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ABSTRACT
Aquatic animal husbandry is crucial for global food security and supports millions of
livelihoods around the world. With the growing demand for seafood, this industry
has become economically significant for many regions, contributing to local and
global economies. However, as the industry grows, it faces various major challenges
that are not encountered in small-scale setups. Traditional methods for classifying,
detecting, and monitoring aquatic animals are often time-consuming, labor-
intensive, and prone to inaccuracies. The labor-intensive nature of these operations
has led many aquaculture operators to move towards automation systems. Yet, for an
automation system to be effectively deployed, it needs an intelligent decision-making
system, which is where deep learning techniques come into play. In this article, an
extensive methodological review of machine learning methods, primarily the deep
learning methods used in aquatic animal husbandry are concisely summarized. This
article focuses on the use of deep learning in three key areas: classification,
localization, and segmentation. Generally, classification techniques are vital in
distinguishing between different species of aquatic organisms, while localization
methods are used to identify the respective animal’s position within a video or an
image. Segmentation techniques, on the other hand, enable the precise delineation of
organism boundaries, which is essential information in accurate monitoring systems.
Among these key areas, segmentation techniques, particularly through the U-Net
model, have shown the best results, even achieving a high segmentation performance
of 94.44%. This article also highlights the potential of deep learning to enhance the
precision, productivity, and sustainability of automated operations in aquatic animal
husbandry. Looking ahead, deep learning offers huge potential to transform the
aquaculture industry in terms of cost and operations. Future research should focus
on refining existing models to better address real-world challenges such as sensor
input quality and multi-modal data across various environments for better
automation in the aquaculture industry.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Computer Vision,
Data Mining and Machine Learning, Neural Networks
Keywords Artificial intelligence, Aquatic animal monitoring, Machine learning, Deep learning,
Automation system

INTRODUCTION
Millions of people around the world depend on aquatic animals for their livelihoods, thus
making it crucial to preserve this global food source. Aquatic animal husbandry
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encompasses the activities of raising diverse species such as fishes, shrimps, crabs, scallops,
corals, jellyfish, aquatic macroinvertebrates, and phytoplanktons (Sun, Yang & Xie, 2020).
This industry has experienced rapid growth in recent decades, driven by the increasing
global demand for seafood. However, the rising demand has led to the depletion of aquatic
animal populations and various other environmental issues (Zhao et al., 2021). To mitigate
some of these issues, deep learning methods have been proposed for aquatic animal
husbandry through various automation processes (Saleh et al., 2024). Deep learning, a
subset of artificial neural networks, has gained a lot of attention recently in the machine
learning community because of its deep network layers capability, instead of shallow
architecture to produce complex learning representations of data that are more accurate
(Stofa, Zulkifley & Mohamed, 2024). One of the driving factors of deep learning’s
state-of-the-art performance can be attributed to the utilization of convolutional neural
networks (CNNs), which allow the machines to learn unique patterns from large datasets
with high accuracy, that have transformed many automation tasks, especially image
classification and object recognition (Akhyar et al., 2024).

Classifying or detecting aquatic animals using manual methods is time-consuming and
requires high sampling efforts. On the other hand, a deep learning-based technology is
capable of automating these complex tasks by using accurate classification and detection
techniques without human intervention (Maluazi, Zulkifley & Kadim, 2024). Hence, this
artificial intelligence (AI) technology, in particular, deep learning has emerged as a
promising solution to tackle the issues faced by the aquatic animal husbandry industry. In
general, deep learning models possess the remarkable capability to perform automation of
complex tasks like image classification, localization, and segmentation with high accuracy,
as they can automatically extract relevant features automatically from datasets (Vo et al.,
2021). Furthermore, as Industry 4.0 has grown, large numbers of AI-driven sensors are
used to track the state and performance of animal husbandry operations, offering real-time
information about farm conditions (Maluazi, Zulkifley & Kadim, 2024). These advanced
capabilities have spearheaded the development of numerous deep learning applications in
the aquatic animal husbandry domain. Implementing these deep learning technologies can
significantly improve the operation efficiency of the farms, increasing their overall
productivity and enhancing the sustainability of the industry.

Compared to conventional techniques, deep learning models regularly produce higher
accuracy and have demonstrated top performance in various applications, including
detecting underwater aquatic animal images. While public datasets such as those on Kaggle
provide valuable training resources, the images may not always be clear or high-quality
enough due to unique underwater challenges like poor lighting. However, they still offer
substantial utility for training a good automation model for aquaculture industry usage.

Unlike previous articles that primarily focus on underwater object detection
(Er et al., 2023; Xu et al., 2023), our study focusses on the role of deep learning in
classification, localization, and segmentation tasks. Additionally, we also address issues
related to dataset quality, model generalization, and real-time deployment, which are not
the main focus of existing reviews. This review aims to provide insights for both AI
researchers, who focus on improving model architectures, and aquaculture practitioners,
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who seek practical AI-driven solutions for real-world challenges. By bridging these
perspectives, this review article captured the main important points from research in
recent years that has focused on detecting underwater images using deep learning
methods. The general framework of the deep learning-based system includes pre-
processing, feature extraction, classification, localization, and segmentation phases, which
are the usual steps used in designing accurate automation systems for identifying the
species of aquatic organisms in underwater images. These steps ensure that the deep
learning model can effectively differentiate between various species, leading to better
management of the aquaculture farms. The primary research question guiding this review
are: (1) How have deep learning techniques contributed to the automation of monitoring
processes in aquatic animal husbandry? (2) What are the strengths and weaknesses of
different deep learning techniques (classification, localization, segmentation) used in this
field? (3) What are the current challenges and future directions for improving deep
learning-based automation in aquaculture? These questions are addressed systematically
through the review of recent studies and comparative analyses of deep learning model,
Furthermore, this article also reviews and compares key tasks in automated aquaculture
farms, which are classification, localization, and segmentation techniques in classification,
localization, and segmentation section. Additionally, a comparative analysis using deep
learning methods for classification, localization, and segmentation of aquatic animal
husbandry was performed in general discussion, highlighting the strengths and weaknesses
of each method, followed by a conclusion and future works section.

SEARCH METHODOLOGY
This literature review aimed to provide a comprehensive understanding of deep learning
applications in automating processes within aquatic animal husbandry, specifically
focusing on the critical tasks of classification, localization, and segmentation. Given the
increasing importance of precision in monitoring aquatic species, the review sought to
examine studies that demonstrate how deep learning models can support more efficient
and accurate automation within this field. To identify relevant literature, an extensive
search was carried out in major academic databases, including IEEE Xplore, Google
Scholar, and ScienceDirect (Elsevier). These platforms were selected for their extensive
collections of high-quality, peer-reviewed research across engineering, computer science,
and applied sciences. The search was conducted using combinations of the following
keywords: “Automated” AND “Aquatic” AND “Deep Learning”, “Underwater Object
Detection” AND (“YOLO” OR “Faster R-CNN” OR “EfficientDet”), “Semantic
Segmentation” AND “Underwater Images”, and "Real-time Object Detection” AND
“Aquaculture”.

The inclusion criteria for selecting studies in this review were carefully defined to ensure
relevance, quality, and alignment with the objectives of aquatic automation research. First,
only studies published between 2018 and 2024 were considered, ensuring the
incorporation of recent developments in deep learning and its applications to aquaculture.
Second, selected studies had to apply deep learning models directly related to aquatic
animal monitoring encompassing species recognition, behavior tracking, population
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counting, and environmental sensing within aquatic environments. Third, the review
focused on articles that addressed at least one of the three primary tasks critical to
automation in aquaculture: classification, localization, and segmentation of aquatic
enviromenta. These tasks form the foundation for intelligent decision-making in
aquaculture systems, enabling enhanced monitoring precision and operational efficiency.
Studies that included comparative analyses of different deep learning architectures,
reported performance metrics, or demonstrated real-world deployment scenarios were
given higher priority in the selection process.

