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ABSTRACT
Data augmentation is a pivotal part of graph contrastive learning, which can mine
implicit graph data information to improve the quality of representation learning.
Research on graph data augmentation has achieved promising results in recent years.
However, existing graph contrastive learning methods are trapped in inherent
predefined augmentation schemes, which greatly limits the generalization of
augmentation methods. To this end, we propose a new adaptive original topology
learnable data augmentation algorithm, Graph Contrastive Learning with Adaptive
Learnable View Generators (GCL-ALG), to optimize the augmentation process and
feature learning in an end-to-end self-supervised learning approach. Specifically,
GCL-ALG introduces graph neural networks (GNN), graph attention modules and
edge probability distributions to build a dual-level feature extraction framework to
generate highly reliable representations, while integrating network science theory to
selectively modify the strength of augmentation probabilities from node-level and
edge-level, and then train dynamically learnable augmentation instances. Moreover,
GCL-ALG designs multiple loss functions to drive the representation optimization to
ensure that the generated graph representations are highly discriminative across
different tasks. Extensive experiments are conducted on unsupervised learning,
semi-supervised learning and transfer learning application tasks. The experimental
results demonstrate the superior performance of the proposed GCL-ALG method on
16 benchmark datasets.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, DataMining andMachine
Learning, Neural Networks
Keywords Automated data augmentation, Graph contrastive learning, Learnable view generator,
Graph neural networks

INTRODUCTION
Graph representation learning has long been an important and challenging task (Chen
et al., 2020a; Hamilton, Ying & Leskovec, 2017). In recent years, graph neural networks
(GNNs) (Wu et al., 2022), which have shown better performance in graph representation
learning, have garnered extensive attention in a wide range of application scenarios such as
social network analysis (Perozzi, Al-Rfou & Skiena, 2014), recommendation system
development (He et al., 2023; Jiang, Huang & Huang, 2023), knowledge graph analysis
(Huang et al., 2023) and prediction of biochemical molecules (Li, Huang & Zitnik, 2022;
Senior et al., 2020). However, most existing GNN models are trained in an end-to-end
supervised manner (Zhang et al., 2018; Kipf & Welling, 2016a), which is both
time-consuming and expensive to annotate. To address these issues, unsupervised
contrastive learning designed GNN as self-supervised encoders has received attention from
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graph researchers (Kipf & Welling, 2016b; Liu et al., 2022, 2021; Zeng & Xie, 2021). The
unprecedented success of contrastive learning in computer vision (Chen et al., 2020b; He
et al., 2020) and natural language processing (Wang et al., 2021;Gao, Yao & Chen, 2021; Lu
et al., 2022) has inspired them to produce highly robust and transferable models by
incorporating the idea of self-supervised learning.

In the process of constructing a contrastive model, data augmentation is considered as a
critical factor, and the quality of the augmented views can even directly affect the final
results of the experiment. Traditional data augmentation methods directly disrupt the
original graph view by operations like node deletion, attribute masking, and edge
perturbation to obtain augmented instances, whose limitations are: (1) The augmentation
strategies are simple and fixed, and the augmentation process is blind, which greatly limits
the diversity and expression ability of augmented instances, and may cause semantic drift
at the same time. (2) The generation of augmented instances depends on predefined
parameters or prior knowledge, which is difficult to automatically optimize for specific
tasks. For example, GRACE (Zhu et al., 2020) combines random attribute masking and
edge deletion to generate augmented samples, but the augmentation approach is coarse
and relies on fixed augmentation parameters. GCA (Zhu et al., 2021) proposes an adaptive
augmentation method to selectively remove structures or mask attributes in order to
further ensure the basic semantics of the generated graphs. Nonetheless, relying solely on
centrality characteristics to guide augmentation introduces a strong dependence on prior
knowledge. GraphCL (You et al., 2020) tries to integrate multiple augmentation strategies
to explore the best augmentation method adapted to the input graph, but static
augmentation strategies would limit its expression space.

In recent years, automated graph augmentation has received considerable attention for
achieving self-learning and optimizing augmentation operations to successfully address
the limitations of manual design. JOAO (You et al., 2021) first migrates automated data
augmentation to the graph domain, follows Bayesian theory to extract augmentation
methods from a predefined augmentation pool, and optimizes the best solution
automatically and iteratively via a max–min framework. GPA (Zhang et al., 2024)
parameterizes the selection probabilities of augmented view pairs based on graph neural
networks and adjusts the augmentation strategies through feedback from the bi-level
optimization framework. But in both JOAO (You et al., 2021) and GPA (Zhang et al.,
2024), the augmentation itself is not learnable. AD-GCL (Suresh et al., 2021) proposes an
edge-level learnable data augmentation method based on Bernoulli distribution, but there
is a single type of augmentation and the augmentation strategy is not substantially trained
during the optimization of the algorithm. AutoGCL (Yin et al., 2022) automatically decides
whether nodes or attributes should be retained, masked, or deleted by learning
probabilities, but there is no edge-level augmentation, and learning probabilistic latent
noise does not adequately ensure semantic consistency. RGCL (Li et al., 2022), based on
the invariance principle, uses a rationale generator to discover discriminative semantic
structures for data augmentation, but its node-level augmentation and focus on local
information limit its ability to handle global structures and complex graphs. We find that
these approaches lack task-driven signals in the augmentation learning process, making
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the augmentation goal unclear. Furthermore, given the non-Euclidean structural
properties of graph data augmentation should be constructed on reliable representations,
yet previous work neglects deep mining of graph representations prior to augmentation.

