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ABSTRACT
Promoter prediction has a key role in helping to understand gene regulation and in
developing gene therapies for complex diseases such as hearing loss (HL). While
traditional Bidirectional Encoder Representations from Transformers (BERT)
models excel in capturing contextual information, they often have limitations in
simultaneously extracting local sequence features and long-range dependencies
inherent in genomic data. To address this challenge, we propose DNABERT-CBL
(DNABERT-2_CNN_BiLSTM), an enhanced BERT-based architecture that fuses a
convolutional neural network (CNN) and a bidirectional long and short-term
memory (BiLSTM) layer. The CNN module is able to capture local regulatory
features, while the BiLSTM module can effectively model long-distance
dependencies, enabling efficient integration of global and local features of promoter
sequences. The models are optimized using three strategies: individual learning,
cross-disease training and global training, and the performance of each module is
verified by constructing comparison models with different combinations. The
experimental results show that DNABERT-CBL outperforms the baseline
DNABERT-2_BASE model in hearing loss promoter prediction, with a 20%
reduction in loss, a 3.3% improvement in the area under the working characteristic
curve (AUC) of the subjects, and a 5.8% improvement in accuracy at a sequence
length of 600 base pairs. In addition, DNABERT-CBL consistently outperforms other
state-of-the-art BERT-based genome models on several evaluation metrics,
highlighting its superior generalization ability. Overall, DNABERT-CBL provides an
effective framework for accurate promoter prediction, offers valuable insights into
gene regulatory mechanisms, and supports the development of gene therapies for
hearing loss and related diseases.

Subjects Bioinformatics, Computational Biology, Algorithms and Analysis of Algorithms
Keywords Promoter prediction, Enhanced BERT, CNN, BiLSTM, Hearing loss

INTRODUCTION
Promoters are non-coding sequence regions located near transcription start sites (TSS) in
genomic DNA. They serve as initiation points for gene transcription and play a critical role
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in gene regulation and expression. Research has established a strong association between
promoters and complex diseases such as diabetes (Döhr et al., 2005; Ionescu-Tîrgovişte,
Gagniuc & Guja, 2015), cancer (Davuluri et al., 2008), and Huntington’s disease (Coles,
Caswell & Rubinsztein, 1998). In recent studies, the significance of promoter mutations in
the onset of hearing loss has also been revealed. For instance, mutations in the core
promoter of the GJB2 gene are a major cause of non-syndromic recessive hearing loss
(Matos et al., 2007), and whole-genome sequencing has underscored the close link between
GJB2 promoter mutations and hearing loss (Le Nabec et al., 2021). Furthermore, variants
in the SOD2 promoter are considered key contributors to age-related hearing loss (ARHL)
(Nolan et al., 2013), and the role of promoter DNA methylation in hearing loss has been
further validated (Xu et al., 2020). Variations in promoter sequences not only influence
disease occurrence but may also serve as targets for gene therapy. For instance, variations
in the MYO7A promoter affect gene expression and may act as potential modifiers for
DFNA11 hearing loss (Street et al., 2011). Studies have shown that promoter-driven gene
therapy, such as Myo15 promoter-mediated hair cell-specific gene therapy, holds potential
clinical applications for various forms of hearing impairment, including autosomal
recessive deafness (Wang et al., 2024a), thus underscoring the importance of promoters as
therapeutic targets in hearing loss research (Aaron et al., 2023).

In recent years, gene sequences have increasingly been conceptualized as a “molecular
language” essential for the regulation of gene expression. Analogous to natural language,
gene sequences exhibit complex patterns and contextual dependencies. Advances in
natural language processing (NLP), particularly in large language models such as BERT
(Bidirectional Encoder Representations from Transformers) (Devlin et al., 2019), have
provided new insights into the analysis of genetic sequences. Due to its bidirectional
encoding, BERT can effectively capture contextual information within sequences. This
architecture has demonstrated substantial potential in NLP applications and holds
promise for genomic research. However, genetic data possess unique characteristics,
including the presence of local regulatory sites and long-range regulatory patterns, which
pose challenges for applying BERT to gene sequence analysis effectively (Choi & Lee, 2023;
Benegas et al., 2024).

Specifically, gene sequences frequently contain abundant local regulatory sites and
short-range patterns (Solovyev, Shahmuradov & Salamov, 2010), necessitating models with
robust local feature extraction capabilities. Furthermore, gene regulation is also influenced
by distal regulatory elements within the three-dimensional (3D) chromatin conformation.
For example, distal elements can regulate gene expression through chromatin loops that
bring them into contact with promoters (Holwerda & De Laat, 2012). Thus, promoter
prediction tasks require models that not only capture local regulatory information but also
effectively model complex long-range dependencies, enabling the identification of
promoter interactions with distal regulatory elements. Relying solely on BERT’s
self-attention mechanism may therefore be insufficient to fully capture these intricate
regulatory features, highlighting the need for complementary models that can enhance
both local and global feature extraction.
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To address these challenges, recent studies have explored the integration of BERT with
other deep learning models to enhance predictive performance. Convolutional neural
networks (CNNs) are well-known for their strong local feature extraction capabilities,
utilizing sliding windows to effectively capture local patterns within sequences. When
combined with BERT, CNNs significantly improve the model’s ability to process local
features. For example, Kaur & Kaur (2023) demonstrated substantial improvements in
demand classification by incorporating convolutional modules into the BERT framework,
while Chen, Cong & Lv (2022) successfully integrated attention mechanisms with
CNN-based local feature extraction modules, thereby improving the accuracy of long-text
classification.

