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ABSTRACT

The architecture of software-defined networking (SDN) involves the separation of
the network control plane from the routing plane. If this initiative turns out well, it
has the potential to reduce operating expenses and the duration required to provide
new services in comparison to traditional networks. However, this architecture has
additional security concerns, including a single point of failure that could potentially
provide any user with unrestricted access to the entire network. Nevertheless, it is
essential to reduce the probability of security breaches. The development of
immediate intrusion detection systems (IDSs) that can quickly spot and stop
malicious activities like distributed denial of service (DDoS), DoS, web-attacks, and
Bot-NET is an important part of SDN architecture. Several researchers are using
cutting-edge methods, such as machine learning, to investigate and elucidate the
causes behind the sudden rise in attacks and abnormal behavior, but the majority of
these methods are deficient in terms of flexibility and accuracy. This study proposed a
lightweight method for detecting different SDN attacks from intrusion-defined
networks. The lightweight long short-term memory (LSTM) network has the
capability to capture temporal patterns and sequential interactions in the SDN data.
It also learned important context that is efficient for feature extraction and then
developed supervised random forest (SRF) for the attack prediction. The dataset
consists of 207,146 rows and 84 features that were preprocessed, including separate
features and target attacks. The experiments show that the proposed method
achieved 99.93% accuracy for attack detection and 0.0090 loss, confirming its
efficacy. We also tested the proposed method on another SDN dataset and achieved
99.43% accuracy for multi-class attack detection. Furthermore, the use of supervised
random forest reduces the model’s complexity, resulting in increased overall
efficiency.
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INTRODUCTION

Intrusion detection systems (IDS) show exceptional performance in two specific domains:
detecting abnormal activities and monitoring network traffic. They are strategically placed
on devices or across a network to analyze network traffic and detect signs of potential
breaches. An IDS detects deviations from a preset usual behavior by searching for the
signatures of known attack types (Sowmya ¢ Anita, 2023). Afterwards, it notifies users
about these irregularities and possibly harmful actions, allowing them to investigate at the
software and protocol levels. The SDN architecture’s flexibility, control, affordability, and
dynamic nature make it a perfect fit for today’s high-bandwidth applications. This
architecture allows applications and network services to use the network without worrying
about the infrastructure underlying it, keeping forwarding and network management
duties separate (Hurley, Perdomo ¢ Perez-Pons, 2016). Earlier versions of SDN highlighted
the flexibility to build networks and the separation of control and data planes. Despite its
numerous advantages, the solution to security issues may hinder the wider adoption of
SDN. Typically, a security flaw in a network impacts only one node or segment. For
instance, an SDN controller attack could compromise the entire network. Combining
network resource management under one roof is one of SDN’s many benefits.
Implementing an SDN controller to manage network traffic and resources can enhance
security (Kreutz et al., 2014).

SDN can now handle network traffic from Internet of Things (IoT) devices and out-of-
date protocols with efficiency. SDN is susceptible to new kinds of attacks even if SDN
provides advantages in IoT scenarios such as resource allocation, traffic management, and
security intrusion detection and mitigation. The manufacturing process initially set up the
Internet of Things devices, but the Mirai botnet malware later compromised their
configuration (Husnain et al., 2022). These devices could remotely connect to a malicious
server and issue orders through a botnet. Using these hacked bots, it is possible to flood the
SDN controller with malicious network traffic. The goal of distributed denial-of-service
(DDoS) attacks (Alzahrani ¢» Alenazi, 2023) is to impede legitimate users from accessing
certain websites by inundating them with a high volume of traffic originating from several
computers with fraudulent IP addresses. Traditional IDS used the access frequency
threshold to detect DDoS attacks. The existing flow table specifies that the OpenFlow SDN
switch inside an SDN network will directly subject the intended recipients to harmful data.
Because of this, the old IDS method is not very good at protecting OpenFlow OF SDN
switches from DDoS attacks (Xing et al., 2013).

Traditional intrusion detection systems (IDS) often use deep packet inspection (DPI) to
analyze packet headers and data payloads as a means to prevent virus assaults and denial of
service attacks. SSH discussions frequently include data encryption via SSH. Advanced
encryption techniques, such as dictionary attacks and brute force attacks, make it difficult
for the DPI system to decrypt the packets and detect any malicious characteristics during
the encryption of SSH packets. Therefore, using conventional DPI strategies will not
effectively halt the attack (Cepheli, Biiyiikcorak ¢ Karabulut Kurt, 2016). Software-defined
networks are particularly vulnerable to specific repercussions caused by DDoS attacks
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(Manso, Moura & Serrdo, 2019). The SDN network management central controller may be
more vulnerable to attack. SDN networks are susceptible to exploitation by attackers
because of their high flexibility, which allows them to swiftly identify and exploit flaws.
DDoS assaults against SDN networks may spread to other networks that use the same
controller, leading to significant failures and disruptions (Chen ¢ Yu, 2016). Intrusion
detection systems (IDS) promptly halt any dubious or malevolent activity to safeguard
networks and systems from compromise. They do this by consistently monitoring all
activities, irrespective of their nature. IDS monitor system logs, network traffic, and other
data sources to identify abnormal activity or signs of unauthorized access.

Challenges

Many areas of research have concentrated on attack detection (Zaman et al., 2025),
reliability, privacy and data security (Wani, S & Khalig, 2021). Nevertheless, many classical
models insufficiently represent critical sequential patterns, while many deep learning
methods necessitate substantial network training, resulting in costly delays in attack
detection and reduced affordability in real-time applications (Adamou Djergou, Maleh &
Mounir, 2021). Consequently, it is important to employ advanced methodologies to
investigate these issues. In a vast, dynamic environment, creating a security system that
reliably discerns between normal and abnormal behavior is a challenging undertaking
(Deb & Roy, 2022). The challenge in identifying features that may differentiate normal
from DDoS attacks arises from the multitude of diverse datasets and different methods
(Khamaiseh et al., 2022). The limited size of the training set results in a lack of
low-frequency attacks (Wang et al., 2024). This limitation affects the evaluation of the
proposed IDS using a real-world dataset that simulates DDoS, web attacks, and BotNet
attacks. The high computational and resource requirements of many deep learning and
conventional prediction models make network congestion in SDN settings more
challenging. The performance of the real-time network may be degraded, particularly
when there is heavy traffic.

