initial positioning error (Peng et al., 2018). The disadvantage
is that the technique has poor real-time performance. Another TRN algorithm is the
Sandia Inertial Terrain Aided Navigation (SITAN), which uses the Extended Kalman
Filtering (EKF) method (Jayaramu et al., 2021). SITAN provides the capability of real-time
positioning, however, the major disadvantage is that it produces high false-fixes in cases of
large initial positioning errors (Dai & Kang, 2014).

In the recent years, hybrid TAN strategies have also been reported combining TERCOM
and Sandia Inertial Terrain Aided Navigation (SITAN) algorithms to exploit the
advantages of both the technologies in order to meet the military requirements. The
Terrain Profile Matching (TERPROM) is a hybrid two-phase TRN method which uses
TERCOM strategy in the acquisition mode and SITAN algorithm in the tracking mode
(Eroglu & Yilmaz, 2014). Apart from position estimation, the system offers a number of
features including Predictive Ground Collision Avoidance (PGCA), ObstructionWarnings
(OW), Terrain Following (TF), and Passive Ranging (PR) (Lee & Bang, 2018a). The
disadvantage of the scheme is that it takes longer computational time due to batch
processing in the TERCOM method.

The accuracy and reliability are one of the key factors characterizing a navigation
system. In Yoo et al. (2012), an improved TERCOM algorithm using the velocity correction
method was proposed. The observability analysis was performed and a selective error
method was employed to correct the velocity errors in the INS in addition to the position
errors. In Zhao (2012), a TERCOM strategy based on three stage logic was proposed in
order to mitigate the false-fix issues in the TERCOM algorithm. In Wu, Fei & Li (2012), a
multi-path Terrain Contour Matching algorithm using the laser scanning altimetry
replacing the traditional radar altimeter sensor. The results of the scheme verified that 2D
altimetry can effectively meet the localization requirement of the UAV. The disadvantage
is that the scheme is applicable for low altitude UAV flight missions only. In Yan et al.
(2018), a TRN system based on particle filter (PF) and adaptive scaling method for Digital
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Elevation Maps (DEM) for improving the navigation precision of the UAV was proposed.
The system is capable of providing good navigation accuracy in cases of high UAV
altitudes. The disadvantage is that the performance of the system degrades in case of flat
and repetitive terrain. Two major issues with the PF-based approach are particle
degradation and particle impoverishment (Yousuf & Kadri, 2024). In order to mitigate this
issue, a TRN method based on intelligent particle filter (IPF) was proposed in Chai, Li &
Qiao (2022). In this method, genetic algorithm (GA) was incorporated in the PF
resampling stage to improve the robustness of the IPF. In Veselý et al. (2022), a system
based on point mass filter (PMF) was proposed to deal with the non-linear filtering
problem arising in a TRN based navigation. The PMF-based TRN showed high estimation
performance, however the major disadvantage was the computational efficiency of the
method. To overcome the drawbacks of the conventional PMF, the authors in Duník et al.
(2019) proposed a TRN system based on Rao-Blackwellised point-mass filter. The system
preserves the advantages of point mass filter providing high estimation accuracy and
predictable computational complexity. Similarly, in Park & Park (2020), a Two Stage Point
Mass Filtering (TSPF) state augmentation approach for TRN application was presented. In
this method, the non-linear states, i.e., the UAV latitude and longitude were estimated
using the PMF whereas the linear state variable, i.e., the altitude was estimated using a
Linear Kalman Filter (KF). The results demonstrated that the TSPMF technique was more
computationally efficient compared to the RBPMF method while the estimation
performance was almost similar to RBPMF (Veselý et al., 2022). In Liu, Wang & Yao
(2014), a TRNmethod based on Extended Kalman Filter and B-Spline Neural Network was
presented for UAV navigation. The combined strategy provided better estimation results
compared to EKF based TRN. The disadvantage of the BSNN network is that it is trained
by gradient-based methods which may fall into local minima during the learning process.
In Eroglu & Yilmaz (2014), a TERCOM method utilizing the Long Short Term Memory
(LSTM) deep learning scheme was introduced. The LSTM network was trained to learn all
possible flight data in order to estimate the current location of the UAV. A map reader
approach which uses a filtered map was employed in training the LSTM. However, the
authors report issues in the presented scheme from the aspect of real-world
implementations. Similarly, in Lee & Bang (2018b), a TRN scheme combining
Rao-Blackwellized Particle Filter (RBPF) and LSTM network was presented to
minimize the navigation accuracy of a UAV. The scheme provided precise navigation
compared to the conventional RBPF based TRN approach. The disadvantage was that
study related to the real-time implementation of the method was not presented. More
recently, in order to improve the position accuracy of a TRN system, the concept of
fuzzy logic has been proposed. In Liu, Zhang & Huang (2021), a TRN was proposed in
which fuzzy logic was applied to estimate the distribution of variance of particles in a
Particle Filter to improve the navigation accuracy of an Autonomous Underwater Vehicle
(AUV). It was reported that the proposed method in this work achieved good tracking
accuracy. In Zhao, Xu & Weiqiang (2021), a multi-index grey fuzzy decision making
method was proposed for terrain navigability analysis for an AUV. In this method, a point
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mass filter (PMF) was used to simulate the navigability of the matching areas having
different terrain characteristics. The results of this method indicate feasibility of the
proposed fuzzy evaluation scheme in selecting the underwater matching areas for better
AUV navigation.

