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ABSTRACT
Background: The rapid development of artificial intelligence has permeated many
fields, with its application in drug discovery becoming increasingly mature. Machine
learning, particularly deep learning, has significantly improved the efficiency of drug
discovery. In the core task of predicting drug–target affinity (DTA), deep learning
enhances predictive performance by automatically extracting complex features from
compounds and proteins.
Methods: Traditional approaches often rely heavily on sequence and
two-dimensional structural information, overlooking critical three-dimensional and
physicochemical properties. To address this, we propose a novel model—Cross
Attention Fusion based on Information Enhancement for Drug–Target Affinity
Prediction (CAFIE-DTA)—which incorporates protein 3D curvature and
electrostatic potential information. The model approximates protein surface
curvature using Delaunay triangulation, calculates total electrostatic potential via
Adaptive Poisson-Boltzmann Solver (APBS) software, and employs cross multi-head
attention to fuse physicochemical and sequence information of proteins.
Simultaneously, it integrates graph-based and physicochemical features of
compounds using the same attention mechanism. The resulting protein and
compound vectors are concatenated for affinity prediction.
Results: Cross-validation and comparative evaluations on the benchmark Davis and
KIBA datasets demonstrate that CAFIE-DTA outperforms existing methods. On the
Davis dataset, it achieved improvements of 0.003 in confidence interval (CI) and
0.022 in R2. On the KIBA dataset, it improved MSE by 0.008, CI by 0.005, and R2 by
0.017. Compared to traditional models relying on 2D structures and sequence data,
CAFIE-DTA shows superior performance in DTA prediction. The source code is
available at: https://github.com/NTU-MedAI/CAFIE-DTA.

Subjects Bioinformatics, Computational Biology, Data Mining and Machine Learning, Natural
Language and Speech, Neural Networks
Keywords Drug–target affinity, Physical and chemical information, 3D curvature information,
Electrostatic potential information, Multi head cross attention

INTRODUCTION
Artificial Intelligence (AI) employs anthropomorphic knowledge, learning from the
solutions it generates, thus progressively enhancing its capability to tackle complex issues.

How to cite this article Fei A, Wang Y, Ruan T, Zhang Y, Yao M, Wang L. 2025. Enhanced information cross-attention fusion for drug–
target binding affinity prediction. PeerJ Comput. Sci. 11:e3117 DOI 10.7717/peerj-cs.3117

Submitted 9 February 2025
Accepted 21 July 2025
Published 28 August 2025

Corresponding authors
Min Yao, erbei@ntu.edu.cn
Li Wang, wangli@ntu.edu.cn

Academic editor
Davide Chicco

Additional Information and
Declarations can be found on
page 20

DOI 10.7717/peerj-cs.3117

Copyright
2025 Fei et al.

Distributed under
Creative Commons CC-BY 4.0

https://github.com/NTU-MedAI/CAFIE-DTA
http://dx.doi.org/10.7717/peerj-cs.3117
mailto:erbei@�ntu.�edu.�cn
mailto:wangli@�ntu.�edu.�cn
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.3117
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/


The substantial augmentation in computational capabilities, coupled with advancements
in AI technology, can be harnessed to transform the drug development process
fundamentally (Mak & Pichika, 2019).

Machine learning (ML) technology plays an increasingly important role in predicting
drug–target affinity (DTA). Existing models often use the Simplified Molecular Input Line
Entry System (SMILES) to represent compound structures and input features such as
protein amino acid sequences, and molecular and protein secondary and tertiary
structures. These features are then processed through a series of deep learning
architectures, such as convolutional neural networks (CNN), recurrent neural networks
(RNN), graph neural networks (GNN), Transformers, and their variants, to achieve precise
predictions of DTA tasks (Zhang et al., 2018; Segler et al., 2018;Wu et al., 2022b). With the
accumulation of protein-ligand binding data and advancements in deep learning
technology, numerous machine learning and deep learning methods have emerged to
predict protein-ligand binding affinity.

Utilizing natural language processing (NLP) technology to analyze the semantic
characteristics of sequences, particularly in the context of small molecule compounds and
protein sequence information, has become a research hotspot. Early researchers often
constructed static embeddings based on one-dimensional sequence information (e.g.,
one-hot vectors). The first deep learning DTA prediction model, DeepDTA, used SMILES
to encode drug chemical structures and protein amino acid sequences to represent protein
features (Öztürk, Özgür & Ozkirimli, 2018). The SMILES-encoded drugs, after integer
labeling, along with protein sequences, were input into a CNN with three layers of
one-dimensional convolution, where the drug part used max-pooling to extract
potential features, and the protein part used a similar CNN structure. The feature vectors
of both were then concatenated and trained through a fully connected layer for
prediction. Another deep learning model, DeepAffinity, serialized SMILES-encoded
drugs and structural attributes of proteins (Karimi et al., 2019). This model used a
seq2seq autoencoder (a type of RNN) to encode SMILES and protein structure
sequences into embedded representations, with seq2seq capturing internal
dependencies within sequences through an Encoder-Decoder structure (Sutskever, Vinyals
& Le, 2014).

Despite the widespread use of one-hot encoding in the above methods, this fixed
mechanism has common issues. After processing small molecules and protein sequences,
the resulting sub-sequence sets are large, and the vector dimensions are proportional to the
number of sub-sequences, leading to dimensionality explosion, severe sparsity issues, and
significantly increased computational demands. Constructing simple one-hot word vectors
based solely on SMILES codes and the minimal characters of protein amino acid residues
may not guarantee semantic similarity of the minimal sequence units. Therefore, there is a
need to find representations that solve information loss and matrix sparsity caused by
one-hot encoding.

