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ABSTRACT

Apple-picking robots are designed to accurately identify ripe apples, efficiently
harvest them, and offer adaptable solutions applicable to various fruits. However,
current methods show limited detection accuracy in complex environments due to
challenges such as shading in natural settings, variations in ambient lighting, and
diversity in fruit color, shape, and size. This study integrates Hue-Saturation-Value
(HSV) color space transformation with YOLO v8 models to identify the quantity and
location of apples, while also assessing their ripeness and weight. First, image data of
apples in natural environments were collected and preprocessed using grayscale
conversion and Gaussian filtering for denoising. Next, edge detection was performed
using the Canny and Sobel algorithms, and apple counting was achieved via the
YOLO v8 model. Ripeness was evaluated based on HSV and Red—Green-Blue (RGB)
values, while weight estimation was conducted by constructing 3D models of the
fruits. Finally, through color feature extraction and YOLO v8, apples were precisely
identified among various fruits. Experimental results show that the YOLO v8 model
achieved an average precision of 95% and an F1-score of 93.45%. Compared to
existing algorithms such as Visual Geometry Group (VGG) and Residual Network
(ResNet), YOLO v8 improved Mean Average Precision (mAP) by 0.14% and 8%,
respectively. These advancements provide strong technical support for apple-picking
robots, enabling faster and more accurate operations, improving fruit quality, and
meeting the practical demands of agricultural production.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Computer Vision, Data
Mining and Machine Learning, Neural Networks

Keywords Natural environment, Apple estimation, Apple detection, Color space transformation,
YOLO v8

INTRODUCTION

As the world’s largest apple producer and exporter, China’s annual output is
approximately 35 million tons (Zhao, 2019). Apples are rich in vitamins and minerals. As a
wealthy industry, its high-quality development has become the basis for promoting
regional rural revitalization industries. With the popularization of agricultural
mechanization, the application of intelligent machinery is becoming increasingly extensive
in agricultural production, which effectively reduces the dependence on manpower in the
process of apple picking, thus significantly improving picking efficiency (Zhang et al., 2020;
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Chu et al., 2021). However, mechanical picking faces many challenges in the identification
and estimation of apples. In real production, there are many interference factors such as
fruit occlusion and light changes. Therefore, to solve key problems such as labor cost
savings, fruit damage rate reduction and picking efficiency improvement (Song, Shang ¢
He, 2023), it is of great practical importance and broad application prospects to use deep
learning technology to achieve accurate identification and positioning of apples in complex
environments.

The target recognition algorithms in deep learning can be divided into two categories:
two-stage target detection and one-stage target detection. The two-stage target detection
method generates candidate target regions through the region proposal network and
classifies and bounding boxes regresseses the candidate regions to obtain accurate target
locations and categories. Examples of algorithms within this category include Region-
based Convolutional Neural Network (R-CNN) (Girshick et al., 2015), Fast R-CNN
(Girshick, 2015), Faster R-CNN (Ren et al., 2017). On the other hand, the one-stage target
detection method directly predicts the category and location of the target on the image
without generating candidate regions. This method is suitable for problems that require
real-time target detection and positioning, especially in scenarios with high-speed
requirements, such as real-time obstacle detection in autonomous driving, pedestrian
detection in monitoring systems, and product quality inspection in industrial applications.
These scenarios need to quickly and accurately detect the location and category of a single
target, and the single target detection method can directly predict without generating
candidate regions. Examples of algorithms within this category include You Only Look
Once (YOLO) (Redmon et al., 2016), Single Shot Multi-Box Detector (SSD) (Liu et al.,
2016), RetinaNet (Cheng ¢» Yu, 2020). However, SSD relies on a fixed set of default anchor
boxes and scale assignments, which limits its localization accuracy for small or densely
clustered objects, and often results in missed detections under complex backgrounds.
RetinaNet introduces the focal loss to address class imbalance but still depends on
predefined anchors and employs a heavier backbone network, leading to reduced inference
speed and sensitivity to occlusion and background clutter. In contrast, our proposed
network leverages adaptive anchor assignment and enhanced feature-pyramid fusion to
maintain high detection precision and real-time performance across multiple targets, even
in the challenging, multi-object scenarios typical of orchard environments.

As a new network model that has attracted much attention in recent years, the YOLO
algorithm has obvious advantages in terms of detection speed and accuracy and has been
widely used in many fields such as industry, agriculture and transportation. With its
continuous evolution and improvement, the YOLO algorithm has successively introduced
multiple versions including YOLO v3 (Alsanad et al., 2022), YOLO v4 (Wu et al., 2023),
and YOLO v5 (Ghose et al., 2024). As the latest evolutionary version of the YOLO
algorithm, YOLO v8 (Talaat & ZainEldin, 2023) continues to have rapid detection speed
and excellent detection accuracy.

Although several YOLO variants, v9 (Wang, Yeh ¢ Liao, 2024),v10 (Wang et al., 2024),
v11 (Khanam e Hussain, 2024) and v12 (Tian, Ye ¢» Doermann, 2025), have been released
since v8, each presents trade-offs that limit its suitability for real-time, edge-based orchard
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applications. Specifically, YOLO v9 (Wang, Yeh ¢» Liao, 2024) implemented additional
architectural pruning to increase throughput but experienced a significant decline in small-
recognition accuracy in dense orchard scenes; its higher computational cost (112 GFLOPs
compared with v8’s 85 GFLOPs) also led to an 18% reduction in frame rates on identical
hardware. YOLO v10 (Wang et al., 2024) introduced dynamic depth-and-width scaling to
increase flexibility; however, it exhibited unstable convergence across heterogeneous field
data and required extensive retraining, with mAP@0.5 falling to 0.75 under more than 50%
occlusion—an important shortcoming for dense apple clusters. YOLO v11 (Khanam ¢
Hussain, 2024) integrated transformer-based attention heads to capture long-range
context but the resulting increase in model size and memory footprint impeded real-time
inference on lightweight devices, and its reliance on over 10 million pretraining images
proved impractical for smaller orchards with limited annotations. Finally, YOLO v12
(Tian, Ye ¢ Doermann, 2025) refined feature maps through spatial-channel attention
modules but incurred higher inference latency and doubled video random-access memory
(VRAM) requirements (8 GB vs 4 GB for v8), offsetting potential speed gains in robotic
picking systems. Taken together, these findings indicate that despite their respective
enhancements, further optimization of advanced YOLO variants is necessary to satisfy the
stringent speed, accuracy and resource constraints of automated orchard deployments.

In complex orchard environments, the presence of multiple overlapping fruits, variable
lighting and background clutter can significantly degrade detection performance.
Benchmark studies report that single-object detection in controlled settings often exceeds
95% accuracy (Tarkasis, Kaparis ¢ Georgiou, 2025), whereas accuracy can fall below 80%
when multiple targets and complex textures are present (Huang et al., 2024). To address
these challenges, preprocessing methods such as image binarization, which separates
foreground fruit from background noise, and edge detection, which emphasizes object
contours, have been shown to improve multi-object detection robustness (Yi et al., 2025;
Ahmed ¢ Jalal, 2024). In particular, binarization reduces false positives by isolating
high-intensity fruit regions, and edge detection enhances boundary clarity, facilitating
accurate localization in cluttered scenes.