Furthermore, A robust Kalman filter (RKF) that handles measurement outliers through
kernel density estimation (KDE) is presented in this article in Gao et al. (2025). A new RKF
is created by using Bayesian estimation and a logarithmic Gaussian kernel to model sudden
noise changes. Experiments and simulations demonstrate how well it works to increase
vehicle navigation accuracy in outlier scenarios. A set-membership hybrid Kalman filter
(SM-HKF) is proposed in this article in reference (Zhao et al., 2020) for nonlinear state
estimation under both unknown but bounded (UBB) and stochastic errors. It obtains an
optimal Kalman gain that takes into consideration all uncertainties by linearizing the
system and combining errors using the Minkowski sum. Simulations demonstrate that
when it comes to managing both systematic and stochastic errors, SM-HKF performs
better than the extended Kalman filter (EKF). In Gao et al. (2021), the authors suggest a
distributed optimal fusion approach based on cubature rules for UAV navigation with
integrated miniature inertial measurement unit (MIMU), global navigation satellite system
(GNSS) and celestial navigation system (CNS). By detecting and forecasting kinematic
model errors using Mahalanobis distance, it tackles issues caused by nonlinearity.
Subsystems employ modified cubature Kalman filters, and the outputs are combined to
estimate the globally optimal state. Experiments and simulations verify increased
navigation accuracy. In order to address measurement uncertainty in nonlinear
estimation, the article in reference (Hu et al., 2024) suggests an indirect fuzzy robust
Cubature Kalman Filter (CKF). It modifies CKF via a scaling matrix using a fuzzy
inference system (FIS) with normalized inputs and triangular membership functions. This
improves convergence and robustness. Simulations demonstrate better results than
conventional fuzzy-based filters. An advanced cubature information filter for tracking
multiple wideband sources indoors is presented in the article in Zhang et al. (2019). To
increase tracking accuracy in difficult environments, it integrates a distributed noise
statistics estimator. The technique provides a reliable indoor source tracking solution and
improves performance in noisy environments. A novel Gaussian filtering technique is
presented in the article cited (Gao et al., 2020), which overcomes the drawbacks of
conventional methods that depend on known system noise characteristics. Utilizing
maximum, a-posterior theory-based random weighting estimations, the approach
adaptively modifies weights to reduce the effects of noise. Experiments and simulations
demonstrate that this strategy increases estimation accuracy over conventional techniques.
To overcome the drawbacks of conventional Kalman filters, which rely on known system
models and noise statistics, the authors in Xia et al. (2020) suggest the fitting H-infinity
Kalman filter (FHKF). FHKF increases the robustness and stability of nonlinear uncertain
systems by estimating coefficients via least weighted squares using a fitting transformation.
Its exceptional performance in preserving accuracy and stability is demonstrated by
simulations and real-world INS/GPS experiments.
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Also, an innovative orthogonality-based robust unscented Kalman filter (IO-RUKF) for
hypersonic vehicle navigation is proposed in this article in Hu et al. (2019). By employing
hypothesis testing to identify anomalies and a robust factor to modify the Kalman gain, it
mitigates measurement errors such as outliers and non-Gaussian noise. Simulations
confirm that the method increases unscented Kalman filter (UKF) robustness without
compromising accuracy. Using the maximum likelihood principle, this article in Hu et al.
(2020) suggests an adaptive UKF for vehicular INS/GPS integration that estimates process
noise covariance. It improves robustness against process noise uncertainty by updating
noise estimates online through the introduction of a fixed-length memory window.
Experiments and simulations verify that it performs better than the typical UKF. In order
to manage system nonlinearity and uncertain noise statistics, this article in Meng et al.
(2016) suggests an adaptive UKF for direct INS/GNSS integration. It estimates and updates
process and measurement noise covariances online using covariance matching. Compared
to standard and adaptive-robust UKF methods, simulations and experiments demonstrate
increased accuracy and robustness. In Hu, Gao & Zhong (2015), a refined strong tracking
unscented Kalman filter (RSTUKF) is used to propose a direct INS/GNSS integration
method. Through assumption testing, it detects kinematic model errors and modifies the
predicted covariance using a suboptimal fading factor. In the absence of model error, this
maintains UKF accuracy while improving robustness. Experiments and simulations verify
its efficacy.

Contribution of the work
This article presents a novel integration of fuzzy logic with the error state Kalman filter
(ESKF) to significantly enhance the positioning accuracy and reduce the computational
cost of the TERCOM navigation algorithm. Unlike traditional approaches that rely on full
DEM scans for terrain correlation, we introduce a fuzzy-based heuristic mean absolute
deviation (FH-MAD) method that intelligently restricts the search space using real-time
aircraft dynamics, leading to faster and more efficient localization. Specifically, the key
contributions of this work are as follows:

. Fuzzy-Enhanced Terrain Matching: we develop a fuzzy logic-based extension of the
MAD algorithm (FH-MAD), which adaptively prioritizes terrain correlation regions
based on flight parameters, resulting in improved positioning decisions.

. Region-of-Interest (ROI) Selection using Flight Attitude: the proposed method
dynamically selects a rectangular sub-region of the DEM using aircraft yaw and roll
angle conditions, significantly reducing the computational burden compared to
exhaustive DEM searches.

. Improved Localization Accuracy: the FH-MAD integrated with ESKF demonstrates
superior accuracy in UAV localization, validated through rigorous performance metrics
under varying flight scenarios.

. Significant Computational Gains: our method achieves a notable reduction in
execution time when compared with the conventional MAD-based TERCOM algorithm,
making it viable for real-time onboard processing.
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. Robust ESKF Design for Maneuvering UAVs: we provide a carefully designed and
tuned ESKF framework tailored to handle dynamic flight conditions, ensuring consistent
performance during complex UAV maneuvers.

. Real-Time Application Readiness: the proposed approach is well-suited for real-time
UAV navigation in GPS-denied environments, offering a practical and scalable solution
for autonomous aerial systems.

The rest of the article is structures as follows: in “System Overview”, a brief overview of
the proposed TRN method is presented. In “Proposed Method”, a detailed discussion on
the proposed hybrid strategy based on fuzzy-based heuristic and ESKF is provided. The
simulation tests and analysis is provided in “Simulation Results”. Finally, the conclusions
are given in “Discussion”.

SYSTEM OVERVIEW
The complete block diagram of the proposed method is shown in Fig. 1. The TERCOM
algorithm proposed in this work utilizes the improved version of the mean absolute
deviation (MAD) techniques as the main matching algorithm for comparing the terrain
heights obtained by taking the difference between the radar heights measurements and the
barometer. The algorithm comprises of the three major modules (1) the strap-down
inertial navigation system (INS) which defines the kinematic model, (2) the error state
Kalman filter (ESKF) which is used to correct the INS measurements and (3) the improved
mean absolute deviation algorithm for comparing the height differences to extract the best
position estimate from the available DEM. The algorithm in this work utilizes a low-cost
DEM of a region of interest having a resolution of 1 arc s (i.e., almost 30 m).

The system operates in three phases (1) the data processing phase (2) the acquisition
phase and (3) the data correlation phase. In the data processing phase, the data from INS is
utilized. In the data acquisition phase, the terrain height data is obtained from the fusion of
radar altimeter and the barometer based height measurements (Krishnamurthi et al.,
2020). The INS suffers from the long-term drift issues due to the path integral errors,
therefore, the height estimates from the INS are corrected using the error estimates from
the ESKF. In the correlation phase, the algorithm employs the fuzzy-based mean absolute
deviation (MAD) algorithm to compare the terrain height estimates with the already
stored DEM heights and provide the best match based on the minimumMAD value. Based
on the best match, the corresponding position vector of the aircraft is estimated from the
stored DEM. The latitude longitude and height measurements from the INS are obtained
by incorporating the error state Kalman filter (ESKF) which updates the erroneous INS
measurements. The UAV position is obtained by extracting the two dimensional latitude
and longitude vector from the available DEM corresponding to the best MAD value based
on the height difference from radar and barometric measurements.

Although FH-MAD is a technique to address uncertainties that impact the accuracy of
the Kalman filter, the suggested fuzzy logic approach does not directly enhance it. On the
contrary, FH-MAD contributes towards the overall TAN scheme. The motivation for
adopting an error state Kalman filter (ESKF) instead of a conventional Kalman filter is that
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a “simple” EKF, which linearizes the full large-magnitude state, is highly sensitive to
mis-tuned noise statistics, making it prone to outliers and model-error-induced
divergence.

ESKF confines linearization, tuning and consistency checks to a local error space whose
variables are always small and nearly Gaussian, which keeps the linear approximation valid
even under aggressive motion, makes adaptive Q/R tuning straightforward, provides
numerically stable covariances for long missions, and enables reliable innovation-based
outlier rejection. Consequently, when the TAN system faces real-world uncertainties
e.g., DEM artefacts, IMU bias drift, wind-induced modelling errors, etc. the ESKF sustains
accuracy and consistency far better than a classical Kalman filter.

Nevertheless, fuzzy logic, in particular, can help with adaptively adjusting the critical
Kalman filter parameters (Q and R), which are frequently challenging to estimate under
practical circumstances. Several strategies are suggested in literature to enhance

Figure 1 Flow chart of the proposed integration scheme. Full-size DOI: 10.7717/peerj-cs.3118/fig-1
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performance when there are uncertainties such as model errors, outliers, and fluctuating
noise:

. update Q and R dynamically using adaptive algorithms (Kumar & Mondal, 2023).

