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ABSTRACT
With the increasing prevalence and diversity of imaging devices, palmprint
recognition has emerged as a technology that better meets the demands of the
modern era. However, traditional manual methods have limitations in effectively
extracting palmprint principal line features. To address this, we introduce a novel
data augmentation method. First, the wide line extraction (WLE) filter is utilized to
specifically target and extract the prominent principal lines of palmprints by
leveraging their direction and width characteristics. Then, a Gabor filter is applied to
the WLE-extracted results to purify the features and remove fine lines, as fine lines
can introduce noise and redundancy that interfere with the accurate extraction of
significant principal line features crucial for palmprint recognition. Evaluating this
data augmentation across four common Vision Transformer (ViT) classification
models, experimental results show that it improves the recognition rates of all
databases to varying degrees, with a remarkable 32.9% increase on the
high-resolution XINHUA database. With the successful removal of fine lines by
WLE, we propose a new Layer Visual Transformer (LViT) design paradigm. For its
input, distinct blocking strategies are adopted, carefully designed to partition the data
to capture different levels of spatial and feature information, using larger blocks for
global structure and smaller ones for local details. The output results of these
different blocking strategies are fused by “sum fusion” and “maximum fusion”, and
the local and global features are effectively utilized by combining complementary
information to improve the recognition performance and get state-of-the-art results
on multiple databases. Moreover, LViT requires fewer training iterations due to the
synergistic effects of the blocking strategies, optimizing the learning process. Finally,
by simulating real-world noise conditions, we comprehensively evaluate LViT and
find that, compared with traditional methods, our approach exhibits excellent
noise-resistant generalization ability, maintaining stable performance across the
PolyU II, IIT Delhi, XINHUA, and NTU-CP-V1 databases.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Computer Vision, Data
Mining and Machine Learning, Security and Privacy
Keywords Data augmentation, Layer visual transformer, Palmprint recognition, Multi-patch,
Wide line extraction

INTRODUCTION
Palmprint recognition is a critical research topic in the field of biometrics. It involves
collecting palmprint images, extracting their features, as well as comparing and matching
these features to achieve to achieve identity authentication. Palmprint recognition has
important application value in the fields of finance, government, medical care, education
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and other domains (Minaee et al., 2023). For instance, palmprint recognition can be
employed in banks for identity verification, in governments for citizen authentication, in
hospitals to enhance patient privacy protection, and in schools to secure student records,
among other applications. Compared with other biometric technologies, palmprint has a
more stable shape and unique texture information, and offers advantages including easy
collection, low cost, and high security. According to whether the palm touches the
equipment or not, the palmprint acquisition can be divided into contact and non-contact
methods. Compared with non-contact acquisition, contact acquisition helps to ensure the
stability of the sensor and the acquisition environment, resulting in better image quality.
With the popularization and diversification of imaging equipment, non-contact
acquisition can avoid contact between the palm and any object, resulting in low
invasiveness, high reliability, and strong social acceptance. At the same time, it makes the
palmprint image acquisition more flexible and convenient, and can also provide sufficient
palm print information, so it has gradually become the mainstream approach in palmprint
recognition systems (Fei et al., 2019; Li et al., 2024).

As we all know, palmprints are composed of wrinkles and principal lines. The principal
lines can be used as an independent feature of the palm. Therefore, there are several
reasons to carefully study the method based on the principal lines. Firstly, the method
based on the principal lines can be integrated with human behavior. For example, when
humans compare two palmprints, they visually compare the principal lines. Secondly,
principal lines are generally more stable than wrinkles. Wrinkles are easily concealed by
poor lighting conditions, compression artifacts, and noise in real-world environments.
Thirdly, the principal line can be used as an important component of multi-feature
methods. Finally, due to their simplicity, principal lines can be used for palmprint
classification or fast retrieval systems. However, up to now, the method based on the
principal line has not been fully studied. The main reason is that complex palmprint
images often contain prominent and extensive wrinkles, which makes it challenging to
extract the principal lines. Additionally, many researchers believe that it is difficult to
achieve high recognition rates only by using the principal line due to the similarity among
individuals (Zhang et al., 2003). However, there have been no relevant experiments
conducted to verify their views.

Obviously, lines are the basic features of palmprints. Therefore, line-based methods also
play a significant role in the field of palmprint verification and recognition. Due to slight
variations in pose, rotation angle, and illumination intensity during non-contact image
acquisition, directly using the extracted principal lines for matching verification often
yields unsatisfactory results. The common matching method is to measure the similarity
distance between the principal lines of two samples. Because the process of extracting the
principal lines is rough, the extracted principal lines are often purified first, but there is still
no unified method to effectively deal with all kinds of fine lines, so it is urgent to find a
universal matching scheme. Deep learning is a good way to learn target features from a
local perspective, which is usually not affected by slight deformations, distortion,
translation and other factors. Therefore, the principal line discrimination based on deep
learning can meet the needs of the palm print recognition system with non-contact and
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union constraints better than traditional methods. As a paradigm shift in the field of
computer vision, Vision Transformers (ViTs) use the transformer architecture to achieve
first-class performance in image classification tasks, while providing efficiency, flexibility,
interpretability and scalability. This article applies ViTs to palmprint principal line
matching tasks, and achieves state-of-the-art results in three databases.

This article mainly studies deep learning palmprint recognition algorithm. The main
contributions of this research are as follows.

(1) We propose a new filter named wide line extraction (WLE). This innovation is of
great significance, because before our work, the existing palmprint line extraction methods
failed to fully consider the width and direction characteristics of palmprint lines. WLE
filtering can extract more prominent lines from palmprint images. Specifically, WLE is a
new technology, which takes into account the characteristics of the palmprint line itself,
such as its direction and width. Traditional methods mainly focus on local texture or edge
features, and lack the ability to extract lines based on their inherent geometric
characteristics. By doing so, WLE not only improves the clarity of palmprint line
extraction, but also simplifies the data processing flow, making it a valuable contribution in
the field of palmprint recognition.

(2) We propose a novel layered ViT (LViT) architecture. Unlike conventional models,
LViT leverages the unique block structures of different palmprint images by fusing
multiple block branches. This innovative approach not only boosts recognition accuracy
but also cuts down training time, enabling it to achieve state-of-the-art performance in
palmprint recognition.

(3) The proposed LViT architecture has good anti-noise generalization capability. We
simulated some bad conditions in the actual situations (such as rain, storm and dust), and
added salt-and-pepper noise, Gaussian noise and random occlusion to all the dataset. The
overall recognition performance of our method clearly outperforms the performance of
previous state-of-the-art methods.

(4) We provide a high-resolution palmprint database named XINHUA.