To address this problem, researchers treat complex SMILES strings as sentences, with
each atom and bond symbol regarded as words or tokens. By collecting a large corpus of
compounds, such as treating the SMILES string “CC(=) OC1=C” as a sentence composed
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of individual symbols (Wicker et al., 2010), models such as Extended-Connectivity
Fingerprints (ECFPs) have been designed for structure-activity modeling, widely used for
compound feature representation (Rogers & Hahn, 2010). ECFPs assign identifiers to each
atom based on their characteristics, then iteratively update the identifiers according to
adjacent atoms’ identifiers, forming identifiers for substructures within molecules. The
number of iterations determines the size of substructures the algorithm can recognize,
and the final identifiers are hashed into fixed-length binary vectors. Similarly,
Mol2vec, inspired by the word2vec model, learns vector representations of
molecular substructures, treating molecules as sentences, with substructures identified by
ECFPs (radius 0) as words in sentences. By learning embeddings of these substructures
(“words”), frequently co-occurring substructures have similar embeddings (Jaeger, Fulle &
Türk, 2018).

Abbasi et al. (2020) proposed a deep learning method, DeepCDA, combining
convolutional layers and long short-term memory layers to learn new representations of
local substructures from protein and compound sequences. Additionally, they proposed a
bilateral attention mechanism to encode the interaction strength between protein and
compound substructures (Abbasi et al., 2020). Nguyen et al. (2021) represented drugs as
graphs and used graph neural networks to predict drug–target affinity in their model
GraphDTA. Jiang et al. (2022) proposed a sequence-based weighted graph neural network
prediction method, WGNN-DTA, where the weighted protein graph construction method
provides more detailed residue interaction information and uses an evolutionary scale
model (ESM) to significantly improve computational speed while maintaining accuracy.
Monteiro, Oliveira & Arrais (2022) proposed a Transformer-based model for predicting
drug–target binding affinity, DTITR, which provides an end-to-end solution. This model
uses self-attention layers to capture the biological and chemical context presented in
protein sequence and compound structure data (Monteiro, Oliveira & Arrais, 2022).
Huang et al. (2020) proposed DeepPurpose, a model that implements 15 compound and
protein encoders and over 50 neural architectures. Zhang, Wang & Chen (2022) proposed
the MRBDTA model, consisting of embedding and position encoding, molecular
representation modules, and interaction learning modules. They developed the Trans
block by improving the transformer’s encoder to extract molecular features (Zhang, Wang
& Chen, 2022). In addition, Zong et al. (2019) proposed a network-based prediction
framework that generates knowledge and modularizes feature selection and association
prediction, making it easy to adapt and extend to other feature sources or machine learning
algorithms. Ma et al. (2023) proposed to enrich protein expression by pre-training VGAE
to construct protein interaction networks and similarity networks, thereby providing
extensive prior knowledge in DTA prediction.

Despite significant progress made by existing deep learning models in DTA prediction,
most rely solely on one-dimensional sequence information or two-dimensional graph
information. Compared to molecular graphs, molecular sequences can gather sequence
information for feature learning but overlook the structural information contained in
molecular graphs, affecting prediction accuracy. Drug feature sequences are currently
replaced by molecular graphs, which contain rich feature information. However, many
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target proteins lack three-dimensional structural information, preventing the use of their
high-dimensional characteristics (Zhang et al., 2023). So in order to compensate for the
lack of three-dimensional structure, Voitsitskyi et al. (2023) proposed 3DProtDTA, which
uses AlphaFold to predict the structure of proteins, and uses these structures to represent
proteins for drug target affinity prediction. Liu et al. (2025) introduced a Subpocket
modeling module to provide level based information for each pocket, and decomposed
each pocket into sub pockets to obtain information in 3D space.

Additionally, the physicochemical properties of drugs and targets are also crucial for
binding affinity prediction. Ignoring these properties may lead to incomplete features and
limited model performance. Especially the electrostatic potential energy and surface
curvature of protein surfaces. Bitencourt-Ferreira & de Azevedo Junior (2021) reviewed the
development of scoring functions and proposed that electrostatic potential has a significant
impact on protein drug binding affinity by applying semi empirical free energy scoring
functions to predict binding affinity. Li et al. (2023) proposed that surface area and
dihedral angle, important components of protein three-dimensional structure, play a
crucial role in predicting protein binding sites. The surface area and dihedral angle of
proteins can be reflected in the surface curvature of proteins, which can effectively help
find the binding site. At the same time, the accuracy of the binding site directly affects the
binding affinity between proteins and drugs.

In order to overcome the limitations of target proteins in lacking three-dimensional
structural information, physical and chemical properties, and information fusion, we
propose the CAFIE-DTAmodel. This model innovatively integrates the three-dimensional
structural information of proteins (such as protein surface curvature and electrostatic
potential energy) with sequence information through attention mechanism, as well as the
physical and chemical information of drugs with graph information through attention
mechanism. First, we independently obtain the physicochemical information of drugs and
proteins and represent it as matrices. Then, features are extracted from the graph
constructed from drug SMILES using a dual GNN with residual connections, and drug
graph features are fused with the corresponding physicochemical information features
through a multi-head cross-attention mechanism. Similarly, the protein features
extracted by CP-Encoder are fused with the corresponding physicochemical information
through a multi-head cross-attention mechanism. Finally, the fused features are
concatenated and input into a fully connected layer to predict affinity values.
Cross-validation and comparative evaluations with existing methods on the
benchmark datasets Davis and KIBA showed an improvement of 0.003 in CI and 0.022 in
R2 on the Davis dataset, and an improvement of 0.008 in MSE and 0.005 in CI and 0.017 in
R2 on the KIBA dataset. CAFIE-DTA demonstrates superior performance in DTA
prediction compared to traditional models that rely on 2D structures and sequence
information.

MATERIALS AND METHODS
The resource codes and datasets are available at https://github.com/NTU-MedAI/CAFIE-
DTA.
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The resource Davis and KIBA datasets can be downloaded at staff.cs.utu.fi/~aatapa/
data/DrugTarget/.