. Use fuzzy logic to track filter performance and modify settings as necessary (Al-Ghossini
et al., 2016).

. Make use of robust filter types, such as the H-infinity filter (Duran-Martin et al., 2024).

. Prior to filtering, use outlier detection to clean the measurement data (Navon &
Bobrovsky, 2021).

PROPOSED METHOD
Data collection
For the proposed Fuzzy Logic Correlation Scheme, the X-Plane-11 software was used for
the aircraft flight simulation. X-Plane is one of the most advanced flight simulators used in
industry as well as for research purpose. X-Plane differentiates itself from other simulators
by implementing an aerodynamic model called blade element theory (Yu et al., 2020; Gusti
Agung Agastya & Kusumoputro, 2019). Traditionally, flight simulators emulate the
real-world performance of an aircraft by using empirical data in predefined lookup tables
to determine aerodynamic forces such as lift or drag, which vary with differing flight
conditions. The Skywalker X8 model was designed in the X-Plane and was used to generate
the flight test data. The sensor data obtained from X-Plane was exported in the MATLAB
environment for further processing. The Mission planner software was used to specify the
waypoints and fly the mission in the X-Plane as shown in Fig. 2. The Digital Elevation Map
(DEM) of the same area was obtained from NASA Earthdata (n.d). An example of the
listing of all the eighteen variables of interest generated during the flight simulation is
shown in Table 1 below. These variables are the ‘inputs’ to the proposed navigation
scheme.

INS navigation algorithm and transformations
The Inertial Navigation System is the combination of three major modules, i.e., (1) the
inertial measurement unit (IMU) (2) the co-ordinate transformation module and (3) the
two-step integrator module. An IMU measures the three Degree of Freedom (DoF)
angular rate and magnitudes of specific forces (Shaukat, Moinuddin & Otero, 2021). These
measurements are initially obtained in the body frame (i.e., the sensor frame) axes. The
INS model selected is based on strap-down INS (SINS) technology. In this scheme, the
integration is performed using the trapezoidal integration (TI) method to obtain aircraft
position. In this work, the east-north-up (ENU) co-ordinate system is selected as the world
co-ordinate system. The conversion from ENU frame to the latitude-longitude-altitude
(LLA) frame is a two-step process (1) conversion from ENU to Earth-Centered,
Earth-Fixed (ECEF) and (2) conversion from the ECEF to LLA frame. The transformation
from ECEF to LLA frame can be performed by the non-iterative transformation method
defined in You (2000) or the close form method called the Jijie Zhu’s algorithm (Osen,
2017). Moreover, it should be noted that the IMU measures the relative acceleration, also
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known as the specific force. It does not measure the true kinematic acceleration directly
due to presence of the earth’s gravitational acceleration effect modelled as:

fib
b ¼ _R

b
i €pi � gb: (1)

Figure 2 Snapshot of complete aircraft trajectory for data collection simulated in mission planner software (Oborne, n.d).
Full-size DOI: 10.7717/peerj-cs.3118/fig-2

Table 1 The eighteen variables of interest from X-plane simulation.

Time (s) Q (rad/s) P (rad/s) R (rad/s) Pitch (deg.) Roll (deg.) Yaw (deg.) Lat. (deg.) Long. (deg.)

100.8 −1.01361 −0.06368 −0.00787 8.47464 0.15743 43.76252 24.88034 66.93123

Alt. (m) Lat. origin (deg.) Long. origin (deg.) X (m) Y (m) Z (m) Vx (m/s) Vy (m/s) Vz (m/s)

32.55061 24.50000 67.00000 6,945.02 134.40 42,341.21 0.00557 0.25846 0.01509
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In the above equation, €pbi represents acceleration in the inertial frame and gb represents
the gravity in the body frame. _Rb

i is the rate of change in the rotation matrix represented in
the body frame (b). And f bib represents the specific force.

Theoretical analysis of the ESKF
In this section, the convergence of the ESKF is shown to be asymptotically stable by
incorporating the result given in Jazwinski (2007), which establishes the asymptotic
stability of Kalman filters. The incorporated result is aligned with the structure and
assumptions of the ESKF.
Consider the discrete-time nonlinear system:

xkþ1 ¼ f ðxkÞ; where f : Rn ! Rn: (2)

A small perturbation dxk around the nominal trajectory xk evolves as:

xkþ1 þ dxkþ1 ¼ f ðxk þ dxkÞ: (3)

Performing a first-order Taylor series expansion around xk and neglecting higher-order
terms:

xkþ1 þ dxkþ1 ¼ f ðxkÞ þ rf ðxkÞdxk: (4)

Subtracting the nominal dynamics xkþ1 ¼ f ðxkÞ, we obtain the linearized error dynamics:

dxkþ1 ¼ rf ðxkÞdxk: (5)

Let the state transition matrix be defined as:

�k ¼ I þ Dtrf ðxkÞ: (6)

Then, the discrete-time evolution of the error state becomes:

dxkþ1 ¼ �kdxk: (7)

Now consider process noise xk � Nð0;QkÞ and measurement noise vk � Nð0;RkÞ,
added as:

dxkþ1 ¼ �kdxk þ xk: (8)

Assume zk is the measurement vector and hðxkÞ is the nonlinear measurement function.
The measurement model is:

zk ¼ hðxkÞ þ vk: (9)

The Kalman filter (KF) equations for this linearized system are:
Predicted Covariance:

P�
kþ1 ¼ �kPk�

T
k þ Qk: (10)

Measurement Prediction Covariance:

Skþ1 ¼ Hkþ1P
�
kþ1H

T
kþ1 þ Rkþ1: (11)

Kalman Gain:

Kkþ1 ¼ P�
kþ1H

T
kþ1S

�1
kþ1: (12)
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Updated Covariance:

Pkþ1 ¼ ðI � Kkþ1Hkþ1ÞP�
kþ1 (13)

where

Hk ¼ qhðxÞ
qx

����
x¼x̂�k

(14)

and x̂�k is the predicted state before update at time step k.

If the system with transition matrix �k is SCHUR-stable, uniformly completely observable,
and xk, xk, and vk are mutually independent, with P0 � 0, and both Qk and Rk bounded,
then the error state Kalman filter is uniformly asymptotically stable.

The ESKF equations
The error model utilized in the error state Kalman filter (ESKF) is obtained by employing
the small perturbation theory (Rosario et al., 2018). Similar to the KF, the error state
Kalman filter (ESKF) operates in three stages: (1) the initialization stage, (2) the prediction
stage and (3) the update stage.

The initialization stage: in the initialization phase, the state vector, process and
measurement noise covariances are initialized:

x�0 = initializing the state variables.

P�
0 = initialization of the error covariance.