RELATED WORK
Image line features retain important information about the shape of objects in the
scene and play an important role in advanced tasks, including matching and recognition
(Davis, Rosenfeld & Agrawala, 1976). Generally, palmprint recognition uses the palm of a
person to identify or verify their identity (Li et al., 2009). Palmprint has many important
features, such as principal lines, wrinkles, ridges, minutiae and textures. Among these
features, the principal line, as one of the most obvious features of palmprints, has
always been a focus research topic (Wu, Wang & Zhang, 2002). Usually, palmprints
contain three principal lines: heart line, head line and life line (Huang, Jia & Zhang, 2008).
If three smooth and noiseless principal lines can be extracted as feature images, it will lay a
good foundation for fast matching and recognition for later. Therefore, extracting the
principal lines of palmprint is crucial for palmprint recognition. Up to now, palmprint
recognition has studied many algorithms for line detection and matching, including
those based on palmprint principal lines and texture lines (some tiny short lines and
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ridges), which are mainly divided into traditional methods and deep learning-based
methods.

In traditional palmprint line extraction methods, detectors are generally designed
manually to extract line features. Early studies mainly focused on basic feature detection
and matching. For instance, Wu, Wang & Zhang (2002) designed a set of line detectors to
assess the smoothness, connectivity, and width of lines, employing the Hausdorff distance
for line matching. In the context of low-resolution palmprint recognition,Wu et al. (2004)
developed a set of directional line detectors, along with a new automatic classification
algorithm based on the width and thickness of palmprint principal lines.

As research progressed, some scholars began to focus on extracting principal lines from
the characteristics of images. Liu & Zhang (2005) obtained the intensity relationship
between palmprint lines by minimizing local image regions with similar brightness to each
pixel, thus extracting the principal lines of palmprints. Wu & Zhang (2006) extracted line
features in different directions and represented some fine lines using chain codes. During
the matching stage, they performed matching based on the distances between points on the
palmprint lines. Liu, Zhang & You (2007) adopted an isotropic nonlinear filter as a
wide-line detector from the perspective of line width, achieving a relatively robust line
extraction effect.

Meanwhile, methods based on transformation and retrieval gradually emerged. Huang,
Jia & Zhang (2008) utilized the improved finite radon transform (MFRAT) to extract the
principal line features of palmprints and employed a “point-to-region” approach for
matching, achieving good results. Jia et al. (2009) proposed a fast palmprint retrieval
scheme based on principal lines, leveraging the position and direction of key points on
principal lines to retrieve palmprints, which achieved extremely fast retrieval results while
ensuring good accuracy. Li et al. (2009) first used MFRAT to extract the preliminary
principal lines of palmprints and then obtained the final refined principal lines through
post-processing operations such as binarization and morphology.

Subsequent research further deepened the combination of preprocessing and feature
optimization. Li, Liu & Zhang (2010) first preprocessed the images (such as median
filtering, etc.), then refined the detected palmprint lines based on diversity and
contrast, and used edge tracking to remove thin branches and short lines to
obtain the principal lines of palmprints. Yuan et al. (2011) designed a dotted-link
algorithm using the principal line tracking method, taking into account the specific
direction of principal lines and the prior knowledge of valley edges. Rotinwa-Akinbile,
Aibinu & Salami (2011) treated the principal lines of palmprints as edge detection, using
Sobel operators in both horizontal and vertical directions to extract principal lines and
applying discrete Fourier transform technology to calculate the distances from endpoint to
endpoint for matching.

In addition, innovative methods based on morphology and edge detection continued to
emerge. Kalluri, Prasad & Agarwal (2012) designed a set of wide principal line extractors,
using morphological operators and grouping functions to eliminate noise. During the
matching stage, they developed a matching algorithm based on pixel comparison to
calculate the similarity between palmprints. Di, Shi & Xu (2013) first used Nibrack’s
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method to roughly segment the principal lines of palmprints, then applied the SUSAN
operator to limit the range of principal lines as the localization result, and finally achieved
accurate extraction of palmprint principal lines through the intersection of
rough-segmentation and localization results. Biradar (2013) proposed using canny edge
detection to extract principal line features, using Sobel masks to find the edge direction and
gradient intensity of each pixel in the preprocessed image, and then tracking the edges.
Finally, non-maximum edges were suppressed by identifying parallel edges and
eliminating those with weaker gradient strength. Bruno et al. (2014) achieved a simple,
efficient, and accurate method for extracting palmprint principal lines through image
normalization, median filtering, average filtering, gray combined filtering, binarization,
and post-processing.

In recent years, research directions have expanded towards multimodality and
algorithm innovation. Iula & Nardiello (2016) proposed a biometric recognition method
based on ultrasound. In the same year, Ali, Yannawar & Gaikwad (2016) used local
entropy information and local variance for edge detection, exploring the potential of some
classical edge operators (such as the Sobel operator, etc.) in extracting palmprint principal
lines. Sathish, Baskar & Kumar (2021) used the Prewitt edge detector, Sobel operator,
canny edge detector, Kirsch operator, and multi-scale edge detector to extract the features
of palmprint lines.

In terms of algorithm optimization, recent studies have made remarkable progress.
Wang & Mariano (2024) proposed a local ordinal code (LOC) using three common filters
for multi-lines-directional filtering coding to overcome the high computational cost and
low accuracy of traditional palmprint local recognition methods, introduced a dimension
control factor for linear dimensionality reduction to enable large-scale retrieval, developed
FFLOC for feature fusion. Liao et al. (2024) proposed boundary line calibration (BLC) and
finger valley calibration (FVC) to tackle translational dislocations in the DLSP assisting
graph for mobile palmprint recognition. By rotating samples, cropping specific regions,
applying Gabor filters, and localizing key features, their method effectively improved
recognition accuracy and user comfort. Wang & Cao (2025) proposed the bifurcation line
direction coding (BLDC) method to overcome challenges in palmprint recognition like
image variability and limitations of traditional single-line-feature-based methods. Using
an improved Gabor filter for preprocessing and generating feature codes based on main
direction subscripts.