Problem statement and contributions

Traditional approaches in some cases unable to effectively detect temporal patterns in
network traffic and experience significant overhead, particularly in dynamic settings such
as SDN, leading to inadequate performance, especially against malicious or DoS attacks.
Systems are unreliable and perform poorly due to the difficulty of tracking massive
volumes of unclassified data. Despite its limitations, machine learning may be useful when
integrated with NIDS (network intrusion detection system) to detect and classify threats.
Our proposed model increases the accuracy of detection for different attack modes by
using traffic trend analysis over time. It minimizes the number of false positives by using
ongoing behavioral training to spot common and unusual patterns. Real-time attack
identification is made easier by integrating the proposed model into SDN environment.
Deep learning is a novel approach to estimating the likelihood of finding solutions to
machine learning problems. The main contributions are as follows:
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e The existing model has issues with complicated architecture, large batch sizes, high
training processing, and slower SDN networks that lead to congestion. In contrast, our
model is lightweight, uses fewer GPU resources, and provides a more accurate and
adaptable detection method without causing excessive network congestion.

e The proposed methodology extracts temporal, long- and short-term flow behaviors with
dynamic, complex network interactions, and the features are then fed into a supervised
random forest model for detecting and mitigating DDoS attacks.

o To address a severe class imbalance across attack types, we employed Synthetic Minority
Oversampling Technique (SMOTE), which significantly reduced misclassification errors
and improved generalizations. Experimental results show that after using SMOTE, the
classification errors went down from 5 to 0 for Brute Force Attack (BFA) attacks and
from 6 to 0 for web attacks, proving that balancing the training data in SDN really works.

» We validate our proposed model by adding another intrusion dataset that has different
types of attacks, showing that the model can work well in various intrusion situations.
Furthermore, we employed an explainable AI technique to explain model decisions,
improving reliability and transparency in security-critical environments.

e The proposed model enhances the detection rate of infrequent attacks and demonstrates
superior performance compared to state-of-the-art models while minimizing false
positive or negative rates. The proposed method for efficient SDN attack detection and
classification is thoroughly discussed and evaluated.

LITERATURE

The method involves placing an intrusion detection device node in each of the
sub-networks created by SDN, which divides the network topology into numerous smaller
networks. They enhanced a decision tree by using the black hole optimization approach to
effectively identify intrusions in all sub-networks. This work proposes a deep
learning-based approach to assault classification. After receiving the internal feature
representations from the gated recurrent unit (GRU) deep learning layers, the model used
principal component analysis (PCA) to identify the most suitable features. After feature
fusion, the fully connected network is prepared to detect and classify threats. The proposed
feature-fused GRU network outperformed both the GRU model and other popular,
industry-standard models that rely on machine learning (Ravi, Chaganti ¢~ Alazab, 2022).

The authors created a network that used BILSTM and CNNs to improve network
intrusion detection through multiclass and binary classification. They assessed the
performance of the proposed model using the two most widely used datasets, UNSW-
NB15 and NSL-KDD. In addition, they extensively used the InSDN collection, which is
specifically available for SDN. Here, it is evident that the suggested model was successful;
they achieved outstanding results with much reduced training time (Said, Sabir ¢
Askerzade, 2023).

The authors showcased a completely innovative and reliable technique for transmitting
data that is also capable of detecting attacks on IoT devices. They employ a clustering
method that uses active nodes’ motion patterns to partition the network into many
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regions. This system equips each component with a controller capable of exchanging
security rules with other sections. The controller node, which serves as the central point of
contact for all traffic exchanged between nodes within the subnet. Consequently, each
management node consistently utilizes an EL model to analyze data on network activity
and detect hazards (Rui, Pan ¢ Shu, 2023).

Another study’s goal was to provide a secure base for the IoT healthcare ecosystem
using SDNs. The authors proposed a hybrid approach that combines deep learning and
machine learning techniques, specifically employing DNN in conjunction with SVM, to
identify instances of network breaches in healthcare data collected from sensors.
Moreover, this system has the ability to efficiently monitor connected devices and
suspicious activity. Finally, used a range of performance metrics to evaluate the efficacy of
the proposed architecture in relation to healthcare application scenarios. The test results
make it clear that the suggested strategy is better than the most cutting-edge methods used
today to find and stop attacks in SDN-enabled IoT networks (Arthi, Krishnaveni ¢
Zeadally, 2024).

The research conducted a comprehensive examination of machine learning techniques
for SDN intrusion detection. The presentation discussed several machine learning
techniques and approaches for detecting intrusions, and then proceeded to explain the
architecture of SDN. They discussed the benefits of using SDN. They showcased state-of-
the-art research on machine learning methods for detecting intrusions in software-defined
networking. They provide a comprehensive overview of several studies, including a
detailed examination of the advantages and disadvantages of each. Finally, they
examined and emphasized significant research inquiries and probable future directions for
using machine learning to detect software-defined networking intrusions (Kumar ¢
Algahtani, 2023).

The proposal recommends the implementation of a specialized HFS-LGBM-IDS for
SDN. They used two-phase hybrid feature selection technique to get the optimal feature
group and minimize the data size. The studies conducted on the NSL-KDD dataset
demonstrate that the proposed system outperforms existing approaches (Logeswari, Bose
& Anitha, 2023).

In the framework of SDN, the authors propose a method known as NIDS-DL. The
suggested strategy combines a number of deep learning techniques with NIDS. The
approach uses a feature selection technique, choosing 12 features from the total of 41
features in the Network Security Laboratory Knowledge Discovery Databases (NSL-KDD)
dataset. Among the various classifiers we used were convolutional neural network (CNN),
deep neural network (DNN), recurrent neural network (RNN), long short-term memory
(LSTM), and gated recurrent unit (GRU). The method produced accuracy ratings of
98.63%, 98.53%, 98.13%, 98.04%, and 97.78%, respectively, when comparing the classifiers’
scores. To get the best results, the Network Intrusion Detection System Deep Learning
(NIDS-DL) method preprocesses the dataset and applies five deep learning classifiers. The
recommended method was successful in binary classification and attack detection,
indicating that NIDS-DL has a tremendous deal of promise for future applications (Hadi ¢
Mohammed, 2022).
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The purpose of this research was to provide Secured automatic two level Intrusion
Detection System (SATIDS), which was an updated LSTM network, in order to
differentiate between malicious and non-malicious traffic. It also specifies the type of
high-performance subattack and the category of attacks in question. To train and evaluate
the proposed method, make use of two of the most current actual Internet of Things
datasets, namely Telecommunications and Networking Internet of Things (ToN-IoT) and
Intrusion dataset for Software Defined Networks (InSDN). They analyzed and compared
the proposed system’s performance to other IDS to demonstrate its effectiveness
(Elsayed et al., 2023).