Figure 1 shows the number of publications on aquatic related topics from 2018 to 2024.
The exclusion criteria were defined to maintain the focus and relevance of this review
within the scope of deep learning applications for aquatic animal husbandry. Studies were
excluded if they focused solely on traditional machine learning approaches without
incorporating or comparing deep learning methods, as the aim of this review is to evaluate
advancements specific to deep learning technologies. Additionally, research centered on
non-aquatic animal domains was excluded to ensure thematic consistency with the aquatic
focus of this work. Finally, articles lacking experimental validation, including those that
provided only conceptual discussions or unverified model proposals, were omitted to
ensure that the analysis was grounded in empirical evidence and reproducible results. This
ensured that all included studies contributed meaningfully to understanding the current
capabilities, limitations, and opportunities of deep learning models in aquaculture
automation.

Approximately 150 articles were initially retrieved. After applying the
inclusion/exclusion criteria and reviewing abstracts and full texts, 52 articles were
selected for detailed analysis. Studies were evaluated based on relevance, citation impact,
methodological rigor, and the clarity of results reported. These databases provided access
to a diverse range of sources, allowing for a robust analysis that captures both established
and emerging applications of deep learning within aquatic animal husbandry.

Figure 1 Publication statistics on aquatic related topics from 2018 to 2024.
Full-size DOI: 10.7717/peerj-cs.3105/fig-1
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Table 1 Applications of deep learning methods in aquatic animal husbandry: classification techniques.

Method Datasets Aquatic animal
classes

Deep learning techniques Performance measures Strength Weakness

Saleh,
Laradji &
Konovalov
(2020)

DeepFish 20 different
habitats

ResNet-50 Accuracy: 0.99 Large dataset
providing a diverse
range of information
for model training

The complexity of
underwater
scenes makes it
challenging for
models to
perform

Shammi
et al.
(2021)

Fish-Pak Six different
species of fishes

CNN Accuracy: 88.96% CNN resulted in a
high classification
accuracy, which is
significantly better
than traditional
algorithm

Limited scope,
only six types of
fish were
classified

Pagire &
Phadke
(2022)

Kaggle Nine different
breeds of fishes

MobileNet Accuracy: 99.74% High accuracy in
detecting and
classifying nine
different fish breeds

Underwater
environment
challenges, such
as varying light
conditions that
can affect
detection
accuracy

Mol & Jose
(2022)

Kaggle Nine fish species AlexNet Accuracy; Use a modified
version of the
AlexNet model that
has three fully
connected layers
and five
convolutional layers

Lack of detailed
information on
dataset size and
diversity

GoogleNet AlexNet: 94%

VGGNet GoogleNet: 95%

VGGNet: 95.5%

Bhanumathi
et al.
(2022)

Kaggle Three fish species AlexNet Accuracy: 90% Achieves accuracy
higher than the
standard CNN
model

The model’s
performance
may be
constrained by
the dataset size

Ben Tamou,
Benzinou
&
Nasreddine
(2022)

LiteClef 2015 15 fish species ResNet50 Accuracy: 81.83% The use of underwater
video systems allows
for the study of
marine biodiversity
without disturbing
the environment

Poor quality
images, which
can complicate
the automatic
analysis process

Paraschiv
et al.
(2022)

Symbiosis-NCC
QUT-NOA

Six fish species VGG16 Accuracy: These models use
fewer computational
resources, making
them suitable for
long-term,
unattended
operations

The accuracy of
small models is
relatively low,
around 42% for
six fish species,
which might not
be adequate for
all needs

Almost 42% (picture)

Almost 49% (from video)

Dey et al.
(2023)

Author’s private
datasets

Nine species of
marine fauna

MobileNetV2 Accuracy: 99.83% The optimized model
achieves a 99.83%
accuracy, indicating
its effectiveness in
classifying marine
species

Complex
underwater pose
challenges for
classification

(Continued)
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Various deep learning architectures have been applied in this domain, include CNNs,
which excel in feature extraction and image recognition. Region-based CNNs (e.g., Faster
R-CNN) enhance object detection by refining bounding box predictions, while single-stage
detectors like You-Only-Look-Once (YOLO) provide real-time detection capabilities. A
comparative analysis of these architectures, including their accuracy and computational
efficiency, is provided in Tables 1–3.

This review focuses on three main automation tasks, which are classification,
localization, and segmentation that are frequently used in automated aquatic animal
husbandry systems. Classification, localization, and segmentation are fundamental tasks in
deep learning applications for aquatic animal husbandry. These tasks enable the
automated identification of species, precise tracking of individual organisms, and accurate
delineation of object boundaries in underwater environments. A classification task is
critical for identifying different aquatic animal species, which helps ensure biodiversity is
accurately monitored. A localization task allows us to pinpoint the exact location of
animals in their environment, which is crucial for understanding their behavior and
habitat. A segmentation task provides a detailed segmentation map of the fish boundaries,
enabling precise assessments of their health and conditions. These three tasks were selected
because they form the backbone of many deep learning applications in this field, each
addressing specific needs that are vital for improving automation and decision-making in
aquaculture. Given the challenges of murky water conditions, varying lighting, and species
diversity, these three tasks were selected as they have the highest impact on improving
aquaculture monitoring systems. Figure 2 shows how classification, localization, and
segmentation tasks are used in the context of aquatic animal husbandry. The search
phrases contain the following terms to reflect the intended goal of the article, which are
“Automated” AND “Aquatic” AND “Deep Learning”. The resultant articles are then

Table 1 (continued)

Method Datasets Aquatic animal
classes

Deep learning techniques Performance measures Strength Weakness

Tiwari et al.
(2023)

Marine Animal Fish, Goldfish,
Harbor seal,
Jellyfish, Lobster,
Oyster, Sea
turtle, Squid,
Starfish

Inception The best validation performance; Models were
fine-tuned using
transfer learning,
which allows them
to leverage
pre-trained
knowledge from
ImageNet,
enhancing their
performance on the
marine animal
dataset

Models perform
well on the
specific dataset,
their ability to
generalize to
new, unseen
data or different
marine
environments
may be limited

ResNetV Inception: 96.75

ResNet50 ResNetV: 93.75

VGG16 ResNet50: 92.75

InceptionV3 MobileNet: 92.73

Xception NASNet: 94.75

DenseNet

MobileNet

NASNet

Ishwarya
et al.
(2024)

Sathyabama
Institute of
Science and
Technology

20 different
categories of
underwater
marine
organisms

AlexNet Accuracy: Higher accuracy in
classifying
underwater marine
species

Require significant
computational
resources,
including
powerful GPUs
and extensive
training time

DarkNet19 AlexNet: 70%

Squeeze Net DarkNet19: 96%

Squeeze Net: 98%
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Table 2 Applications of deep learning methods in aquatic animal husbandry: localization techniques.