Deep learning, as a powerful machine learning technique, is highly regarded in current
scientific research and engineering applications. In recent years, with the continuous
development and optimization of deep learning models, the applications of deep learning
in various fields have become increasingly widespread and profound. Studies in COVID-
19 early diagnosis (Zivkovic et al., 2022; Jain et al., 2023), geological disaster prediction
(Chen & Song, 2023), financial market forecasting (Mousapour Mamoudan et al., 2023),
and pedestrian detection (Jain et al., 2023) have all demonstrated the outstanding
performance of combining deep learning with metaheuristic optimization algorithms in
solving complex problems. These studies not only overcome the limitations of traditional
algorithms but also provide new ideas and methods for future academic research and
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practical applications. The popularity of deep learning is attributed to its enormous
potential and continuous exploration in solving complex real-world problems. Some
researchers have gradually turned to deep learning to perform palmprint line extraction.
Wang et al. (2013) proposed a method to quickly extract palmprints using image data field
and pulse-coupled neural network (PCNN). Putra et al. (2021) and other researchers
added edge detection results to convolutional neural network data for training purposes.
Zhao et al. (2022) proposed synthesizing training data by processing palmlines. These
studies verify that deep learning can effectively perform palmprint line extraction. Parulan,
Borcelis & Linsangan (2024) proposed an innovative dynamic image segmentation-based
approach for palm line identification and analysis, using palm line images captured by a
device as biometric data, implementing percentage error for statistical treatment. Jia &
Zhou (2024) proposed UC-HRNet, a high-resolution network for palmprint principal line
extraction, aiming to address the challenges in dense prediction tasks of semantic
segmentation. Leveraging the parallel feature map preservation of HRNet and the effective
feature fusion of UNet’s U-shaped structure with skip connections, and using deep
supervision for hierarchical feature representation. In recent years, cross-domain
palmprint recognition is mostly used in transfer learning, aiming at bringing the
knowledge learned in one domain to another domain to realize domain adaptation. Shao,
Zhong & Du (2019) proposed PalmGAN to address cross-domain palmprint recognition
by generating labeled fake images that reduce domain gaps while preserving identity
information. Ruan, Li & Qin (2024) proposed LSFM, an efficient light style and feature
matching method for cross-domain palmprint recognition, addressing the challenges of
domain shifts and resource limitations. Xin et al. (2024) proposed a self-attention
CycleGAN for cross-domain semi-supervised palmprint recognition, addressing
challenges in contactless palmprint recognition with different devices and limited labeled
data. In the future, with the emergence of more cross-domain methods, such as those based
on generative adversarial networks (GANs) and self-attention mechanisms, cross-domain
palmprint recognition is expected to significantly enhance accuracy and efficiency in
real-world applications. Additionally, strategies that combine small amounts of labeled
data with unsupervised learning will further drive the adoption of cross-domain palmprint
recognition in practical settings, especially in areas like security authentication and smart
access control.

PALMPRINT DATASET
This study utilizes five palmprint datasets: PolyU II (Bruno et al., 2014), IIT Delhi (Kumar
& Shekhar, 2011), XINHUA (Wang & Mariano, 2024), NTU-CP-V1 (Matkowski, Chai &
Kong, 2020), and BJTU-V2 (Chai, Prasad & Wang, 2019). This section describes the
characteristics, collection methods, and advantages of each dataset. Table 1 summarizes
the key detail of the five palmprint datasets.

This work utilized PolyU II palmprint database sourced from http://www4.comp.polyu.
edu.hk/~biometrics/, utilized IIT Delhi Touchless Palmprint Database sourced
from https://www4.comp.polyu.edu.hk/~csajaykr/IITD/Database_Palm.htm,
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utilized XINHUA Palmprint Database sourced from https://github.com/HewelXX/
Dataset/tree/main/XINHUA, utilized NTU-CP-v1 Palmprint Database sourced
from https://github.com/matkowski-voy/Palmprint-Recognition-in-the-Wild, utilized
BJTU-V2 Palmprint Database sourced from https://github.com/HewelXX/Dataset/tree/
main/BJTU_V2.

PolyU II
The PolyU II dataset is a widely used contact-based 2D palmprint database. The dataset
comprises 386 palms from 193 participants, covering both left and right hands. The data
collection was conducted in two phases with a two-months interval between, with
approximately 10 palmprint images collected per phase in each, resulting in a total of 7,752
images. The PolyU II is renowned for its large sample size and distinct palmprint features,
making it widely used in palmprint feature extraction and matching research. Its
advantages lie in its abundant samples and well-standardized collection process, while its
limitation stems from its sole focus on contact-based collection environments, which
results in a lack of diversity in non-contact scenarios.

IIT Delhi
The IIT Delhi dataset is a contact-based palmprint database comprising 2,601 images from
460 palms of 230 participants. For each palm, five to seven images were captured under
different hand postures. The dataset includes both raw palmprint images and normalized,
cropped images (150 × 150 pixels), which facilitates research and comparison among
feature extraction algorithms. The advantage of IIT Delhi dataset lies in its inclusion of
diverse hand postures and normalized images, which makes it an ideal data source for
comparative analysis of palmprint images under varying conditions.

XINHUA
The XINHUA dataset is a high-resolution palmprint database developed specifically for
this study, aiming to provide richer data support for palmprint recognition research. The
dataset includes 2,000 palmprint images from 50 participants, comprising 41 males and
nine females, all aged 20 to 30. The data collection was conducted in two phases, from
January 2022 to April 2022, with each participant providing 10 images of their left hand
and 10 images of their right hand during each phase.

Table 1 Introduction to palmprint dataset.

Dataset Attribute

Is it a restricted environment Number of collectors Number of categories Total number of images

PolyU II (2014) Yes 193 386 7,752

IIT Delhi (2011) Yes 230 460 2,601

XINHUA (2024) Yes 50 100 2,000

NTU-CP-V1 (2020) No 328 655 2,478

BJTU-V2 (2019) No 148 296 2,663
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The data was collected using an iPhone XR smartphone in an indoor setting, with fixed
lighting conditions and a stable shooting distance of approximately 20 centimeters. During
the collection process, participants were asked to spread their palms flat, avoid occlusion
and excess shadows, and ensure a simple and clean background. The data are stored in
high-resolution image format, facilitating the extraction of palmprint feature details. Using
a smartphone as the collection device makes the dataset more relevant to real-world
applications, improving its practicality and usability. A standardized collection protocol
ensures consistency in data quality.

NTU-CP-V1
The NTU-CP-v1 is a contactless palmprint database comprising 2,478 images from 655
palms of 328 participants. The participant pool is predominantly of Asian descent
(including Chinese, Indian, and Malay), with a small number of Caucasians and Eurasians.
The data collection was conducted in two phases, in everyday indoor environments in
Singapore, with no strict posture requirements. The images were captured using Canon
EOS 500D and Nikon D70s cameras, ensuring high image quality. The advantage of NTU-
CP-v1 lies in its contactless collection, which more closely resembles real-world usage
scenarios. Additionally, it covers a diverse range of ethnic backgrounds, providing
significant support for cross-ethnic palmprint feature research.