Q0 = initialization of the process noise covariance.
R0 = initialization of the measurement noise covariance.
The prediction stage: in the prediction stage, the error state and the error state

covariance matrix is updated. In the ESKF, the error state ‘dxk’ is predicted according to the
following equation (Youn & Gadsden, 2019):

dx�k ¼ �k�1dxk�1 þ ~wk�1: (15)

In the above equation �k�1, and ~wk�1 represent the state transition matrix and
discretized process noise respectively. The error state covariance is propagated using the
following equation:

P�
k ¼ �k�1Pk�1�

T
k�1 þ Qk�1: (16)

Here Qk�1 is the process noise covariance.
The update/correction stage: in the update stage, the sensor measurements are

employed to correct the predicted states. In this stage, the residual measurement is
updated. It is defined as the difference between the measurements and the prediction of
measurements.

dzk ¼ zk � hðx̂k�Þ: (17)

The Kalman gain is then computed as:

Sk ¼ Rk þ HkP
�
k H

T
k (18)

Kk ¼ P�
k H

T
k S

�1
k (19)
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where Sk is the origination vector covariance matrix. It defines the uncertainty associated
with the innovation. In the above equation, the matrix ‘H’ is computed with respect to the
error state as:

Hk D¼ q
qh
qdx x¼x̂�k

��� : (20)

Finally, the innovation matrix is calculated according to the following equation:

Ik ¼ dzk � Hkdx
�
k : (21)

The innovation is the difference between the error of observations and the expected
error Hkdx�k . The states are corrected according to:

dx̂k ¼ KkIk: (22)

Since, an ESKF framework is employed in this work, using the error states or the
indirect form of the state vector, the values of observation is obtained by the subtraction of
the INS based measurements and the aiding sensor in general. In this work, the
observation is obtained as the difference between the INS and the terrain based
measurements.

dz ¼ pINS � pTERCOM: (23)

The posteriori state covariance Pþ
k is computed as:

Pþ
k ¼ ðI � KkHkÞP�

k : (24)

True State Estimate: the true state is now estimated according to the following equation
as the sum of nominal state and the predicted state:

x̂k ¼ x̂�k þ dx̂k: (25)

The above expression is sometimes written as:

x ¼ x̂ � dx (26)

where � represents addition operator.

Design of proposed ESKF filter
In order to generate realistic estimates from the ESKF, the system dynamics must be
well modeled. In this work, the ESKF is designed as a 15-state Kalman filter. The error-state
vector is divided into position, velocity, acceleration (PVA) and sensor biases. This split
improves clarity and supports better modeling. It separates fast-changing states (PVA) from
slow or hidden states (sensor biases). This grouping matches how real systems behave and
helps track changes more clearly. PVA states are often easier to observe. Sensor biases, in
contrast, change slowly and are harder to track. This structure also matches standard
EKF-based navigation setups. In such filters, sensor biases are often modeled as random
walks, while PVA states follow motion dynamics. By following this structure, we stay in line
with proven approaches in navigation and estimation.

x ¼ df; dk; dh; dVN ; dVE; dVD; _fN ;
_fE;

_fD;xN ;xE;xD;BN ;BE;BD

h iT
(27)
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_x ¼ Ax (28)

d _f
d _k
d _h
d _VN

d _VE

d _VD
_fN
_fE
_fD
_xdr
N
_xdr
E
_xdr
D

_BN
_BE
_BD

2
6666666666666666666666664

3
7777777777777777777777775

¼

0 0 A1 A2 0 0 0 0 0 0
0 0 0 0 0
A3 0 A4 0 A5 0 0 0 0 0
0 0 0 0 0
A3 0 0 0 0 �1 0 0 0 0
0 0 0 0 0
A6 0 A7 A8 A9 f �fD fE 0 0
0 0 0 0 0
A10 0 A11 A12 A13 A14 fD �fE 0 0
0 0 0 0 0
A15 0 A16 �2f A17 0 �fE fN 0 0
0 0 0 0 0
A18 0 A19 A20 0 A21 f �1 0 0
0 0 0 0 0
0 0 A22 A23 0 A24 A25 0 �1 0
0 0 0 0 0
A26 0 A27 A28 �f A29 0 �b �1 0
0 0 0 0 0
0 0 0 0 0 0 0 0 �b 0
0 0 0 0 0
0 0 0 0 0 0 0 0 �b 0
0 0 0 0 0
0 0 0 0 0 0 0 0 �b 0
0 0 0 0 0
0 0 0 0 0 0 0 0 0 �b
0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
�b 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 �b 0 0 0

2
6666666666666666666666666666666666666666666666666666664

3
7777777777777777777777777777777777777777777777777777775

df
dk
dh
dVN

dVE

dVD

fN
fE
fD
xdr

N
xdr

E
xdr

D
BN

BE

BD

2
6666666666666666666666664

3
7777777777777777777777775

(29)

A1 ¼ � f
Rm þ h

; A2 ¼ 1
Rm þ h

; A3 ¼ _ktgf; A4 ¼ � _k
Rp þ h

; A5 ¼ 1
ðRp þ hÞ cosf ;

A6 ¼ VE cosf 2xe þ _ksec2f
h i

; A7 ¼ VE
_k sinf

Rp þ h
� VD

_f
RM þ h

" #
; A8 ¼ VD

Rm þ h
;

A9 ¼ �2ðxe þ _kÞ sinf; A10 ¼ 2xeðVN cosf� VD sinfÞ þ _kVN secf
h i

;

A11 ¼ � _k
Rp þ h

VD cosfþ VN sinf½ �; A12 ¼ ð2xe þ _kÞ sinf; A13 ¼ 1
Rp þ h

VD þ VNtgf½ �;

A14 ¼ ð2xe þ _kÞ cosf; A15 ¼ 2xeVE sinf; A16 ¼ VN

RM þ h
_fþ VE

Rp þ h
_k cosfþ ðk� 2Þ g

Re

� �
;

A17 ¼ �2ðxe þ _kÞ cosf; A18 ¼ �xe sinf; A19 ¼ � _k
Rp þ h

cosf; A20 ¼ 1
Rp þ h

; A21 ¼ �ðxe þ _kÞ sinf;

A22 ¼
_f

RM þ h
; A23 ¼ � 1

RM þ h
; A24 ¼ ðxe þ _kÞ sinf; A25 ¼ ðxe þ _kÞ sinf;

A26 ¼ � xe cosfþ _k secf
� �

; A27 ¼ � _k
Rp þ h

sinf; A28 ¼ �tg
Rg þ h

f; A29 ¼ �ðxþ _kÞ cosf (30)
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where, the values mathematically describing equations A1–A29 are all scalars. The
description of variables in above equations are defined in Table 2. The values of the
constant factors in the system matrix are given as: Rm = 6335:439� 103, g = 9.8,

Re = 6371:0072� 103, Rp = 6399:594� 103 and xe = 7:3� 10�5

The innovation is computed as:

Ik ¼ dzk � Hkdx
�
k ¼

LINS � LTERCOM
lINS � lTERCOM

hINS � hBAROMETER

2
4

3
5�H

df
dk
dvN
dvE
dvD
_fN
_fE
_fD
xN

xE

xD

xu

xv

xw

BN

BE

BD

2
66666666666666666666666666664

3
77777777777777777777777777775

: (31)

Table 2 Description of important variables.

Symbols Description

’ Position co-ordinate—Latitude

k Position co-ordinate—Longitude

h Position co-ordinate—Height

Ve Velocity (East)

Vn Velocity (North)

Vd Velocity (Down)

RL Radii of curvature along meridian

t Time

g Gravitational acceleration

RE Radii of curvature in parallel

x Angular velocity of the earth’s rotation

fn Specific force (North)

fe Specific force (East)

fd Specific force (Down)

k Gain co-efficient

R Radius of the earth

b Shaping filter coefficient (Correlation coefficient)
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The transformation matrix ‘H’ is given by the following:

H ¼ I3�3 03�3 03�3 03�3 03�3½ �: (32)

The measurement co-variance R is set to:

R ¼
rx 0 0
0 ry 0
0 0 rz

2
4

3
5: (33)

For the prediction step of the ESKF to yield meaningful results, it must rely on an
accurate ground truth. This ground truth can be obtained using the TERCOM scheme,
where the reference location LTERCOM and the location lTERCOM are derived by correlating
the onboard altitude data with the digital elevation model (DEM), typically using
algorithms such as the mean absolute deviation (MAD) method. The following section
elaborates on the challenges associated with obtaining this ground truth.