In contrast, long short-term memory (LSTM) networks excel at modeling long-range
dependencies, addressing some of BERT’s limitations in capturing information from
longer sequences. Integrating BERT with LSTM networks further enhances the model’s
ability to handle complex long-distance dependencies. For instance, Talaat (2023)
proposed a hybrid sentiment analysis system combining BERT with bidirectional LSTM
(BiLSTM) and bidirectional gated recurrent units (BiGRU), achieving notable
improvements in classification accuracy. Similarly, Cao, Zhang & Huang (2024) developed
a hybrid architecture for multi-task real-time prediction by leveraging the strengths of both
LSTM and Transformer models.

In the field of bioinformatics, the integration of BERT with CNNs or LSTMs has
demonstrated promising results. For example, the BERT-TFBS model (Wang et al., 2024b)
utilizes BERT to extract global contextual features from DNA sequences, which are then
refined by CNNs to capture local patterns relevant to transcription factor binding site
prediction. Furthermore, Bokharaeian, Dehghani & Diaz (2023) proposed a model
combining PubMedBERT with LSTM to extract SNP-phenotype associations from
biomedical texts, showing strong performance in high-confidence association extraction.
More recently, the iProL model (Peng, Sun & Fan, 2024) employed a Longformer-based
architecture with CNN and Bi-LSTM modules to identify DNA promoters from raw
sequences, highlighting the value of integrating pre-trained language models with both
local and sequential feature extractors. Collectively, these efforts underscore the utility of
hybrid models in advancing genomic prediction tasks.

Building on these findings, we propose the DNABERT-CBL (DNABERT-
2_CNN_BiLSTM) model, which integrates BERT, CNN, and BiLSTM components to
enhance model performance. This architecture leverages BERT’s strength in capturing
contextual dependencies, CNN’s robust local feature extraction capabilities, and BiLSTM’s
ability to model bidirectional contextual information, thereby improving the model’s
capacity to capture both short-range and long-range dependencies. By balancing global
and local feature extraction, DNABERT-CBL significantly enhances gene sequence
prediction performance. Through this multi-component integration, the model effectively
identifies key regulatory sites within promoters and captures global regulatory
relationships within promoter sequences. Specifically, CNN modules focus on extracting
short-range dependencies and local patterns, while BiLSTM, as a bidirectional extension of
LSTM, processes sequence information in both forward and backward directions, thereby
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enriching the model’s ability to model long-range dependencies and global sequence
structures.

To evaluate the effectiveness of the DNABERT-CBL model, we utilized data from six
databases encompassing 1,099 genes associated with three diseases: hearing loss, breast
cancer, and cervical cancer. Promoter sequences were extracted from the EPDnew
database, while non-promoter sequences were obtained from the NCBI database. We
designed three fine-tuning strategies: (1) individual training, (2) cross-disease training, and
(3) global training. Experimental results demonstrate that DNABERT-CBL consistently
outperforms the baseline model (DNABERT-2_BASE) in both accuracy and stability.
Under a sequence length of 600 base pairs, loss values decreased by 20 percentage points,
while area under the curve (AUC) and accuracy (ACC) improved by 3.3% and 5.8%,
respectively. Furthermore, compared to three other advanced BERT-based genomic
models, DNABERT-CBL consistently demonstrated significant performance
improvements across all evaluation metrics, thus confirming its robustness and
generalizability.

MATERIALS AND METHODS
Data sources
In this study, we utilized datasets corresponding to three specific diseases: (1) Hearing loss,
(2) breast cancer, and (3) cervical cancer. Hearing loss-related gene data were obtained
from the following four databases: ClinVar (Landrum et al., 2020), DVD (Azaiez et al.,
2018) (Deafness Variation Database), OMIM (https://www.omim.org), and HHL (Bolz,
2016) (Hereditary Hearing Loss). Breast cancer data were sourced from METABRIC
(Mukherjee et al., 2018) (Molecular Taxonomy of Breast Cancer International
Consortium), and cervical cancer data were obtained from CCDB (Agarwal et al., 2011)
(Cancer of the Cervix Database). Gene entries from each database were extracted,
deduplicated, and summarized; the number of genes sourced from each database is
presented in Table 1.

Experimentally validated human promoter sequences were obtained from the EPDnew
database. Based on the disease-related genes identified above, we subsequently matched the
corresponding promoter sequences in EPDnew to construct the positive dataset. For the
negative dataset, we first identified all experimentally validated human promoters within
the genome and removed them, resulting in a genome-wide sequence dataset devoid of
promoters (Umarov et al., 2019). From this dataset, we randomly selected contiguous
genomic sequences matching the lengths of actual biological promoters, thereby
generating the negative samples.