BJTU-V2
The BJTU-V2 dataset comprises 2,663 hand images from 148 volunteers (91 males and 57
females), with ages ranging from 8 to 73 years. The data collection was conducted in two
phases, from November 2015 to December 2017, with each participant providing three to
five images of their left hand and three to five images of their right hand during each phase.
The images were captured using various smartphones (such as iPhone 6, Nexus 6P,
Huawei Mate8, etc.) in both indoor and outdoor settings.

DATA AUGMENTATION OPERATION
Data augmentation is a technology for artificially expanding the training dataset by
generating more equivalent data from limited data. It is an effective means to overcome the
shortage of training data, and it is widely used in various fields of deep learning. In this
article, a WLE filter is proposed to perform preliminary line extraction on the original
image, and the specific filter template is shown in Fig. 1. Due to the complexity of the
legend, only one direction of the filter template is listed in Fig. 1A (template size is 13 × 13,
in the actual extraction process, the template size is set to 35 × 35). The templates in
Figs. 1B and 1C present simplified diagrams, in which Fig. 1B illustrates the left-hand
template and Fig. 1C illustrates the right-hand template. It should be noted that the red
curve in Fig. 1A has the same functional representation as the red curves in Figs. 1B and
1C, both of which denote the template direction.

The choice of left-hand and right-hand templates is based on both empirical
observations and experimental validation. From an empirical perspective, the left-hand
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and right-hand directions correspond to the natural orientations of most palmprint lines,
ensuring that the templates align well with the dominant features. Experimentally, multiple
template configurations were assessed he left-hand and right-hand templates exhibited
superior performance in significantly improving line extraction accuracy and robustness.
Furthermore, as illustrated in Fig. 1A, the width of template line direction is set to three
pixels, as the principal palmprint lines typically have a width ranging from two to five
pixels (Jia, Huang & Zhang, 2008).

When performing convolution filtering, WLE sums all pixel values within a region of
three-pixel width. The specific equation is given by Eq. (1)

IWLE ¼ I �WLE (1)

where WLE is defined as follows:
Given Zp ¼ 0; 1; . . . ; p� 1f g, where p is a positive number representing the size of the

grid, on a finite grid Z2
p, the real-value function of WLE is given by Eq. (2), where k

represents the width of the line, Lk denotes the set of points that make up a line on the
lattice Z2

p, f x; y½ � is the gray value on the image I, q is a limiting parameter to prevent the
sum of gray values from exceeding 255, and q ranges from 0 to 1. It is worth noting that
before usingWLE to perform convolution filtering, it is necessary to use mean reduction to
preprocess the image, that is, I ¼ I0 �mean I0ð Þ.

Figure 1 WLE filter. (A) Only one direction of the filter template (B) left-hand template (C) right-hand template.
Full-size DOI: 10.7717/peerj-cs.3109/fig-1
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WLE kð Þ ¼ q
X3

k¼1

X
i;jð Þ2Lk

f i; j½ �: (2)

WLE only preliminarily screens the more obvious lines in the palm, such as some fine
cross lines. To obtain the more obvious principal lines of the palmprint, further data
preprocessing operations are needed. Figure 2 is the flowchart of obtaining the principal
line of palmprint. First, the original palmprint image is processed by WLE filter, and then
the filtered image is convolved by Gabor filter to remove any fine lines that remain after
WLE processing.

LAYERED VISUAL TRANSFORMER PARADIGM
Previously published material must be accompanied by written permission from the
author and publisher. ViT’s idea is to divide the image into blocks and send these blocks to
the encoder, which inevitably leads to the question of whether all images are suitable for
the same blocking strategy? The process of the model learning different things is both
difficult and easy. Simple images are easy to identify and do not require dividing the image
into multiple patches for training. However, dividing the image into multiple patches can
lead to the shortcomings of long training time and insufficient precision. Therefore, this
article introduces LViT, a Layered ViT model paradigm. The core idea is straightforward:
the input image is divided into different numbers of patches for separate training, and the
linear results of each patch number are summed and fused to output. Figure 3 illustrates
the architecture of the LViT paradigm (here using only two blocking methods as
examples). LViT extends the transformer architecture to enable multiple classification
token head outputs. To distinguish the number of blocks between multiple modalities,
we expanded the original Transformer architecture to include one-dimensional
multi-patch embedding, which marks each blocking method and enhances network’s
generalization ability.

Here, ViT (Dosovitskiy et al., 2021) is taken as an example and its formula is followed,
which is supplemented and explained in detail. In Eq. (3), Z represents the output set of all
different blocks, where zi represents the output of each block scheme (Eq. (4)). Here, M

Figure 2 Process of extracting pure palmprint principal line.
Full-size DOI: 10.7717/peerj-cs.3109/fig-2
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represents the number of types of block schemes, N represents the number of blocks in
each block scheme, xmulti�patch and xclass are two learnable embeddings, representing the
block-level and category-level embeddings, respectively, and xp represents the sequence of
flattened 2D patches, R represents real numbers, P2 represents the resolution of each
image patch, C represents the number of image channels, and D represents the dimension
of Transformer mapping layer.

Z ¼ z0; z1; z2; . . . ; zM½ �: (3)

zi ¼ xmulti�patch; xclass; x
1
pE; x

2
pE; . . . ; x

N
p E;

h i
þ Epos;

E 2 R P2�Cð Þ�D; Epos 2 R Nþ1ð Þ�D; i ¼ 1; . . . ;M: (4)

Next, in order to obtain the final classification result of each block scheme, this article
did not directly use the concatenated result in Eq. (3) as the input in the Encoder part, but
sent each block scheme into the Encoder as a different input for separate training. This
approach aligns with the original encoder parameter settings of ViT, thereby enhancing
training efficiency for future transfer learning applications. Equations (5), (6) and (7) are
the multi-headed self-attention (MSA), multilayer perceptron (MLP) and LayerNorm
(LN) components of the Encoder, respectively. The superscript 1 in z1L in Eq. (7) denotes
the dimension index of the class token. In this algorithm, the class token is placed in the
first dimension, while multi-patch embedding is in the 0th dimension, which is different
from ViT where the class token is in the 0th dimension. L denotes the maximum number
of layers in the Encoder.

z0l ¼ MSA LN zl�1ð Þð Þ þ zl�1; l ¼ 1; � � � ; L: (5)

zl ¼ MLP LN z0l
� �� �þ z0l l ¼ 1; � � � ; L: (6)

y ¼ LN z1L
� �

: (7)

After obtaining each block scheme, this article fuses the results of each scheme to make
the final prediction. This approach is referred to as LViT. Specifically, in the corresponding
fusion strategy, two fusion methods, namely “sum fusion” and “maximum fusion”, are

Figure 3 LViT papadigm. Full-size DOI: 10.7717/peerj-cs.3109/fig-3
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adopted to fuse the matching value layer. Equation (8) represents the “summation fusion”
method, where N is the number of block types, and S denotes the output score of each
block. Equation (9) represents the for “maximum fusion” method.