Methods Datasets Aquatic animal classes Deep
learning
techniques

Performance
measures

Strength Weakness

Xu et al. (2020) Author’s
private
datasets

Bluefin tuna RCNN Detection rate: 91.5% High accuracy of 92.4%
and detection rate of
91.5% for bluefin tuna

Requires a powerful GPU for
efficient trainingAccuracy: 92.4%

Hu et al. (2020) National
Natural
Science
Foundation
of Chine
Underwater
Robot
Competition

Sea urchins SSD AP:81.0% Algorithm improves
detection accuracy by
7.6% over the classic
SSD

The added feature
enhancement and cross-level
fusion increase the model’s
complexity

Mathias et al. (2022) LCF-15 Fish YOLOv3 Accuracy: Achieves 95.3% to
98.5% accuracy in fish
identification across
different datasets

Struggles with detecting
camouflaged objects in the
background

UWA 98.5%

Bubble vision 96.77%

DeepFish 97.99%

95.3%

Li et al. (2022) URPC-2019 Starfish, Echinus, Scallop,
Holothurian

SSD Accuracy: 79.76% It operates at 18.9 FPS,
2.8 FPS faster than the
original SSD, making
it suitable for
real-time use

The use of ResNeXt-50 and
attention mechanisms can
make the model more
complex and
resource-intensive to
implement

FPS: 18.95 fps

Sangari et al. (2023) Author’s
private
datasets

Marine organisms RCNN Accuracy: 97.89 Uses RCNN to improve
detection in poorly lit
underwater images,
increasing accuracy

Integrating RCNN and CFTA
can be complex, requiring
more resources and expertise

Wei et al. (2023) RUIE Sea urchins, Sea cucumbers,
Scallops, Starfish

YOLOv5s AP: 84.32% Faster processing and
efficiency

N/A

Liu et al. (2023a) Label fishes in
the wild

Rockfish YOLOv7 mAP: 94.4% With a mAP of 94.4%,
the enhanced model
outperforms the
original
YOLOv7 model by
3.5%

Limit its generalizability to
other datasets or
environments

Precision: 99.1%

Recall: 99%

Raavi, Chandu &
SudalaiMuthu
(2023)

Author’s
private
datasets

Silver moony, Bluefin trevally,
Puffer fish, Box fish and etc.

YOLOv3 Precision: 0.88 Improve accuracy in
detecting multiple
underwater objects

Struggles with detecting objects
in complex underwater
environments

SSD Recall: 0.86

IoU: 0.75

Rasool, Annamalai
& Natarajan
(2024)

Github
repository
Google
images

Dolphin, Fish, Turtle,
Jellyfish, Starfish, Swordfish

YOLOv8
Faster
R-CNN

YOLOv8; mAP: 96.1
Faster R-CNN;
mAP: 96.4

Uses advanced deep
learning models like
YOLOv8 and Faster
R-CNN to improve
detection speed and
accuracy

Underwater settings have
complex backdrops and poor
image quality

Jain (2024) Brackish Crab, Fish-big, Fish-school,
Fish-small, Shrimp, Jellyfish

EfficientDet IoU: 88.54% The modified
EfficientDet model
achieves high
accuracy,
demonstrating its
effectiveness in
challenging
underwater
environments

The study is based on a specific
dataset (Brackish-Dataset),
which may limit the
generalizability of the findings
to other underwater
environments or datasets with
different characteristics
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Table 3 Applications of deep learning methods in aquatic animal husbandry: segmentation techniques.

Methods Datasets Aquatic animal classes Deep learning
techniques

Performance
measures

Strength Weakness

O’Byrne
et al.
(2018)

SYNTHIA Background, Soft fouling,
Structure

SegNet mIoU: 87% Trains models with
synthetic images,
solving the problem of
limited real
underwater datasets

Synthetic data might not fully
capture real-world underwater
complexities

Mean accuracy: 94%

Liu & Fang
(2020)

Public resources on
the Internet

Nautilus, Squid, Plant, Coral,
Fish, Jelly fish, Dolphin,
Sea lion, Syngnathus,
Turtle, Starfish, Shrimp,
Octopus, Seahorse, Person,
Stone

DeepLabv3+ mIoU: 64.65% Improves segmentation
accuracy by 3% over
the original method

The addition of modules and
layers may increase the
complexity of the model,
potentially requiring more
computational resources and
time for training

Video images
taken by a
laboratory
underwater robot
(HUBOS-2K,
Hokkaido
University)

Islam et al.
(2020)

SUIM Fish, Reefs, Aquatic plants,
Wrecks/Ruins, Human
divers, Robots, Sea-floor

SUIM-Net Params: 3.864 M SUIM-Net is designed
for fast and efficient
processing, suitable
for real-time
applications

May not perform well in
different underwater
conditions not covered by the
dataset

Frame Rate: 28.65 fps

mIoU: 77.77 ± 1.64

F1-score: 78.86 ± 1.79

Nezla,
Haridas &
Supriya
(2021)

Fish4
Knowledge

Species 08 Acanthurus
nigrofuscus

U-Net IoU: 0.8583 Attained an average IoU
score of 0.8583 for a
particular class of fish,
demonstrating
efficient segmentation

Performance is validated only on
the Fish4Knowledge dataset

Drews-Jr
et al.
(2021)

NAUTEC UWI Foreground, Background SegNet DeepLab; Employs advanced deep
learning models for
better segmentation
results in underwater
images

The real underwater image
dataset is small, which may
limit model performance

DeepLabv3+ mIoU: 0.919

Segnet;

mIoU: 0.825

Zhang,
Gruen &
Li (2022)

Author’s private
datasets

Pocillopora corals U-Net mIoU: 93.6% The method effectively
distinguishes between
living and dead corals,
which is important for
assessing coral health

Coral boundaries are irregular,
making segmentation
challenging with traditional
metrics

Lin, Tseng &
Li (2022)

Author’s private
datasets

Coralfish, Background SUR-Net F1-score: 95.04% Achieves 95.04% F1-
score and 88.19%
mIoU, showing strong
results in detecting
and segmenting fish

Use many layers and blocks that
can make the model complex
and resource-intensive

mIoU: 88.19%

Han et al.
(2023)

DeepFish Fish, Background IST-PSPNet mIoU: 91.56% The network improves
segmentation
accuracy for fish with
similar colours and
backgrounds

The method is mainly tested on
the DeepFish dataset only
which might not cover all
underwater conditions

Params: 46.68M

GFLOPS: 40.27 G

Chicchon
et al.
(2023)

SUIM Water background, Sea-
floor/obstacles, Fish

U-Net U-Net; Combines active
contour theory and
level set methods to
enhance spatial detail
in segmentation

Existing methods often produce
low-resolution results, which
lack detail for effective
monitoring

RockFish DeepLabv3+ mIoU: 86.10

DeepFish mHD95: 26.53

DeepLabv3+;

mIoU: 84.85

mHD95: 27.65

Zhang, Li &
Seet (2024)

Fish4 Fish, Background U-Net mIoU: 94.44% Achieves 94.44% mIoU
and 97.03% mPA,
ensuring precise
segmentation

Used of multiple modules can
make the model complex to
implement

Knowledge mPA: 97.03%

Frame rate: 43.62 fps
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filtered to focus only on three majority subtasks, which are classification, localization, and
segmentation. Some of the subtasks such as regression, clustering, and tracking are
excluded from this review due to the limited number of articles in the respective subfields.
Furthermore, articles that discuss both the deep learning and conventional machine
learning approaches are also accepted since the deep learning approach always results in
better automation performance, which is in line with the goal of this article.

CLASSIFICATION
In the aquaculture industry, some of the important automation tasks are to identify and
classify aquatic animal species. Many researchers have shown the potential of deep
learning models to classify aquatic species based on underwater images. Among the deep
learning-based models, CNNs have emerged as the dominant architecture used for image
classification tasks, exhibiting superior performance compared to conventional machine
learning algorithms (Sun, Yang & Xie, 2020). It is also interesting to note that the deep
learning approach, specifically models that are based on the CNN classifier performs better
than the average human in many tasks involving object classification (Stofa, Zulkifley &
Zainuri, 2021). CNNs can automatically extract hierarchical features from the input data,
which makes them particularly well-suited for processing and analyzing visual data. This
advanced network capability allows the model to develop highly effective discriminative
characteristics for differentiating among various aquatic animal species.

Bhanumathi & Arthi (2022) underlines the vital necessity of creating automated fish
species classification systems to facilitate biological research in disciplines such as ecology
and genetics, where precise species identification is crucial. It examines the shortcomings
of existing computer vision methodologies in underwater settings, which frequently

Figure 2 An overview of classification, localization and segmentation tasks of deep learning methods
used for aquatic animal husbandry. Full-size DOI: 10.7717/peerj-cs.3105/fig-2
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experience indistinct textural characteristics and poor classification efficacy. The article
offers a thorough summary of current developments, encompassing algorithms, datasets,
performance measurements, and tools utilized in fish identification. Saleh, Sheaves &
Rahimi Azghadi (2022) presents a comprehensive review of computer vision techniques
and deep learning concepts that are relevant to underwater image analysis, with a
particular emphasis on the obstacles presented by the poor image quality that is distinctive
to aquatic environments. By conducting a review of recent publications, the authors
emphasize the necessity of more comprehensive fish monitoring solutions and the
existence of research gaps. The fundamentals of CNN architecture are also explained in the
article to facilitate comprehension of their potential.