DEM processing and conventional correlation scheme
In the proposed framework, the Mean Absolute Deviation (MAD) algorithm is used for
the purpose of matching, where the matching area selection is based on Fuzzy Logic
approach detailed in the next section. The MAD algorithm correlates the terrain heights
estimated from the system with the DEM based topographical values. This correlation is
described by the following equation:

MADn;m ¼ � 1
N

XN
i¼1

hðiÞmeas � hDBðnþ i;mÞ�� ��: (34)

In the above equation, hmeas and hDB are representing the measured terrain heights and
the stored terrain database respectively. The variable ‘N’ represents the number of samples.
Also, n and m represent the rows and columns of the terrain matrix stored in the digital
terrain database. The position fix is obtained using the minimum MAD value given by:

PMADðn;mÞ ¼ Pðargmin
n;m

ðMADn;mÞÞ: (35)

Applying the correlation process, the terrain height with the minimum values are
considered as appropriate candidates. The steps comprise of comparing and matching the
difference between the barometer and the radar altimeter measurements (which is
essentially the terrain height) with a pre-stored DEM. The DEM models topography as
well as the topographical change in a geographical region (Wilson & Ramirez-Serrano,
2014). The DEM is structured as a two-dimensional matrices of elevation values assigned
as the DEMmatrix Z. In a DEM cell, the geographical location is computed according to a
specific co-ordinate system assigning a projected location in the two-dimensional XY
plane. The terrain roughness and uniqueness factor is also crucial for the successful
application of the TERCOM system. TERCOM results are more appreciable for unique
terrains (Chen, Xu & Ding, 2022). The terrain roughness characteristics of the region for
which the simulations were conducted are defined by the two parameters, i.e., the Sigma-Z
and Sigma-T values. These parameters are employed as the terrain roughness indicators
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defined in Lu, Jian & Xiaowen (2019), Raković, Simonović & Grbović (2020). The terrain
roughness described by Sigma-T is represented by the standard deviation of terrain
elevation values. Areas with very flat terrains and lakes have smaller Sigma-T values.
Similar to Sigma-T values, Sigma-Z represents the roughness in the terrain. Another
parameter is the terrain correlation length. The terrain correlation length describes the
separation between two rows or columns of the terrain matrix which are required to reduce
their normalized auto-correlation function to e−1 = 0.3697. In this article, only the first
two parameters, i.e., Sigma-T and Sigma-Z are adopted for the analysis of terrain
roughness characteristics.

Fuzzy logic based ROI selection for TERCOM
The conventional mean absolute devotion (MAD) algorithm is found to be
computationally expensive in the traditional TERCOM-based strategy. In the proposed
method, a heuristic based fuzzy logic system (FLS) has been designed to select the
matching area in order to improve the shortcomings of the conventional MAD algorithm.
The matching area selection is performed using the aircraft heading and roll angle
parameters as inputs to the FLS. Since in practical situations, not only the yaw angle can
change during the actual flight, the roll angle may also vary which affects the matching
region due to aircraft maneuver.

The FLS module calculates the co-ordinates of the rectangular region (defining the
matching area) based on the instantaneous heading angle (Y) and roll angle (R)
information from the aircraft orientation sensor. The proposed fuzzy logic system takes
the yaw (Y) and roll angle (R) as inputs and provides the co-ordinates (E1, E2, N1, N2) that
define the rectangular region of the matching area based on the established fuzzy rules. The
inputs and output membership functions are selected to be triangular membership
functions. Because of their simplicity, effectiveness, and speed of computation, triangular
membership functions are suited for real-time systems with constrained resources
(Varshney & Goyal, 2023). They are simple to interpret and tune due to their intuitive
design and low memory requirements. Control and decision-making tasks can benefit
from these functions’ ability to accurately approximate gradual transitions between fuzzy
sets and their compatibility with fuzzy rule-based systems due to their simplicity
(Khairuddin et al., 2021; Samonto et al., 2021). The FLS system is designed as a 2-input and
4-output multi-input-multi-output (MIMO) system. Figure 3 shows the relationship
between the inputs variables (Y and R) and output variables (E1, E2, N1 and N2). For the
proposed system, the domain of the yaw angle parameter is considered from [0, 360] and
the aircraft roll angle is considered within the domain [−45, 45]. In Fig. 3, the four regions
for aircraft maneuver are based on the aircraft heading angle parameter. For each region, a
separate FLS module is designed and stored in the system. In Fig. 3 the Region-I of the
aircraft motion is defined from 0 to 90 degrees with respect to the yaw angle. The input
membership functions for this case are shown in Fig. 4. In Fig. 3, the parameter ‘L’
represents a parameter related to the terrain characteristics over which the aircraft is flying.
For simplification, this parameter is set to a constant parameter in this article. Based on
parameter L and yaw and h, the computation of the output variables E1, E2, N1 and N2 is
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possible, however, the uncertainty arises when there are changes in the roll angle
parameter as well as sensor noise parameters. Therefore, while constructing the output
membership functions (MFs), the domain of outputs is also defined considering the errors
in the north and east directions, i.e., rE and rN respectively. The output membership
functions are shown in Figs. 5 and 6 respectively. The output membership functions are
designed incorporating the possible changes in position in the East and North frame due to
the effect of roll angle parameter. With reference to Fig. 3, the description of the output
fuzzy variables is provided in Table 3. The corresponding set of fuzzy rules are provided in
Table 4. The fuzzy rules for the remaining three regions are constructed in a similar
manner. According to Fig. 3, the rules are constructed according to the following logic:

R1: IF the yaw angle is small and roll angle is zero THEN set E1 and E2 high and N1 and
N2 low

With reference to the above logic, we define the input subset of three-degree division,
Sin1 ¼ fLow;Medium;Highg for input-1 (yaw angle) and Sin2 ¼ fLow;Medium;Highg
for input-2 (i.e., the roll angle corresponding to a change from negative to positive).

Figure 3 Schematic of the matching area selection. Full-size DOI: 10.7717/peerj-cs.3118/fig-3

Figure 4 Membership functions for inputs. Full-size DOI: 10.7717/peerj-cs.3118/fig-4
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The output subset is defined with a four-degree division given by Sout ¼ fZero; Low;
Medium;Highg, corresponding to the minimum and maximum values for the rectangular
boundaries, i.e., E1;E2;N1;N2.

Figure 5 Membership functions for outputs 1 and 2. Full-size DOI: 10.7717/peerj-cs.3118/fig-5

Figure 6 Membership functions for outputs 3 and 4. Full-size DOI: 10.7717/peerj-cs.3118/fig-6

Table 3 Description of fuzzy output variables.

Parameter Description

E1 West boundary of the rectangular region

E2 East boundary of the rectangular region

N1 North boundary of the rectangular region

N2 South boundary of the rectangular region

Table 4 Fuzzy rule base—region-I.

Rule Description

R1: If Y is L and R is Z, then E1 is H and E2 is H and N1 is L and N2 is L.

R2: If Y is M and R is Z, then E1 is M and E2 is M and N1 is M and N2 is M.