LViTSum ¼ Sum Sblock1; Sblock2; . . . ; SblockNð Þ ¼ 1
N
� Sblock1 þ Sblock2 þ . . .þ SblockNð Þ: (8)

LViTMax ¼ Max Sblock1; Sblock2; . . . ; SblockNð Þ: (9)

DISCUSSION AND ANALYSIS OF EXPERIMENTAL RESULTS
In this section, the Transformer architectures used are the existing backbone networks,
namely ViT, Conformer (Peng et al., 2021), PVT-V2 (Wang et al., 2022) and ConvMixer
(Trockman & Kolter, 2022). ViT is the first successful attempt to introduce the
Transformer into the vision field, setting a precedent for vision Transformers. ViT
converts image data into sequence data and feeds it into the standard Transformer encoder
to achieve higher recognition accuracy. Conformer is based on the feature coupling unit
(FCU), which fuses local features and global representations under different resolutions in
an interactive fashion. Conformer adopts a concurrent structure to maximize the retention
of local features and global representations. PVT-V1 (Wang et al., 2021) is the first
pyramid-structured Transformer model, which proposes a hierarchical Transformer with
four stages, demonstrating that a pure Transformer backbone can be as universal as the
CNN backbone. PVT-V2, on the other hand, introduces overlapping patch embedding,
convolutional feed-forward, and linear spatial reduction attention to improve the
recognition accuracy and reduce the computational complexity.

In verify the effectiveness of the proposed method this chapter, this section conducts
experimental tests from the following three aspects. (a) Baseline experiments, referring to
the training results of the original dataset using various backbone networks; (b)
Comparative experiments usingWLE data augmentation; (c) Experimental results of LViT
paradigm.

In this study, the training strategies and parameter settings for deep models were based
on the approach described by (Zivkovic et al., 2022), whereas the experimental settings for
traditional methods followed those of (Dosovitskiy et al., 2021). For deep model
training, the training and testing sets were strictly divided according to the collection
phases, using data from the first phase as the training set and data from the second phase as
the testing set. Since the IIT Delhi dataset has only one collection phase, the first collected
sample from each class was used as the training set, and the remaining samples were used
as the testing set. Regarding the image size, images from different databases varied
significantly. The original palmprint image size ranges from 128 × 128 pixels to 2,000 ×
2,000 pixels. To ensure compatibility with our models and maintain computational
efficiency, we resized all images in this dataset to a fixed size of 224 × 224 pixels using the
bilinear interpolation method. A detailed summary of these division strategies for all
databases is presented in Table 2 for easy reference. For deep learning methods, the batch
size for training was set to 4, the learning rate to 5� 10�5, the optimizer to AdamW
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(Loshchilov & Hutter, 2018), and data augmentation was implemented using
RandAugment (Cubuk et al., 2020).

Generally speaking, the system performance evaluation criteria of palmprint
recognition algorithm are shown in Table 3. Accuracy recognition rate (ARR), equal error
rate (EER), genuine acceptance rate (GAR), false acceptance rate (FAR), receiver operating

Table 3 The main evaluation index of palmprint recognition system.

Evaluation index Abbreviation Description

False rejection rate FRR The proportion of genuine being incorrectly rejected by the classifier.

False acceptance rate FAR The proportion of impostors mistakenly judged as accepted by the classifier.

Genuine acceptance
rate

GAR The concept of GAR is opposite to FRR, with a value of 1-FRR.

Receiver operating
characteristic

ROC The receiver operating characteristic intuitively reflects the balance relationship between GAR and FAR at
different thresholds of the recognition algorithm, where the horizontal axis is FAR and the vertical axis is
GAR.

Equal error rate EER The value of the ROC curve when FRR and FAR are equal.

Accuracy recognition
rate

ARR The ratio of correctly classified samples to total samples

Table 2 The division strategies for all databases.

Dataset Train number
of training sets

Test number
of training sets

Original palmprint
image size

Input the palmprint
image size of the model

PolyU II 3,889 3,863 128 × 128 224 × 224

IIT Delhi 459 2,237 150 × 150 224 × 224

XINHUA 1,000 1,000 2,000 × 2,000 224 × 224

NTU-CP-
V1

1,304 1,086 About 500 × 500 resolution 224 × 224

BJTU-V2 1,341 1,322 About 1,000 × 1,000 resolution 224 × 224

Table 4 Baseline experimental results of each dataset in the restricted environment.

Methods Patch size PolyU II IIT Delhi XINHUA

ARR EER ARR EER ARR EER

ViT-B 16 87.78 7.1427 76.64 14.3725 38.90 45.3584

32 80.09 10.2715 70.15 20.4975 35.80 49.2105

Conformer-B 16 91.98 6.1325 81.19 9.3667 46.20 37.3344

32 86.35 7.4487 74.22 16.3562 38.60 46.7724

PVT-V2-B5 4 95.91 3.7245 91.78 5.9733 71.50 19.2238

8 95.86 3.7326 91.36 6.0445 73.00 18.1582

16 95.81 3.8046 89.96 6.8328 71.50 19.2674

32 96.33 3.3026 90.33 6.7544 77.30 13.9044

ConvMixer 7 99.82 0.7526 92.89 5.7742 69.60 20.8743

14 99.85 0.6344 89.47 6.9804 63.80 23.5576
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characteristic (ROC) will be used as experimental evaluation indexes in the following
experiments.

WLE data augmentation experiment
This section evaluates the experiments with and without WLE data augmentation on five
datasets, including three palmprint datasets in restricted environment and two datasets in
unrestricted environment respectively. The selected evaluation models included ViT,
Conformer, PVT-V2 and ConvMixer. But not limited to these evaluation models, any ViTs
model can implement the algorithmic paradigms in this chapter. It should be added that in
the current well-established deep learning methods, employing basic data augmentation
techniques, such as rotation and cropping, has become a necessary operation. This
subsection aims exclusively to demonstrate the effectiveness of the WLE data
augmentation method and does not involve comparisons with other non-deep learning
augmentation methods (Cubuk et al., 2020). Table 4 presents the baseline experiments of

Table 5 Baseline experimental results of each dataset in the unrestricted environment.