Several classical edge-detection operators have been proposed to highlight object
boundaries in images. The Roberts operator computes diagonal gradients using simple 2 x 2
kernels, offering low computational cost but producing noisy, fragmented edges (Canny,
1986). The Prewitt operator extends this approach to horizontal and vertical directions with
slightly larger kernels, improving noise resilience at the expense of blurred contours in
high-contrast scenes (Sobel ¢» Feldman, 2015). The Laplacian of Gaussian detects edges by
finding zero-crossings in the second derivative, yielding continuous boundaries, but often
amplifying spurious responses in textured backgrounds (Xie ¢ Tu, 2015). In contrast, the
Sobel operator combines Gaussian smoothing and first-derivative convolution in
orthogonal directions to generate robust gradient maps, effectively capturing local intensity
transitions while suppressing high-frequency noise (Zhang et al., 2024). The Canny method
refines these results through a multi-stage process consisting of Gaussian blur, gradient
magnitude and orientation computation, non-maximum suppression and dual
thresholding, producing clean, continuous contours with minimal background interference
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(Kong et al., 2023). Given these characteristics, we adopted Sobel and Canny edge detection
in our preprocessing pipeline. Sobel quickly emphasizes prominent intensity changes to
reveal coarse object outlines, while Canny produces precise, noise-reduced contours.
Together, binarization and edge-enhancement steps strengthen YOLO v8's ability to
localize and identify apples under complex orchard conditions.

To provide a fair comparison, we selected Visual Geometry Group (VGG) (Pandiyaraju
et al., 2025), Residual Network (ResNet) (Wu et al., 2025) and MobileNet (Wijayanto,
Swanjaya & Wulanningrum, 2024) as alternative backbones, each adapted for object
detection by appending comparable detection heads. VGG’s (Pandiyaraju et al., 2025)
uniform 3 x 3 convolution stacks have been widely used in both single- and two-stage
detectors with feature-pyramid modules. ResNet (Wu et al., 2025) introduces residual
connections to enable deeper representations and serves as a backbone in Faster R-CNN
and SSD frameworks. MobileNet (Wijayanto, Swanjaya ¢» Wulanningrum, 2024) employs
inverted residuals and linear bottlenecks to achieve a lightweight architecture suitable for
edge-device deployment (e.g., MobileNet-SSD). By training all models under identical
conditions, we ensure that our head-to-head evaluation against YOLO v8 fairly reflects
each backbone’s detection capability.

Building on these insights, our study uses YOLO v8 as the baseline detection framework
and augments it with targeted preprocessing and modeling strategies for real-world
orchard applications (Ni et al., 2020; Wan et al., 2018; Parvathi ¢ Selvi, 2021). We first
applied grayscale scaling and Gaussian filtering for noise reduction, followed by Canny and
Sobel edge detection to enhance contour clarity. The processed images were then used to
train the YOLO v8 model to detect apple instances and their positions. Ripeness
assessment was performed via Hue-Saturation—Value (HSV) and Red-Green-Blue (RGB)
color-space analysis, and fruit weight was estimated through 3D reconstruction of detected
apples. This integrated approach combining color feature transformation with YOLO v8’s
real-time performance yields an efficient, robust apple localization and estimation model
that addresses complex orchard challenges and lays the groundwork for future
hardware-deployment studies.

MATERIALS AND METHODS

Image dataset
This study utilized a diverse dataset comprising 20,853 images under varying lighting
conditions, shooting angles, and fruit quantities, as detailed in Appendix 1 and https://
github.com/gbbei-hui/test (2023 APMCM Asia-Pacific Contest Problem A: Data Materials
for Image Recognition in Fruit-Picking Robots). Specifically, 11,144 apple images were
sourced from the internet, captured in natural environments, while 200 images depicted
scenes with apples placed on tree trunks at different angles and distances, as illustrated in
Figs. 1A-1D. Additionally, the dataset included 2,028 images of starfruit, 3,012 of pears,
2,298 of plums, and 2,171 of tomatoes.

The processed data, shown in Figs. 2A-2E, were used to train the YOLO v8 model,
enabling it to recognize the five fruit types listed in https://github.com/gbbei-hui/test
(2023 APMCM Asia-Pacific Contest Problem A: Data Materials for Image Recognition in
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Figure 1 Image acquisition of the apples under multiple backgrounds. (A) Different light exposures,
(B) different fruit sizes, (C) similar colors of fruits and leaves, and (D) fruits occluded by leaves.
Full-size K&l DOT: 10.7717/peerj-cs.3116/fig-1

Figure 2 Sample images of five fruits. (A) A large number of apples in multiple directions and with
occlusion, (B) tomatoes with a high degree of similarity in shape and color to apples, (C) pears with
similar characteristics except for different colors from apples, (D) carambola with apples when they are
not ripe, and (E) plums with similar shapes and colors to apples under backlight.

Full-size K&] DOT: 10.7717/peerj-cs.3116/fig-2
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Table 1 Partitioning of the image dataset into training, validation, and test sets.

Dataset split Number of images Proportion
Train 16,682 80%
Validation 2,086 10%

Test 2,085 10%

Total 20,853 100%

Fruit-Picking Robots). During training, multiple iterations and result adjustments were
conducted to determine the optimal model weight parameters. The trained model was then
applied to 20,000 images in Appendix 3 for practical recognition tasks. Through further
pixel-level feature extraction, the deep learning model accurately identified valuable
information, ensuring precision and reliability in recognition.

As shown in Table 1, to ensure robust training and evaluation of the YOLO v8 model,
the full dataset was partitioned into training, validation and test sets in an 8:1:1 ratio. We
preprocessed the image data by resizing all images to 640 x 640 pixels and converting the
color space from BGR to RGB. Subsequently, we normalized the images so that the sum of
pixel values equals one, thereby enhancing color distribution features. After normalization,
each RGB image was represented as a feature vector stored in a one-dimensional array. The
dataset was meticulously curated to include images of apples and other fruits captured
under various real-world conditions, ensuring the model’s adaptability to complex
scenarios. These preprocessing steps provided a robust foundation for training the YOLO
v8 model, enabling effective detection of apples in intricate backgrounds. The ultimate goal
was to support the training and evaluation of the YOLO v8 model, ensuring its accuracy
and reliability in practical applications.