Benchmark datasets
To compare CAFIE-DTA with existing machine learning and deep learning-based models,
the model was evaluated on two publicly available DTA datasets: the Davis dataset and the
KIBA dataset (Davis et al., 2011; Tang et al., 2014). The Davis dataset consists of 442
proteins and 68 compounds, forming 30,056 drug–target pairs, with the kinase
dissociation constant (Kd) values used as the measure of binding affinity. Higher Kd values
indicate lower binding strength between the drug and the target. The KIBA dataset uses
KIBA scores as the measure for predicting drug–target affinity, where higher KIBA scores
indicate stronger binding between the drug and the target. The KIBA dataset comprises
229 proteins and 2,111 compounds, forming 118,254 drug–target pairs. In both datasets,
drug SMILES strings were collected from the PubChem compound database, and protein
sequences were collected from the UniProt protein database. Table 1 provides the statistics
of these two datasets. It should be noted that due to computer memory limitations, one
long protein sequence and its related pairs were removed from the KIBA dataset.

The Davis dataset comprises 442 kinase proteins and their corresponding inhibitors
(68 ligands), each with a dissociation constant value. The Kd values were transformed into
the logarithmic scale as pKd, serving as the binding affinity values.

pKd ¼ �log10
Kd

1e9

� �
:

The KIBA dataset is developed based on the KIBA method, initially comprising 467
proteins, 52,498 drugs, and their binding affinity scores. Here, the KIBA score measures
the bioactivity of kinase inhibitors and is regarded as a binding affinity value. After filtering
by SimBoost (He et al., 2017), it contains 229 unique proteins and 2,111 unique drugs for a
fair comparison. Regarding the input of proteins and drugs in the Davis and KIBA
datasets, we follow the DeepDTA approach and digitize protein sequences into a fixed
maximum length through a dictionary (Öztürk, Özgür & Ozkirimli, 2018).

Physical and chemical information acquisition of compound and
proteins
For each drug, the physicochemical information is obtained from the PubChem official
website, including lipophilicity, topological polar surface area, complexity, number of
hydrogen bond donors, number of hydrogen bond acceptors, number of heavy atoms, total
charge of the molecule, and specified atomic counts (such as ‘C’, ‘H’, ‘N’, ‘O’, ‘F’, ‘S’, ‘Cl’,
‘Br’, ‘I’). The physicochemical properties of a given protein are calculated using functions

Table 1 Statistics of the two datasets.

Number Dataset Protein Compounds Binding entities

1 Davis 442 68 30,056

2 KIBA 229 2,111 118,254
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within Biopython to compute hydrophobicity indices of the protein’s amino acids, its
molecular weight, and isoelectric point. APBS software is used to calculate the total
electrostatic potential of proteins. Using Delaunay triangulation and circumcircle
radius to estimate the average surface curvature of proteins. The specific method for
obtaining the physical and chemical characteristics of drugs is to use Python to call the
PubChempy interface on the official PubChem website to obtain the physical and
chemical characteristics. Write the physical and chemical information features
obtained through the interface into a list one by one to obtain a vector form, and
sometimes some values may be missing in the physical and chemical information features
of these drugs. To address these missing values, set it to 0. For other values, in order to
preserve their original information without excessive processing, they are directly
represented as raw values.

Figure 1 The overall architecture of CAFIE-DTA. (A) The drug information feature acquisition module takes SMILES molecular formula as its
input and outputs drug related feature vectors. This model is responsible for obtaining the sequence features of drugs and features with two-
dimensional structure information and physicochemical information. (B) The protein information feature acquisition module takes protein
sequences as input and protein related feature vectors as output. This model is responsible for obtaining the sequence features and physicochemical
information of proteins. (C) Affinity prediction module. This architecture is responsible for combining feature vectors from both drug and protein
aspects, and inputting them into a multi-layer perceptron to obtain specific affinity values. (D) This module mainly introduces the sources of specific
values of drug physicochemical information and the characteristic information included. PCD represents the physicochemical information of drugs,
PCP represents the physicochemical information of proteins, and CP represents compounds and proteins.

Full-size DOI: 10.7717/peerj-cs.3117/fig-1
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The overview of the proposed framework
Figure 1 depicts our model. It can be seen that the model is mainly composed of three
modules: the drug feature extraction module, the protein feature extraction module, and
the prediction module. The drug feature extraction module in Fig. 1A, the physicochemical
information matrix is fused with the features of the molecular graph through a multi-head
cross-attention mechanism. The CP-Encoder is used to extract the sequence information
of the drug. The protein feature extraction module in Fig. 1B, the physicochemical
information matrix is obtained by concatenating the physicochemical information of the
protein, and the sequence features are extracted using the same CP-Encoder as in the drug
feature extraction module. On one hand, the sequence information is fused with the
physicochemical information matrix through a multi-head cross-attention mechanism; on
the other hand, the sequence information features are input separately. The prediction
module in Fig. 1C, the prediction module consists of fully connected layers. The features
obtained from the drug feature extraction module and the protein feature extraction
module are concatenated and input into the prediction module. The physicochemical
information of the corresponding drug is obtained from the PubChem website, as shown
in Fig. 1D, and the number of specific atoms is calculated. The values of this
physicochemical information are concatenated into a one-dimensional vector, and the
same processing is done for each drug. These one-dimensional vectors are then combined
into a physicochemical information matrix.

Drug physical and chemical information matrix
The physicochemical information of the corresponding drug is obtained from the
PubChem website. This physicochemical information includes lipophilicity, topological
molecular polar surface area, complexity, number of hydrogen bond donors, number of
hydrogen bond acceptors, number of heavy atoms, and the total charge of the molecule.
Additionally, it includes the number of specified atoms. The values corresponding to this
physicochemical information are concatenated into a one-dimensional vector Ed.
Similarly, the physicochemical information corresponding to the remaining drugs can be
obtained. Finally, this physicochemical information is combined into a physicochemical
information matrix Apc

d .