To assess the impact of sequence length on model performance, we considered two
promoter sequence lengths: 300 base pairs (bp) (Wang et al., 2023) (covering positions
−249 to +50 relative to the transcription start site, TSS) and 600 bp (Dogan et al., 2015)
(spanning positions −499 to +100 relative to the TSS). Here, “+50” and “+100” indicate the
number of base pairs downstream of the TSS. This approach acknowledges that promoter
regions encompass not only upstream regulatory elements but also downstream regions
that are critical for transcriptional regulation.
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To evaluate the influence of different datasets on model prediction performance, we
designed three fine-tuning strategies:

(1) Individual learning: Both model training and testing were conducted exclusively on
the hearing loss dataset.

(2) Cross-disease training: Model training was performed using publicly available
promoter datasets from breast cancer and cervical cancer, with testing conducted on the
hearing loss dataset. This approach aims to leverage larger datasets from related diseases to
enhance model performance when the hearing loss dataset is limited in size. Additionally,
it allows an assessment of the model’s transferability and generalization across different
disease contexts.

(3) Global training: Model training incorporated all known human promoter datasets,
with testing performed on the hearing loss dataset. This strategy maximizes the available
training data to achieve robust model learning.

The data distribution for training, validation, and testing under these three strategies is
detailed in Table 2. Collectively, these experimental strategies facilitate a systematic
evaluation of how disease-specific and cross-disease datasets affect the model’s ability to
predict hearing-loss-related promoters, providing insights into its generalizability and
robustness.

DNABERT-2 model
DNABERT-2 (Zhou et al., 2024) is an enhanced model built upon the widely used
Transformer architecture (Vaswani et al., 2017), specifically developed for DNA sequence
analysis. Building on the foundation of its predecessor DNABERT (Ji et al., 2021), which
demonstrated notable performance in genomic tasks, DNABERT-2 introduces several key
improvements. It incorporates byte pair encoding (BPE) (as illustrated in Fig. 1) as a
replacement for the traditional k-mer method, thereby enhancing computational efficiency
and enabling better sequence compression. Furthermore, Attention with Linear Biases
(ALiBi) replaces the conventional positional embeddings, thus improving the model’s
capability to handle longer sequences more effectively. Moreover, the integration of Flash
Attention and the GeGLU (gated linear unit (GLU) and generalized linear unit (GELU))
activation function further enhances the model’s performance and computational resource
efficiency. Collectively, these advancements enable DNABERT-2 to achieve superior
accuracy and efficiency in a variety of genomic analysis tasks.

Table 1 Disease databases and gene data counts. Summary of the disease databases and their corre-
sponding gene data counts for various diseases. It includes data sources like ClinVar, METABRIC, and
CCDB, with the total number of related genes and total gene count for each dataset.

Disease Hearing loss Breast cancer Cervical cancer

Data source ClinVar DVD OMIM HHL METABRIC CCDB

Related gene count 376 223 154 122 173 538

Total gene count 388 173 538
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Feature extraction strategy via multi-model integration
In genomic sequence analysis, extracting comprehensive features from DNA sequences is
essential to capture both global context and local sequence patterns. To address this
challenge, we propose a multi-model integration strategy that leverages the strengths of
different deep learning architectures.

BERT, based on a bidirectional encoder architecture, reads sequences from both left to
right and right to left, making it highly effective for capturing contextual information.
Moreover, BERT’s extensive pre-training on large-scale unlabeled data enables it to learn
universal sequence representations, which can then be fine-tuned for various downstream
tasks.

However, gene sequences typically contain a substantial number of local regulatory
sites and short-range patterns that require specialized local feature analysis. CNNs,
with their local convolutional operations, efficiently extract such features from
sequences. Consequently, we initially combined BERT with CNNs so that CNNs could
refine the local regions of the global features extracted by BERT. Through convolutional
kernels and pooling operations, CNN is effective in capturing micro-patterns and local
structures, which is crucial for identifying short-range dependencies within promoter
sequences.

Table 2 Data distribution for three fine-tuning strategies. The distribution of data for three different
fine-tuning strategies: individual learning, cross-disease training, and global training. The table breaks
down the data into training, validation, and test sets for each strategy. It highlights the varying dataset
sizes, with individual learning utilizing a smaller dataset, and global training involving a significantly
larger dataset for more robust model performance.

Tactics All Train Validation Test

Individual learning 1,194 716 238 240

Cross-disease training 1,830 508 128 1,194

3,008 1,450 364 1,194

Global training 59,195 46,401 11,600 1,194

Figure 1 Byte pair encoding. The process of byte pair encoding (BPE) applied to genomic sequences. In
each iteration, the most frequent pair of symbols is merged, thereby expanding the vocabulary and
reducing the sequence length. The evolution of the training corpus is shown across different iterations,
where specific nucleotide pairs (like “TA” and “GC”) are progressively merged, updating the vocabulary
with new entries. Full-size DOI: 10.7717/peerj-cs.3104/fig-1
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Furthermore, complex long-range dependencies play a critical role in gene regulation,
especially through three-dimensional chromatin conformations. In this process, distal
regulatory elements interact with promoters via chromatin loops, thereby influencing gene
expression. To address these dependencies, we integrated BiLSTM, which has a
bidirectional architecture that simultaneously captures both forward and backward
dependencies, enabling comprehensive modeling of long-range relationships, particularly
in recognizing distant regulatory elements.