Classifying underwater aquatic animal species presents a significant challenge as
highlighted by Pagire & Phadke (2022). To address this challenge, they introduced a
MobileNet model designed to detect and recognize nine different breeds of fish using a
Kaggle dataset, which is publicly available online. Before implementing the model, the
dataset underwent preprocessing steps to optimize the quality of the input data. As a result,
the model achieved an impressive accuracy of 99.74%. In a similar study (Dey et al., 2023),
the authors also tackled the classification problem of nine species of marine fauna,
achieving an even higher accuracy of 99.83%, surpassing the previous result in Pagire &
Phadke (2022) by a factor of 0.09%. Both studies demonstrated nearly flawless classification
performance, underscoring the efficiency of deep learning models in this domain.

In addition to these studies, other researchers have explored various approaches to
increase the precision and efficiency of aquatic species classification. For instance, a
popular deep CNN model, AlexNet was employed in Mol & Jose (2022) to classify fish
species, also using a Kaggle-based dataset. This model utilizes five convolutional layers to
effectively extract texture and color features, complemented by three fully connected layers
for feature selection and classification. The performance of this approach was validated
through comparative analysis with other leading deep learning models, including
GoogleNet and VGGNet. The study reported classification accuracies of 94%, 95%, and
95.5% for AlexNet, GoogleNet, and VGGNet, respectively. In another study, AlexNet was
applied to a different Kaggle dataset containing a lesser number of species of only three
types, while also achieving a lower accuracy of 90% (Bhanumathi et al., 2022).

Oion et al. (2023) introduce a deep learning framework based on CNNs for the
automated classification of marine species. This framework addresses the limitations of
traditional methods and manual identification. It delineates a comprehensive methodology
that encompasses data collection, preprocessing, CNN model design, and supervised
training with validation to prevent overfitting. The system demonstrated outstanding
results in metrics, including precision, recall, accuracy, and F1-score, when assessed
against a dataset that included 23 marine species classes. The final model obtained an
accuracy of 87.99%, surpassing previous methods, and interpretability was improved
through the use of techniques such as Grad-CAM. Then, Zheng et al. (2022) propose
KRS-Net, a deep learning classification network aimed at accurately identifying 13 koi fish
varieties that demonstrate excellent visual similarity. KRS-Net, constructed on the AlexNet
framework, utilizes residual blocks and contains a support vector machine (SVM) to
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enhance feature extraction and classification precision. A dataset including 569 koi photos
was augmented to yield 1,464 images, resulting in a model test accuracy of 97.90%. The
comparative investigation revealed that KRS-Net surpasses established models such as
AlexNet and VGG16, exhibiting structural benefits including improved convergence, less
complexity, and enhanced training efficiency.

The dataset used in Saleh, Laradji & Konovalov (2020) includes almost 40,000
underwater images taken from 20 tropical marine ecosystems in tropical Australia, sourced
from the DeepFish dataset. This diverse set of images captures a range of complex
underwater scenes. The study utilized ResNet-50, achieving a notable accuracy of 0.99. In
contrast, Ben Tamou, Benzinou & Nasreddine (2022) applied a similar technique to the
LifeClef 2015 Fish (LCF-15) dataset, comprising over 22,000 annotated images and
700,000 video frames, demonstrated the model’s robustness under poor lighting and noisy
conditions. The incremental learning strategy outperformed non-incremental methods,
achieving a final accuracy of 81.83% and maintaining high precision for difficult species.
Albin Jose & Jini Mol (2024) highlights the essential requirement for accurate fish species
classification to facilitate biodiversity conservation, fisheries management, and
environmental monitoring by presenting a deep learning-based methodology for
automated identification from underwater photos. The approach employs CNN for feature
extraction, capturing intricate visual attributes including color patterns, fin forms, and
morphological properties. The study incorporates an improved sequential forward
selection (ISFS) technique to augment classification accuracy and model efficiency by
picking the most pertinent features. The algorithm, trained on a wide dataset
encompassing numerous species and environments, surpasses conventional classification
approaches in both accuracy and robustness.

Apart from the Kaggle-based dataset, which is widely recognized for its diverse public
datasets, the work in Pagire & Phadke (2022) used the Sathyabama Institute of Science and
Technology dataset, encompassing 20 different categories of underwater marine organisms
with a total of 189 real-time images. The dataset has been pre-processed by implementing
image resizing, normalization, noise reduction, and additional color corrections such as
color adjustment and contrast enhancement to address specific environmental challenges
that are inherent in underwater imaging. The deep learning models applied to this dataset
demonstrated exceptional performance, with SqueezeNet leading the best result with an
impressive accuracy of 98.41%. DarkNet19 followed closely with an accuracy of 96.30%,
while AlexNet achieved a more modest accuracy of 70.45%. These results underscore the
effectiveness of deep learning models, particularly SqueezeNet in the classification of
underwater organisms.

The success of deep learning methods in image-based classification tasks has increased
significantly in recent years. For the purpose of classifying marine creatures, Tiwari et al.
(2023) employed several deep learning models, including Xception, DenseNet, MobileNet,
InceptionV3, VGG16, ResNetV, and ResNet50. Before being used in the training process,
these models were first trained on ImageNet where they were refined later using the
transfer learning approach. This approach achieved a training accuracy of 95.85% and a
validation accuracy of 96.75%, whereby Inception significantly outperformed the other

Mohd Stofa et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3105 11/29

http://dx.doi.org/10.7717/peerj-cs.3105
https://peerj.com/computer-science/


tested models. ResNetV also performed well with training and validation accuracies of
93.50% and 93.75%, respectively, while ResNet50 obtained 92.75% and 93.65% training
and validation accuracy, respectively. By comparison, Xception performed significantly
low with a training accuracy of only 75%, indicating its limitation in categorizing the
marine species reliably.

The reviewed CNN models are highly effective for detection and classification tasks,
achieving impressive results that set them apart from conventional classification methods.
To add on that, in Shammi et al. (2021) emphasizes on the classification of six river fish
species utilizing CNN model trained on a dataset including 915 images with high
resolution. The study highlights the significance of fish classification for consumer
knowledge and species comprehension, notably via visual characteristics such as the head,
body, and scales. Following the downsizing of images to 100 × 100 pixels, preprocessing
methods such as normalization and data augmentation increased the dataset to 4,575
images, thereby considerably improving model training. Multiple machine learning
algorithms were assessed, with CNN attaining the greatest accuracy of 88.96%, surpassing
conventional approaches such as SVM.

All these studies collectively highlight that recent applications of deep learning in
aquatic animal husbandry have achieved remarkable automation performance. In
summary, CNN-based architectures of deep learning models, such as MobileNet, AlexNet,
VGGNet, ResNet, and SqueezeNet, have demonstrated outstanding performance in the
classification of aquatic species from underwater images. Figure 3 illustrates the VGGNet
model used for the image classification task. Performance is improved through
preprocessing techniques, transfer learning, and model-specific modifications, with
classification accuracies ranging from 88% to over 99%, according to studies. MobileNet
and SqueezeNet are lightweight networks that are well-suited for real-time applications. In

Figure 3 VGGNet model used for the image classification task. Full-size DOI: 10.7717/peerj-cs.3105/fig-3
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contrast, InceptionV3 and KRS-Net are more complex models that provide enhanced
accuracy for datasets with high inter-class similarity. Nevertheless, the generalizability of
models across a variety of aquatic datasets continues to be a significant challenge, despite
these advancements. Future research should prioritize the evaluation of models that are
robust in the face of changing environmental conditions and species diversity. These
advancements underscore the growing effectiveness of deep learning techniques in this
field. Table 1 provides a detailed overview of the deep learning applications in aquatic
animal husbandry.