Molecular graph feature extraction
When directly represented as strings, structural information of molecules is lost.
Consequently, drugs are represented as molecular graphs to encompass more features. We
employ RDKit to convert SMILES codes into corresponding molecular graphs and extract
atomic features. Graph neural networks (GNNs) can effectively leverage the spatial
topological structure information of the graph to extract latent features, aggregating node
features to attain a graph-level representation. The following provides a brief overview of
graph convolutional networks (GCNs). For a molecular graph G ¼ ðV ;EÞ, where V
denotes the set of nodes and E the set of edges, each atom’s initial feature vector is denoted
as Xi. The graph comprises a feature matrix X 2 RðN �MÞ and an adjacency matrix
A 2 RðN � NÞ, with N representing the number of nodes and M the dimensionality of the
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features. The adjacency matrix represents the interaction relationships between nodes. To
describe the propagation mechanism of a GCN layer, it is defined as

H lþ1ð Þ ¼ r ~D
�1

2~A~D
�1

2H lð ÞW lð Þ
� �

: (1)

Here, ~A signifies the adjacency matrix with incorporated self-loops, ~D symbolizes the
degree matrix of the graph, H(i) denotes the feature matrix at layer i, H lþ1ð Þ indicates the
feature representation following l iterations of message passing, σ represents the rectified
linear unit (ReLU) activation function, andW lð Þ denotes the trainable weight matrix for at
the layer i. The feature matrix X serves as the input to H 0ð Þ.

Concurrently, to mine structural information, the molecular graph is channeled into the
GNN module, comprised of two successive GNN layers. Residual connections are adopted
to combine the initial input with the outputs from these two GNN layers, thereby
preserving the original molecular graph information. Ultimately, the characteristics of the
molecular graph are derived, as depicted in Fig. 2.

Drug sequence feature extraction
The drug sequence feature extraction module primarily consists of the CP-Encoder, which
itself is comprised of position embeddings, input embeddings, and a Transformer Encoder.
Here, the definition formula for drug D is given as Eq. (2).

D ¼ d1; d2; d3; . . . . . . dz; . . . . . . ; ddlf g dz 2 Nd; (2)

where di denotes the character at layer i in the SMILES string, Nd represents a collection of
62 SMILES characters, and d1 signifies the length of the SMILES representation for drug D.
To incorporate the relative or absolute positional information of each atom within drug D,
position embeddings are utilized. A superparameter k is defined to represent the maximum
length of a drug. The position embeddings are denoted as PED 2 R k�tð Þ, with the concrete
embedding techniques outlined by Eqs. (3) and (4) respectively.

PED i; 2jð Þ ¼ sin
i

10000
2j
t

� �
i ¼ 1; 2; 3; . . . . . . ; nD nD � kð Þ (3)

PED i; 2jþ 1ð Þ ¼ cos
i

10000
2j
t

� �
j ¼ 0; 1; 2; 3; . . . . . . ;

2
t
; (4)

Figure 2 GNN module. Full-size DOI: 10.7717/peerj-cs.3117/fig-2
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where t signifies the dimension size of the positional embedding for the drug SMILES.

PED i; :ð Þ refers to the row of matrix PED at layer i, representing the positional embedding
for the atom i in the drug. Equation (5) is defined to express the output that combines
input embeddings and positional embeddings:

XD ¼ ED þ PED;XD 2 Rk�t; (5)

The transformer encoder primarily comprises multi-head attention mechanisms. The
attention weight matrix is illustrated as in Eq. (6).

Attention Q;K;Vð Þ ¼ softmax
QKTffiffiffiffiffi
dk

p
� �

� V : (6)

Here, the inputs for Q = K = V are XD. The headi is defined by Eq. (7).

headi ¼ Attention QWQ
i ;KW

K
i ;VW

V
i

� �
; (7)

where QWQ
i , KW

K
i ;VW

V
i represent the linear projection matrices for query (Q), key (K)

and value (V), respectively. Finally, the outputs of the four scaled dot-product attention
layers are concatenated and passed through a linear layer to yield the MultiHead (Q, K, V)
output of the multi-head attention layer. The multi-head (Q, K, V) is defined by Eq. (8).

MultiHead Q;K;Vð Þ ¼ Concat head1; . . . . . . ; headhð ÞWO; (8)

Figure 3 CP-encoder module. Full-size DOI: 10.7717/peerj-cs.3117/fig-3
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WO denotes a linear projection matrix. Here, by taking XD as the input for Q, K, and V,
we obtain the sequence features of drugs, denoted as FT

D . The composition of the
CP-Encoder is inspired by the encoding module proposed by Zhang, Wang & Chen (2022),
with its specific structure illustrated in Fig. 3.

Although traditional Transformers can be used to extract one-dimensional sequence
information and increasing the depth (i.e., layers) of Transformers can usually improve
model performance, overly deep networks can also bring problems such as increased
training difficulty and high computational resource consumption. At the same time, due to
the long length of SMILES sequences and protein sequences, and the importance of the
relationships between each atom, a single Transformer is difficult to extract deeper features
and more accurate relationships between atoms. So after a series of experiments and
optimizations, we found that the three-layer encoder structure can maintain a relatively
low computational cost while ensuring model performance.

The main responsibility of the first encoder is to receive initial input data and begin
preliminary feature extraction. The second encoder will receive preliminary processed data
(including the original input information transmitted through residual connections) based
on the first encoder. This layer may focus on refining and deepening feature
representations to gain a deeper understanding of complex patterns in input data. Due to
the different parameters of the two parallel encoders, the collected feature information is
different, so adding them together can obtain more information. Secondly, it can greatly
enhance the robustness of our deep learning models.

The multi head cross attention mechanism of drugs and protein
In our approach, the drug multi-head cross-attention mechanism focuses on modeling
various levels of interaction information between the molecular graph based on drugs and
the physicochemical information features of drugs in high-dimensional space, generating
features of different interaction levels. The formulas are identical to the aforementioned
Eqs. (5), (6), (7), with the distinction lying in the difference of inputs. Specifically, the

Figure 4 Cross attention module of drugs. Full-size DOI: 10.7717/peerj-cs.3117/fig-4
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query Q employs the computed physicochemical information matrix Apc
d as input, while

the keys K and values V utilize the molecular graph features extracted by GCN. This
multi-head cross-attention mechanism, through this particular input methodology,
identifies parts that are most relevant to both the structural characteristics of the drugs
and their physicochemical properties. Ultimately, the fused feature is denoted as illustrated
in Fig. 4.