Methods Patch size NTU-CP-V1 BJTU-V2

ARR EER ARR EER

ViT-B 16 72.99 18.2326 63.90 23.4826

32 70.70 20.3879 60.05 24.5527

Conformer-B 16 78.39 12.0726 75.13 15.5475

32 72.44 18.4275 70.25 20.4431

PVT-V2-B5 4 83.24 9.3327 86.18 8.1022

8 83.79 9.1872 84.34 9.1786

16 85.44 8.3976 85.51 8.4725

32 84.71 9.0547 85.76 8.3720

ConvMixer 7 84.89 9.0128 89.03 6.6547

14 84.98 8.9744 87.35 7.1438

Table 6 Data augmentation experiment results of each dataset in the restricted environment.

Methods Patch size PolyU II IIT Delhi XINHUA

ARR EER ARR EER ARR EER

ViT-B 16 96.32 3.3524 84.74 9.0326 69.00 21.0745

32 92.51 5.8236 76.84 14.3375 68.70 21.2427

Conformer-B 16 92.07 5.9045 85.07 8.5022 71.20 19.5585

32 87.23 7.2032 78.57 12.0163 63.80 23.6042

PVT-V2-B5 4 96.01 3.6355 92.33 5.7459 78.10 12.8741

8 96.06 3.6218 94.20 4.5722 76.90 15.3670

16 96.37 3.2883 92.51 5.7120 79.40 11.4032

32 96.96 3.2047 93.64 5.0773 76.90 15.3528

ConvMixer 7 99.87 0.5833 93.42 5.1844 79.60 11.4427

14 99.87 0.6028 89.87 6.5035 77.30 13.8725
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each dataset (PolyU II, IIT Delhi and XINHUA) in the restricted environment, while
Table 5 presents the baseline experiments of each dataset (NTU-CP-V1 and BJTU-V2) in
the unrestricted environment.

Next, the palmprint images after WLE data augmentation were evaluated to verify the
effectiveness of WLE data augmentation. Table 6 presents the experimental results after
data augmentation for the datasets PolyU II, IIT Delhi and XINHUA in the restricted
environment, while Table 7 presents the experimental results after data Augmentation for
the datasets NTU-CP-V1 and BJTU-V2 in the unrestricted environment. The
experimental results show that the ViT model with WLE data augmentation
exhibits stronger generalization ability. The recognition rate and EER have been further
improved.

LViT experiment
This section evaluates the LViT paradigm. In this article, the backbone network name is
renamed by adding a prefix identifier. In the experimental results, S denotes “summation
fusion” and M denotes “maximum fusion”. In this section, two types of LViT ablation

Table 7 Data augmentation experiment results of each dataset in the unrestricted environment.

Methods Patch size NTU-CP-V1 BJTU-V2

ARR EER ARR EER

ViT-B 16 75.02 16.9456 80.90 10.0302

32 74.90 17.0188 76.48 15.6884

Conformer-B 16 79.44 11.3356 79.73 11.2562

32 74.26 17.2163 72.18 18.8629

PVT-V2-B5 4 85.99 8.1320 86.52 8.0421

8 84.61 9.1128 85.76 8.3546

16 85.53 8.3853 86.60 8.0225

32 85.43 8.4015 86.01 8.1125

ConvMixer 7 85.35 8.4726 89.11 6.6325

14 85.26 8.5877 87.69 7.0844

Table 8 LViT experiment results without WLE data augmentation.

Methods mode PolyU II IIT Delhi XINHUA NTU-CP-V1 BJTU-V2

ARR EER ARR EER ARR EER ARR EER ARR EER

L-ViT S 90.44 5.9034 80.35 11.4452 53.90 33.1982 74.06 17.8621 72.30 16.8567

M 91.02 5.7214 80.88 11.0321 56.20 31.2283 74.22 17.5523 73.20 15.2083

L-Conformer S 92.00 6.0912 83.45 7.9034 58.90 28.3376 78.93 11.8214 77.29 13.2904

M 92.02 6.0004 83.92 7.1238 59.40 27.3592 79.11 11.6218 78.44 12.8703

L-PVT-V2 S 96.48 3.2896 92.34 5.7213 78.34 12.9886 85.51 8.3614 86.22 8.0823

M 96.56 3.2455 93.06 5.0662 79.02 11.9232 85.78 8.2514 86.28 8.0546

L-ConvMixer S 99.85 0.6134 92.95 5.6713 74.50 15.3893 85.12 8.5893 89.08 6.6507

M 99.87 0.6016 93.11 5.5523 76.20 14.3328 85.33 8.5012 89.11 6.6425
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experiments were conducted, one without WLE data augmentation and the other with
WLE data augmentation.

Table 8 presents the experimental results for LViT without WLE data augmentation. It
can be seen from Tables 7 and 8 that the augmentation amplitude of WLE is better than
that of LViT, that is, the influence of WLE on the model is better than the definition of the

Figure 4 ROC characteristic curve afterWLE augmentation operation. (A) PolyU II (B) IIT Delhi (C) XINHUA (D) NTU-CP-V1 and (E) BJTU-V2.
Full-size DOI: 10.7717/peerj-cs.3109/fig-4

Table 9 LViT experiment results with WLE data augmentation.

Methods mode PolyU II IIT Delhi XINHUA NTU-CP-V1 BJTU-V2

ARR EER ARR EER ARR EER ARR EER ARR EER

L-ViT S 96.68 3.2714 85.03 9.0211 71.20 19.5445 78.45 12.6875 81.30 9.9468

M 96.96 3.1825 86.14 8.2875 71.60 19.1528 78.76 12.5721 81.45 9.8723

L-Conformer S 92.44 5.7546 86.54 8.1323 73.30 18.5465 79.88 11.0238 80.65 10.1872

M 93.17 5.4635 86.93 8.0144 73.30 18.4432 80.15 10.8652 81.20 9.9833

L-PVT-V2 S 97.15 3.0421 94.47 4.1732 78.60 12.2874 86.98 7.8833 87.38 7.3625

M 97.44 2.9328 94.98 3.9828 79.60 11.3678 87.44 7.4902 87.60 7.1256

L-ConvMixer S 99.93 0.5624 93.47 5.1221 79.80 11.4279 89.35 6.4805 89.23 6.5546

M 99.93 0.5525 93.65 5.0136 80.10 10.7454 89.78 6.1736 89.76 6.2045
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framework. Table 9 presents the experimental results of LViT with WLE data
augmentation. The effectiveness of WLE is further demonstrated in Tables 8 and 9, where
the accuracy of ViT and Conformer shows significant improvement. Among them, the M
fusion method achieves higher accurate than the S fusion method, because the fusion score
takes the maximum score and often can obtain the best selection parameters. The ROC
characteristic curve after WLE augmentation operation is illustrated in Fig. 4.