Data processing

The image data are processed through the processes of characterization, binarization,
denoising, and open and closed operations to increase the image quality, highlight the target
object (apple), and effectively reduce the interference of the complex background in apple
recognition to improve the accuracy and efficiency of recognition. The combined use of the
Sobel and Canny operators reduces the number of errors in edge detection and enhances the
model’s ability to recognize apples under different backgrounds and lighting conditions,
thus improving the model’s generalizability. To further enhance the model’s ability to
recognize apples under different backgrounds and lighting conditions, Sobel and Canny
operators are used in combination to reduce the errors in the edge detection process. This
enhances the edge detection effect of the model and improves its generalization ability so
that the model maintains stable recognition performance in diverse environments. To
improve model compatibility, the default BGR color space was first converted to the RGB
color space. The computer-recognized RGB image is subsequently converted to the HSV
color mode, which is closer to human visual perception. This conversion effectively
distinguishes the color of the target object from that of other objects and reduces visual
interference. This series of preprocessing methods lays a solid foundation for subsequent
model training and improves the recognition efficiency and accuracy of the apple.
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Figure 3 Apple image data enhancement. (A) Original image, (B) greyscale image, (C) Gaussian filtered
image, (D) opened image, (E) closed Image, and (F) edge detection image.
Full-size K&l DOTI: 10.7717/peerj-cs.3116/fig-3

Owing to the differences in the natures of the 200 images in the dataset, the pixels of the
individual images are unified to increase the compatibility of the data and avoid potential
error problems. The preprocessing process requires characterization, binarization,
denoising, an open operation, a closed operation and other processing steps for each
image. As shown in Figs. 3A and 3B, the original image of the apple is grayed first. The gray
image generated by this method has only one channel, in which each pixel value represents
the gray level of the corresponding position, to obtain comparable features, that is, the
color image is converted into a gray image, which helps reduce the number of calculations
and highlights the brightness information in the image. That is, the calculation formula of
the color image to the grayscale image is as follows:

Gray = R x 0.299 + G x 0.587 + B x 0.114G. (1)

Grey represents a greyscale image, and RGB represents the greyscale values of the red,
green, and blue channels of a colour image. The subsequent conversion of the image to a
black-and-white binary image divides the pixels in the image into two categories, one that
is given a value above the threshold and another that is assigned another value, which
indicates that it is below the threshold. Figure 3C uses a Gaussian filter to remove random
noise from the grayscale image to remove the noise in the image. The mathematical
formula for a one-dimensional Gaussian filter is as follows:

Fl) = ——e(55). @)

2no

The mathematical formula for the two-dimensional Gaussian filter (Matei ¢» Chiper,
2024) is as follows:

1
- +
— p?) [ ol 010 a3
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where g;(i = 1,2) is the standard deviation of the Gaussian distribution. The operation of
first corroding and then expanding is used to separate the connections between adjacent
objects in the image and smooth the object boundaries. Close operations, on the other
hand, expand first and then corrode to connect the fractures between objects, making the
objects in the image more compact.

In Figs. 3D and 3E, the open operation helps to repair small holes and cracks on the
surface of the apple to further smooth the image boundaries and eliminate small objects
and noise. Figure 3F uses Canny for edge detection, which accurately extracts the outline of
the apple in the image by calculating the gradient intensity and direction of each pixel in
the image and uses non-maximum suppression and double threshold detection to
determine the edges. The Sobel operator and Canny operator were applied for edge
detection to further improve the feature expression and accuracy of the image. These
meticulous preprocessing steps provide a more reliable input database for training the
model, which can help improve the model’s performance in processing apple estimation
and recognition tasks.

Edge detection

In this study, we selected the Canny and Sobel operators (Onyedinma Ebele, Asogwa Doris
& Onwumbiko Joy, 2025; Peng & Chaikan, 2021) for apple edge extraction because their
complementary strengths, including precise contour localization achieved by the Canny
operator’s noise-suppressed multi-stage detection and robust gradient computation
provided by the Sobel operator’s effective filtering, enhance boundary clarity under varied
lighting, occlusion and background complexity. Edge detection (Soria et al., 2023; Mittal
et al., 2019) is crucial for distinguishing apples from surrounding textures and other
objects, as it highlights structural features that improve the model’s ability to recognize and
localize fruit.

In complex orchard scenes, apple edges were often obscured by leaves, branches or
uneven illumination. The Canny operator addressed these challenges by first applying
Gaussian blur to remove noise, then computing gradient intensity and orientation to
identify edge candidates and finally using non-maximum suppression and
double-thresholding to produce clean, continuous contours. This multi-stage process
effectively suppressed background interference and yielded precise apple boundary
outlines. Meanwhile, the Sobel operator calculated horizontal and vertical gradients of the
grayscale image after Gaussian smoothing to measure pixel-value changes corresponding
to edge transitions. By convolving the image with Sobel kernels in the x and y directions,
we derived gradient amplitude and direction for each pixel. Applying an appropriate
threshold then extracted clear edge maps, reinforcing apple regions and facilitating
contour recognition by the YOLO v8 model.

These edge maps were incorporated into our preprocessing pipeline. Apple regions were
first enhanced through Canny- and Sobel-based edge extraction, and the resulting
feature-rich images were used to train YOLO v8 for recognition. The model parsed the
output to locate apple bounding boxes, whose centers indicated fruit positions. This
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integrated approach improved detection accuracy and robustness in complex orchard
environments, advancing precision agricultural monitoring and management.

Horizontal:
-1 0 +1 -1 0 +1 fx—1y—=1) f(x,y—1) flx+1,y—1)
Gi=|-2 0 42| xI={-2 0 +2|=*]| f(x—1,9) f(x,y) flx+1,y) @
1 0 +1 1 0 41| |flx=1,y+1) flx,y+1) flx+1,y+1)

=f(x+1Ly—1)—f(x—1,y—1)+2f(x+1,y) = 2f(x—Ly)+f(x+1L,y+1)—f(x—1,y+1).

Vertical direction:

-1 -2 -1 flx—1Ly—-1) f(x,y—1) f(x+1,y—1)

«xI=10 0 0 |x*x| f(x—1) fx,y) flx+1,y)
+2 41 +1 42 +1 flx—1,y+1) fx,y+1) flx+1Ly+1)
f(x—1y+ —flx=Ly—1+2f(x,y+1)=2f(x,y— 1) +f(x+1,y+1)—f(x+ 1,y —1).
The Canny operator (Song, Zhang ¢ Liu, 2017) is regarded as an efficient edge detection

(5)

algorithm that first uses a Gaussian filter to denoise the image to reduce the influence of
noise on edge detection. When calculating the image gradient, an advanced gradient
detection operator is used, which uses a Gaussian filter to calculate the gradient, to obtain a
smoother and more accurate gradient image. The Sobel operator is subsequently used to
calculate the first derivatives (Gx and Gy) in the horizontal and vertical directions,
respectively. Find the gradient and direction of the boundary on the basis of the two
obtained gradients (G, and G,) via the following formula:

Edge_Gradient (G) = |/G} + G, (6)

Angle (0) = tan™* (g—i) (7)

The algorithm uses non-maximum suppression technology to detect the local
maximum value of pixels and sets the gray value corresponding to the non-maximum
value to 0 to effectively filter out most of the non-edge pixels and retain the real edge
information. Then, the Canny algorithm uses a double threshold strategy to connect the
edges, using the high-threshold image to connect the edges into contours, and when the
contours reach the endpoints, the algorithm looks for the points that meet the
low-threshold conditions within eight neighborhoods of the point to generate new edges,
and finally ensures the closure and continuity of the entire image edges.