In terms of protein feature fusion, a module identical to the multi-head attention
mechanism for drugs is employed to integrate the physicochemical information and
sequence information of the protein. Here, the query Q takes the computed matrix of
physicochemical information Apc

p as input, while the keys K and values V utilize the
sequence features extracted by the Transformer as inputs. Cross multi-head attention is
used to fuse the physicochemical information and sequence feature information, thereby
allowing for simultaneous consideration of the protein’s sequential information alongside
its physicochemical properties, preventing the loss of valuable information. The fused
features are denoted as illustrated in Fig. 5.

Physical and chemical information matrix of proteins
The physicochemical properties of proteins are calculated using functions within
Biopython to determine hydrophobicity indices of amino acids, the molecular weight, and
the isoelectric point of the protein. Additionally, the total electrostatic potential of the
protein is computed using the APBS software. This process begins with downloading the
corresponding PDB file for the protein in question, which is then fed into the APBS
software to calculate its overall electrostatic potential. Regarding the calculation of mean
curvature, it is approached through discrete mathematical approximations and geometric
analyses, specifically employing concepts of Delaunay triangulation and circumradius
(Zhou & Yan, 2014). The protein molecule’s surface is approximated by a set of
interconnected triangles (or tetrahedra), constituting a mesh derived via Delaunay
triangulation. Delaunay triangulation is a method for constructing interconnected

Figure 5 Cross attention module of proteins. Full-size DOI: 10.7717/peerj-cs.3117/fig-5
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triangles over a given set of points, with each point representing the coordinate of a protein
atom. This step facilitates the construction of local approximations of the surface. For each
generated tetrahedron, the circumradius (R) is calculated. The circumcircle is an externally
tangent sphere constructed through the vertices of the tetrahedron. Curvature is inferred
from this circumradius, conventionally defined as 1/R; higher curvature indicates a more
recessed surface, while lower curvature suggests a more protruding one. To find the
average curvature, the curvatures of all tetrahedra are summed and then divided by the
count of valid tetrahedra, those with non-zero volume. In summary, this method harnesses
mathematical approximations and geometric analyses to decompose the protein surface
through Delaunay triangulation into a set of tetrahedra, with curvature computed at each
tetrahedron. By averaging these curvature values, the mean curvature of the entire protein
molecular surface can be obtained. The procedure for calculating the surface curvature of
proteins involves: obtaining the PDB files for each protein in the dataset, using these PDB
files as input to retrieve the three-dimensional coordinates of the protein. Applying the
Delaunay function to perform Delaunay triangulation, thereby creating a triangular mesh
approximating the protein molecular surface. Converting this triangular mesh into
tetrahedra, followed by computing the coordinates of each vertex, lengths of edges, and
volumes. Constructing the circumscribed sphere around each tetrahedron using vertex
coordinates, and using this circumcircle to determine curvature. Finally, summing the
curvatures of all tetrahedra and dividing by the number of valid tetrahedra yields the mean
curvature. The specific process is shown in Fig. 6. All one-dimensional physicochemical
property vectors are combined to form a physicochemical information matrix Apc

p . In
Fig. 6A, each yellow dot represents an amino acid residue of the protein, and the black
edges represent the edges that make up the Tyson polygon. Its characteristic is that the
distance from any point within a Thiessen polygon to the control points that make up the
polygon is less than the distance to the control points of other polygons. Then connect all

Figure 6 The process of calculating the radius of the circumscribed circle through triangulation. (A)
Voronoi diagram for a set of points. Each point represents the residue of the protein. (B) Delaunay
triangulation can be obtained by connecting all the points that share common Voronoi faces. The edges
of Delaunay triangulation (bold segments) represent the connection network of the points. (C) Calcu-
lating the coordinates of each vertex of a tetrahedron, the length of each edge, and the volume. Con-
structing the outer tangent sphere of a tetrahedron through vertex coordinates. Calculate curvature
through this circumcircle. Full-size DOI: 10.7717/peerj-cs.3117/fig-6
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amino acid residues according to Fig. 6B to form a tetrahedron. Finally, calculate the
coordinates of each vertex, length, and volume of each edge of the tetrahedron based on
Fig. 6C. Construct an outer tangent sphere of a tetrahedron using vertex coordinates.
Calculate the curvature passing through the circumcircle.

The specific steps for calculating the average curvature are as follows,
Firstly, extract the three-dimensional coordinates xi; yi; zið Þ of all atoms in the protein to

form a point set P. Then, using the three-dimensional Delaunay triangulation method,
divide P into a series of non overlapping tetrahedral units. The characteristic of Delaunay
partitioning is that the outer sphere of any tetrahedron does not contain any other input
points, thus ensuring the local optimality and stability of the partitioning structure. Based
on the obtained tetrahedral elements, further calculate the local geometric curvature to
evaluate the overall curvature of the protein surface.

Assuming a tetrahedron has four vertices, denoted as p1; p2; p3; p4, their coordinates are
three-dimensional vectors:

pi ¼ xi; yi; zið Þ; i ¼ 1; 2; 3; 4: (9)

The length of each edge of a tetrahedron is defined as:

a ¼ kp1 � p2k
b ¼ kp1 � p3k
c ¼ kp1 � p4k
d ¼ kp2 � p3k
e ¼ kp2 � p4k
f ¼ kp3 � p4k
where k � k represents Euclidean distance (L2 norm). Then define the quantity V as:

V ¼ adf þ befð Þ þ cdeð Þ � ae2
� �� bd2

� �� cf 2
� �

: (10)

Define the radius of curvature R of a tetrahedral circumcircle:

R ¼ a2 e2 þ f 2 � d2ð Þ þ b2 d2 þ f 2 � e2ð Þ þ c2 d2 þ e2 � f 2ð Þ
16V

: (11)

If V ¼ 0, it is considered that this tetrahedron is invalid, and the calculation is skipped.
The circumcircle radius of the next tetrahedron is recalculated. For each effective
tetrahedron, its contribution to local curvature is defined as:

k ¼ 1
R
: (12)

Finally, the overall average curvature �k is:

�k ¼ 1
N

XN
i¼1

ki (13)

where N is the number of all valid (i.e. V ≠ 0) tetrahedra.