LOCALIZATION
For efficient management of the aquaculture industry, localizing the respective aquatic
animals within underwater images is just as important as classifying them. Accurately
determining the position of these aquatic animals can provide valuable insights into their
behavior, population dynamics, and spatial distribution. This kind of data is essential for
making well-informed decisions in the aquatic animal husbandry industry, especially when
it comes to implementing focused conservation initiatives. Recently, the progress in deep
learning development has significantly advanced the ability of the automation algorithms
to localize aquatic animals. In this arena, object detection networks such as YOLO and
Faster R-CNN have shown encouraging results. These models are capable of identifying
and precisely localizing various aquatic species in complex underwater environments
(Litjens et al., 2017). Research has indicated that deep learning approaches can accurately
detect and localize various aquatic species (Sangari et al., 2023; Mathias et al., 2022)
including fish, shrimp, and scallops.

One of the most renowned deep learning models for localization tasks is the YOLO deep
network, which provides an efficient and coherent strategy for recognizing fish in
challenging underwater images. YOLO is widely known for its speed and accuracy in
object detection. Thus, recent studies (Mathias et al., 2022; Wei et al., 2023; Rasool,
Annamalai & Natarajan, 2024; Liu et al., 2023b; Raavi, Chandu & SudalaiMuthu, 2023)
have all employed various versions of the YOLO technique.

The faster convergence mode, YOLOv3 was used in Barui et al. (2018) to implement
underwater object detection. YOLOv3 was also employed inMathias et al. (2022) to locate
aquatic species in four challenging video datasets: the University of Western Australia
(UWA) dataset, the bubble vision dataset, the DeepFish dataset, and the Life Cross
Language Evaluation Forum (CLEF) benchmark from the F4K data repository. The model
achieved impressive accuracy rates for fish identification: 97.5% on the CLEF dataset,
96.77% on the UWA dataset, 97.99% on the Bubble Vision dataset, and 95.3% on the
DeepFish dataset. In contrast, the same version of YOLO was applied to a custom dataset
in Raavi, Chandu & SudalaiMuthu (2023), yielding a precision of 88% and a recall value of
86%, which are notably lower performances compared to those reported in Mathias et al.
(2022).

Moreover, a lightweight underwater target detection network was proposed based on a
small-scale version of YOLOv5 (YOLOv5s) (Wei et al., 2023). The results obtained the
network’s efficiency, achieving a frame rate (FPS) of 109.12 and a mean average (mAP) at
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0.5% of 84.32. Another notable application of YOLO is presented in Liu et al. (2023a),
where the algorithm was built upon YOLOv7, which was further enhanced with the
backbone of the convolutional block attention module (CBAM). The study utilized
rockfish images from the “Label Fishes in the Wild” dataset, published by the National
Fisheries Services, and introduced the underwater image enhancement model (UWCNN)
for image preprocessing. The enhanced model outperformed the original YOLOv7 model
by 3.5%, as demonstrated by the experimental findings, which exhibited a mAP of 94.4%
on the testing dataset. Furthermore, the model showed enhanced detection ability in
intricate underwater situations with a precision of 99.1% and a recall rate of 99%. The
method for detecting fish in an underwater environment suggests that this automated
localization task holds significant practical value in promoting the conservation of marine
ecosystems and the protection of fish species (Liu et al., 2023b).

Furthermore, another localization variant, the region-based convolutional neural
network (RCNN) model’s primary limitation lies in the need to extract features for each
recommended region, which can be computationally intensive. This challenge was
mitigated by enhancing the RCNN model through the application of CNN forward
computation to the entire image (Zhang & Yang, 2022). In Sangari et al. (2023), the
detection and classification of marine organisms using RCNN, known for its speed in
object detection, was proposed. A correlation filter tracking algorithm (CFTA) was
developed to overcome the difficulties associated with tracking and detecting the object of
interest in underwater environments, resulting in an impressive overall accuracy of
97.89%. In another study, Xu et al. (2020) introduces a fish detection system for aquatic
situations utilizing a region-based RCNN, evaluating its efficacy against a Haar
feature-based cascade classifier. Monitoring of fisheries is essential for sustainability; yet,
conventional techniques employing divers or costly sonar equipment possess inherent
limits. A total of 200 images with tags were created for model training using underwater
video footage of bluefin tuna. The Haar cascade model, despite its efficiency, encountered
difficulties with overlapping fish, resulting in an accuracy of 53.8%. On the other hand, the
RCNN model, executed with the PyTorch-based mmdetection toolbox, used selective
search for region extraction and attained a much superior accuracy of 92.4%, therefore
diminishing false positives and enhancing detection reliability. This study achieved 91.5%
detection rate and 92.4% accuracy. Notably, the accuracy in Xu et al. (2020) was 5.49%
lower than that reported in Sangari et al. (2023).

Besides, Liu et al. (2023a) analyses the use of deep learning-based object detection
techniques in aquaculture, emphasizing its significance in fish counting, body length
assessment, and behavioral analysis to enhance aquaculture management and
productivity. It highlights the benefits of non-invasive machine vision systems for
acquiring high-quality data, while simultaneously confronting problems such as ambient
fluctuation, occlusion, and restricted dataset diversity. The study examines both public
datasets (e.g., Fish4Knowledge, LifeCLEF, NOAA) and on-site datasets, addressing image
preprocessing techniques such as denoising, enhancement, and augmentation, including
the use of GANs for synthetic data production. It classifies object detection techniques into
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two-stage models (e.g., R-CNN, Faster R-CNN, Mask R-CNN) and one-stage models
(e.g., YOLO), highlighting their respective trade-offs in speed and accuracy.

Then, Cui et al. (2024) highlights the rising importance of digital technologies in
aquaculture, particularly the application of computer vision, deep learning, and
multimodal data fusion for fish monitoring, counting, and behavior analysis. It examines
numerous techniques, encompassing 2D and 3D visual tracking, audio tagging, and
biosensors, while highlighting obstacles such as occlusions, environmental
unpredictability, and data constraints. The research contrasts classical tracking algorithms
with deep learning-based methods such as YOLO, StrongSORT, and OC-SORT, while also
examining fish counting techniques utilizing infrared, resistivity, acoustic, and computer
vision technologies. Li et al. (2024) develops an automated fish detection system utilizing
infrared cameras for deep-sea aquaculture, with the objective of enhancing operational
safety and monitoring efficiency in seawater aquafarming. Images obtained from an
infrared camera mounted on a deep-sea net cage were utilized to generate a labeled dataset
for training object detection algorithms. The Faster R-CNN framework was utilized, with
trials contrasting various backbone networks, enhancement modules, learning rates, and
data augmentation techniques. Results showed that using EfficientNetB0 with a feature
pyramid network (FPN) provided the best balance of accuracy and speed, achieving an
AP50 of 0.85, while the VGG16 configuration reached a slightly higher AP50 of 0.86 at the
cost of longer detection time.

Other than YOLO and RCNN approaches, there is also research that suggests using
EfficientDet for aquatic animal detection. In Jain (2024), this article’s goal was to evaluate
how well the newer models perform on the same dataset compared to the previous
findings, particularly in terms of accuracy and inference time. This study involved testing
and comparing different object detection models on an annotated underwater dataset
called the “Brackish Dataset”. The projects in this study compared models like YOLOv3,
YOLOv4, YOLOv5, YOLOv8, Detectron2 and EfficientDet. The findings showed that the
modified EfficentDet outperformed the others, achieving an 88.54% IoU through five-fold
cross-validation. Based on these results, the researchers recommended the usage of
EfficientDet in complex underwater environments because of its higher accuracy
performance.