Employed a deep learning algorithm to evaluate the efficacy of our DeepIDS in detecting
network intrusions. The results suggest that the approach showed potential for future
progress. Validated the potential of deep learning in the context of flow-based anomaly
detection system by conducting a comparative analysis with other classifiers. The deep
learning-based IDS technique shows potential in a SDN environment (Tang et al., 2020).

To train deep learning models to identify potentially malicious or suspicious packets,
the SDN switch has sequentially logged the packet lengths. The proposed model uses and
contrasts four distinct deep learning models: CNN, LSTM, multilayer perceptron (MLP),
and a stacked auto-encoder. The experimental results indicate that the recommended
MLP-based DL-IDPS obtains the highest accuracy (Lee, Chang & Syu, 2020).

The authors of this article developed a deep learning-based method for predicting
network assaults in SDN-IoT networks. Using a four-hidden-layer model based on LSTM,
identify attacks in the SDN-IoT network dataset and categorize them into several types.
After comparing the DL model’s performance to that of the ML classifier SVM and the
other two DL models—DNN and CNN—we found that it outperformed all three in
identifying the various network hazards present in the dataset (Chaganti et al., 2023). To
identify assaults, researchers put forward and evaluated a DCNN model in an environment
of software-defined networks (SDNs). They make use of the InSDN dataset (Hnamte ¢
Hussain, 2023).

Said Elsayed et al. (2020) presents a novel approach to detecting anomaly-based attacks
in an imbalanced dataset using LSTM autoencoders and SVM. The training data only
contains samples that are typical of the classes. During our research, we developed a model
that accurately determines and extracts the most relevant qualities from the provided
parameters, as referenced in. Afterwards, the model utilizes deep learning techniques to
classify invasions. Particularly important is the fact that it is not accurate to think of the
underlying data points as samples from a single distribution. They have their roots in two
distinct distributions, one of which is specific to a particular domain and the other of which
is applicable to all network invasions. Both of these distributions contributed to their
development (Elsayed et al., 2021).

Singh et al. (2018) proposed an approach to protect SDNs against distributed denial of
service attacks is machine learning. There are three parts to this system: training, feature
extraction, data gathering on flows, and network data categorization. This security system
uses a number of machine learning models, such as decision trees, logistic regression,
support vector machines, and nearest neighbors, to differentiate between legitimate and
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malicious communications. The best algorithm is one that can identify attacks with the
fewest false positives and the greatest accuracy. In their demonstration of an attack
detection approach, Chen et al. (2018) used the XGBoost predictor. We took advantage
of the controller’s features to include the traffic gathering and categorization models.
Finding the best way to deal with the controller’s fears was the driving force behind the
inquiry.

Smys, Basar ¢ Wang (2020) introduced a hybrid approach that integrated traditional
machine learning with a conventional technique to create an intrusion detection system for
Internet of Things networks. This IDS model employs a two-step process to identify
network intrusions. First, it trains CNN model utilizing features extracted by LSTM model.
The CNN model subsequently use such characteristics to detect network breaches. The
system shown in Saba et al. (2022) utilizes deep learning and anomaly detection techniques
to provide an intrusion detection system specifically designed for the Internet of Things.
An intrusion detection system must use a convolutional neural network to oversee all
network traffic, including both inbound and outbound data connections. The primary
objective of study (Hassan et al., 2024) was to promptly identify hazards within an SDN
system. Despite being a next-generation network architecture, the SDN was susceptible to
breaches due to its centralised configuration options.

METHODOLOGY

The proposed intrusion detection system shown in Fig. 1 employs an innovative and
automated approach to detect and categorize network intrusions using data from the IoT
networks. We eliminate any missing values (NaN), unnecessary features, and redundant
features to prepare the SDN intrusion data. We then partitioned the data into two sets,
organized it, and systematically transformed it using a label encoder, standard scaler, and
other relevant methods. We optimize deep models via parameter modification, utilizing
both the proposed lightweight model for feature extraction and the extracted data for
attack detection. We evaluate performance using multiple metrics.

Dataset details

InSDN is an extensive dataset specifically designed for assessing intrusion detection
systems in the context of SDN. The recently published dataset comprises a diverse array of
assaults, including both harmless and harmful ones, that have the potential to target
several standard components of SDN. InSDN considers a range of threats, including DoS,
DDoS, brute force attacks, web application vulnerabilities, exploitation attempts, probes,
and botnets. The created data is often sent over many widely used application services,
such as email, File Transfer Protocol (FTP), Secure Shell (SSH), Domain Name System
(DSH), Hypertext Transfer Protocol Secure (HTTPS), Hypertext Transfer Protocol
(HTTP), Secure Sockets Layer (SSL), and others. We generated the dataset using four
virtual machines. The first virtual computer serves as a substitute for the malevolent server
running Kali Linux. The ONOS controller connects to the secondary system, an Ubuntu
16.4 server. The third server is an Ubuntu 16.4 system that is compatible with both OVS
and Mininet switches. In addition, we used the same OVS technology to create the Damn
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Figure 1 The proposed methodology for SDN intrusion detection-based attacks is visualized, adhering to the detailed flow of the
methodology.