As illustrated in Fig. 2, we constructed a multi-layer feature extraction architecture
based on the DNABERT-2 model. Initially, BERT provides a global semantic
representation through its contextual extraction capabilities. Subsequently, CNN refines
these global features by capturing local patterns within sequences. BiLSTM is then applied
to further integrate the features from both modules and to optimize long-range
dependency modeling. This integration strategy merges the advantages of global context
modeling and local structure extraction, thus forming a comprehensive multi-level feature
representation system.

Promoter prediction using DNABERT-2 variants
The overall architecture of this study is illustrated in Fig. 3. All experiments were
conducted on a Windows operating system with Python 3.10 as the programming
environment. To accelerate training, an RTX 3090 GPU with 24 GB of VRAM was
employed. All models were trained under identical hardware conditions to ensure fair
comparisons. The complete source code is available at the following GitHub repository:
https://github.com/Cqerliu/DNABERT_CBL.

To investigate the influence of different network architectures on model performance,
we designed multiple experimental schemes and proposed two variant strategies aimed at
optimizing feature extraction:

Single-module enhancement: DNABERT-2 + CNN and DNABERT-2 + BiLSTM.
This strategy individually augments DNABERT-2 with either a convolutional neural

network or a bidirectional long short-termmemory network after the BERT encoder. CNN

Figure 2 DNABERT-2_CNN_BiLSTM architecture. The architecture of DNABERT-2_CNN_BiLSTM, which is a hybrid deep learning model
combining convolutional neural networks (CNN) and bidirectional long short-term memory (BiLSTM) layers. It processes genome sequences,
performing feature extraction through convolution, followed by sequence encoding using LSTM layers, ultimately leading to predictions based on
learned patterns in the data. Full-size DOI: 10.7717/peerj-cs.3104/fig-2
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modules effectively capture local patterns within the input sequences, while BiLSTM
modules are well-suited for modeling long-range dependencies. This approach allows us to
examine the isolated effects of each module on feature extraction and prediction
performance.

Figure 3 Prediction of promoters based on enhanced BERT. The complete workflow of the DNABERT-2 model for predicting gene promoters.
The process begins with data collection, where positive sequences (deafness gene promoters) and negative sequences (non-promoters) are sourced
from various databases such as ClinVar and the national library of medicine. The model is then fine-tuned using three strategies: individual learning,
cross-disease training, and global training. The model’s performance is evaluated based onmetrics such as loss, accuracy (Acc), AUC, specificity (Sp),
F1-score, and MCC. Various model variants are compared to assess their effectiveness in gene prediction tasks.

Full-size DOI: 10.7717/peerj-cs.3104/fig-3

Sun et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3104 8/21

http://dx.doi.org/10.7717/peerj-cs.3104/fig-3
http://dx.doi.org/10.7717/peerj-cs.3104
https://peerj.com/computer-science/


Multi-module combination enhancement: DNABERT-2 + CNN + BiLSTM.
This strategy sequentially integrates both CNN and BiLSTM modules to form a

comprehensive, multi-module network. Initially, the CNN extracts local features, which
are then passed to the BiLSTM layer to model long-distance relationships. This
hierarchical design leverages the strengths of both modules, aiming to maximize the
overall predictive power.

The specific architectures and hyperparameters for each model are as follows:
(1) Baseline model (DNABERT-2_BASE): This model consists solely of the BERT

encoder followed by a fully connected classification layer. The BERT backbone employed is
‘zhihan1996/DNABERT_2-117M,’ coupled with a single-layer fully connected classifier.

(2) Single-module model (DNABERT-2_CNN): A convolutional layer is added after the
BERT output to enhance local feature extraction. The architecture is BERT →

convolutional layer → max pooling layer → fully connected classifier. The convolutional
layer has a kernel size of 3 and 1,536 output channels, with a pooling window size of 2. The
ReLU activation function is used to introduce non-linearity.

(3) Single-module model (DNABERT-2_BiLSTM): A BiLSTM layer is added after the
BERT output to capture long-range dependencies. The architecture is BERT → BiLSTM
layer → fully connected classifier. The BiLSTM layer has 128 units and uses ReLU
activation.

(4) Multi-module model (DNABERT-CBL): This model first applies a CNN layer to
extract local features, followed by a BiLSTM layer to model long-distance relationships.
The architecture is BERT → convolutional layer → max pooling layer → BiLSTM layer →
fully connected classifier. The convolutional layer has a kernel size of 3 and 1,536 output
channels, while the BiLSTM layer has 128 units. ReLU activation is consistently applied
throughout the model.

All models were trained using the RTX 3090 GPU with 24 GB VRAM to ensure
consistent training environments. The hyperparameters used in the experiments are
summarized in Table 3. We employed the Adam optimizer with a learning rate of 3e−5 to
avoid overfitting and ensure stable convergence. Models were trained for five epochs, with
evaluation performed every 200 steps, and the best-performing model on the validation set
was saved. A batch size of 8 was used during training to balance GPU memory utilization
and computational efficiency, and increased to 16 during evaluation to speed up inference.
ReLU activation was chosen throughout for its effectiveness in mitigating gradient
vanishing and accelerating convergence. Given the binary classification nature of the task,
the cross-entropy loss function was selected for its widespread applicability and proven
performance. The total number of parameters for each model is provided in Table 4.