Apart from that, another localization model, single shot multibox detector (SSD) has
also been used in several studies, including Hu et al. (2020), Li et al. (2022), Raavi, Chandu
& SudalaiMuthu (2023). In Hu et al. (2020), a feature-enhanced sea urchin detection
algorithm was proposed based on the classic SSD algorithm. ResNet-50 was utilized as the
network’s fundamental architecture to overcome SSD’s inability to recognize small targets.
The study achieved a mean average precision (mAP) value of 81.0% which is 7.6% greater
than the original SSD algorithm, and the confidence rate in detecting small targets has also
increased. Similarly, the work in Li et al. (2022) improved the model’s capability to acquire
precise and detailed information about target objects by implementing ResNeXt-50 as the
backbone network. This study used two different datasets; one from the National Natural
Science Foundation of China underwater Robot Competition and the other from URPC-
2019. They reported an accuracy of 79.76%, which is 3.49% higher than the original SSD
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algorithm but 1.24% lower than the result produced in Hu et al. (2020). The findings of
both investigations were almost identical, indicating that the suggested methods are very
effective and suitable for real-time object detection.

Other than that, Pokharkar (2024) examines the application of CNN for automatic
detection of fish species in underwater environments, aiming to improve accuracy and
efficiency compared to conventional traditional methods. The study overcomes major
challenges, including inadequate visibility from environmental influences, fish
concealment, and diminished image quality resulting from motion or resolution
constraints, by training CNNs on extensive datasets. The suggested model exhibits robust
efficacy in differentiating diverse fish species, providing essential resources for marine
scientists and conservationists to assess biodiversity and ecosystem vitality. Li et al. (2023)
examines how deep learning provides potential tools for intelligent marine exploration,
despite its challenging application in aquatic environments due to visibility constraints,
animal diversity, and complex underwater circumstances. The article examines
contemporary applications of deep learning, including image and video identification,
species classification, biomass calculation, behavior analysis, and seafood safety
monitoring.

As mentioned above, YOLO and Faster R-CNN have shown promising results in
classifying and localizing various aquatic species, particularly in complex underwater
environments. In Raavi, Chandu & SudalaiMuthu (2023), both of these core deep learning
frameworks, YOLOv8 and Faster R-CNN were used to localize the objects of interest,
leading to significant improvements in the efficiency and accuracy of marine life detection.
The study reported an mAP of 96.1 for YOLOv8 and 96.4 for Faster R-CNN models.
Additionally, the study utilized two different data sources, a GitHub repository and Google
Pictures, which further demonstrates the robustness of these models in detecting and
identifying aquatic species accurately, highlighting their effectiveness in challenging
underwater scenarios.

In summary, deep learning-based localization methods have demonstrated strong
effectiveness in identifying and tracking aquatic animals within underwater environments.
These recent studies have also shown that various versions of YOLO managed to
successfully achieve high localization accuracy. The real-time performance and accuracy of
YOLO variants, particularly YOLOv3, YOLOv5s, YOLOv7 with CBAM, and YOLOv8, are
consistently high. YOLOv5s has a remarkable speed of 109.12 FPS, while YOLOv7+CBAM
achieves mAP values exceeding 94%. Similarly, Faster R-CNN models, particularly those
that are incorporated with EfficientNetB0 and FPN, have demonstrated robust detection
performance (AP50 as high as 0.86), although at the cost of extended inference times.
Figure 4 illustrates the working process of the YOLO object detection model applied to
aquatic environments. Other architectures such as SSD, EfficientDet, and RCNN have also
been applied, with enhancements like ResNet-50 and ResNeXt-50 improving detection of
small or occluded targets. The consistent deployment of underwater imaging technologies
in real-world aquaculture environments continues to be a significant challenge due to the
variability in underwater imaging conditions, dataset limitations, and computational
trade-offs, despite these advancements. This underscores the model’s effectiveness across
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different scenarios in aquatic animal husbandry. Table 2 shows a detailed overview of the
deep learning-based localization models in aquaculture farms.

SEGMENTATION
Segmentation is another critical automation task in the aquaculture industry, as it enables
precise identification of individual aquatic animals within an image. The goal of semantic
segmentation is to provide a label for every pixel in an image by breaking it up into
segments based on its semantic content. In general, it refers to segmenting all the pixels
into different object categories, attempting to split the picture into semantically relevant
pieces, and categorizing each portion into one of the predetermined classes using semantic
segmentation techniques (Elizar et al., 2022). This process involves classifying each pixel
into specific categories according to its characteristics, producing a segmentation map with
essential semantic information. Accurate segmentation is key to tasks such as population
monitoring, growth analysis, and the automation of feeding systems.

Deep learning-based models that take advantage of CNNs’ hierarchical feature
extraction capabilities like U-Net have demonstrated exceptional performance in
segmenting aquatic animals in complex underwater environments. These models
effectively trace the boundaries of individual aquatic organisms, ensuring accurate
delineation even in challenging conditions. As Muñoz-Benavent et al. (2022) introduces a
deep learning approach for the automatic detection, segmentation, and sizing of fish in
aquaculture, specifically targeting Bluefin tuna. This research assesses various deep
learning models, including Faster R-CNN, YOLOv5, Mask R-CNN, and PointRend, for the
segmentation of fish in underwater settings where visibility and motion present

Figure 4 Working process of the YOLO object detection model applied to aquatic environments. Full-size DOI: 10.7717/peerj-cs.3105/fig-4
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considerable difficulties. PointRend attained superior segmentation accuracy, facilitating
enhanced scaling via edge detection and model fitting. The application of tracking
algorithms and repeated measurements diminished size inaccuracies, illustrating that deep
learning technologies surpass traditional techniques in clarity and adaptability. Other
research from Muntaner-Gonzalez et al. (2025) presents a technique based on deep
learning for the detection and segmentation of Mediterranean fish species, addressing the
challenges posed by traditional manual biodiversity assessments that are labor-intensive
and problematic in intricate underwater environments. Utilizing advancements in
computer vision and deep learning, the authors created an open dataset and trained a
YOLOv8l-seg model, refined via hyperparameter optimization and bespoke data
augmentation methods. The model, trained on photos from several sources including the
MINKA database, exhibited enhanced accuracy in fish detection and segmentation,
especially with higher image sizes and a generic fish class. The model, included into a
real-time Stereo Vision System (SVS), successfully detected fish during field trials,
although its performance was somewhat diminished by the presence of small fish and
cluttered backdrops. In order to achieve accurate segmentation of the underwater
Fish4Knowledge image dataset, the study inNezla, Haridas & Supriya (2021) extended and
modified a U-Net-based semantic segmentation network. By training and fine-tuning the
U-Net model with an optimal set of hyperparameters, the average IoU score reached
0.8583 on the Acanthurus Nigrofuscus class from the Fish4Knowledge dataset. In
comparison, the method proposed in Zhang, Li & Seet (2024), which used the same dataset
but focused on different classes, achieved a higher mIoU of 94.44%, an mAP of 97.03%,
and a frame rate of 43.62 FPS. Their model also demonstrates superior segmentation
performance while balancing both accuracy and speed effectively for underwater image
analysis. A closer look at both studies shows that while the proposed model in Nezla,
Haridas & Supriya (2021) offers competitive IoU scores, the results from Zhang, Li & Seet
(2024) are notably stronger, highlighting improvements in precision and processing
efficiency.

In another development, the work in Zhang, Gruen & Li (2022) proposed an improved
boundary-oriented U-Net model to automatically identify and segment coral individually
from orthophotos. The Pocillopora corals can be reliably distinguished, whether they are
alive or dead based on the optimized network, contributing to assessments of coral health.
This improved U-Net architecture focuses on boundary details and has shown superior
performance in segmenting irregular coral edges, which are often challenging to process.
The study achieved a small improvement in mIoU, about 0.4%, compared to the original
U-Net. The original U-Net had an mIoU of 93.2%, while the enhanced version achieved
93.6% mIoU.