Fei et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3117 13/23

http://dx.doi.org/10.7717/peerj-cs.3117
https://peerj.com/computer-science/


Protein sequence feature extraction
Similar to the definition of drug D, P is the mathematical expression of the drug, defined by
Eq. (14).

P ¼ p1; p2; p3; . . . . . . ; pz; . . . . . . ; ppl
	 


pz 2 NP; (14)

whereNP denotes the set comprising the 25 common amino acids, and the sequence length
pl varies depending on the protein. The hyperparameter e is also defined to represent the
maximum length of a protein. XP represents the output of protein P after being processed
by embedding and position encoding, as defined by Eq. (15).

XP ¼ EP þ PEP;XP 2 Re�u; (15)

u signifies the embedding size for the protein sequence, where amino acids and SMILES
strings share the same embedding size (t = u). EP denotes the output of embeddings for all
strings within protein P. PEP represents the output of position encodings for all strings in
protein P. The embeddings and position embeddings for the strings of the protein are
obtained, subsequently processed in a manner consistent with drug sequence feature
extraction.

Prediction module
The outputs from the four feature extraction components the physicochemical
characteristics of proteins, the sequence characteristics of proteins, the sequence
characteristics of drugs, and the physicochemical molecular graph features of drugs are
concatenated to form a 512-dimensional feature vector. This vector is then fed into an
FNN to generate the final output. As depicted in Fig. 1C, the FNN consists of two fully
connected (FC) layers and one output layer. Each of the two FC layers is composed of 2,048
and 768 neurons respectively, while the output layer, made up of a single neuron, produces
the predicted protein-ligand binding affinity.

Experimental setup
The CAFIE-DTAmodel was trained using an Adam optimizer with an initial learning rate
of 0.001. This implementation is done using PyTorch. Set the batch size to 32, allowing
CAFIE-DTA to run up to 400 epochs. All code development was conducted on Ubuntu
servers equipped with NVIDIA GeForce A6000 GPUs.

The Adam optimizer is an optimization algorithm based on gradient descent, which
uses first-order moment estimation (i.e., the mean of the gradient) and second-order
moment estimation (i.e., the uncardized variance of the gradient) to dynamically adjust the
learning rate of each parameter (Kingma & Ba, 2014). And learning rate is a key factor in
adjusting model parameters. A higher learning rate may lead to faster convergence, but it
may exceed the minimum value; A lower learning rate ensures more stable convergence,
but may get stuck in local minima or require longer convergence time. So after adjusting
the learning rate, the final choice of 0.001 resulted in the best convergence effect and
performance of the model. The choice of EPOCH is also important, as excessive EPOCH
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can lead to overfitting of the model and a decrease in its effectiveness. A too small EPOCH
can lead to underfitting of the model, resulting in suboptimal performance.

RESULTS
Evaluation
In this work, we employed three metrics to evaluate and compare the predictive
performance of CAFIE-DTA with existing methods, including the Concordance Index
(CI), Mean Squared Error (MSE), and R2 score (Gönen & Heller, 2005; Pratim Roy et al.,
2009; Roy et al., 2013). The CI measures the probability of correctly predicting the relative
order of randomly selected drug–target pairs based on their predicted vs true binding
affinities, serving as an indicator of the model’s fitting quality. The r2m index is utilized to
describe the likelihood of an acceptable model. The MSE (Mean Squared Error) evaluates
the prediction accuracy of the model, that is, the discrepancy between predicted and actual
values.

Performance and analysis on different datasets
We use five fold cross validation and training set here, with the test set divided in a 5:1
ratio. To ensure fairness in the comparison, the model dataset being compared is
consistent with the partitioning method described in this article.

The data in this study was obtained through replication. The following tables fully
present the experimental results, with the best-performing data highlighted in bold and the
second-best results underlined.

The CAFIE-DTA model shows advantages in several key performance metrics.
Specifically, it improved the CI value by 0.003 and the R2 value by 0.022 on the Davis
dataset, and improved the MSE value by 0.008 and the CI value by 0.005 and the R2 value
by 0.017 on the KIBA dataset.

Compared to nine advanced computational models, the performance of CAFIE-DTA
on the Davis and KIBA datasets is almost always the best, as shown in Tables 2 and 3.

Table 2 Comparison results with baselines on the Davis dataset.

Method MSE CI R2

1 GraphDTA (GIN) (Nguyen et al., 2021) 0.258 0.878 0.659

2 GraphDTA (GAT) (Nguyen et al., 2021) 0.278 0.866 0.624

3 GraphDTA (GAT+GCN) (Nguyen et al., 2021) 0.283 0.863 0.624

4 DeepCDA (Abbasi et al., 2020) 0.251 0.892 0.651

5 WGNN-DTA (GCN) (Jiang et al., 2022) 0.214 0.892 –

6 WGNN-DTA (GAT) (Jiang et al., 2022) 0.215 0.893 –

7 DTITR (Monteiro, Oliveira & Arrais, 2022) 0.224 0.872 –

8 DeepPurpose (Huang et al., 2020) 0.228 0.822 –

9 MRBDTA (Zhang, Wang & Chen, 2022) 0.206 0.891 (±0.007) 0.704 (±0.04)

10 CAFIE-DTA 0.223 0.896 0.726

Note:
The best performing data is highlighted in bold, and the second best results are underlined.
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Table 3 Comparison results with baselines on the KIBA dataset.

Method MSE CI R2

1 GraphDTA (GIN) (Nguyen et al., 2021) 0.164 0.874 0.762

2 GraphDTA (GAT) (Nguyen et al., 2021) 0.207 0.849 0.665

3 GraphDTA (GAT+GCN) (Nguyen et al., 2021) 0.155 0.880 0.767

4 DeepCDA (Abbasi et al., 2020) 0.177 0.889 0.680

5 WGNN-DTA (GCN) (Jiang et al., 2022) 0.149 0.892 –

6 WGNN-DTA (GAT) (Jiang et al., 2022) 0.155 0.884 –

7 DTITR (Monteiro, Oliveira & Arrais, 2022) 0.205 0.861 –

8 DeepPurpose (Huang et al., 2020) 0.190 0.831 –

9 MRBDTA (Zhang, Wang & Chen, 2022) 0.153 0.889 (±0.001) 0.774 (±0.007)

10 CAFIE-DTA 0.141 0.897 0.791

Note:
The best performing data is highlighted in bold, and the second best results are underlined.