HSYV (Hue, saturation and value)

HSV (Stenger et al., 2019; Kurniastuti et al., 2022; Sari & Alkaff, 2020; Johari &
Khairunniza-Bejo, 2022) color space is a commonly used color representation that is closer
to human visual perception and is therefore very useful in image processing. The HSV
color space is made up of three components: Hue, Saturation, and Value. Hue represents
the main wavelength of light, is measured at angles ranging from 0 to 360 degrees, and
focuses on the specific color characteristics of apples by isolating hue channels to help
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Figure 4 The HSV processing results are compared with the original image.
Full-size k&l DOL: 10.7717/peerj-cs.3116/fig-4

distinguish the fruit from background elements. Saturation determines the purity of a
color, affecting its richness and sharpness. By enhancing the saturation component in the
HSV space, the color intensity of apples in diverse backgrounds is highlighted, thereby
improving their visibility and uniqueness in the YOLO v8 model. The luminance channel
represents the brightness of a color, and by setting an appropriate threshold on the
luminance component, apples can be effectively segmented on the basis of brightness
levels, facilitating precise localization and identification in complex environmental
settings.

Since the HSV model is more in line with the way in which humans perceive colors than
the RGB model is, and the computer pictures are usually stored and represented in RGB
mode, the RGB mode is converted to HSV mode first, which will more accurately identify
the colors of various fruits. The conversion formula is as follows:

0, A=C,
60 %G — B/A — C, A=RB<G,
H=1{60%G—BJA—C+360, A=G,G<B, ®)

60%*G—B/A—C+120, A=QG,
60« G— B/A— C+240, A =B.

The image processed via the HSV model is shown in Fig. 4. The original RGB image of
the star fruit realistically reflects the color and detail of the fruit placed on a metal tray in
the actual scene. Each pixel in an RGB image is determined by the values of the three
components of red (R), green (G), and blue (B) and constitutes the color world in the
image: max=A and min=B are the maximum and minimum values of R, G, and B,
respectively. After the original RGB image is converted to the HSV color space, in the HSV
image, the star fruit and pear appear blue, because the green component is more
prominent in the original RGB image, and in the HSV space, the green is mapped to the
range of blue tones. The hue of tomatoes is greener, which may be due to the shift in hue
due to the application of different mapping relationships or algorithms in the conversion
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process, which illustrates the flexibility and diversity of the HSV model in processing
images. After thresholding in the HSV color space, the processed image is provided as
input to the YOLO v8 model and trained by combining the image RGB color space (Dhal
& Das, 2018; Loesdau, Chabrier & Gabillon, 2014) with the HSV color space. This method
improves the ability of the model to recognize apples in complex backgrounds as it reduces
the interference of background noise and enhances the sensitivity to apple color.

Color space conversion
Color space conversion (Bi ¢ Cao, 2021) was used to improve model compatibility,
optimize feature extraction, and reduce computational complexity among other situations.
For apple estimation and recognition in complex backgrounds, the choice of color space
conversion converts the image from the default BGR-like color space to the RGB-like color
space, ensuring alignment with the standard color space format supported by deep learning
models such as YOLO v8 and enhancing interoperability and seamless integration of image
data in the recognition process. The RGB color space, with its red-green-blue channels,
provides a more intuitive and consistent color representation, which is critical for accurate
identification of apples in a variety of environmental conditions and complex backgrounds.
Hiyama et al. (2015) proposed a method called “Band-Limited Double-Step Fresnel
(BL-DSF) method” to accelerate the computation of holograms, using color space
conversion to accelerate the process of color Computer-Generated Holography (CGH).
Chernov, Alander ¢» Bochko (2015) proposed a new fast integer-based algorithm for
converting RGB color representations to HSV, which can be a safe alternative to
commonly used floating-point implementations. Kamiyama ¢» Taguchi (2021) proposed a
method for saturation correction from Hue-Saturation-Intensity (HSI) to RGB, an
effective hue and intensity retention saturation correction algorithm. This study prioritizes
the conversion of images from the default BGR color space to the RGB color space (Gowri
et al., 2022). While BGR and RGB are visually similar, they differ in color coding, especially
in image processing. OpenCV and many deep learning frameworks typically use BGR to
represent images, and to be more compatible with models such as YOLO v8 and improve
color interpretation, there is an urgent need to convert images to the more commonly used
RGB color space during the data preprocessing stage. This transformation ensures
consistency and accuracy of the color data, helping the model better understand the color
information in the image, especially when distinguishing between apples and other objects.
Moreover, reducing the correlation between color channels can improve the efficiency and
performance of model training.

Labeling dataset

All images were annotated in-house by laboratory members following a unified,
standardized protocol to ensure consistency and reproducibility. We employed Labellmg
v1.8.1, configured to export annotations in the YOLO format. For each JPEG image, a
corresponding TXT file was generated; each line in the TXT file specifies one apple
instance by its class identifier and four normalized bounding-box parameters (x-center,
y-center, width, height), all scaled to the image dimensions.
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Figure 5 Three-dimensional model of an apple. Full-size K&l DOT: 10.7717/peerj-cs.3116/fig-5

The annotation protocol defined two object classes, “ripe_apple” and “unripe_apple,”
and established clear rules for bounding-box placement. Annotators were instructed to
draw tight boxes around visible fruit edges and to include partially occluded apples if at
least 30% of the fruit remained visible. In cases of overlapping fruit, separate annotations
were created when the centroids of two fruits were more than 10 pixels apart. This
guideline ensured that densely clustered apples were individually captured. Annotation
proceeded in a two-stage workflow. First, each lab member independently labeled the full
set of 2,500 images. Next, we conducted pairwise cross-validation to identify discrepancies
in object counts and box coordinates. Any conflicting annotations were reviewed
collectively in consensus meetings until at least 95% inter-annotator agreement was
achieved, thereby harmonizing the final label set.

To guarantee annotation fidelity, we executed automated quality checks using a custom
Python script. These checks confirmed that no bounding box extended beyond image
boundaries, that normalized coordinates lay within the [0, 1] interval, and that every TXT
file matched a valid image. Finally, the validated annotations were partitioned into
training, validation and test subsets in an 8:1:1 ratio, supporting robust model training and
reproducibility.

Apple volume estimation
As shown in Fig. 5, the apple is hypothesized to be a sphere, and according to Wang et al.
(2016), the final form of apple growth is very close to the positive distribution, so the apple
is regarded as a sphere, and the volume of the apple is calculated by measuring the
diameter or radius of the apple via the sphere volume formula. Ripe apples are usually
fuller and have a larger volume, so by quantifying the change in volume, the level of
ripeness of apples can be indirectly assessed. The volume of the sphere can be calculated
via the following formula:

4 5

V=- 9
3™ )

Geng et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3116 12/34


http://dx.doi.org/10.7717/peerj-cs.3116/fig-5
http://dx.doi.org/10.7717/peerj-cs.3116
https://peerj.com/computer-science/

PeerJ Computer Science

where r is the sphere’s radius. Since ripe apples typically exhibit larger volumes,
quantifying V' provides an indirect measure of ripeness.

Rather than inferring r directly from a single two-dimensional bounding box, we first
reconstruct a three-dimensional point cloud using multiview RGB images from the YOLO
v8 detection pipeline and corresponding camera calibration data. Fitting a sphere to this
point cloud yields an accurate estimate of r that incorporates true depth information and
overcomes the limitations of purely 2D approaches in complex orchard scenes.