Contrast experiment
In this section, we compare four traditional methods including CompC (Zhang et al.,
2003), OrdinalC (Sun et al., 2005), RLOC (Jia, Huang & Zhang, 2008) and LLDP (Luo
et al., 2016) and three methods based on deep learning including EEPNet (Jia et al., 2022),
CCNet (Yang et al., 2023a) and CO3Net (Yang et al., 2023b) to demonstrate the feasibility
and effectiveness of LViT. For the sake of fairness, WLE data augmentation operation is
used in the comparative experiments of the three deep models, and no other gain operation
is performed on the data and models.

Table 10 presents the results of comparative experiments. Due to the manual design of
feature extractor, traditional manual methods can often achieve good results in some
specific situations, such as PolyU II and NTU-CP-V1. Specifically, LLDP achieved the best
performance on BJTU-V2 dataset. However, this does not mean that models based on the
LViT paradigm are slightly worse on some specific datasets. This article aims to explain the
beneficial effect of the LViT paradigm, but does not dig deep into the benefits brought by
model architecture. In addition, it can be seen that the three palmprint recognition
methods based on deep learning usually have poor performance. This is because the
palmprint dataset is a small sample data, and it is often difficult to identify key features for
the model trained from scratch. It is worth noting that CCNet achieves good recognition
performance on PolyU II and BJTU-V2 datasets. The images in the NTU-CP-V1 dataset
have relatively low resolution, and the sample size for each class is limited. These factors

Table 10 Comparative experimental results.

Methods PolyU II IIT Delhi XINHUA NTU-CP-V1 BJTU-V2

ARR EER ARR EER ARR EER ARR EER ARR EER

CompC (Zhang et al., 2003) 100 0.0513 89.78 5.4762 79.20 10.6030 89.47 6.7741 87.77 6.6823

OrdinalC (Sun et al., 2005) 100 0.0497 88.42 6.2285 73.10 12.0343 87.55 7.5996 88.61 5.4721

RLOC (Jia, Huang & Zhang, 2008) 100 0.0521 87.69 6.3400 67.50 15.1470 86.81 7.7674 87.52 6.0517

LLDP (Luo et al., 2016) 100 0.0517 91.67 4.3437 76.70 11.2780 88.74 7.7645 91.88 5.3637

EEPNet (Jia et al., 2022) 99.67 0.5907 87.65 7.9846 68.40 16.1294 85.07 7.9846 82.75 9.7481

CCNet (Yang et al., 2023a) 99.97 0.1554 31.40 40.7147 78.30 14.7012 N/A N/A 91.04 5.9900

CO3Net (Yang et al., 2023b) 99.74 0.2814 64.72 24.3310 72.80 15.1947 70.97 15.5140 87.52 7.7089

L-ViT (Proposed) 96.96 3.1825 86.14 8.2875 71.60 19.1528 78.76 12.5721 81.45 9.8723

L-Conformer (Proposed) 93.17 5.4635 86.93 8.0144 73.30 18.4432 80.15 10.8652 81.20 9.9833

L-PVT-V2 (Proposed) 97.44 2.9328 94.98 3.9828 79.60 11.3678 87.44 7.4902 87.60 7.1256

L-ConvMixer (Proposed) 99.93 0.5525 93.65 5.0136 80.10 10.7454 89.78 6.1736 89.76 6.2045
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cause CCNet’s receptive field to fail to effectively capture key features, which in turn affects
its training convergence. A ROC characteristic curve of a comparative experiment is
illustrated in Fig. 5.

Anti-noise experiment
In real life, there are often worse situations, such as rain, storm, dust, and so on. In these
extreme cases, deep learning methods can often exhibit a certain anti-noise capability.
However, traditional manual palmprint recognition methods are affected by
environmental and terrain factors, leading to reduced recognition. This section simulates
several special scenarios and adds noise to palmprint data to verify the effectiveness and
generalization ability of the LViT model.

There are three types of preprocessing on palmprint data: salt-and-pepper noise,
Gaussian noise and random occlusion. Figure 6 illustrates the example after adding noise,
where Fig. 6A illustrates the original image, and Figs. 6B, 6C and 6D illustrate the
processing results of salt-and-pepper noise, Gaussian noise, and random occlusion.
Table 11 presents the experimental results after noise processing, respectively. The
corresponding ROC curve of the anti-noise datasets is illustrated in Fig. 7.

From the above experimental results, we can draw the following conclusions.

Figure 5 The corresponding ROC characteristic curve of a comparative experiment. (A) PolyU II (B) IIT Delhi (C) XINHUA (D) NTU-CP-V1
and (E) BJTU-V2. Full-size DOI: 10.7717/peerj-cs.3109/fig-5
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(1) The results of L-ViT are outperform than traditional manual methods in most cases,
because ViT benefits from data augmentation, which increases the anti-noise and
generalization ability. However, traditional methods are greatly influenced by the
environment and are usually suitable for discrimination in a standardized indoor
environment;

(2) No traditional method can achieve the best results. Similarly, no L-ViT result is the
best in all datasets. This also reflects that the influence of data on the model is
uncontrollable. However L-ViT can still mitigate this influence;

(3) The fact that CCNet can be retrained on the NTU-CP-V1 dataset indicates that the
data volume determines the model’s generalization ability, which aligns with the results in
Table 10. Additionally, the IIT Delhi dataset becomes untrainable on the CCNet model
when the data volume is increased, possibly due to the extremely limited number of
training samples (only one sample);

(4) Traditional manual methods often demonstrate inferior anti-noise performance
compared to deep learning-based approaches, because traditional methods rely on

Figure 6 Add noise processing. (A) Original image (B) salt-and-pepper noise (C) Gaussian noise and
(D) random occlusion. Full-size DOI: 10.7717/peerj-cs.3109/fig-6

Table 11 Experimental results of noise.

Methods PolyU II IIT Delhi XINHUA NTU-CP-V1 BJTU-V2

ARR EER ARR EER ARR EER ARR EER ARR EER

CompC (Zhang et al., 2003) 91.66 2.5626 84.14 6.7584 75.80 12.6367 85.81 7.6930 56.86 28.2909

OrdinalC (Sun et al., 2005) 91.34 2.1021 82.53 8.0058 72.13 12.6926 84.91 8.2385 56.49 19.2576

RLOC (Jia, Huang & Zhang, 2008) 93.70 2.1130 78.91 9.4112 69.13 15.0854 83.60 9.3808 51.85 32.6343

LLDP (Luo et al., 2016) 84.59 7.2858 81.52 11.3362 71.40 12.4132 80.44 10.1568 58.22 26.5823

EEPNet (Jia et al., 2022) 97.44 1.4782 81.47 8.8326 60.47 17.3678 82.33 9.5523 66.92 15.5428

CCNet (Yang et al., 2023a) 99.44 0.9725 N/A N/A 75.97 12.1136 72.80 11.4782 N/A N/A

CO3Net (Yang et al., 2023b) 97.87 1.4033 58.37 18.3925 74.87 12.3217 62.00 16.9084 50.71 33.2165

L-ViT (Proposed) 93.27 2.1896 76.57 12.4426 68.87 15.9838 78.24 11.0236 57.25 25.3416

L-Conformer (Proposed) 91.31 2.6325 80.65 10.3527 73.36 12.6527 85.91 7.5893 46.67 35.7724

L-PVT-V2 (Proposed) 95.99 1.8274 86.15 6.2902 75.80 12.0445 87.53 6.7238 65.83 19.2863

L-ConvMixer (Proposed) 99.53 0.8722 90.58 5.2568 77.40 11.3823 86.00 7.5560 67.39 17.3348
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manually designed descriptors, and the feature distribution of the original image changes
in an uncertain noise environment;

(5) The experimental results of L-ConvMixer are generally superior compared to other
methods, particularly on PolyU II and IIT Delhi datasets.