Evaluation metrics
To comprehensively evaluate the performance of each model, we adopted a suite of
well-established classification metrics, including:

Loss: Measures the discrepancy between predicted outputs and true labels, providing
insights into convergence and optimization quality. AUC: Assesses the model’s capability
to distinguish between classes, with higher values indicating better discrimination. ACC:
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The proportion of correctly classified samples among all samples, reflecting overall
classification performance. Matthew’s correlation coefficient (MCC): A robust metric that
accounts for all elements of the confusion matrix, particularly suitable for imbalanced
datasets. F1-score: The harmonic mean of precision and recall, balancing the trade-off
between false positives and false negatives. Specificity (Sp): Measures the true negative rate,
indicating how well the model identifies negative samples.

This combination of metrics offers a comprehensive perspective on each model’s
strengths and weaknesses, enabling an in-depth analysis of their predictive performance.

RESULTS
Under the individual learning strategy, five model variants were trained and evaluated:
DNABERT_2_BASE, DNABERT_2_CNN, DNABERT_2_BiLSTM, and two
DNABERT-CBL models (DNABERT_2_CM_BL and DNABERT_2_CA_BL). Here, “M”

and “A” in the subscripts denote the use of max pooling and average pooling, respectively,
in the CNN pooling layer. The hearing loss dataset was split into training, validation, and
test sets in a 6:2:2 ratio.

The individual learning strategy involved training and testing on the hearing loss
dataset, which was divided into training, validation, and test sets in a 6:2:2 ratio. Table 5
summarizes the performance of each model variant in terms of key metrics such as Loss,
Accuracy (ACC), and AUC. Notably, DNABERT-2_CA_BL achieved the best performance
in both 300 and 600 bp settings, demonstrating superior classification capabilities

Table 3 Network hyperparameters. Outline of the network hyperparameters used for training the
models. It includes key parameters like optimizer type (Adam), learning rate (3e–5), batch sizes for
training and evaluation, the number of epochs (5), loss function (crossentropy), and activation function
(ReLU).

Hyperparameter Value

Optimizer Adam

Learning rate 3e−5

Batch size 8 (training)/16 (evaluation)

Epochs 5

Loss function Cross-entropy loss

Activation function ReLU

Table 4 Total number of parameters for four models. Comparison of the total number of parameters
for four different model configurations: DNABERT_2, DNABERT_2+CNN, DNABERT_2+BiLSTM,
and DNABERT_2+CNN+BiLSTM. The table shows that the model with both CNN and BiLSTM layers
(DNABERT_2+CNN+BiLSTM) has the highest parameter count, indicating increased complexity and
capacity for learning more intricate patterns from the data.

Model Total parameters

DNABERT_2 117,070,082

DNABERT_2+CNN 120,615,170

DNABERT_2+BiLSTM 117,988,610

DNABERT_2+CNN+BiLSTM 122,318,594
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compared to the baseline. These results highlight the differences in performance across
models under varying sequence lengths, with comparative results illustrated in Fig. 4.

With the individual learning strategy, DNABERT-CBL performed exceptionally well on
both 300 and 600 bp sequence lengths. Specifically, DNABERT-CBL with average pooling
achieved a loss of 0.333 and an AUC of 0.949 for 600 bp, thus significantly outperforming

Table 5 Performance comparison of various models with different sequence lengths under
individual learning strategies. A performance comparison of various models using different sequence
lengths (300 and 600 bp) under individual learning strategies. The metrics include loss, accuracy (Acc),
AUC, F1-score, specificity (Sp), and Matthews correlation coefficient (MCC). The results show how
models like DNABERT-2_BASE, DNABERT-2_CNN, and DNABERT-2_BiLSTM perform differently
across these sequence lengths. The best results for sequence lengths of 300 bp and 600 bp are indicated in
bold.

Length Model Loss Acc AUC F1 Sp MCC

300 bp DNABERT-2_BASE 0.518 0.850 0.895 0.849 0.933 0.710

DNABERT-2_CNN 0.509 0.858 0.931 0.858 0.925 0.723

DNABERT-2_BiLSTM 0.467 0.867 0.841 0.865 0.967 0.749

DNABERT-2_CM_BL 0.395 0.858 0.924 0.857 0.942 0.727

DNABERT-2_CA_BL 0.495 0.867 0.903 0.866 0.942 0.742

600 bp DNABERT-2_BASE 0.537 0.846 0.916 0.843 0.975 0.716

DNABERT-2_CNN 0.567 0.871 0.940 0.870 0.958 0.753

DNABERT-2_BiLSTM 0.516 0.867 0.909 0.867 0.883 0.734

DNABERT-2_CM_BL 0.429 0.842 0.931 0.839 0.958 0.703

DNABERT-2_CA_BL 0.333 0.904 0.949 0.904 0.933 0.810

Figure 4 Performance comparison of five models on loss, accuracy, and AUC metrics (individual learning). Comparison of the performance of
five different models based on three metrics: loss, accuracy, and AUC. Each model’s performance is assessed after individual learning, using genome
sequences of varying lengths (300 and 600 bp). The results show the models’ effectiveness in prediction, with the DNABERT-CBL model generally
outperforming others in terms of accuracy and AUC. Full-size DOI: 10.7717/peerj-cs.3104/fig-4
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the baseline DNABERT-2_BASE, which had a loss of 0.537 and an AUC of 0.916. Figure 4
highlights DNABERT-CBL’s superior performance across key metrics.