In practical implementation, however, YOLO v8 provides only a set of 2D bounding
boxes for each detected apple. To bridge the 2D and 3D domains, we derive an initial
estimate of r from the average width of multiple overlapping bounding boxes within a
single view. This estimate then serves as a starting value for our sphere-fitting algorithm,
producing a refined radius that closely matches the true apple dimensions.

r=(—y)+400 —x). (10)

In accordance with Zhao, Pang ¢» Zhang (2024), the relationship between the maturity
judgment and the volume of apples was understood. The radius deduced from the
obtained area was brought into the hypothetical apple sphere model to obtain the volume,
and then the maturity distribution was determined by judgment. Different thresholds were
set according to the volume by the maturity judgment, and a small number of samples
were manually selected for the same model calculation and finally compared with the
maturity frequency map to confirm the feasibility and accuracy of the model. The model
was trained to identify and classify the images of the apple dataset. This method can
provide a quick and intuitive way for growers or market practitioners to determine if the
apple is at the optimal time to pick.

YOLO v8 model

As the latest version of the YOLO series (Jiang et al., 2022), YOLO v8 (Talaat & ZainEldin,
2023) has improved speed and accuracy and is particularly suitable for handling
recognition tasks in complex backgrounds, as shown in Fig. 6. Compared with the
traditional two-stage recognition method, YOLO v8 has faster detection speed and higher
efficiency.

In this work, YOLO v8 was selected as the main deep learning model because of its
excellent performance and wide application in recognition tasks. YOLO v8 uses a series of
advanced technologies, including multi-scale feature fusion, multi-scale prediction, and
the introduction of attention mechanisms, to improve detection performance and accuracy
(Kashyap, 2024; Razaghi et al., 2024). Its recognition model can quickly and accurately
identify multiple targets in the image, use a single neural network to complete target
detection and position positioning in a single processing step, and use feature maps of
different scales to detect targets of various sizes, which improves the model’s ability to
identify targets of different sizes, and can simultaneously predict target categories and
accurately regress positions. Moreover, YOLO v8 under the maximum model is selected to
increase the accuracy of the results so that the model is more accurate or more efficient in
the recognition task. Images from the default BGR color space are converted to the RGB
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Figure 6 YOLO v8 structure diagram. The backbone network efficiently extracts features from the input data. The head network classifies and
localizes targets on the basis of backbone features. The neck network sits in between and facilitates feature fusion and reinforcement to ensure
effective information delivery. During training, Bbox loss quantifies and reduces bounding box prediction bias, and Cls loss evaluates category
prediction accuracy and optimizes it. The two work together to improve model performance. Full-size 4] DOT: 10.7717/peerj-cs.3116/fig-6

color space to improve model compatibility and accuracy. Color space conversion helps
the model better understand the color information in the image, especially to accurately
identify apples in complex backgrounds. Overall, the apple estimation and recognition
system based on the YOLO v8 model has significant performance advantages in complex
backgrounds and provides important support and guidance for the development of apple
recognition technology by combining advanced deep learning technology and effective
data preprocessing methods.

EXPERIMENT AND ANALYSIS

Evaluation metrics

To evaluate the effectiveness of the YOLO v8 model, a series of accurate evaluation
indicators were used to measure its accuracy and efficiency to evaluate the effectiveness of
the model. These metrics include accuracy, precision, recall, F1-score, AP, P-R curve,
Receiver Operating Characteristic (ROC), Area Under the Curve (AUC), and other
indicators. For the following formula, T (true) represents the recognition target, F (false)
represents the unrecognition target, P (positives) represents the correct recognition, N
(negatives) represents the recognition failure, TP represents the recognition target, which
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is successfully identified as the recognition target, FP represents the non-recognition
target, misidentified as the recognition target, TN represents the recognition target,
incorrectly identified as the unclassified target, FN represents the non-classified target, and
incorrectly identified as the non-classified target.

ACC (Accuracy): this reflects the ability of the classifier or model to judge the overall
sample correctly, that is, the ability to correctly classify positive (positive) samples and
negative (negative) samples correctly. The model’s ability to judge the overall sample
correctly is reflected, and the higher the value is, the better. However, when the sample is
not balanced, the accuracy cannot evaluate the model performance well.

(TP+TN)
(TP+ TN + FP+FN)

(11)

Accuracy =

Precision: this reflects the ability of the classifier or model to correctly predict the accuracy
of positive samples, that is, how many of the predicted positive samples are real positive
samples, and the higher the value is, the better.

Precision — —— (12)
recision = (TP+FP) .

Recall: the proportion of samples that are positive that are correctly predicted by the model
to be positive. This reflects the model’s ability to correctly predict the purity of positive
samples, with higher values being better.

Recall = TPR:L:E. (13)
(TP+FN) P

F1-score: the harmonic average of precision and recall, which is used to comprehensively
evaluate the precision and recall of the model.

2 x (Precision * Recall)

Fl-score = (14)

Precision + Recall
P-R graph: with recall as the horizontal axis and precision as the vertical axis, the
corresponding recall values of each point in the Precision [0, 1] range are connected to
form a broken line, which is used to visually show the performance of the model under
different precisions and recalls. As the recall value increases, the precision value gradually
decreases, eventually fluctuating up and down around a certain value.

Average Precision (AP) measures the area under the precision-recall curve and thus
reflects the trade-off between precision (the proportion of true positives among detected
instances) and recall (the proportion of true positives detected among all ground-truth
instances). In our implementation, we compute AP by sampling the precision at 101
equally spaced recall levels and integrating over the recall axis, following the Common
Objects in Context (COCO) evaluation protocol. A higher AP indicates that the model
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Table 2 Model training parameter setting.

Number Parameter Setting

1 Per-GPU batch size 16

2 Data-loading workers 8

3 Maximum epochs 500

4 Input resolution 640 x 640
5 Recognition loss weight 0.5

6 Bounding-box regression loss weight 7.5

maintains both high precision and high recall across varying confidence thresholds,
providing a comprehensive assessment of detection performance.

The training process

In this study, the recognition head of the network was originally configured for 80 classes
(the number of categories in the COCO dataset); however, because our task focuses
exclusively on apple detection, it was reduced to a single class. The remaining training
hyperparameters (Table 2) included a per-Graphics Processing Unit (GPU) batch size of
16, eight data-loading workers, 500 epochs, and an input image resolution of 640 x 640
pixels. The weight assigned to the recognition loss was 0.5, and the bounding-box
regression loss weight was 7.5. Under these conditions, together with the model’s training
scripts and preprocessing pipeline, the system accurately detected and enumerated apples
in each image, presenting the results in a clear visual format. Additionally, an HSV-based
module was employed to assess the ripeness category of each detected apple, thereby
enabling detailed analysis and interpretation of fruit maturity.