Table 4 Results predicted by CAFIE-DTA on test set of Davis and KIBA datasets for five times.

Dataset TIME 1 2 3 4 5 Average of five times

Davis MSE (SD) 0.220 0.224 0.223 0.221 0.229 0.223 (0.003)

CI (SD) 0.897 0.897 0.895 0.895 0.894 0.896 (0.001)

R2 (SD) 0.732 0.733 0.726 0.716 0.723 0.726 (0.006)

KIBA MSE (SD) 0.143 0.143 0.141 0.141 0.140 0.141 (0.001)

CI (SD) 0.896 0.896 0.897 0.895 0.899 0.897 (0.001)

R2 (SD) 0.786 0.792 0.791 0.789 0.795 0.791 (0.003)

Table 5 Results of ablation experiments on the Davis and KIBA dataset.

Dataset Method MSE CI R2

Davis -w/o Protein_PC information 0.228 0.881 0.699

-w/o Drug_PC information 0.232 0.889 0.697

-w/o MCAT 0.229 0.886 0.716

-w/o GNN 0.225 0.885 0.719

-w/o CP-Encoder 0.36 0.863 0.638

-w/o protein surface curvature 0.229 0.879 0.690

-w/o protein electrostatic potential 0.230 0.877 0.695

CAFIE-DTA 0.223 0.896 0.726

KIBA -w/o Protein_PC information 0.174 0.885 0.755

-w/o Drug_PC information 0.181 0.890 0.780

-w/o MCAT 0.175 0.885 0.779

-w/o GNN 0.174 0.885 0.781

-w/o CP-Encoder 0.191 0.870 0.699

-w/o protein surface curvature 0.149 0.892 0.780

-w/o protein electrostatic potential 0.151 0.890 0.786

CAFIE-DTA 0.141 0.897 0.791

Note:
The best performing data is highlighted in bold.
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In summary, the experiments confirm that the CAFIE-DTA model maintains high
prediction accuracy for both large-scale and small-scale drug–target affinity prediction
tasks, surpassing other methods reported in existing literature on key evaluation metrics.

To ensure the reliability and stability of the model, we repeated the experimental process
five times to obtain the mean and standard deviation SD. As shown in the Table 4.

Ablation experiment
To determine the impact of each input part in the model on the results, we conducted
ablation experiments on each input part on the Davis and KIBA datasets. Table 5 shows
the results of three evaluation metrics for the ablation experimental model and the original
model on the Davis and KIBA datasets.

Evaluate the effectiveness of the improvement points of the model through ablation
experiments. By comparing the performance of the model on two datasets in the absence of
different improvement points, it is demonstrated that the model performs more perfectly
with prior knowledge and feature fusion using attention modules. Therefore, the
experiment was divided into seven control groups, represented by W/O for the
improvement points that have been removed in the CAFIE-DTA model:

(1)-w/o Protein_PC Information: Exclude all physical and chemical information from the
drug module in the complete CAFIE-DTA model.

(2)-w/o Drug_PC Information: Exclude all physical and chemical information from the
protein module in the complete CAFIE-DTA model.

(3)-w/o MCAT: Remove the cross attention module from the complete CAFIE-DTA
model and directly concatenate the feature vectors.

(4)-w/o GNN: Exclude the two-dimensional structural information GNN of the drug
portion from the complete CAFIE-DTA model.

(5)-w/o CP-Encoder: Use Transformer Encoder instead of CP Encoder in the complete
CAFIE-DTA model.

(6)-w/o protein surface curvature: Exclude the average surface curvature information of
proteins from the complete CAFIE-DTA model.

(7)-w/o protein electrostatic potential: Exclude the surface electrostatic potential energy
information of proteins from the complete CAFIE-DTA model.

Table 6 Results of swapping the Q, K, and V input objects in cross-attention on the Davis dataset.

Q K V MSE CI R2

Drug GNN feature GNN feature PC feature 0.223 0.896 0.726

PC feature PC feature GNN feature 0.233 0.882 0.698

PC feature GNN feature GNN feature 0.261 0.880 0.688

Protein Transform feature PC feature PC feature 0.223 0.896 0.726

PC feature Transform feature Transform feature 0.231 0.885 0.702

Transform feature Transform feature PC feature 0.233 0.881 0.695

Note:
The best performing data is highlighted in bold.
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From the experimental results in Table 5, it can be seen that CAFIE-DTA is completely
superior to the ablation model in three indicators, whether on the Davis dataset or the
KIBA dataset. Therefore, the results of ablation implementation indicate that the physical
learning information of drugs and proteins helps to improve prediction performance.

Additionally, In order to intuitively reflect the influence of the Q, K, and V input objects
we choose in the attention mechanism on the result. The Q and K inputs of the drug are
replaced with the corresponding physicochemical information features, and the V input is
replaced by the subgraph features. For proteins, we replace the Q and K inputs with the
corresponding physicochemical information features, and the V input with the sequence
features of the protein. The experimental results in Table 6. Therefore, according to our
proposed cross attention input, the model obtained has the best performance.

Table 7 Antiviral drugs among the top 100 drugs with the best affinity predictions for six sars-cov-2 replication-related proteins, as predicted
by CAFIE-DTA and based on KIBA scores by MRBDTA.