Results of the cross-disease training strategy
In the cross-disease training strategy, the models were pre-trained on specific disease
datasets (breast cancer and cervical cancer) before testing on the hearing loss dataset. For
the breast cancer dataset, training and validation sets were split 8:2, followed by testing on
the hearing loss dataset. The cervical cancer dataset was similarly processed. Tables 6 and
7, along with Figs. 5 and 6, display the performance metrics and comparisons. In both
cases, DNABERT-2_CA_BL consistently achieved the highest ACC and F1-scores,
demonstrating strong generalization ability from breast and cervical cancer datasets to
hearing loss promoters.

In cross-disease training, DNABERT-CBL also excelled. For example, with training on
the breast cancer dataset, the variant with average pooling achieved an AUC of 0.955,
compared to the baseline’s 0.930. Similarly, for the cervical cancer dataset,
DNABERT-CBL achieved an AUC of 0.948 at 600 bp, surpassing the baseline’s 0.931.
Figures 5 and 6 further validate the model’s advantages in transfer learning.

Results of the global training strategy
The global training strategy involved training on a dataset containing all known human
promoter sequences, excluding hearing-loss-related data, and then testing on the hearing
loss dataset. Promoter sequences associated with hearing loss were removed from the
training data, which was then split 8:2 for training and validation. Table 8 provides the
performance metrics, and Fig. 7 visually compares the models’ performance, showing that
DNABERT-CBL consistently outperformed the baseline model in terms of stability and
AUC across both sequence lengths.

Table 6 Performance comparison of models with different sequence lengths on the breast cancer
dataset. Comparison of the performance of models with different sequence lengths (300 and 600 bp)
on the breast cancer dataset. Key performance metrics, including loss, accuracy, AUC, F1-score, speci-
ficity, and MCC, are displayed. It shows that models like DNABERT-2_CA_BL perform exceptionally
well, particularly with the 600 bp sequence length, achieving high accuracy and AUC scores. The best
results for sequence lengths of 300 bp and 600 bp are indicated in bold.

Length Model Loss Acc AUC F1 Sp MCC

300 bp DNABERT-2_BASE 0.475 0.851 0.930 0.849 0.975 0.724

DNABERT-2_CNN 0.364 0.855 0.921 0.854 0.928 0.718

DNABERT-2_BiLSTM 0.561 0.878 0.920 0.878 0.883 0.755

DNABERT-2_CM_BL 0.410 0.853 0.932 0.850 0.975 0.727

DNABERT-2_CA_BL 0.301 0.876 0.955 0.876 0.941 0.759

600 bp DNABERT-2_BASE 0.363 0.884 0.933 0.883 0.913 0.768

DNABERT-2_CNN 0.481 0.890 0.933 0.890 0.955 0.787

DNABERT-2_BiLSTM 0.650 0.775 0.906 0.764 0.988 0.608

DNABERT-2_CM_BL 0.316 0.874 0.950 0.874 0.956 0.759

DNABERT-2_CA_BL 0.324 0.875 0.953 0.874 0.963 0.762
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Under the global training strategy, DNABERT-CBL again demonstrated strong
performance, consistently achieving lower loss and higher accuracy across both sequence
lengths. It also exhibited greater AUC stability, as shown in Fig. 7.

Comprehensive evaluation
Across all strategies, DNABERT-CBL demonstrated superior performance, particularly on
large datasets and complex tasks. The AUC heatmap in Fig. 8 further illustrates its

Table 7 Transfer learning performance comparison of models with different sequence lengths on the
cervical cancer dataset. The transfer learning performance of different models using 300 and 600 bp
sequence lengths on the cervical cancer dataset. The table includes various evaluation metrics such as
loss, accuracy, AUC, F1-score, specificity, and MCC. The results suggest that DNABERT-2_CA_BL
performs the best across most metrics, especially with 600 bp sequences. The best results for sequence
lengths of 300 bp and 600 bp are indicated in bold.

Length Model Loss Acc AUC F1 Sp MCC

300 bp DNABERT-2_BASE 0.313 0.872 0.931 0.872 0.827 0.747

DNABERT-2_CNN 0.372 0.873 0.933 0.873 0.891 0.746

DNABERT-2_BiLSTM 0.379 0.884 0.874 0.884 0.950 0.775

DNABERT-2_CM_BL 0.309 0.899 0.942 0.899 0.931 0.799

DNABERT-2_CA_BL 0.290 0.894 0.949 0.894 0.901 0.789

600 bp DNABERT-2_BASE 0.362 0.885 0.931 0.885 0.868 0.771

DNABERT-2_CNN 0.472 0.889 0.939 0.889 0.868 0.778

DNABERT-2_BiLSTM 0.470 0.882 0.900 0.882 0.881 0.764

DNABERT-2_CM_BL 0.315 0.895 0.949 0.895 0.908 0.791

DNABERT-2_CA_BL 0.310 0.893 0.948 0.893 0.881 0.786

Figure 5 Performance comparison of five models on loss, accuracy, and AUC metrics (breast cancer dataset). A comparison of five models’
performance on the breast cancer dataset. The chart highlights the models’ loss, accuracy, and AUC metrics, showcasing their predictive capabilities
for this specific dataset. The DNABERT-CBL model consistently delivers high performance, particularly in accuracy and AUC.