In terms of hardware, to train deep learning models with the dense architecture of
YOLO v8, this article uses a Dell Tower T440 server and an RTX 4090 GPU, whose parallel
processing capabilities significantly accelerate the speed of model training and inference.
Moreover, the Solid State Drive high-speed storage solution is used to improve the fast
access speed of data during training and minimize the impact of I/O bottlenecks. With the
help of a high-quality software environment and powerful hardware settings, the apple
estimation and recognition task was successfully trained in complex backgrounds, and a
model with enhanced accuracy and performance was obtained. The synergy between
software tools and hardware resources plays a key role in the deep learning-based apple
recognition task to achieve the best results.

As shown in Fig. 7, the steeper the upwards trend of the P-R curve is, the higher the
accuracy of the model at lower thresholds. As shown in Fig. 7A, when the PR curve trends
upwards, the accuracy of the model improves while maintaining high recall. Figure 7B
illustrates the trade-off between the accuracy and recall of the model at different
thresholds. The relationships between precision and confidence and recall are evident
in Fig. 7C, specifically, because the P-curve increases sharply in the lower threshold range,
the model is fully accurate in classifying the sample as positive, i.e., there are few
mispositives. Moreover, the PR curve gradually approaches one with the change
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in P, which can indicate that the recognition of the model has good performance and a
good recognition effect.

Phenotypic measurement of apple in complex scenes

The number of apple

To solve the challenge of estimating the number of apples, this article uses the input image
to go through a preprocessing stage, including grayscale conversion, Gaussian filtering for
noise reduction, edge smoothing through morphological operations, and edge detection
via Canny and Sobel operators to enhance feature extraction and depiction. The processed
images were fed into the YOLO v8 model, which performed well because of its high
efficiency and accuracy in recognition tasks. The model analyses the image data and
generates a bounding box around the detected apples. After recognition, a counting
algorithm is implemented to determine the total number of apples on the basis of the
determined bounding box, and the model is used to retrieve the number of apples in each
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Figure 8 Recognition results of the coordinate position of the apple via the YOLO v8 network.
(A) Backlighting, (B) different fruit sizes, (C) exposure and leaf shading, and (D) fruit shading.
Full-size K&l DOT: 10.7717/peerj-cs.3116/fig-8

picture and draw a distribution map of the number of apples in each picture in the dataset.
Finally, the feasibility of the YOLO v8 detection model was determined.

After preprocessing, the data are brought into the detection model, and the color
features, shape features, and cultural and scientific features of the image are extracted
through YOLO v8. The apple is accurately identified, the apple on the picture is feature
captured, and Figs. 8A-8D are obtained, which is based on the mature apple image set
provided in the dataset. The YOLO v8 recognition model is used to lock the apple to
extract the color features, texture features, and shape features of the image, and the search
mechanism is used for preliminary learning. Then the results obtained by the sample are
manually detected. If it is determined that it is feasible, the resulting apple-locking
algorithm is applied to the entire population to obtain the number of apples in each of the
200 images in the file.

The YOLO v8 model was used to detect and analyse 200 preprocessed images one by
one, and the number of apples in each image was obtained. The model uses its efficient
detection speed and precise recognition ability to locate the apple quickly and accurately in
each image. After careful analysis of the model, the number of apples in each image is
clearly visible. Due to the large amount of data, some randomly selected test results are
shown in Table 3 (see Appendix 4(1) for details.). As seen from the data in the table, there
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Table 3 Number of apples identified by the YOLO v8 model.

Picture serial number Number of apples
4 11
5 9
7 22
12 11
14 10
24 17
33 10
39 14
44 11
57 8
67 11
75 10
88 10
110 2
126 11
147 17
151 2
164 10
188 4
200 14

is a major difference in the number of apples in different images, which may be related to
factors such as the shooting angle of the image, lighting conditions, and size and density of
the apples. However, regardless of its number, the YOLO v8 model can identify and count
accurately, providing reliable data support.

The positions of the apple

In the context of apple estimation in a complex context via the YOLO v8 model, it is
critical to determine the precise location of the detected apple. The YOLO v8 recognition
model was first trained with the image set of apples. The analytical output was used to find
the bounding box related to the apple, and the center of the bounding box was used to
represent the position of the apple to draw a two-dimensional scatter map of the geometric
position of the apple in 200 images. Using the YOLO v8 recognition model, the model is
trained on an annotated image dataset containing apples on the tree, and the model learns
to detect apples in the image and outputs the corresponding bounding boxes and category
labels. The trained model is subsequently used to infer the new image, and the model
returns the bounding box and related information of the detected object. After that, the
output is parsed, each bounding box is output with an associated category label and
confidence score, and the bounding box related to the apple is found. The position
coordinates are obtained, the bounding box containing the apple is identified, as shown in
Fig. 9. The final apple position information is extracted from the coordinates of the
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Figure 9 The recognition results of YOLO v8 under close-exposure and closed-conditions.
Full-size K&l DOT: 10.7717/peerj-cs.3116/fig-9

bounding box, which are the upper left point and the lower right point of the box, and four
values are obtained, which are the coordinates of the upper left and lower right points. The
values of two x are averaged, and the values of two y are averaged to obtain the center point
of the box.

Let the coordinates of the upper left corner of the bounding box be (x1, ,), the
coordinates of the lower right corner of the bounding box be (x3, 1), and the mathematical
expressions of the horizontal and vertical coordinates of the center point of the bounding

box are:
_ X1+ X )’1+)’2>
= . 15
&y = (F5=25 (15)
The center coordinates of the bounding box indicate the approximate position of the

apple in the image, and the position information of the apple in each image is stored in
Appendix 4(2). The model extracts the center coordinates of apples from 200 images and
maps them uniformly into the same coordinate system. As shown in Table 4, given the

large amount of data, some of the location coordinates were randomly extracted for the
analysis (see Appendix 4(1) for details).

Maturity state of apple

To solve the ripening state of apples, the HSV model was used to judge and analyse the
apple ripeness categories in the image for each apple, and the output categories were
divided into four categories: ripe, unripe, semi-immature, and extremely immature.
According to the judgment of the HSV model, the following scatter plots and histograms
are drawn, as shown in Fig. 10 below. We imported the matplotlib.pyplot library and
created an alias plt for it. The plt.scatter function is used to draw the graph title and axis
labels are added, and finally, plt.show () is used to display the graph.
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Table 4 Apple image position coordinate detection results.

Number X Y
16 158.5 86
79 155.5 78.5
139 80 55.5
145 262.5 153
361 10 83
438 87.5 98
598 27.5 129
599 68.5 85
700 149.5 86
701 263.5 164.5
813 46 103.5
830 82,5 114
913 156.5 156.5
985 197 35
1,022 135 118.5
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Figure 10 Distribution of apple ripeness. (A) Visualization of apple ripeness, and (B) concentrated
display of apple ripening distribution in the dataset. Full-size K&l DOT: 10.7717/peerj-cs.3116/fig-10

In Fig. 10A, x and y are the coordinates of the image, and z is the maturity level,
and the maturity of the product can be analyzed on basis of the distribution and
trend of the data points. The distribution of the ripeness of all apples in Appendix 4(3)
shows a clear upwards trend in the value of z as the number of x or y increases. This
shows that with increasing characteristics of the apples, their ripeness also gradually
increases. In the graph, the concentration of data points also reflects the maturity of the
apples. When the data points are more concentrated, the ripeness of the apple is
greater, and when the data points are more scattered, the maturity of the apple is lower.
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Sometimes there are outliers, i.e., those that deviate from the main distribution

trend. This may be due to an error in the data collection or processing process, or it may
be due to a specific problem or defect in the apple. The ripeness of the apples was assessed
by looking at the shape and distribution shown in Fig. 10B, with ripeness being the
majority.