Full-size K] DOI: 10.7717/peerj-cs.3103/fig-1

Vulnerable Web Application Server (DVWA) inside a Docker container. We also
evaluated many potential attack scenarios that may arise from both inside and outside the
SDN network. The OVS_Group is a fixed representation of the OVS server’s assault
recordings. The six components of the course address various topics like web assaults,
brute force attacks, botnets, distributed denial of service, and probing attacks
(Badcodebuilder, 2023). The dataset records are shown in Fig. 2.
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Figure 2 Dataset size: the total number of counts of normal and OVS group data.
Full-size K&l DOT: 10.7717/peerj-cs.3103/fig-2

Data preprocessing

Data preparation is the process of modifying the values in a dataset in order to improve
data collection and manipulation. Because there is such a large discrepancy between the
dataset’s top and lowest values, normalizing the data makes the method go more smoothly.
According to reference (Yadav & Kalpana, 2019), there are substantial advantages to data
normalization for neural network algorithm classification. Training neural networks
utilizing the back-propagation technique becomes much faster with input value
normalization applied, resulting in a more efficient neural network. Dataset processing
begins with removing null values and empty cells. To prevent any potential damage to the
model, we eliminated rows with empty data. When training on massive datasets, it may not
always be a good idea to use every feature. Some features of the dataset can influence the
outcome negatively. By obtaining the dataset’s correlation matrix, we may identify
superfluous features and eliminate those with high correlation values (Yang et al., 2022).

Reshape data

Data reshaping modifies the configuration of data from one format to another to enable
analysis or subsequent processing. During this phase, rows and columns may be
reorganized, the data type may be modified, or the format may shift from wide to long. The
numpy.reshape() function can change the shape of a numpy array without modifying its
data. To maintain compatibility of arrays with supplementary operations, it is often
necessary to alter their geometry. The np.reshape() function modifies the array’s shape and
thereafter returns the array in its new configuration. The only requirement is that both the
original array and the updated array possess the same number of elements.

Normalization

Data designed for machine or deep learning is frequently normalized before applications.
Normalization is the procedure of ensuring uniformity in the dimensions of all columns
within a dataset. Normalizing each sample is not requisite for machine learning. It is
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# Reshape data

if len(X_train.shape) ==
X_train = np.reshape(X_train, (X_train.shape[@], 1, X_train.shape[1]))
X_test = np.reshape(X_test, (X_test.shape[0], 1, X_test.shape[1]))

# Normalize the data

scaler = StandardScaler()

X_train = scaler.fit_transform(X_train.reshape(-1, X_train.shape[-1])).reshape(X_train.shape)
X_test = scaler.transform(X_test.reshape(-1, X_test.shape[-1])).reshape(X_test.shape)

# Encode the Llabels

label_encoder = LabelEncoder()

y_train = label_encoder.fit_transform(y_train)
y_test = label_encoder.transform(y_test)

# Convert labels to categorical
num_classes = len(np.unique(y_train))
y_train = to_categorical(y_train, num_classes=num_classes)

y_test = to_categorical(y_test, num_classes=num_classes)

Figure 3 Code snippet for label encoding, reshaping of data, and normalization.
Full-size K&l DOT: 10.7717/peerj-cs.3103/fig-3

crucial when the feature ranges vary. The use of normalized data enhances both the
accuracy and utility of a model. A prevalent method of discussing min-max scaling is to
achieve uniformity. Modification of the features occurs within a specific range, typically
between 0 and 1. This is advantageous in scenarios where upholding the original range is
essential and remains inside the specified range, allowing for the original figures to be
comprehended.

Label encoder

A prominent technique in artificial intelligence is to transform category data into a
numerical representation that systems can readily supervise. An effective method for doing
this is by label encoding, where each category item is assigned an integer value based on its
alphabetical order. This strategy is direct and entails transforming every value in a column
into a numerical representation (Jia ¢» Zhang, 2021). The description of how to performed
label encoder, reshape of data and normalization are shown in Snipped Fig. 3.

Data splitting

To split the data into a training set and a testing set, the study used the (train_test_split)()
function as illustrated in Fig. 4. It is necessary to categorize data into two distinct groups:
attributes (X) and labels (Y). The dataset has four variables: X;rain, X;est, y;rain, and
yeest(). Using the X;rain and y,rain datasets, perform model training and fine-tuning.
Evaluate the model’s output and label predictions by comparing them with the X;est and
yrest sets. We have the option to conduct direct tests on the percentages of the training or
test set. It is often advisable to ensure that training sets are larger than our test sets. A
specific collection of data known as the training dataset shapes the model. The model
receives instructions from the dataset. Based on its observations, the model learns new
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# Separate the features (X) and the target variable (y)
X = data.drop('Label’, axis=1)

y = data[ 'Label’

# Split the data into training and testing sets

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20, random_state=42)

Figure 4 Data splitting, separate features and target label from the SDN intrusion dataset.
Full-size K&] DOT: 10.7717/peerj-cs.3103/fig-4

knowledge (Palimote, Atu ¢ Osuigbo, 2021). The import statements for the Pandas,
Scikit-Learn, and Numpy libraries are imported. X encompasses the characteristics,
whereas Y encompasses the labels. After dividing the dataframe into two equal halves, we
performed a train-test split on both the X and Y halves. In order to ensure the consistency
of data, the random;tate parameter functions as a seed for numpy.

Proposed hybrid LSTM-SRF architecture

An LSTM utilizes ways to handle both short-term memory and long-term memory.
LSTMs use gates to enhance and expedite the computational process. Recurrent neural
networks (RNNs) trained using backpropagation are notorious for their struggles in
learning long-term dependencies due to the issue of vanishing and exploding gradients. To
mitigate the visibility of expanding gradients, one may use gradient cropping. However,
addressing the issue of fading gradients requires a more intricate approach. The LSTM
model proposed by Hochreiter ¢ Schmidhuber (1997) was an early and successful solution
to the problem of vanishing gradients. While LSTMs use memory cells instead of ordinary
recurrent nodes, their behavior is largely similar to that of conventional recurrent neural
networks. Each node in the network corresponds to the state of an internal memory cell.
There is a single recurrent edge with a constant weight between this node and itself.
Because of this design, the gradient may require many time steps to propagate in order to
avoid becoming too small or large. Figure 5 presents the proposed deep extractor
framework based on deep and supervised RF (random forest) technique for best
performance in attack detection.