Discussion and analysis
According to the previous experimental results, the feasibility of the LViT paradigm has
been verified, and WLE data augmentation has played a significant role as well. This
section focuses on the training time. Since LViT inputs many different patches into the
model, it inevitably increases the overall Flops and MAdd of the model. But at the same
time, it brings a shorter training time, that is, the number of training iterations is
significantly reduced, and the convergence speed of the model is further improved.
Figure 8 illustrates the loss function trajectory (with WLE) of each LViT method on the
PolyU II dataset. It can be seen that LViT achieves faster convergence with fewer iterations,
and its loss function is relatively smooth.

For real-time applications, computational complexity is an important factor to
determine the processing speed. In the process of large-scale manual authentication,
traditional methods often need to extract features online and match them after processing.
Because LViT is based on a deep learning model, real-time matching can be achieved as

Figure 7 The corresponding ROC curve of the anti-noise datasets. (A) PolyU II (B) IIT Delhi (C) XINHUA (D) NTU-CP-V1 and (E) BJTU-V2.
Full-size DOI: 10.7717/peerj-cs.3109/fig-7
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long as the model training is completed. In addition, PolyU II data set is a controlled
environment database, so traditional methods usually have better results, while IIT Delhi,
XINHUA, NTU-CP-V1 and BJTU are more complex databases, so deep learning methods
typically achieve better performance. Compared with other depth palmprint methods, the
determining conditions of computational complexity usually include Flops, MAdd and
Memory. In order to be fair, the input of all depth models is scaled to 224 � 224. Table 12
presents the performance comparison of deep models.

As shown in Table 12, LViT has higher Flops, MAdd and memory size than CCNet,
CO3Net and EEPNet, which is consistent with expectations. LViT divides the image into
multiple patches for processing, which results in higher computational complexity. The
self-attention mechanism needs to calculate the attention scores between all patches, and
the embedding of each patch requires matrix multiplication and nonlinear
transformations, which increases the computational burden. LViT contains a large number

Figure 8 Loss function on PolyU II dataset. Full-size DOI: 10.7717/peerj-cs.3109/fig-8

Table 12 Performance comparison of deep model.

CompC Flops (G) MAdd (M) Memory (M)

CCNet (Yang et al., 2023a) 0.257 0.514 5.89

CO3Net (Yang et al., 2023b) 0.11 0.22 3.07

EEPNet (Jia et al., 2022) 0.391 0.775 49.66

L-ViT (Proposed) 0.4 0.8 293.12

L-Conformer (Proposed) 26.73 53.31 818.68

L-PVT-V2 (Proposed) 1.44 2.85 315.40

L-ConvMixer (Proposed) 51.29 102.45 738.01
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of layers, which are used to capture complex image features, resulting in increased
computational and memory consumption.

The complexity of LViT mainly depends on two aspects: the resolution of the input
image and the sequence length of the image (the number of patches). Generally speaking,
assuming that the resolution of the input image is H�W, and the size of each patch is

P� P, then the image is divided into H�Wð Þ=P2 patches. Assuming that the sequence
length is N, LViT uses a multi-layer self-attention mechanism (self-attention), and the
complexity is roughly OðN2 �DÞ, where D is the dimension of the vector representation
of each patch. In each Transformer block, in addition to the self-attention, it also includes a
fully connected multi-layer perceptron (MLP) layer. The complexity of the MLP layer is

O N�M2ð Þ, where M is the dimension of the hidden layer in the MLP layer. Therefore, the
overall complexity of LViT can usually be expressed as O H�Wð Þ=P2 � N2 � D þð
H�Wð Þ=P2 � N�M2Þ.
Despite these higher computational costs, LViT has demonstrated superior

performance in classification tasks, indicating that the benefits of its architectural design
outweigh the associated computational overhead. Efforts to optimize LViTs’ efficiency
through techniques such as efficient attention mechanisms, model distillation, and
pruning are ongoing research areas aimed at reducing their computational requirements
while maintaining high performance. Recently, some lightweight ViTs (Anasosalu Vasu
et al., 2023; Mehta & Rastegari, 2022; Wang et al., 2024) also provide the possibility of
LViT extension, and the ViT-based methods will gradually improve performance to adapt
to various devices. In addition, binary network and hash retry technology are new
directions of consideration, which can map high-dimensional image data into
low-dimensional binary coding space, reduce data storage and computational costs, and
improve retrieval efficiency.

LViT finds the optimal model through various blocking strategies, which also have
guiding role for non-Transformer-based neural networks. For example, it can use
multi-scale CNN to perform tasks, take images of different scales as input and fusing the
results of multiple branches for prediction. In addition, we can also combine the early stop
mechanism in neural architecture search (NAS) to find the best partition, and customize a
special LViT model for each database, which can greatly increase the computational
complexity.

CONCLUSIONS
In this article, we explore depth palmprint recognition technology. Starting from the most
important principal line features of palmprint, WLE data augmentation is proposed to
obtain the principal line features of palmprint, resulting good recognition effect, with a
maximum gain of 47.88%. At the same time, this article proposes the LViT paradigm for
fusion output, which reduces training time and improves recognition accuracy. LViT
provides new insights for direction-based methods in the field of palmprint recognition. In
addition, this article simulates palmprint collection in the real-world environments, and
carries out anti-noise experiments on the noise dataset to verify that LViT maintains high
robustness and strong generalization ability in the harsh environment, especially with the
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recognition rate on the PolyU II dataset reaching 99.53%, showing minimal impact.
Although LViT accelerates model convergence, it also brings inevitable increases in
memory pressure and computational cost. In the future, lightweight ViT methods will be
explored and binary networks and hash retrieval technology will be introduced to
compress the model to improve the retrieval efficiency.
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