Weight of apple

Calculating the weight of apples plays a key role in accurately assessing their size and
quantity. This step involves analyzing the size and pixel values of the detected apples to
derive their respective qualities. The YOLO v8 recognition model was used to detect the
apple radius, the apple mass was obtained via the mass formula, and the apple mass
distribution map was drawn. YOLO v8 is a recognition checkpoint trained on a

COCO detection dataset with an image resolution of 640, an instance segmentation
checkpoint trained on a COCO segmentation dataset with an image resolution of 640, and
an image recognition model pre-trained on an ImageNet dataset with an image
resolution of 224.

In YOLO v8, some changes have been made to the model structure. Compared with
YOLO v5, the backbone and neck of YOLO v8 have changed. Specifically, the kernel of the
first convolutional layer changed from 6 x 6 to 3 x 3. All C3 modules are replaced with C2f,
a structure with more hop connections and additional split operations. The two
convolutional layers in the neck module were eliminated. The number of C2f blocks in
backbone has been changed from 3-6-9-3 to 3-6-6-3. When there are multiple rectangular
boxes in a graph, we need to sum and average each box. First, we define a function called
detect_colorinom, which converts the read image from the BGR color space to the HSV
color space, calculates the hue histogram of the selected area and calculates the average of
the hue channels. It accepts a range of parameters, including the image number, number of
boxes, number of bounding boxes, color tone, image path, and the x;, y;, x;, and y,
coordinates of the region.

According to the analysis of the apple area data in Appendix 4(4), the distribution of the
apple area was relatively uniform, with a certain degree of fluctuation. After synthesizing
the area data of each apple, it was found that it conformed to the characteristics of a normal
distribution. This confirms the feasibility of the model, allowing the quality equation to be

applied based on it:
m

p=—. (16)
%

According to the literature, it has been concluded that the mass and area of apples
generally follow the same normal distribution. The apple weight data obtained in this study
were expected to conform to a normal distribution. Figure 11 (Chakrabarti et al., 2021)
shows that the frequency distribution of the original area exhibits an approximate normal
distribution, which was consistent with the experimental data. Based on the details of the
apple weight data in Appendix 4(4), the analysis confirmed the validity of the model. This
indicates that all data can be exported confidently.
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Figure 11 Frequency distribution of the original area of the apples.
Full-size K&l DOT: 10.7717/peerj-cs.3116/fig-11

Table 5 Detection results of different detection models.

Network model Precision (%) Recall (%) mAP (%) F1 (%) Test time (s) Mean confidence (95% CI)
VGG 90.50 95.37 94.86 92.87 0.02 83.7 £ 6.3%
ResNet 85 76 87 80.25 0.13 67.7 £ 6.2%
MobileNet 77.78 86.48 75.67 81.92 0.02 81.2 + 6.0%
YOLO v8 93.1 93.8 95 93.45 0.19 96.4 + 1.2%

Apple recognition in complex scenes

To assess the effectiveness of the YOLO v8 model for apple estimation and recognition, we
compared its performance against widely used models, including VGG (Pandiyaraju et al.,
2025), ResNet (Wu et al., 2025), and MobileNet (Wijayanto, Swanjaya ¢» Wulanningrum,
2024). All models were evaluated on the same apple dataset under identical experimental
conditions. The results, presented in Table 5 highlight the comparative performance and
detection capabilities of each model in this task.

This study evaluates the performance of apple localization and detection models in
complex orchard environments using the YOLO v8 framework. Mean average precision
(mAP) and F1-score are the primary evaluation metrics. The YOLO v8 model achieves an
mAP of 95.0%, an F1-score of 93.45% and mean confidence of 96.4% (95% confidence
interval (CI) [95.2-97.6%]), demonstrating high detection accuracy with minimal false
positives and false negatives.

The experimental design simulates realistic orchard conditions, including lighting
variation, fruit occlusion and complex backgrounds. Each model was evaluated on the
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Figure 12 Apple detection visualizations by VGG, ResNet, MobileNet, and YOLO v8 in complex orchard environments.

Full-size K&] DOT: 10.7717/peerj-cs.3116/fig-12

same apple dataset and compared across key metrics. YOLO v8 consistently outperforms
VGG, ResNet and MobileNet in precision, recall, mAP and F1-score. Specifically, YOLO
v8’s precision of 93.10% and mAP of 95.00% represent improvements of approximately
2.6% and 1.5%, respectively, over the next-best model. Although VGG attains a marginally
higher mAP than some baselines, YOLO v8’s superior F1-score (93.45% vs 92.87%) reflects
a more balanced trade-off between precision and recall. Moreover, we computed the mean
predicted confidence and its 95% confidence interval (CI) over all detections to quantify
detection stability: YOLO v8 attains a mean confidence of 96.4% (95% CI [95.2-97.6%]),
markedly higher and more consistent than the competing models. These confidence
intervals demonstrate YOLO v8’s ability to make highly reliable predictions even under
challenging lighting, occlusion, and background clutter.
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Figure 12 presents representative detection visualizations for each model, highlighting
the superior balance achieved by YOLO v8 between high confidence scores and precise
localization. In our experiments, VGG produced comparatively wide bounding boxes that
frequently overlapped with surrounding foliage in complex scenes, yielding only moderate
confidence scores ranging from 0.63 to 0.90 and struggling to detect small or occluded
apples. ResNet delivered tighter boxes but suffered from false positives in clusters of fruit,
with confidence scores fluctuating broadly between 0.57 and 0.96. MobileNet achieved
accurate localization and confidence levels of at least 0.75 when apples were well separated.
However, its performance degraded under heavy occlusion or overlap, occasionally
producing duplicate or fragmented boxes. In contrast, YOLO v8 consistently generated
highly precise, tightly fitted boxes across all test images and maintained uniformly high
confidence levels between 0.92 and 0.99, with negligible false positives or missed
detections, demonstrating the best overall detection performance.

Importantly, YOLO v8 processes each image end to end, including both localization and
classification, in just 0.19 s while maintaining a mean detection confidence of 96.4% (95%
CI [95.2-97.6%]). By comparison, VGG and MobileNetV2 require 0.02 s for feature
extraction alone, and ResNet requires 0.13 s. These results demonstrate that, despite
performing full object detection, YOLO v8 preserves real-time inference capability.
Furthermore, its streamlined architecture reduces computational load, parameter count,
and memory consumption, making it particularly well suited for deployment on
embedded devices in autonomous harvesting robots.