This concept gives rise to a “long, short-term memory”. Weights can help simple
recurrent neural networks preserve their memories over time. Training gradually adjusts
the weights to collect and display a diverse range of data-related information. Transient
activation, which transfers across nodes, contributes to their short-term memory. A
memory cell serves as an additional storage component inside the LSTM architecture. The
intricate configuration of a memory cell is determined by the arrangement of basic nodes
interconnected in a certain way with multiplicative nodes. LSTMs specifically aim to
reduce long-term dependence. The capacity to retain information over an extended period
is mostly an inherent inclination rather than a skill that needs deliberate cultivation. The
sequence of modules that make up a recurrent neural network share the same
characteristics as any other neural network. The primary element of traditional RNNs is a
basic repeating module consisting of a single tanh layer.
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extraction framework. This system is designed to identify and detect malicious attacks specifically in
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Input layer

The input layer is the first stage of the LSTM network. This results in continuous or
sequential data where each data point is a vector representing the characteristics of the
time series. By organizing the data in this way, the order and timing of sample events can
be determined, which is important for applications such as anomaly detection.

Hidden layer

It’s also called LSTM layers, which are responsible for processing and storing data over
time. Unlike traditional neural networks, these cells have an internal memory that uses
structures called tags to determine what data to store, update, or retrieve at each stage. This
feature allows the model to predict crucial sequences and effectively manage short- and
long-term dependencies.
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Memory cell

Each LSTM acts as a mini-network unit. This type of cell maintains an internal state that
changes between time domains, which helps the network “remember” important
information and “forget” unimportant bits. It contains input, forget and output gates.

By passing via the forget gate, it eliminates superfluous data from the cell state. The gate
processes the inputs x; (the input at the given time, x refers to the input and t for time) and
h;_y (the output of the previous cell, h refers to the hidden state and ¢ for time) by
multiplying their weight matrices and adding the bias. An activation function processes the
result into binary format. In certain cellular conditions, we exclude the data if the result is
0, but we retain it if the output is 1.

The input gate alters the cell’s state by incorporating relevant data. To control the data,
we use the sigmoid function to choose the values to save. Using h;_; and x; as inputs, it
operates similarly to the neglect gate. Next, we use the tanh function to create a vector of all
possible values for h;_; and x;, which may take on values between —1 and +1. In order to
acquire meaningful results, we multiply the vector values by the regulated values.

The output gate’s primary function is to assess the cell’s current condition and provide
an output that contains valuable information. The first step involves using the cell’s
hyperbolic tangent function to generate a vector. Subsequently, we extract the desired
values from the variables 4, — 1 and x; and subject them to the sigmoid function in order
to control and refine the data. Before sending the vector and controlled values to the next
cell, the last step is to perform a multiplication operation on them.

Output layer

The output layer takes the subsequent information from the LSTM and converts it into a
useful output. It typically consists of a single (fully connected) layer that feeds one or more
hidden states to the target. The threat patterns such as DoS, DDoS, brute force attack, web
applications, exploitation, probe, and botnet are analyzed. Furthermore, the normal traffic
in the generated data covers various popular application services such as HTTPS, HTTP,
SSL, DNS, Email, FTP, SSH, etc.

The supervised learning process uses the random forest method. The algorithm utilizes
the bagging technique to train a group of decision trees, which together form the generated
“forest.” The bagging approach relies on the fundamental principle that using several
learning models improves the final outcome. The main benefit of random forest is its
capability to handle both classification and regression problems, which are the
predominant types of tasks in contemporary machine learning systems. The random forest
model becomes progressively more unpredictable as the number of trees increases. When
splitting a node, it looks for the most beneficial trait from a randomly chosen collection of
qualities, rather than the most important feature. This leads to a model that is typically
better and exhibits a substantial degree of variety. Random forest streamlines the
assessment of a variable’s significance or impact on the model. Several techniques exist for
assessing the significance of a trait.
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Table 1 Details about hyperparameters, activation functions, and optimizers for deep learning

models.
Parameter Value
Kernel regularizer 11 0.001
Activation Relu
Optimizer Adam
Epochs 100
Batch size 64
Loss Categorical

Models training

We constructed the proposed model and tested its intrusion detection performance using
an Anaconda Jupyter Notebook on an Intel Core-i7 CPU with 16 GB of RAM and the
Windows 10 environment. When we set the shuffle parameter to True, the shuffling
process discloses our information. To begin the process, we use the X;rain and X;est
datasets to train and optimize our model. Subsequently, we subjected it to rigorous testing
to evaluate its performance. We used a 64-unit batch size, a 0.001 kernel regularizer,
dropouts, and 100 epochs. Details about hyperparameters, activation functions, and
optimizers for deep learning models is illustrated in Table 1.

Evaluation

We evaluated the performance using several metrics such as the confusion matrix,
ROC-AUC (Sainis, Srivastava ¢ Singh, 2018), accuracy, precision, recall, F1-score, and
precision-recall curves. We conducted an analysis and comparison of the proposed
system’s performance with that of other systems. The classifier only relies on the frequency
of correct predictions as the sole statistic it evaluates. One way to measure accuracy is to
calculate the ratio of correct predictions to the total number of forecasts made. A precision
is one that yields the anticipated ratio of correct positive outcomes to the total number of
actual positive outcomes. A label’s recall is defined as the ratio of the total number of
genuine positives to the number of true positives. The F1-score applies a more severe
penalty to outliers. When the costs of false negatives (FN) and false positives (FP) are
equal, the F1-score may serve as a reliable indicator for assessment. The true negative rate
is noticeably higher.

IDTP + IDTN

A = 1
Y = IDTP t IDFN 1 IDFP + IDTN M
. IDTP
Precision—PR = ————— (2)
IDTP + IDFP
IDTP
Recall-RE = ———— (3)
IDTP + IDFN
PR x RE
F1-Score =2 x ——. (4)
PR + RE
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Table 2 Classification performance using RNN method.