Building upon the U-Net architecture, various convolutional layers and residual blocks
have been incorporated for enhanced target detection and segmentation, particularly in
situations where training images are limited. The U-Net model has been modified to
integrate additional convolutional layers, residual blocks, and SE blocks, with the
introduction of a new novel block to emphasize relevant features. This proposed approach
was analyzed and compared to the current CNN models using open-sea underwater fish
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datasets, demonstrating its efficacy in scenarios with limited training data. The model
achieved a performance of 95.04% in F1-score and 88.19% in mIoU in complex scenes.
These results highlight its ability to outperform other improved U-Net approaches,
including those in Zhang, Gruen & Li (2022). Then, Zhu, Liao & Xu (2022) introduces an
innovative method to augment underwater target monitoring in the aquaculture sector by
refining fish segmentation in low-contrast, color-biased environments. The suggested
two-step approach integrates Auto-MSRCR image enhancement, which enhances visibility
and contrast in underwater photos, with the U2-Net semantic segmentation algorithm,
recognized for its accuracy in object delineation. Experimental findings indicate that the
integration of picture enhancement improves segmentation accuracy by roughly 5%
relative to models lacking preprocessing, underscoring the significance of visual quality in
deep learning efficacy. In Nguyen et al. (2024) presents AquaAttSeg, an innovative deep
learning model aimed at automating fish size measurement in aquatic environments,
mitigating the drawbacks and hazards associated with conventional manual techniques.
AquaAttSeg, constructed on a U-shaped architecture, utilizes the PVTv2-B3 encoder for
superior semantic information extraction and integrates the HFIM module, substituting
conventional skip connections with SAM and CAM modules to boost information flow.
A custom Convmix Transpose block in the decoder further augments performance by
reinstating lost features during segmentation. AquaAttSeg, assessed using the Deepfish and
SUIM datasets, surpassed numerous leading models, exhibiting exceptional accuracy and
efficiency in fish segmentation. Then, Kim & Park (2022) introduces PSS-net, an
innovative deep learning architecture aimed at enhancing marine scene segmentation by
tackling significant problems, including low-light underwater environments and the
concealment of marine life. PSS-net utilizes a parallel architecture featuring two
independent models and loss functions to distinctly process marine life and their habitats,
hence improving segmentation accuracy, in contrast to earlier models that segment
foreground and background concurrently. The incorporation of an attention mechanism
enhances the model’s capacity to differentiate between intricate visual components. The
final segmentation is accomplished by integrating feature maps from both branches,
yielding a highly precise depiction of underwater sceneries. PSS-net demonstrated
exceptional performance on a public marine animal segmentation dataset, achieving 87%
mIoU, 97.3% structural similarity, and 95.2% enhanced alignment, surpassing previous
methodologies.

In Liu & Fang (2020) presented a semantic segmentation network for underwater
images based on improved versions of the DeepLabv3+ network. The dataset used for this
study consists of a combination of self-made underwater images, some of which were
sources from open resources on the Internet, while others were captured by a laboratory
underwater robot (HUBOS-2K, Hokkaido University). The study builds upon the current
DeepLabv3+ framework, optimizing and fine-tuning relevant parameters to enhance its
performance. The findings indicate that the suggested approach significantly improves the
segmentation of target objects, particularly in preserving the appearance and boundaries of
the segmented targets, while preventing pixel mingling between classes. This method
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increases segmentation accuracy by 3% compared to the original approach, achieving an
mIoU of 64.65% on the underwater dataset.

The semantic segmentation of underwater imagery (SUIM) dataset is the first
large-scale dataset specifically designed for underwater object segmentation. The SUIM
dataset, which comprises more than 1,525 images with pixel-level annotations, comprises
eight object categories (fish, reefs, aquatic plants, wrecks/ruins, human divers, robots, and
the sea floor), was used in Islam et al. (2020) to assess the performance of various state-of-
the-art (SOTA) semantic segmentation models. This study introduces SUIM-Net, a fully
convolutional encoder-decoder model that offers a significantly faster runtime compared
to SOTA methods while maintaining competitive segmentation accuracy. The model
achieves a parameter count of 3.864 million, a frame rate of 28.65 fps, a mIoU of 77.77 ±
1.64, and an F1-score of 78.86 ± 1.79.

In Chicchon et al. (2023), the same SUIM dataset, along with two other publicly
accessible datasets, RockFish and DeepFish, were employed to evaluate segmentation
models for underwater imagery. These datasets include pixel annotations of three class
categories: background water, seafloor/obstacles, and fish. The study tests CNN-based
architectures, namely U-Net and DeepLabv3+, using different loss functions, which are
cross-entropy, dice, and active contours. U-Net with attention mechanisms (scSE blocks)
in the decoder layers outperformed the more complex DeepLabv3+ architecture. When
combined with the lightweight EfficientNet-B0, U-Net-scSE achieved an mIoU of 86% and
an mHD95 of 26.61 mm. When paired with heavier architectures like EfficientNet-B7 and
ResNeSt-296e, the model’s mIoU improved to 87.45%, with an mHD95 of 23.40 mm. This
highlights the significant advantage of incorporating attention mechanisms and advanced
backbone architectures to boost segmentation performance in underwater environments.

Another relevant approach is proposed in Drews-Jr et al. (2021), which developed a
dataset of real underwater images combined with simulated data to train two of the
top-performing deep learning segmentation architectures. The goal was to tackle the
challenge of segmenting underwater images in the wild. This study introduced a dataset
specifically designed to train deep CNN architecture for underwater image segmentation.
The research demonstrated a working solution using the DeepLabv3+ and SegNet
architectures, achieving an mIoU of 0.919 and 0.825, respectively, on a random test set of
300 real underwater images. Notably, these architectures were able to perform accurate
segmentation with only a small number of training images, showing their effectiveness in
underwater environments where labeled data is often limited.

The SegNet model discussed in Drews-Jr et al. (2021) achieved slightly lower results
compared to O’Byrne et al. (2018), where an mIoU of 87% and a mean accuracy of 94%
were reported. The difference in performance between Drews-Jr et al. (2021), O’Byrne et al.
(2018) is about 4.5%. A total of 2,500 annotated synthetic images with a resolution of 960 ×
540 pixels, were used to train SegNet in O’Byrne et al. (2018). After training on the
synthetic data, SegNet was successfully applied to segment new real-world underwater
images.

There are various segmentation architectures designed for aquatic animal husbandry. In
Han et al. (2023), a method based on an improved PSPNet network (IST-PSPNet) was
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proposed for underwater fish segmentation. The results demonstrated superior
performance on the DeepFish underwater image dataset, achieving a 91.56% mIoU,
46.68M parameters, and 40.27 giga floating-point operations per second (GFLOPS). This
method showed significant improvements in accurately segmenting fish with similar colors
and challenging backgrounds, especially for smaller fish. These enhancements highlight its
effectiveness in overcoming the typical challenges of underwater image segmentation.

In summary, segmentation models such as U-Net, DeepLabv3+, and SUIM-Net showed
high accuracy in identifying aquatic organisms in various underwater environments.
Improvements such as attention methods, residual blocks, and innovative
encoder-decoder architectures (e.g., HFIM in AquaAttSeg, dual-path structures in PSS-
net) have significantly augmented segmentation accuracy, especially in low-light, complex,
or color-biased environments. Lightweight U-Net variants with efficient backbones, such
as EfficientNet-B0, optimize speed and accuracy, while methods like image augmentation
(e.g., Auto-MSRCR) and domain-specific preprocessing enhance model robustness.
Figure 5 shows the U-Net architecture for the semantic segmentation task. Despite
top-performing models such as AquaAttSeg, PSS-net, and enhanced PSPNet attaining

Figure 5 U-Net architecture for the semantic segmentation task. Full-size DOI: 10.7717/peerj-cs.3105/fig-5
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mIoU scores exceeding 90%, issues remain in managing small or occluded objects,
real-time processing, and generalization across datasets, necessitating additional
optimization. Table 3 shows a detailed overview of the applications of deep learning-based
segmentation models in aquaculture monitoring systems. This detailed comparison allows
for a better understanding of the advancements in segmentation models and their
effectiveness in addressing the complexities of underwater environments.