Full-size DOI: 10.7717/peerj-cs.3104/fig-5
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consistent advantage. DNABERT-CBL excelled in loss, accuracy, and AUC, outperforming
the baseline and exhibiting robust adaptability to diverse sequence lengths and datasets.

In summary, the DNABERT-CBL model demonstrates outstanding performance in
both individual learning and transfer learning, making it especially suitable for handling
sequences of varying lengths and complex datasets. It exhibits strong adaptability and
robustness across different conditions.

Figure 6 Performance comparison of five models on loss, accuracy, and AUCmetrics (cervical cancer dataset). A comparison of the performance
of five different models on the cervical cancer dataset using loss, accuracy, and AUC metrics. The DNABERT-CBL model demonstrates strong
performance, particularly in terms of accuracy and AUC, making it a robust choice for predicting cancer-related genomic features.

Full-size DOI: 10.7717/peerj-cs.3104/fig-6

Table 8 Performance comparison of models with different sequence lengths under global training.
The performance comparison of models using different sequence lengths (300 and 600 bp) under global
training. It provides insights into the effectiveness of each model based on loss, accuracy, AUC, F1-score,
specificity, and MCC. The DNABERT-2_CM_BL model performs exceptionally well under this strategy,
particularly with 300 bp sequences. The best results for sequence lengths of 300 bp and 600 bp are
indicated in bold.

Length Model Loss Acc AUC F1 Sp MCC

300 bp DNABERT-2_BASE 0.258 0.894 0.964 0.894 0.883 0.789

DNABERT-2_CNN 0.232 0.907 0.969 0.907 0.910 0.814

DNABERT-2_BiLSTM 0.296 0.898 0.940 0.898 0.905 0.796

DNABERT-2_CM_BL 0.243 0.909 0.970 0.909 0.923 0.818

DNABERT-2_CA_BL 0.242 0.905 0.965 0.904 0.935 0.811

600 bp DNABERT-2_BASE 0.257 0.905 0.963 0.905 0.891 0.811

DNABERT-2_CNN 0.239 0.910 0.966 0.910 0.905 0.819

DNABERT-2_BiLSTM 0.275 0.911 0.950 0.911 0.913 0.822

DNABERT-2_CM_BL 0.255 0.910 0.970 0.910 0.908 0.819

DNABERT-2_CA_BL 0.273 0.904 0.962 0.904 0.889 0.808
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Comparison with other BERT-basedmethods for predicting promoters
Currently, few studies utilize BERT and its variants for promoter prediction. To evaluate
our model’s effectiveness, we compared it with three state-of-the-art BERT-based
methods: BERT-Promoter (Le et al., 2022), msBERT-Promoter (Li et al., 2024), and
TSSNote-CyaPromBERT (Mai, Nguyen & Lee, 2022). All models were tested on the same

Figure 7 Performance comparison of five models on loss, accuracy, and AUC metrics (global training). The performance comparison of five
models on global training, evaluating them based on loss, accuracy, and AUC metrics. The DNABERT-CBL model continues to excel across all
metrics, reinforcing its effectiveness when applied globally across different datasets. Full-size DOI: 10.7717/peerj-cs.3104/fig-7

Figure 8 AUC heat maps of the model under three strategies. AUC scores of the DNABERT-CBL model under three different training strategies
(individual learning, cross-disease training, and global training). Each map highlights the AUC performance across multiple datasets, with higher
scores represented in warmer colors, indicating that the model performs better with certain strategies, especially in global training scenarios.

Full-size DOI: 10.7717/peerj-cs.3104/fig-8
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benchmark dataset, splitting the hearing loss promoter sequences into training, validation,
and test sets at a 6:2:2 ratio. Due to the 512-bp input length limitation of these models, only
300 bp experiments were conducted. Table 9 presents the performance metrics across all
methods.

Our models, DNABERT-2_CM_BL and DNABERT-2_CA_BL, achieved the highest
scores in accuracy, F1-score, Matthew’s correlation coefficient (MCC), and precision.
Notably, DNABERT-2_CA_BL with average pooling achieved an accuracy of 0.867, an
F1-score of 0.866, an MCC of 0.742, and a precision of 0.875, demonstrating robust
classification capability. Although its AUC (0.903) was slightly lower than that of
msBERT-Promoter (0.939), this discrepancy may be attributed to a relatively weaker
ability to discriminate borderline samples, thereby slightly reducing the area under the
ROC curve. However, considering that AUC reflects an overall ranking performance, while
DNABERT-2_CA_BL achieved higher scores in core classification metrics such as accuracy
and F1-score, this suggests that our model is more reliable and practically effective in
binary classification tasks. Overall, the performance of DNABERT-2_CA_BL still
outperformed existing methods, affirming the model’s effectiveness and stability in
promoter prediction.

DISCUSSION
Gene sequences encompass a wealth of local regulatory sites (He et al., 2010), due to their
bidirectional, short-range patterns, and interactions with distal regulatory elements. As a
key region in gene transcription, promoters are central to gene regulation and expression,
interacting with distal regulatory elements through the 3D chromatin structure. This poses
a significant challenge for models: the ability to capture both local features and global
dependencies within promoter sequences. The BERT self-attention mechanism alone
struggles with such complex regulation patterns. We developed a multi-level feature
extraction model, DNABERT-CBL, integrating BERT, CNN, and BiLSTM to address these
complexities. The CNN module captures local regulatory sites and short-range patterns
within promoter sequences through convolutional operations, while BiLSTM captures
long-range dependencies, compensating for BERT’s limitations in modeling extended
dependencies. This hierarchical feature extraction approach enables the model to globally
understand sequence structures while accurately identifying local features.