Precision Recall F1-score TPS WPS Support
BFA 0.8776 0.8595 0.8685 208 34 242
BoTNET 1.0000 1.0000 1.0000 29 0 29
DDoS 0.9989 1.0000 0.9994 9,655 0 9,655
DoS 0.9815 0.9987 0.9900 10,384 14 10,398
Normal 0.9996 0.9988 0.9992 13,887 16 13,903
Probe 0.9999 0.9775 0.9886 7,007 161 7,168
Web-attack 0.9444 0.4857 0.6415 17 16 35
Accuracy 0.9941 - - 41,430
Macro average 0.9717 0.9029 0.6267 - - 41,430
Weighted average 0.9942 0.9942 0.9941 - - 41,430

RESULTS AND DISCUSSION

This section provides the experimental results using RNN, GRU, bidirectional long short-
term memory (BiLSTM), proposed LSTM and Hybrid model.

Classification performance using RNN

To get the macro average of a particular metric, it is necessary to calculate the metric for all
labels and then calculate the average without considering the percentage of each label in
the dataset. To compute the average for a given set of labels, one must determine the metric
on all label in the collection and then aggregate the number and percentage of all the label
to get the weighted average of that metric. The performance of the deep RNN approach on
the SDN dataset is shown in Table 2. All performance metrics are assessed in the
experiments to evaluate the effectiveness and accuracy of the models in detecting network
attacks. The BFA label achieved very poor scores in all categories. The BOTNET assaults
achieved a performance of 100% utilizing accuracy, recall, and F1-score. Additionally, it
made 29 positive predictions out of 29, with no erroneous predictions. The RNN approach
attained an accuracy of 99.4% and a macro average of 97.1%.

Classification performance using GRU

Table 3 gives an overview of how well the deep GRU technique performed on the SDN
dataset. During the experiments, each and every performance measure is evaluated in
order to determine how successful and accurate the models are in identifying network
threats. In each and every category, the Web-Attack label received very poorly received
evaluations. When it comes to accuracy, recall, and F1-score, the BOTNET attacks were
able to attain a good performance. Additionally, it produced 29 accurate forecasts out of a
total of 29, and it did not make any incorrect predictions. Using the GRU method, we were
able to get an accuracy of 99.8% and a macro average of 95.2%.

Classification performance using BiLSTM
Table 4 describes the results of the deep BiLSTM method on the SDN dataset. For the
purpose of determining the models’ efficacy and precision in detecting network threats, the
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Table 3 Classification Performance using GRU method.

Precision Recall F1-score TPS WPS Support
BFA 0.9102 0.9628 0.9357 233 9 242
BoTNET 1.0000 1.0000 1.0000 29 0 29
DDoS 0.9998 1.0000 0.9999 9,655 0 9,655
DoS 0.9983 0.9986 0.9984 10,383 15 10,398
Normal 0.9996 0.9997 0.9997 13,899 4 13,903
Probe 0.9999 0.9979 0.9989 7,153 15 7,168
Web-attack 0.7586 0.6286 0.6875 22 13 35
Accuracy 0.9986 - - 41,430
Macro average 0.9523 0.9411 0.9457 - - 41,430
Weighted average 0.9986 0.9986 0.9986 - - 41,430

tests assess all performance metrics. Reviews for the BFA-Attack label were mostly
negative across the board. The accuracy, recall, and F1-score were all positively affected by
the BOTNET assaults. We achieved a macro average accuracy of 94.1% and a precision of
99.5% by using the BiLSTM technique.

Classification performance using proposed LSTM

Table 5 presents the results of the deep LSTM method applied to the SDN dataset. The
DDoS attack obtained a precision rate of 99.98%, the BFA achieved a F1-score of 93.91%,
the DoS achieved a F1-score of 99.93%, and the Web-assault earned a recall score of
54.29%. The LSTM model attained a macro recall of 93.26% and a Fl-score of 94.34%.
Additionally, method achieved weighted average performance of 99.90%.

Classification performance using the proposed model
After the deep experiments, we see that LSTM method perfroms best, so we extract
features from the leightweight LSTM network, and design supervised random forest model
for the intrusion detection. Random Forest generates several bootstrap samples from the
core dataset. Randomly swapping data points creates samples. The multiple subsets created
by this approach may cause data differences in different trees. Decision trees do
predictions by building on each other. Each tree puts in a “vote” for a class, and the class
with the most votes obtains. Since each decision tree learns from a different data source,
random forests may combine their predictions. Combination in prediction and voting in
classification decrease tree variance in Random Forest, improving prediction accuracy. The
results of the proposed method applied to the SDN dataset are shown in Table 6. The
DDoS attack had an accuracy rate of 100%, the BFA had a recall score of 97.93%, the DoS
had a precision score of 99.98%, and the Web-assault had a recall score of 82.86%. The
model achieved a macro recall of 97.23% and a F1-score of 96.55%. In addition, the
approach attained a weighted average performance of 99.93%.

There are four different multiclass classification methods: RNN, GRU, BiLSTM, and
LSTM. Figure 6 depicts the training accuracy and loss graphs for each of these techniques.
The results shown in Fig. 6 show that the LSTM outperformed the RNN in terms of the
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Table 4 Classification performance using BiLSTM method.

Precision Recall F1-score TPS WPS Support
BFA 0.5916 0.9876 0.7399 208 34 242
BoTNET 1.0000 1.0000 1.0000 29 29
DDoS 1.0000 0.9998 0.9999 9,655 9,655
DoS 0.9991 0.9855 0.9923 10,384 14 10,398
Normal 0.9995 0.9996 0.9996 13,887 16 13,903
Probe 0.9997 0.9987 0.9992 7,007 161 7,168
Web-attack 1.0000 0.6286 0.7719 17 18 35
Accuracy 0.9956 - - 41,430
Macro average 0.9414 0.9428 0.9290 - - 41,430
Weighted average 0.9972 0.9956 0.9960 - - 41,430

Table 5 Classification performance using proposed modified LSTM method.

Precision Recall F1-score TPS WPS Support
BFA 0.8951 0.9876 0.9391 239 3 242
BoTNET 1.0000 1.0000 1.0000 29 0 29
DDoS 0.9998 1.0000 0.9999 9,655 0 9,655
DoS 0.9994 0.9991 0.9993 10,389 9 10,398
Normal 0.9999 0.9996 0.9997 13,898 5 13,903
Probe 0.9999 0.9987 0.9993 7,159 9 7,168
Web-attack 0.8636 0.5429 0.6667 19 16 35
Accuracy 0.9990 - - 41,430
Macro average 0.9654 0.9326 0.9434 - - 41,430
Weighted average 0.9990 0.9990 0.9990 - - 41,430

Table 6 Classification performance using lightweight features SRF.