Key proteins in SARS-CoV-2 CAFIE-DTA MRBDTA

Antiviral drug KIBA
score

Rank out of
3,137

Antiviral drug KIBA
score

Rank out of
3,137

1. 3C-like proteinase Valaciclovir 14.14881 18 Daclatasvir (BMS-
790052)

13.9089 4

Entecavir 13.77390 41 Ritonavir 13.4445 21

Daclatasvir (BMS-
790052)

13.23956 82

2. RNA-dependent RNA
polymerase

Daclatasvir (BMS-
790052)

14.33430 13 Daclatasvir (BMS-
790052)

13.4401 8

Valaciclovir 14.17196 21 Ritonavir 12.6714 29

Entecavir 13.64155 46 Entecavir 12.5049 45

3. Helicase Valaciclovir 14.02522 26 Daclatasvir (BMS-
790052)

13.9021 3

Entecavir 13.78821 39 Ritonavir 13.3434 18

Daclatasvir (BMS-
790052)

13.58512 49

4. 3′-to-5′ exonuclease Valaciclovir 13.99539 23 Daclatasvir (BMS-
790052)

13.7957 5

Entecavir 13.64906 44 Ritonavir 13.3427 19

Daclatasvir (BMS-
790052)

13.31367 68

5. EndoRNAse Valaciclovir 14.12855 19 Daclatasvir (BMS-
790052)

13.8885 4

Entecavir 13.730200 43 Ritonavir 13.4665 19

Daclatasvir (BMS-
790052)

13.166339 88

6. 2′-O-ribose methyltransferase Valaciclovir 14.129311 20 Daclatasvir (BMS-
790052)

13.9041 4

Entecavir 13.779694 41 Ritonavir 13.4015 24

Daclatasvir (BMS-
790052)

13.118487 97
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Case analysis
Drug repurposing is a novel drug discovery strategy. Firstly, it can significantly shorten the
drug development timeline because the safety and pharmacokinetic properties of these
drugs have already been verified in their original indications. Secondly, it can reduce
development costs, avoiding the expensive and time-consuming toxicity and efficacy tests
in early drug development. Additionally, drug repurposing can increase the likelihood of
success since existing clinical data provide valuable reference information. By reevaluating
existing drugs, potential treatments can be quickly identified, offering faster and safer
treatment options for patients. In this case study, we selected SARS-CoV-2
replication-related proteins as targets and applied the trained CAFIE-DTA to predict the
binding affinity between 3,137 FDA-approved drugs and SARS-CoV-2 replication-related
proteins (Riva et al., 2020;Dittmar et al., 2021). The purpose of this case study is to provide
a real-life application example of CAFIE-DTA and verify its reliable predictive
performance in drug design. The FASTA sequences of SARS-CoV-2 replication-related
proteins include 3C-like proteinase (accession YP_009725301.1), RNA-dependent RNA
polymerase (accession YP_009725307.1), helicase (accession YP_009725308.1), 3′-to-5′
exonuclease (accession YP_009725309.1), endoRNAse (accession YP_009725310.1), and
2′-O-ribose methyltransferase (accession YP_009725311.1). These sequences were
obtained from the National Center for Biotechnology Information database (Zhang, Wang
& Chen, 2022). The binding affinities of 3,137 FDA-approved drugs with six SARS-CoV-2
replication-related proteins predicted by CAFIE-DTA based on KIBA scores can be found
in Supplemental File. For each SARS-CoV-2 replication-related protein, CAFIE-DTA was
compared with MRBDTA. It was found that among the top 100 drugs with the best affinity
predictions, CAFIE-DTA predicted 18 antiviral drugs, while MRBDTA predicted 13
antiviral drugs, as shown in Table 7. Therefore, we found that among the top 100 drugs
with the best affinity predictions, CAFIE-DTA was able to predict more antiviral drugs.

MRBDTA only considers the sequence information of drug targets, while CAFIE-DTA
not only considers the sequence information of drug targets but also the physicochemical
information of drug targets. And these characteristics, such as electrostatic potential
energy, hydrophobicity, and the number of hydrogen bond donors/acceptors, are crucial
for the specificity and affinity in the molecular recognition process. Secondly, regarding the
three-dimensional structure of the target, it reflects the morphological characteristics of the
target surface. The specific shape of the target surface can affect how drug molecules
approach and bind to the active site.

CONCLUSIONS
Predicting the binding affinity between proteins and ligands is a crucial and challenging
task in drug development. In this study, we propose an innovative model, CAFIE-DTA,
which enhances predictions using protein 3D curvature and electrostatic potential
information. This model not only considers the physicochemical properties of drugs and
proteins but also delves into their sequence and structural features, achieving
comprehensive and three-dimensional characterization of both entities. Despite
constructing a multi-information, multi-angle cross-attention model to predict
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protein-ligand binding affinity, and achieving certain effectiveness, current models still
have limitations, particularly in handling physicochemical feature processing, which
requires further refinement and optimization. Then, because the binding of proteins and
drugs is a dynamic process, the conformational changes can significantly affect the binding
affinity between drugs and proteins (Karplus & McCammon, 2002). How to accurately
obtain the dynamic conformational changes of proteins, and how to use and extract
time-series features from these dynamic information, remains a challenging task.

To further explore the practical significance of predicting protein-drug affinity in drug
discovery, we selected SARS-CoV-2 replication-related proteins as our study focus to
screen potential candidate drugs using the model. Results demonstrate that accurately
predicting protein-ligand binding affinity indeed accelerates the drug screening process,
paving the way for efficient drug discovery pathways. Lastly, we will continue to optimize
methods that integrate physicochemical information, aiming to more fully and efficiently
utilize this information to further enhance the model’s prediction accuracy and
generalization capabilities. Secondly, in order to compensate for the lack of protein
dynamic information, we plan to enhance the performance of the model by combining
molecular dynamics (MD) simulation information. Future research will obtain more
accurate time-series information on protein ligand binding by introducing molecular
dynamics simulations based on AMBER software. Adopting and improving the pre
training model ProtMD based on protein dynamic information encoding proposed by
Wu et al. (2022a) for feature extraction of protein conformation in each frame. Thus, the
dynamic information of protein ligands is incorporated into the model.

This series of efforts aims to continuously improve protein-drug binding affinity
prediction models, providing more precise and efficient tools for drug development,
thereby advancing the drug discovery process.
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