GENERAL DISCUSSION
While deep learning models have undeniably advanced the classification, localization, and
segmentation tasks in aquatic animal husbandry, several challenges and limitations need to
be addressed before these applications can be broadly applied in real-world settings. These
limitations affect the core tasks essential for monitoring, health assessment, and
automation in underwater environments. Tables 1–3 summarizes the model performance,
dataset characteristics, strength and weakness and of different deep learning models
applied in previous studies. In evaluating the performance of deep learning models for
underwater object detection, computational cost and time complexity play a crucial role.
However, not all studies explicitly report these metrics, as they are highly dependent on
factors such as hardware specifications, dataset size, and implementation details. This
structured analysis allows us to assess the strengths and limitations of different
methodologies, addressing model suitability for real-world aquaculture applications. For
example, CNN-based models such as U-Net and DeepLabv3+ demonstrate strong
performance in segmentation tasks but often require large annotated datasets for effective
training. On the other hand, models like YOLO and Faster R-CNN prioritize real-time
efficiency but may face trade-offs in accuracy depending on environmental conditions.
These trade-offs must be carefully considered based on specific application requirements
in detecting underwater image. Future research should explore lightweight architectures
and model compression techniques to improve deployment feasibility in real-world
aquaculture settings.

Limited availability of quality datasets
Amajor obstacle across all tasks (classification, localization, or segmentation) is the lack of
large, annotated datasets specific to underwater environments. Often we find that existing
studies rely on synthetic or small-scale manually annotated datasets, which fail to capture
the full range of real-world underwater conditions. From a technical perspective, deep
learning models require large, annotated datasets, but underwater environments introduce
challenges such as poor visibility, varying lighting conditions, and water turbidity. Most
available datasets are small-scale or synthetic, making it difficult for models to generalize to
real-world conditions. As a result, the models tend to perform well in controlled setups but
may not generalize when exposed to diverse species, habitats, or environmental conditions.
For instance, while segmentation models such as U-Net and DeepLabv3+ perform well on
specific datasets, they may struggle when applied to other underwater ecosystems or
animal species. Expanding datasets to include a broader variety of species, environments,
and lighting conditions would significantly enhance model robustness across these aquatic
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tasks. Then, annotating underwater images is a labour-intensive process that necessitates
expert knowledge, which complicates the process of obtaining large labelled datasets from
a practical perspective. Annotating underwater images is a labour-intensive process that
necessitates expert knowledge, which complicates the process of obtaining large labelled
datasets from a practical perspective. The necessity of collaborative data-sharing platforms
to enhance the diversity and accessibility of datasets is underscored by the fact that
numerous aquaculture facilities and marine research institutions lack the infrastructure
necessary for systematic data collection. Lastly, the behaviour and habitats of marine life
may be impacted by the frequent human intervention in underwater data collection, which
may disrupt aquatic ecosystems from an environmental perspective. In order to mitigate
ecological damage and guarantee a consistent supply of high-quality data for deep learning
applications, it is imperative to prioritise passive monitoring systems and AI-driven
autonomous data acquisition methods. Besides dataset limitations, underwater images
often suffer from blurriness, low contrast, and color distortions due to light scattering and
absorption, affecting the accuracy of deep learning models. To address these issues,
preprocessing techniques such as contrast enhancement, color correction, and denoising
filters are commonly applied before training. Recent methodologies have investigated deep
learning augmentation techniques, including GAN-based restoration and convolutional
autoencoders, that improve image clarity. Confronting these issues with a multi-faceted
strategy will be essential for progressing deep learning in underwater object detection.

Accuracy vs. speed in real-time applications
Balancing between accuracy and computational speed remains a critical challenge for
real-time applications, especially for localization or object detection tasks. From a technical
perspective, many models either excel in accuracy or computational speed, but struggle to
perform well in both metrics. For example, while Faster R-CNN and YOLO show
impressive results in detecting objects, they either sacrifice speed for accuracy or vice versa,
making them difficult to deploy in real-time monitoring scenarios, like fish farms or
natural habitats. To improve real-time processing, future research should focus on
lightweight architectures, model quantization, and pruning techniques. In the practical
perspective, real-time detection is crucial for applications like fish counting, behavior
monitoring, and disease detection, yet many deep learning models struggle with the high
computational demands required for real-time performance. Developing models that
achieve an optimal balance between real-time performance and precision is a key research
direction, especially as more commercial applications emerge for monitoring fish
populations. Lastly, from an environmental perspective, the implementation of AI-driven
monitoring systems must take into consideration sustainability and energy usage.
High-performance computing solutions lead to heightened energy consumption and
carbon emissions, necessitating future study to investigate sustainable AI options, such as
enhancing model efficiency and incorporating renewable energy sources into underwater
monitoring stations. Comprehensively addressing these perspective will be essential for
assuring the feasibility, affordability, and sustainability of deep learning applications in
underwater object detection.
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Generalization across species
A frequently overlooked challenge is the need for models to generalize across different
species and ecosystems. From a technical perspective, transfer learning, meta-learning, and
domain adaptation techniques could help models become more robust across diverse
aquatic ecosystems. The practical perspective lies in the significant variation among fish
species in terms of size, shape, color, and behavior, making it difficult for models to
generalize. Many of the existing models, while performing well on a specific set of data,
may not be able to adapt to new environments or species without significant retraining.
This presents a challenge for scaling these applications to large, diverse aquatic ecosystems.
Future work could focus on developing models that are flexible enough to handle varying
species without requiring extensive retraining and fine-tuning. Finally, from an
environmental perspective, misclassifications in automated monitoring systems can lead to
inaccurate assessments of fish populations, potentially influencing conservation efforts and
fisheries management. Despite these challenges, as deep learning architectures continue to
evolve and datasets become more comprehensive, these applications will likely transition
from experimental phases to practical applications in aquatic animal husbandry.
Collaboration between researchers and industry practitioners will also be essential in
ensuring that these models are designed with real-world constraints in mind.

CONCLUSION AND FUTURE WORKS
This review article highlights how deep learning has significantly transformed the field of
aquatic animal husbandry, particularly in tasks like classification, localization, and
segmentation. Models such as U-Net, with its remarkable segmentation accuracy of
94.44%, clearly outperform conventional methods, showcasing the potential of deep
learning to address real-world challenges. While existing research has made significant
strides in classification, localization, and segmentation tasks for underwater object
detection, several critical challenges remain. Beyond the well-known issues of dataset
diversity and image quality, practical deployment faces hurdles such as real-time
processing constraints, model robustness across diverse aquatic environments, and the
need for adaptive learning techniques. Overcoming these issues will be essential to
unlocking the full potential of deep learning in this field.

Looking ahead, future efforts should focus on addressing these challenges. Expanding
dataset diversity and improving the adaptability of models across different environments
and species will be crucial steps. Enhancing image quality, particularly in poor lighting
conditions or turbid water, will also play a vital role in strengthening model robustness.
Additionally, exploring advanced architectures, such as those incorporating attention
mechanisms, could further improve segmentation accuracy, especially in more complex
scenarios. Futhermore, self-supervised and domain adaption techniques could enhance
model generalisation without the necessity for significant labelled data, tackling the issue of
diverse environmental conditions. Moreover, multi-modal fusion techniques that combine
sonar, LiDAR, or acoustic data with optical inputs should improve object detection efficacy
in difficult underwater conditions. With these advancements, deep learning can continue
to revolutionize automated monitoring systems for aquatic animal husbandry.
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