Precision Recall F1-score TPS WPS Support
BFA 0.9518 0.9793 0.9654 237 5 242
BoTNET 1.0000 1.0000 1.0000 29 0 29
DDoS 1.0000 1.0000 1.0000 9,655 0 9,655
DoS 0.9998 0.9992 0.9995 10,390 8 10,398
Normal 0.9999 0.9997 0.9998 13,899 4 13,903
Probe 0.9996 0.9993 0.9994 7,163 5 7,168
Web-attack 0.7632 0.8286 0.7945 29 6 35
Accuracy - - 0.9993 - - 41,430
Macro average 0.9592 0.9723 0.9655 - - 41,430
Weighted average 0.9993 0.9993 0.9993 - - 41,430

accuracy of its training. An increase in the number of epochs led to an improvement in the

accuracy of the models. The figures also feature loss graphs, which are included in order to

provide a better understanding of the efficacy of the model.
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Figure 6 Accuracy and loss for (A) RNN, (B) GRU and (C) LSTM methods during hundred epochs.
Full-size K&l DOT: 10.7717/peerj-cs.3103/fig-6

Figure 7 displays the precision and recall curves for the multiclass classification of the
proposed model architecture. The proposed approach successfully classified network
connection records as either malicious or legitimate. The suggested strategy has shown to
be successful for the majority of attack types in the multiclass category. This demonstrates
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Figure 7 Precision and recall curves for different model describing the performance of each attack
for (A) RNN, (B) GRU and (C) LSTM model. Full-size ka] DOI: 10.7717/peerj-cs.3103/fig-7

the credibility of the proposed method and its ability to enhance the accuracy of multiclass
classification.

TSNE visualization

Deep learning models can consist of several hidden layers, which might be a challenge
when it comes to understanding them. These models may be likened to a “black box,”
concealing the internal mechanisms by which they analyze incoming data in order to
provide the most effective outcomes. In order to get a more comprehensive understanding
of how deep learning models acquire knowledge from various hidden layers, a technique
called t-distributed stochastic neighbor embedding (t-SNE) may be used for feature
visualization (Hamid ¢» Sugumaran, 2020). The t-SNE visualization method, similar to
principal component analysis (PCA), reduces high-dimensional data to lower-dimensional
values and displays them in two dimensions (Chapagain et al., 2022). We used features
extracted from the penultimate layer of the proposed model for both binary and multiclass
classification. Figures 8 and 9 depict the graphs for multiclass classification. These graphs
illustrate the two dimensions of the inputs used in t-SNE. The clusters in which the assault
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Figure 8 The t-SNE visualization method, similar to principal component analysis (PCA), reduces high-dimensional data to
lower-dimensional values and displays them in two dimensions using SDN dataset consists seven attacks.
Full-size k&l DOT: 10.7717/peerj-cs.3103/fig-8

and typical traffic data occurred exhibited little overlap, as seen in Fig. 8. The model’s
ability to differentiate between malicious and benign traffic is clearly shown here. Figure 10
illustrates the classification of various assaults based on their distinct characteristics.
Conversely, the model may have learned several attack-specific feature patterns, since most
forms of assault divide the clusters into two or more.

Confusion matrix

Confusion matrix are numerical arrays that highlight model performance. Classification
models predict performance in each category (Sokkalingam ¢ Ramakrishnan, 2022).
Confusion matrix link results to initial data categories. This data shows that confusion
matrix are beneficial in supervised learning when the output distribution is known. The
confusion matrix simplifies classifier accuracy estimates for broad and specialized
categories. It also helps identify additional essential factors that model developers use to
evaluate the work. A confusion matrix may enable learning, which combines numerous
models on the test set of the same dataset to provide the best results as seen in Fig. 10. Even
with several classes, the confusion matrix ideas stay the same.
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using the SDN dataset 2 the SDN dataset comprises five attacks. Full-size k&l DOT: 10.7717/peerj-cs.3103/fig-9

Experiments with additional dataset

We further evaluate the efficacy of the proposed model using additional multi-class
datasets, each comprising five classes. Table 7 demonstrate that web-based attacks such as
XSS and SQL injection earned a stunning precision score of 100%, while DDoS attacks
recorded 99.98% and benign instances achieved 99.87%. Conversely, brute force attacks
yielded a precision of only 46.09%. The DDoS attack achieved a 99.94% F1-score and a
95% weighted F1-score. The model demonstrated superior performance on an alternative
multi-class dataset.

Proposed model results using SMOTE technique

The results obtained from the balanced InSDN dataset using SMOTE technique is
illustrated in Table 8. SMOTE is an abbreviation for the synthetic minority over-sampling
technique. This methodology is an oversampling strategy that produces synthetic minority
class samples to balance the dataset. SMOTE is a technique for augmenting data by
employing interpolation between instances of minority classes to create new synthetic
samples.
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Figure 10 Results for confusion matrix. (A) presents the confusion matrix results for BILSTM model, (B) presents the confusion matrix results for
GRU model, (C) presents the confusion matrix results for RNN model, (D) presents the confusion matrix results for Proposed model. The BiLSTM

model achieved nine wrong predictions for class 5, GRU model achieved 15 wrong predictions, RNN model achieved 161 wrong predictions and the
proposed model achieved five wrong predictions. Full-size Ka] DOT: 10.7717/peerj-cs.3103/fig-10

Mujahid et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3103 22/30


http://dx.doi.org/10.7717/peerj-cs.3103/fig-10
http://dx.doi.org/10.7717/peerj-cs.3103
https://peerj.com/computer-science/

PeerJ Computer Science

Table 7 Proposed model results on additional multi-class datasets.

Attack Precision Recall F1-score
Benign 0.9987 0.9307 0.9635
DDoS 0.9998 0.9989 0.9994
Web attack (brute force) 0.4609 1.0000 0.6310
Web attack (XSS) 1.0000 0.5833 0.7368
Web attack (SQL injection) 1.0000 0.0317 0.0614
Weighted avg. 0.9763 0.9495 0.9500

Table 8 Proposed model results using SMOTE technique.