To solve the above issues, we propose a novel graph contrastive learning approach based
on learnable data augmentation named Graph Contrastive Learning with Adaptive
Learnable View Generators (GCL-ALG); the general framework is shown in Fig. 1.
GCL-ALG first uses deep graph message passing to process the implicit structural
relationships and attribute information of input graphs, obtaining highly secure and
reliable graph representations. Specifically, a dual-level feature extraction framework is
introduced into the view generators to complementarily extract graph information. The
first level combines self-attention networks with GNN encoder to focus on the areas of
information propagation, while the second level integrates edge load information to extract
high-order global representations. Subsequently, centrality metrics are used as
augmentation guidance signals, and the reconstruction capabilities of autoencoders are
leveraged to construct learnable view generators that produce high-quality augmented
instances. In particular, our proposed method comprehensively studies the augmentation
patterns of nodes and edges, utilizing centrality to refine the feature distributions to
minimize the impact of interference noise. Finally, the trained augmented instances are

Figure 1 Illustration of the GCL-ALG graph contrastive learning framework. The GCL-ALG graph contrastive learning framework consists of
three modules: view generators, graph feature encoder, and classifier. The GNN encoder FA extracts deep node features from the original graph
based on a self-attention mechanism, while F E integrates edge load information to enhance node representations, where edge-level features are
mapped to a unified representation space through the projection layer gð�Þ. The view generators construct the sampling probabilities Pnode and Pedge
for nodes and edges by combining centrality metrics and sampling functions, with the sampling probabilities increasing from light to dark colors.
The generated augmented views ~G1 and ~G2 are encoded by a shared encoder Fð�Þ, and during training, contrastive learning is achieved by max-
imizing the consistency between their representations Zð1Þ and Zð2Þ. Full-size DOI: 10.7717/peerj-cs.3101/fig-1
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projected into low-dimensional graph representations via graph encoders for downstream
graph classification, and view generators and contrastive learning framework are jointly
optimized by multiple objective functions to obtain a highly robust and learnable graph
contrastive learning algorithm.

In summary, the contributions of this article are as follows:

. We propose a contrastive comparative learning framework based on highly adaptive and
learnable view generators, which can automatically obtain augmented views according to
the intrinsic properties of the graph.

. The proposed GCL-ALG framework utilizes attention mechanisms and edge weights to
capture important feature information, and trains view generators from dual
perspectives of nodes and edges to learn a comprehensive representation of the graph
structure.

. We extensively evaluate GCL-ALG on 15 different benchmark datasets to validate the
performance on unsupervised learning, transfer learning and semi-supervised learning
graph classification tasks. Experimental results demonstrate that GCL-ALG exhibits
outstanding performance in terms of average relative improvement compared to state-
of-the-art baseline methods. In addition, we conduct ablation experiments to analyze the
contribution of the dual-level feature extraction framework in the performance of the
algorithm.

RELATED WORK
Contrastive learning
Contrastive learning (CL) has made promising achievements in image representation
learning (Chen et al., 2020b; Zhu et al., 2021) thanks to its powerful self-supervised
learning ability. CL learns robust representations by pulling in positive pairs and pushing
out negative pairs, and utilizing the relative relationship between samples to determine
semantic associations. Therefore, many researchers attempted to apply contrastive
methods to graph domain in order to extract meaningful graph structure semantic
relationships. However, the intrinsic structural complexity of graph data also poses greater
challenges. Previous works have been improved from several perspectives such as different
contrast angles, augmentation strategies, positive and negative sample selection, etc. DGI
(Velickovic et al., 2018) is driven by the mutual information estimation proposed by MINE
(Belghazi et al., 2018) to maximize the mutual information between the global graph
embedding and the local node embedding. GMI (Peng et al., 2020) learns node
representation vectors by maximizing the mutual information between the encoder input
representation and the output hidden representation. MVGRL (Hassani & Khasahmadi,
2020) constructs node-level and graph-level augmented instances based on graph diffusion
and first-order neighborhoods, and proposes a cross-view multi-scale contrastive learning
approach. GRACE (Zhu et al., 2020) generates two augmented graphs by removing edges
and masking attributes, focusing on maximizing the consistency of node embedding
between broken graphs. Graph contrastive representation learning with adaptive
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augmentation (GCA) (Zhu et al., 2021) builds upon GRACE (Zhu et al., 2020) and
proposes adaptive augmentation based on the topology and attributes of the graph,
enabling it to dynamically adjust the augmentation strategy according to the specific
features of the input graph. GraphCL (You et al., 2020) designs a data augmentation
method with a combination of four approaches: node removal, edge perturbation,
subgraph sampling and feature masking, revealing that the selection of augmentation
strategies needs to be adapted to the specific traits of different tasks. GCP (Adjeisah et al.,
2024) also adopts diverse augmentation strategies to generate multi-view graph
representations, and leverages pre-training to automatically identify the optimal
augmentation configuration. However, Xia et al. (2022) question the necessity of data
augmentation by proposing SimGRACE, which perturbs the encoder to generate
contrastive views directly from the original graph, thereby avoiding semantic bias
introduced by manual augmentations while achieving competitive performance across
multiple benchmark tasks. NCAGC (Wang et al., 2023) uses k-nearest neighbors (KNN) to
construct intra-cluster and inter-cluster neighborhood contrastive relations to guide the
learned feature representations towards clustering. SUGRL (Mo et al., 2022) exploits the
complementary information between structural and neighbor information to generate
positive samples, and designs a multi-objective contrastive loss to enforce a closer relation
to positive samples and a further divergence from negative samples.