Table 9 Performance comparison between this method and other BERT-based methods. Compar-
ison the performance of DNABERT-CBL with other BERT-based models on key metrics such as accuracy
(Acc), F1-score, MCC, precision, sensitivity (Sn), and AUC. DNABERT-2_CA_BL outperforms other
models like BERT-Promoter and msBERT-Promoter across multiple metrics, achieving high accuracy,
F1, and AUC scores. The maximum value of each column is in bold.

Model Acc F1 MCC Precision Sn AUC

DNABERT-2_CM_BL 0.858 0.857 0.727 0.869 0.858 0.924

DNABERT-2_CA_BL 0.867 0.866 0.742 0.875 0.867 0.903

BERT-Promoter 0.848 0.846 – 0.864 0.829 0.918

msBERT-Promoter 0.836 0.833 0.696 0.861 0.836 0.939

TSSNote-CyaPromBERT 0.822 0.822 – 0.824 0.820 0.899
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Experimental results confirmed DNABERT-CBL’s effectiveness, as it consistently
outperformed the baseline model DNABERT-2_BASE across multiple metrics. For
example, in testing with longer sequences, DNABERT-CBL demonstrated significant
reductions in loss and improvements in accuracy and AUC, achieving a loss of 0.333, an
accuracy of 0.904, and an AUC of 0.949 for 600-bp sequences, compared to the baseline’s
loss of 0.537 and AUC of 0.916. This highlights the model’s strong predictive capabilities
for complex gene sequences, with its stability and generalization validated across multiple
datasets, particularly on larger and more complex datasets.

CONCLUSIONS
Promoters are crucial for initiating gene transcription, playing a key role in gene regulation
and expression. Mutations in promoters are linked to complex diseases such as diabetes,
cancer, and deafness. Variations in promoter sequences also present potential targets for
gene therapy. For example, promoter-driven gene therapies, such as Myo15
promoter-mediated hair cell-specific gene therapy, show promising potential in treating
autosomal recessive deafness. Future research could leverage the DNABERT-CBL model
to further explore the role of promoters in gene expression regulation, particularly in
developing gene therapies for complex diseases like deafness. This model’s ability to
accurately identify mutated promoters could pave the way for new therapeutic strategies
targeting gene regulation-related diseases.

The DNABERT-CBL model was chosen for its effectiveness in addressing the
complexities of gene sequence analysis. The combination of BiLSTM and CNN enables the
model to capture both sequential dependencies and local features in promoter sequences,
thereby enhancing prediction accuracy. This multi-layered feature extraction approach
makes the model particularly well-suited for understanding gene regulation at the
sequence level. By focusing on relevant promoter regions, the model can provide
meaningful insights into gene expression regulation.

However, since the current model is based only on gene sequence data, it may not be
able to comprehensively capture a wider range of regulatory factors that affect gene
expression. Future studies may consider introducing multi-omics data such as
epigenomics and transcriptomics to improve the comprehensiveness and predictive power
of the model. In addition, the model should be tested on a wider range of promoter
sequences and additional data sources should be integrated to further optimize its
performance. By addressing these challenges, the model is expected to significantly
enhance gene therapy strategies for diseases associated with promoter mutations. Overall,
the model shows great potential in advancing promoter-driven gene therapy and provides
a valuable tool for gene regulation research and therapeutic development.
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Code and raw data is available at GitHub: https://github.com/Cqerliu/DNABERT_CBL.
The ClinVar dataset is available at the National Center for Biotechnology Information

(NCBI): https://www.ncbi.nlm.nih.gov/clinvar/?term=deafness.
The Deafness Variation Database (DVD) dataset is available at Molecular

Otolaryngology and Renal Research Laboratories (MORL), University of Iowa: https://
deafnessvariationdatabase.org/download.

The Online Mendelian Inheritance in Man (OMIM) is available at Johns Hopkins
University/National Center for Biotechnology Information (NCBI): https://www.omim.
org/search?index=entry&search=deafness&start=1&limit=10&retrieve=geneMap&
genemap_exists=true.
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This information can also be found through the OMIM website
(https://www.omim.org/) by entering the keyword “deafness” in the search box on the
homepage and then selecting the “Gene Map” option in the retrieval filter.

The Hereditary Hearing Loss (HHL) dataset is available at Radboud University Medical
Center:

- https://hereditaryhearingloss.org/syndromic.
- https://hereditaryhearingloss.org/nonsyndromic.
The METABRIC dataset is available at the European Genome-phenome Archive

(EGA): https://ega-archive.org/dacs/EGAC00001000484.
The Cervical Cancer Database (CCDB) is available at the Bioinformatics Centre,

Institute of Microbial Technology: http://crdd.osdd.net/raghava/ccdb/stat.php.
The EPDnew dataset is available at the Swiss Institute of Bioinformatics: https://epd.

expasy.org/epd/human/human_database.php?db=human.
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