Precision Recall F1-score TPS WPS
BFA 0.9878 1.0000 0.9938 242
BOTNET 1.0000 1.0000 1.0000 29
DDoS 1.0000 1.0000 1.0000 9,655 0
DoS 0.9995 0.9990 0.9993 10,388 10
Normal 0.9998 0.9994 0.9996 13,895
Probe 0.9993 0.9994 0.9994 7,164 4
Web-attack 0.8537 1.0000 0.9211 35
Accuracy 0.9995 - -
Macro average 0.9771 0.9997 0.9876 - -
Weighted average 0.9995 0.9995 0.9995 - -

Synthetic samples are produced by SMOTE to create links among proximate neighbors
in the feature space. SMOTE produces new minority class samples by repeatedly
transitioning from a minority class sample to one of its k nearest neighbors in the feature
space, with k being a parameter of the algorithm.

Comparison with existing state of the art work

Table 9 presents a comparison with our research results and those of other scholars who
have examined intrusion detection systems in SDN networks. ML/DL models and risk
classification in SDN networks need the use of numerous datasets. Ravi, Chaganti ¢
Alazab (2022) utilised the deep learning GRU approach for attack classification with the
SDN dataset, attaining an accuracy of 98%. Said, Sabir ¢» Askerzade (2023) employed a
hybrid approach combining CNN and BiLSTM in an SDN environment, achieving an
accuracy of 97%. Arthi, Krishnaveni & Zeadally (2024) also employed a hybrid model,
specifically DNN-SVM, in an SDN context and attained 96% accuracy. Tang et al. (2020)
utilised the NSL-KDD dataset for intrusion detection system (IDS) attack detection and
attained a notably poor accuracy. Chaganti et al. (2023) used simple LSTM model for the
classification of SDN attacks. The authors employed two datasets, one with two classes and
the second with five classes, for the classification. The LSTM attained low accuracy and did
not explain the preprocessing techniques well. Our proposed model developed a hybrid
approach, LSTM-SRF, to extract features using deep learning and make detections using
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Table 9 Comparison with existing state of the art work.

Ref. Method Datasets System Accuracy
Ravi, Chaganti & Alazab (2022) GRU SDN Intrusion detection  98.4
Said, Sabir & Askerzade (2023) CNN-BiLSTM  SDN Intrusion detection  97.1
Arthi, Krishnaveni & Zeadally (2024) ~ DNN-SVM SDN Intrusion detection 96.7
Logeswari, Bose ¢ Anitha (2023) HFS-LGBM NSL-KDD  Intrusion detection  98.7
Hadi & Mohammed (2022) CNN NSL-KDD  Intrusion detection 98.6
Tang et al. (2020) GRU-RNN NSL-KDD  Intrusion detection  89.1
Chaganti et al. (2023) LSTM SDN Intrusion detection  97.1
Elsayed et al. (2021) CNN SDN Intrusion detection  98.6
(Our) SRF SDN Intrusion detection  99.9

the SRF model. Also, we utilized two datasets, one with five classes and the second with
seven classes, which is different from the mentioned work. Our proposed model attained
superior performance and uses fewer resources, making it computationally efficient.
Unlike previous studies that used SDN networks for training and testing purposes, our
research achieved a remarkable accuracy rate of 99% in classifying attacks.

Explainable artificial intelligence

We employed explainable artificial intelligence (XAI) techniques such as SHAP. SHAP
aims to enhance the comprehensibility and interpretability of AI models for humans. The
objective of SHAP is to elucidate the mechanisms by which models make decisions,
enabling professionals to comprehend the rationale underlying forecasts, classifications,
and recommendations. These strategies facilitate our understanding of the prediction
mechanisms employed by black-box models. Explainability of the proposed model using
SHAP is shown in Fig. 11.

Limitations and future work

Although the main focus of our article is on detecting IoT network intrusion attacks using
deep learning, we ensure that it is crucial to integrate security methods with the SDN
control layer to ensure robust security. To address such an issue in future work, we plan to
introduce distributed SDN architectures to reduce the number of single-point nodes.
Furthermore, the development of blockchain technology or security verification networks
will improve the security of the regulatory platform.

The adversarial attacks seriously bypass deep learning-based models. Although our
main objective was not adversarial, we will address this limitation in the future. Future
research should also investigate adversarial examples and robust learning techniques to
increase model resilience to new assumptions meant to evade detection.

We believe that one of the challenges facing the cyberthreats is the ever-changing nature
of attacks. Such developments could make traditional IDS models obsolete over time.
Although our study uses publicly available InSDN and other data sources, we ensure that
continuous improvements are essential for long-term success. Future research will use
customised training materials and federated learning techniques to adjust the model to
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new and developing threats. Additionally, we see potential in federated learning that allows
multiple tools to collaborate on standardisation while also ensuring that systems remain up
to date and privacy is maintained in the context of unauthorised data storage.

CONCLUSION AND FUTURE DIRECTIONS

This article proposes a straightforward method to reliably detect attacks in
intrusion-defined software-defined networking. We utilized an eleven-layer LSTM model
to extract attacks from the dataset, subsequently feeding the extracted features into
supervised random forests for various attack detections. Our comparative analysis
demonstrated that the proposed model outperformed classifiers and showed superior
capability in identifying different types of network attacks in the dataset, surpassing
existing deep learning models such as RNN and GRU. By evaluating our model on an
alternative dataset, we have also shown the applicability of our proposed approach to
detecting intrusions in SDN networks as a whole.

The results indicate that the RNN model produced 16 erroneous predictions, the GRU
model 13, the BiLSTM model 18, the LSTM model 16, and the proposed hybrid model 6,
utilising the InSDN dataset for web attacks. In the context of DoS, the RNN model
produces 14 erroneous predictions, the GRU 15, the BiLSTM 14, the LSTM nine, and the
proposed hybrid model eight, utilising the InSDN dataset. Upon balancing the dataset
using SMOTE, applied just to the training data, we recorded zero erroneous predictions for
web attacks and four for probe attacks. In overall, with imbalanced data, we recorded 28
erroneous predictions across all attacks throughout testing, whereas with balanced data, we
noted 22 erroneous predictions. The proposed approach performs effectively on both
imbalanced and balanced datasets for attack detection.
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