R3: If Y is H and R is Z, then E1 is L, E2 is L, N1 is H and N2 is H.

R4: If Y is L and R is L, then E1 is M and E2 is M and N1 is L and N2 is L.

R5: If Y is M and R is L, then E1 is M and E2 is M and N1 is M and N2 is M.

R6: If Y is H and R is L, then E1 is L, E2 is L, N1 is H and N2 is H.

R7: If Y is L and R is H, then E1 is M and E2 is M, N1 is L and N2 is L.

R8: If Y is M and R is H, then E1 is L and E2 is L and N1 is M and N2 is M.

R9: If Y is H and R is H, then E1 is L and E2 is L and N1 is H and N2 is H.
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SIMULATION RESULTS
In order to determine the effectiveness of the proposed ESKF algorithm with the designed
system matrix along-with the proposed heuristic based fuzzy MAD algorithm, the
simulation results are presented in this section. The simulation was conducted using
MATLAB software environment. For validation of the proposed method, additionally, the
GPS signals, i.e., the latitude and longitude from the X-Plane simulator were also included
in the dataset. The tests were conducted for two specific cases with two different DEMs
having differences in topographical features. The terrain data used in this research was
obtained from the NASA Earthdata Search portal (https://search.earthdata.nasa.gov/
search). In particular, Shuttle Radar Topography Mission (SRTM) and ASTER GDEM are
two publicly accessible datasets from which digital elevation model (DEM) data was
obtained. The spatial resolution of these datasets is usually 30 m (1 arc-s) worldwide,
though some regions are also accessible at 90 m (3 arc-s). For research and educational
purposes, the data is freely accessible, making it an affordable resource for terrain-based
navigation applications such as TERCOM. In Test-I, the aircraft completes its flight for a
total duration of 6,403 s with different altitudes, heading angles and velocity ranges. From
this trajectory, the aircraft motion for the time period of 200 s, i.e., from t = 600 to 800 s
was considered for the application of the proposed method as shown in Fig. 2. Similarly,
for Test-II, the aircraft completes its flight in the total time of 18,000.8 s. For this case,
aircraft motion from time t = 12,100–12,200 s was considered for testing the efficacy of the
proposed method.

In the X-plane simulation, the radar altimeter on the aircraft registers the height
measurement after every 0.8 s. From the complete aircraft motion, the aircraft trajectory
and the corresponding motion dynamics are considered for the two specific cases. The INS
data was also obtained from the X-plane consisting of the three dimensional velocity
vector: V ¼ ½Vx Vy Vz� and the aircraft orientation angles, i.e., the roll, pitch and yaw
½w;f; h� angles. The simulation parameters for the two test cases are given in Table 5
below:

From the complete DEM of dimension 3,600 × 3,600, the region-of-interest (ROI) was
extracted having dimension 1,956 × 635 for Test Case I. For the ROI for Test case II, the
DEM sub-region selected was of dimensions 1,500 � 1,800. The aircraft trajectory and

Table 5 INS initial parameters for the two test cases.

Parameter Test Case-I Test Case-II

Initial latitude 24.88034� 33.55415�

Initial longitude 66.93123� 72.81963�

Initial heading angle 0.15743� 9.9222�

Initial pitch angle 8.47464� 0.14436�

Initial roll angle −0.00787� 7.94772�

Sample time of the orientation sensor 0.12 s 0.12 s
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flight dynamics were considered for Test Case I from t = 600–800 s and for Test Case II
from t = 12,000–12,200 s. The errors in the positions were corrected using the improved
MAD correlation algorithm. The initial position vector, for Test Case-I and for Test
Case-II was provided to the strap-down INS system. (latinitial, loninitial) = [24.88035�

66.93124�], (latinitial, loninitial) = [33.56� 72.82�].
The gyroscope mounted on the aircraft is used to measure the roll, pitch and the yaw

orientation angles. The robustness of the position estimates generated from the proposed
method is determined using the mean squared error (MSE), the mean absolute error
(MAE) and the root mean square error (RMSE) metrics.

In the ESKF, the selection of the error covariance (P), process noise covariance (Q) and
the measurement noise covariance (R) is described in Table 6. For the proper functioning
of the ESKF algorithm, the tuning of the P, Q and R matrices is essential to train the
algorithm. The tuning of these matrices is based on the features in the sensor noise and
error characteristics. In this work, this tuning is accomplished using the trial and error
method after extensive simulation. The ‘R’ matrix controls the errors in the sensor
measurements given as input to the ESKF. The ‘Q’ matrix controls the variations in the
output estimates. The values of the process covariance matrix P which is a diagonal matrix
of dimension 15 × 15 is set to ‘0.5’. For matrix Q, the values are arranged in the form of a
diagonal matrix. The first three values in the diagonal are set to be 1e−3, 2e−3 and 12
respectively. The values of the measurement noise covariance matrix for Test Case-I is R =
[50 50 200] and for Test Case-II, R = [150 100 200]. The change in R matrix is due to the
change in the DEM region in Test Case-II. Furthermore, the values of the adjustable
variables in the system matrix, b and k for the two cases was selected as defined in Table 7.

Furthermore, the terrain roughness and uniqueness factor is also crucial for the
successful application of the TERCOM system. TERCOM results are more appreciable for
unique terrains (Lu, Jian & Xiaowen, 2019). The terrain roughness characteristics of the
region for which the simulations were conducted are defined by the two parameters, i.e.,

Table 6 Selection of the P, Q, and R matrices.

Matrix Description Values

P (Test Case-I & II) Error covariance diagð½10:02�15�15Þ
Q (Test Case-I & II) Process noise covariance diagð½0:5�15�15Þ
R (Test Case-I) Measurement noise covariance diagð½50 50 200�3�3Þ
R (Test Case-II) Measurement noise covariance diagð½150 100 200�3�3Þ

Table 7 Values of the adjustable variables.

Variable Description Values

b Filter shaping coefficient 0.1

k Gain coefficient 4

Kadri and Yousuf (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3118 21/37

http://dx.doi.org/10.7717/peerj-cs.3118
https://peerj.com/computer-science/


the Sigma-Z and Sigma-T values. These parameters are employed as the terrain roughness
indicators (Raković, Simonović& Grbović, 2020). The two terrain parameters Sigma-T and
Sigma-Z are given as:

rT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

ðHi � �HÞ2
vuut (36)

�H ¼ 1
N

� 	XN
i¼1

Hi; (37)

rZ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

ðDiÞ2
vuut (38)

Di ¼ Hi �Hiþ1 (39)

D ¼ 1
N � 1

XN�1

i¼1

Di: (40)

Test Case-I
For the first test case the DEM having dimensions of 1,500 × 635 is shown in Fig. 7 where
the bright colors in the contour plot represent higher altitudes. The corresponding three
dimensional plot has also been shown in Fig. 7, where the brightest region (i.e., the yellow
color) represents the highest elevation values. The region of complete aircraft maneuver
is shown in Fig. 8 in red color in the region defined by latitude between 24.7 to 24.9 degrees
and the longitudes between 66.9 to 67.4 degrees. In Fig. 8, the aircraft starts its flight
initially from the point ¼ ½24:88�; 66:93��, continues its flight to the
point ¼ ½24:96�; 66:97�� and returns back towards its initial point. The flight path between
these position values are selected as the region of interest, i.e., the ROI which is highlighted
by the ellipse in Fig. 8 and the magnified region is shown in Fig. 8 where the green color
represents the region where the testing using the modified MAD and ESKF algorithm was
performed. In Fig. 9, it was observed that in this region, the latitude and longitude of the