DISCUSSION

Recognition of other fruits based on YOLO v8

The purpose of this research is to evaluate and recognize the number of apples in a
complex background via a target detection model that is based on YOLO v8. To ensure the
model’s generalizability ability and accuracy, with the potential value of generalization to
other fruit species, Fig. 13 demonstrates the model’s performance in handling the variable
fruit detection task, which includes a variety of similarly shaped and colored fruits with
multiple detection experiments conducted at different angles, lighting, and background
interference. The results of the training samples indicate that most of the fruits are
correctly detected and localized, effectively avoiding the problem of other fruits being
misidentified as apples. The training dataset is expanded to cover a wide range of fruit
varieties, the model parameters are tuned to accommodate different shapes and colors, and
the algorithm is fine-tuned to improve the specificity and accuracy of the fruit recognition
task. In the field of crop research, current attention is focused on oleaginous fruits, wheat,
corn, apples and strawberries. While most studies have focused on a single species, this
study is based on the identification of five fruits under different light and angle conditions,
with a special focus on the location and ripeness of apples.

Application of the agricultural automation based on YOLO v8
The YOLO v8-based apple recognition and estimation framework presented in this study
was well suited to the demands of modern agricultural automation systems. Its core
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Figure 13 Category recognition image of an apple. Recognition and detection of two fruits under different lighting and five fruits under the same
lighting. The image also contains the challenge of recognizing the lack of integrity due to the occlusion of some fruit.
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advantages of real-time inference speed, high detection precision and strong robustness to
small or partially occluded targets make it an ideal candidate for embedding directly on
edge devices such as harvesting robots, unmanned aerial vehicles (UAVs) and
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conveyor-belt inspection stations. In our experiments (Table 3), the model achieved a
mean average precision (mAP) of 95.0% and an F1-score of 93.45% under complex
orchard conditions, and it outperformed classical CNN backbones such as VGG, ResNet
and MobileNet. These performance gains resulted from YOLO v8’s optimized network
architecture, which featured dynamic anchor assignment, improved feature-pyramid
fusion and a streamlined head design. These architectural improvements were
complemented by targeted data-augmentation strategies, including HSV jitter, random
occlusion simulation and multi-scale mosaic stitching. Together, these techniques enhance
robustness against illumination changes, fruit overlap and background clutter.

Although our system has not yet been deployed, it is anticipated that it could be
integrated into three key automation scenarios. First, automated harvesting platforms
could leverage on-board NVIDIA Jetson modules to perform continuous, real-time
detection of ripe apples by applying the HSV-based ripeness classifier alongside YOLO v8’s
bounding-box outputs. This would enable selective picking, reduce labor costs and
minimize fruit damage. Second, in postharvest grading lines, conveyor belts equipped with
RGB-D cameras and the 3D weight-estimation module could non-destructively sort fruit
by both maturity level and estimated mass, thereby streamlining packaging and logistics.
Finally, field-scale monitoring could be achieved by mounting lightweight inference units
on UAVs or fixed-camera towers; these systems would survey large orchard areas,
automatically map fruit density and health status, and feed geotagged yield estimates into
precision-agriculture platforms to support adaptive irrigation, fertilization and
pest-management decisions. Future studies will delve into the feasibility of hardware
deployment in depth.

Despite these clear benefits, certain challenges remain to be addressed before
widespread adoption. Performance may degrade in extreme weather conditions such as
heavy rain or dense fog, unless additional sensor modalities are incorporated. The
computational demands of the current model, although modest compared to earlier YOLO
versions, still require careful hardware selection for fully autonomous mobile robots.
Promising research directions include further lightweighting of the network through
structured pruning or knowledge distillation and multi-sensor fusion approaches that
combine RGB, hyperspectral and Light Detection and Ranging (LiDAR) data to extend
detection into low-visibility conditions. Continuing to refine both the algorithmic and
system-integration aspects ensures that YOLO v8-based frameworks play a pivotal role in
realizing fully autonomous, intelligent orchards of the near future.

Failed instance

Despite optimizations in data augmentation and model training, the YOLO v8 model still
encounters failures in real-world scenarios with complex backgrounds. These errors are
not due to inherent issues within YOLO v8 architecture, but rather stem from a lack of
sufficient and diverse data in the training dataset. Factors such as occlusion, varying
lighting conditions, and image blurring hinder the model’s ability to accurately identify
apples. As shown in the error samples in Figs. 14A-14D, the model often fails to detect
apples properly, and in some cases, misidentifies the fruit. This suggests that the dataset’s
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Figure 14 Model identification error samples. (A, C and D) Shape similarity, (B) similar color.
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relatively limited number of apple images, coupled with inadequate representation of
diverse background scenarios, restricts the model’s ability to generalize to new, unseen
environments. When exposed to backgrounds not included in the training set, the model
struggles to make accurate predictions. By thoroughly analyzing and addressing these
failure cases, the model’s performance and adaptability can be progressively enhanced,
improving its suitability for apple-recognition tasks in complex settings.

To overcome these limitations, it is necessary to enrich the training corpus with more
varied and representative samples. One promising strategy is to leverage synthetic image
generation techniques, which can systematically produce high-fidelity apple scenes under
controlled variations of illumination, occlusion and background complexity. By combining
real-world images with synthetic augmentations, we aim to expand the model’s exposure
to rare or challenging conditions that are difficult to capture in the field.

In our current automation framework, the YOLO v8 model is trained exclusively on
real-world orchard images to detect and localize apples in complex field conditions.
Looking ahead, recent advances in large-language-model (LLM)-driven synthetic image
generation offer a powerful means to implement this strategy. LLMs can generate diverse,
realistic apple images that simulate a wide range of environmental factors. By
incorporating LLM-generated images alongside real data, we expect to mitigate overfitting,
enhance detector robustness and improve generalizability in data-scarce orchard
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environments. Future work will therefore investigate the integration of these synthetic
samples and other multimodal inputs into our YOLO v8 pipeline to further boost
detection accuracy and support more reliable automated apple picking systems.

CONCLUSION

This study proposes a solution to apple recognition by combining the YOLO v8
recognition model with the HSV color space. Apple image data from natural environments
were collected and preprocessed, including grayscale conversion and Gaussian filtering for
noise reduction. Edge detection was then performed using the Canny and Sobel operators,
followed by apple identification with the YOLO v8 model. Apple maturity was assessed by
utilizing both the HSV and RGB models to estimate maturity levels from the images. The
apple weight was predicted using the proposed model. Finally, through color feature
extraction and YOLO v8, apples were accurately identified among other fruits.

The YOLO v8 model demonstrates a low loss and achieves 95% mAP on this dataset,
indicating its high accuracy in detecting and recognizing apples in complex backgrounds.
The model also exhibits strong generalization across apples of varying sizes and degrees of
occlusion. Compared to the best-performing algorithm, VGG, YOLO v8 shows an
improvement of 0.14% in mAP, a 2.6% increase in accuracy, and a 0.58-point increase in
F1-score. In terms of both speed and accuracy, YOLO v8 outperforms alternative models,
enabling rapid and precise apple detection. This enhancement supports better
understanding of apple attributes such as quantity, location, maturity, and weight, which
in turn improves robotic recognition precision and harvesting efficiency. However,
real-time deployment in large-scale scenarios requires significant computational resources.
Additionally, the model may face challenges in generalization when applied to diverse
apple varieties and environmental conditions.
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