Figure 7 Terrain profile and the surface terrain plots for Test Case I.
Full-size DOI: 10.7717/peerj-cs.3118/fig-7
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aircraft were both increasing. The GPS measurements are used as reference for comparing
the position obtained from the proposed method. In Fig. 9, the latitude and longitude
obtained using the INS are shown, in which the drifts can be observed in the INS position
estimates, i.e., the negative drift error in the longitude position generated by the INS. This
affects the position information of the overall trajectory followed by the aircraft. In Fig. 10,
the ESKF prediction in the test region are shown, the reference positions (i.e., the latitude
and longitude) are represented by blue color and the estimated positions are shown in red.
In Fig. 11 the variation in the aircraft velocity and 3D acceleration components are shown
respectively. Figure 11 shows that the aircraft velocity increases from the time t = 600–
800 s with the maximum velocity being 6 m=s. The aircraft yaw angle and the roll angle
variations for Test-Case-I are shown in Fig. 11 respectively. The yaw angle follows a
decreasing trend from 0.62 radians to 0.52 radians, whereas the roll angle can be
considered approximately 0. In the proposed FL based MAD scheme, this corresponds to
the case where only one angle, i.e., the yaw angle of the aircraft is changing and the effect of

Figure 8 Trajectory for Test Case-I. Full-size DOI: 10.7717/peerj-cs.3118/fig-8

Figure 9 Test Case-I. Full-size DOI: 10.7717/peerj-cs.3118/fig-9
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roll angle is not being considered. The ESKF prediction error is shown in Fig. 12, where the
error range in the final prediction are 0.02–0.096 degrees respectively showing the
effectiveness of the system matrix design of the proposed ESKF method and the optimal
tuning of the filter parameters.

Test Case II
In the second test case the DEM having dimensions of 1,501 × 1,801 is shown in Fig. 13,
where the bright colors in the contour plot represent higher altitudes. These values are
considered as the terrain topographical database values. The corresponding three
dimensional plot is shown in Fig. 13, where the brightest region (i.e., the yellow color)
represents the highest elevation. In contrast to the Test Region-I, the region for Test-II is
composed of more terrain feature. The region of complete aircraft maneuver is shown in
Fig. 14 respectively. The flight path is shown in red color defined by latitude between
33.573 degrees to 33.581 degrees and the longitudes between 72.785–72.835 degrees. The
aircraft starts its flight initially from the point = [33.57, 72.79] and continues its flight to
the point [33.58, 72.83]. The flight path between these position values are selected as the
ROI as shown in Fig. 14 where the region defined in the green color represents the region
where the testing using the modified MAD and ESKF algorithm was performed. In Fig. 15,
the GPS-based positions for this test case are shown. It can be observed that in this region
the latitude of the aircraft is decreasing while the longitude of the aircraft is increasing. For
this case, the test data was selected from time t = 12,000–12,200 s. Similar to Test Case-I,
the aircraft sensors (i.e., the radar altimeter and the barometer) were used to compare the
terrain height feature from the second pre-stored DEM. In Fig. 15, the latitude and
longitude obtained using the INS is shown, in which the drifts can be observed in the INS

Figure 10 ESKF predictions (Test Case-I). Full-size DOI: 10.7717/peerj-cs.3118/fig-10
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position estimates, i.e., compared with the GPS reference position shown in Fig. 15, the
negative drift error in the longitude position is generated by the INS which affects the
position information of the aircraft. In Fig. 16, the estimates of the position outputs, i.e.,
the latitude and longitude are shown obtained from the proposed scheme. It can be
observed that the drifts are significantly reduced when compared with the INS-based
estimations. The velocity and acceleration of the aircraft for this test case are shown in Fig.
17 respectively. The velocity range is from 14.0–14.5 m/s. The velocity remains almost
constant for t = 12,000–12,140 s and increases after t = 12,140 s. The velocity of the aircraft
remains constant i.e., V = 14.44 m/s seconds for the rest of the aircraft motion from the
time t = 12,160–12,200 s. The range of the aircraft heading i.e., yaw during this time is
4.766–4.768 radians and the roll angle is within the range of 0.19–0.22 radians as shown in
Fig. 17 respectively. In this test case, the yaw angle variation is such that it remains constant

Figure 11 Aircraft parameters for Test Case-I. Full-size DOI: 10.7717/peerj-cs.3118/fig-11

Kadri and Yousuf (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3118 25/37

http://dx.doi.org/10.7717/peerj-cs.3118/fig-11
http://dx.doi.org/10.7717/peerj-cs.3118
https://peerj.com/computer-science/


till t = 12,140 s, increases rapidly after time t = 12,140 s and then decreases. While the roll
angle starts decreasing slowly and a rapid change can be observed after time t = 12,140.
This corresponds to the case where the effects of variation in both the yaw and the roll
angle of the aircraft are considered in the proposed FL based MAD scheme. The predicted
errors from the ESKF strategy are shown in Fig. 18. The latitude errors are obtained in the
range 0.055–0.5 degrees. While the longitude errors are between 0.098 and 0.1047 degrees
depicting minimum error in the acceptable ranges. This highlights the effectiveness of the
system matrix design of the proposed ESKF method and the optimal tuning of the filter
parameters and the appropriate design of the fuzzy logic system.

Figure 13 Terrain profile and the surface terrain plots for Test Case II.
Full-size DOI: 10.7717/peerj-cs.3118/fig-13

Figure 12 ESKF prediction errors (Test Case-I). Full-size DOI: 10.7717/peerj-cs.3118/fig-12
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The values of the terrain roughness parameters for the two test regions are shown in
Table 8. Where it can be observed that Test Region-II has more features compared to Test
Region-I. The values of the metrics MAE, MSE and RMSE computed for two test cases are
shown in Table 9 (with conventional MAD) and Table 10 (with fuzzy heuristic MAD).
From the Table 9, it can be observed that the error values with the conventional MAD are
lower for Test-Case-I compared to the position errors for Test-Case-II despite higher
Sigma-Z and Sigma-T values. The reason is as follows: although, in general, the more
unique terrain features, the higher is the positioning accuracy. However, the accuracy also
depends on other factors such DEM-size and profile length selection (Yousuf & Kadri,
2024). In this article, for MAD correlation, the profile length ‘l’ is selected to be l = 10 for
both test cases. The greater the profile length, the greater is the accuracy. Also, we used
different DEM sizes for the two test cases. Based on the DEM size, no exact idea can be
made as the accuracy may increase or decrease with minimizing or maximizing the DEM

Figure 14 Trajectory for Test Case-II. Full-size DOI: 10.7717/peerj-cs.3118/fig-14

Figure 15 Test Case-II. Full-size DOI: 10.7717/peerj-cs.3118/fig-15
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size. In Table 10, the error metrics for the proposed hybrid ESKF and FH-MAD are given.
It can be observed that proposed method performs well in terms of position accuracy for
the two DEMs having different terrain features with the errors being bounded within an
acceptable range. However, the accuracy for Test Region-II is less compared to Test
Region-I for the reason described above. Another reason could be the selection of the
terrain related parameter ‘L’. This parameter is depending on terrain characteristics.
However, it is assumed to be a constant parameter in this article and has been selected
empirically. The computational time with the proposed MAD algorithm and the
conventional MAD algorithm for the two test cases for Region-I and Region-II is
compared in Fig. 19.

Comparison between conventional MAD and the proposed FH-MAD
algorithm
The mean absolute difference (MAD) algorithm is frequently used for terrain matching in
the standard terrain contour matching (TERCOM) system. The traditional MAD
algorithm calculates the absolute difference between the corresponding elevation values at
each position by sliding a reference terrain map over the elevation data obtained by the
on-board sensor (usually from an altimeter or radar). The location that it produces the
lowest MAD value is regarded as the most likely current position of the vehicle. The mean
of these absolute differences is computed for every possible position. Because it must assess
every potential match within a particular search area, regardless of terrain features or
matching suitability, this thorough comparison process is computationally demanding.
Particularly in real-time or resource-constrained applications, the deterministic approach

Figure 16 ESKF predictions (Test Case-II). Full-size DOI: 10.7717/peerj-cs.3118/fig-16
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may result in longer processing times and lower efficiency due to its inability to adjust to
dynamic or ambiguous terrain.

The DEM size used in Test Case-II is greater than the DEM size in Test-Case-I. The
conventional MAD therefore requires more time searching the DEM for Test-Case II
compared to Test-Case-I. Similar trend can be observed with the proposed FH-MAD
algorithm for the two regions. However, it can be clearly observed from the graph that the
computational time is significantly reduced with the proposed FH-MAD correlation
algorithm satisfying one of the major requirements for real-time performance.
Furthermore, it must be highlighted that the quality of the predicted estimates from a TAN
algorithm mainly depends on four factors: (1) the INS (2) the accuracy of the DEM (3) the
terrain features and (4) the correctness of the altimeter measurements. The resolution of
the DEM used in this work is 1 arc s. The predicted error for the latitude is up to five

Figure 17 Aircraft parameters for Test Case-II. Full-size DOI: 10.7717/peerj-cs.3118/fig-17
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Figure 18 ESKF prediction errors (Test Case-II). Full-size DOI: 10.7717/peerj-cs.3118/fig-18

Table 8 Values for terrain roughness indicators.

Test case Parameter Values

I Sigma-Z 1,200.22

Sigma-T 84.47

II Sigma-Z 1,576.84

Sigma-T 119.560

Table 9 MAE, MSE, and RMSE errors for conventional MAD algorithm.

Test case Method Position MAE (degrees) MSE (degrees2) RMSE (degrees)

I Conventional Latitude 0.00413 0.00017 0.00417

MAD Longitude 0.03470 0.00120 0.03470

II Conventional Latitude 0.01224 0.00018 0.01376

MAD Longitude 0.09565 0.022048 0.46956

Table 10 MAE, MSE, and RMSE errors for optimized MAD algorithm (yaw and roll angle).

Test case Method Position MAE (degrees) MSE (degrees2) RMSE (degrees)

I Optimized Latitude 0.00405 4.0333e−04 0.002008

MAD Longitude 0.00406 0.004089 1.67275e−5

II Optimized Latitude 0.14435 0.021512 0.146670

MAD Longitude 0.09608 0.009474 0.097335
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decimal places (i.e., 1 m). Also, the predicted error for the longitude is also up to five
decimal places (i.e., 1 m). The major reason for this error, despite the convergence trend of
the proposed ESKF algorithm, is the non-availability of a high-quality DEM. Therefore, the
future work is focused towards the task of incorporating a high-quality DEM with the
proposed hybrid technique in order to test the levels of accuracies of the predicted target
region.

DISCUSSION
The proposed scheme in this work uses the error state Kalman filter. The ESKF proposed is
selected due to the following advantages over the Indirect fuzzy robust cubature Kalman
filter with normalized input parameters: Compared to the IFR-CKF, the error state
Kalman filter (ESKF) has a number of benefits that make it more appropriate for real-time
embedded applications and UAVs. Its linearized, simplified formulation results in
lower-dimensional state updates and increased computational efficiency (Yousuf & Kadri,
2024). ESKF ensures stable performance by concentrating on small error estimates around
a nominal state, making it ideal for high-rate systems. Additionally, it offers a clearer
model structure that makes tuning easier, and improved numerical stability in nonlinear
settings (Tabassum et al., 2023). ESKF reduces complexity and overfitting by not
depending on fuzzy logic or heuristic tuning like IFR-CKF does (Mascher et al., 2022). In
addition, it is technique that has shown dependability in robotics, aerospace, and GPS-INS
integration scenarios.

Compared to LSTM, particle filter, and the conventional extended Kalman filter (EKF),
the error state Kalman filter (ESKF) has a number of advantages. ESKF is model-based and

Figure 19 Comparison of the execution times between conventional and proposed fuzzy heuristic
MAD algorithm. Full-size DOI: 10.7717/peerj-cs.3118/fig-19
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provides real-time, interpretable state estimation with low computational requirements, in
contrast to LSTM, which is a model that requires intensive training. ESKF is much more
scalable and efficient than particle filters, which makes it appropriate for embedded
systems (Yousuf & Kadri, 2024). Without the complexity of particle resampling, it is
simpler to implement and produces deterministic results. ESKF is more effective to EKF
because it handles non-linearities more accurately and has better numerical stability,
especially when it comes to orientation estimation (Tabassum et al., 2023). ESKF achieves
better performance and modularity by linearizing the error state instead of the full state,
which makes it perfect for complex, real-world scenarios like robotics or UAV navigation
(Mascher et al., 2022).

CONCLUSIONS
The main purpose of this work was to design and demonstrate a Terrain Reference
Navigation (TRN) scheme for determining the aircraft position using a low-cost Digital
Elevation Map (DEM). In this work, a fuzzy logic based correlation scheme is proposed for
the selection of optimal matching area utilizing the aircraft heading and roll angle
parameters. It was found that the fuzzy logic approach makes the search process more
reasonable as compared to the conventional MAD approach with significant reduction in
the computational time. Furthermore, the TERCOM algorithm was developed using the
error state Kalman filter for aircraft localization for the optimal estimation of state errors.
A low-cost strap-down INS for the system was implemented. The derived expressions were
investigated under different circumstances including different aircraft velocities and
heading angles. From the simulation tests, it was found that the presented scheme
produces effective results under varying conditions of aircraft maneuver. The algorithm is
tested under two different cases with different regions having variations in topographical
features and different trajectories, time durations and different heading and velocity
ranges. In addition to the tuning of the conventional filter metrics in the ESKF such as
error covariance P, process noise covariance Q and measurement noise covariance R, the
choice of two other constants are also studied in this scheme, i.e., the gain coefficient ‘k’
and the filter shaping coefficient ‘b’ in addition to the process, measurement and error
noise covariance matrices in the filter design. The optimal values of the coefficients are
selected after a number of iterations.

The prediction errors are quantified in terms of three most widely used metrics in
literature, i.e., MSE, MAE and RMSE. The simulation results show that the ESKF strategy
with the proposed fuzzy logic based correlation approach not only provides good tracking
accuracy but also significantly reduces the computational cost compared to the
conventional TERCOM algorithm. One of the major drawbacks of the proposed method is
that the terrain parameter used for constructing the membership functions (MFs) for the
test cases is considered to be constant. In future work, a mathematical formulation for the
computation of terrain parameter will be developed studying the effectiveness of the single
as well as the fusion of terrain characteristics such as DEM slope, aspect and profile
curvature etc. The future work will also be focused on the development of a combined UKF
and particle filter based algorithm replacing the ESKF in the current scheme.
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