We note that the augmentation operations in the above approaches obtain
augmentation instances based on simple predefined parameters violently destroying the
original graph, which may cause severe semantic loss leading to unstable quality of the
generated views. To tackle these concerns, GCL-ALG builds learnable view generators to
automatically acquire valid augmentation instances and provide rich augmentation
variance.

Automated data augmentation
Data augmentation enriches training samples while maintaining label consistency. As
demonstrated by Adjeisah et al. (2023), augmentation strategies play a pivotal role in
enhancing the robustness and generalization capabilities of graph neural networks,
especially in data-scarce scenarios. However, most existing methods still rely on manually
predefined augmentation operations, which are limited in their adaptability to diverse task
requirements. In contrast, automated data augmentation has emerged as a promising
alternative, enabling dynamic strategy optimization based on both input data
characteristics and task objectives, thus garnering increasing research attention. In the
computer vision field, AutoAugment (Cubuk et al., 2019) first proposes to utilize
reinforcement learning to achieve automated data augmentation. Cubuk et al. (2020)
propose the RandomAugment (Cubuk et al., 2020) method using a parameter-free
procedure instead of learning strategies and probabilities, successfully balancing data
augmentation diversity and search costs. BO-Aug (Zhang et al., 2023) proposes to explore
optimal augmentation schemes in the space of predefined data augmentation strategies
using Bayesian optimization techniques.
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These automated image augmentation methods inspire graph contrastive learning.
JOAO (You et al., 2021) learns the sampling distribution of predefined augmentation
operations on the top of GraphCL (You et al., 2020), but the augmentation itself is not
learnable. AD-GCL (Suresh et al., 2021) is motivated by adversarial learning and proposes
a learnable edge-level data augmentation. AutoGCL (Yin et al., 2022) proposes learnable
view generators driven by learning probabilities. RGCL (Li et al., 2022) utilizes a learnable
rationale generator to identify and preserve discriminative node sets in the graph,
combines complement sampling to construct non-discriminative structures, and optimizes
augmented views through adversarial training. HAGCL (Chen, Ren & Yong, 2023)
constructs dedicated view generators from feature and edge perspectives to achieve mixed
data augmentation. GCC-LDA (Yang et al., 2022) proposes to automatically generate
structure-based and attribute-based augmentation with attention mechanisms. NCLA
(Shen et al., 2023) proposes a learnable augmentation based on multi-head attention
mechanisms. However, the augmentation perspectives in previous studies are still not
comprehensive, and the augmentation process lacks guidance signals. In this work, we
performed fine-grained augmentation separately on the graph constituents- nodes and
edges, introduce network centrality as guidance signals so that augmentation instances are
oriented to key elements, and optimize the learnable augmentation parameters through an
autoencoder to dynamically balance semantic preservation and view variability.

PROPOSED METHOD
Notions and preliminaries
Given a graph G 2 fGm : m 2 Mg from the dataset ofM graphs. Define graph G ¼ ðV; EÞ,
considering V ¼ fv1; v2; � � � ; vNg and E � V � V represent the node set and edge set
respectively. X 2 RN�F and A 2 f0; 1gN�N denote the feature matrix and the adjacency
matrix, where xi 2 X indicates the feature vector of node vi and Aij ¼ 1 if ðvi; vjÞ 2 E
otherwise Aij ¼ 0. NðviÞ ¼ fvj j j 6¼ i;Aij ¼ 1g indicates a set of 1-top neighbors of vi.

D ¼ diagðd1; d2; . . . ; dNÞ 2 RN�N denotes the degree matrix, where di ¼
P

ðvi;vjÞ2E Aij.

Input graphs to two separate view generators generate views ~G1, ~G2, where the process base
node features hi and edge features hij count sampling to generate augmentation strategy
matrices S1 2 RN , S2 2 RN . Through the graph encoder Fð�Þ, both node-level
representations H1

n 2 RN�F0
, H2

n 2 RN�F0
and graph-level representations H1

g 2 RD�F0 0 ,

H2
g 2 RD�F0 0 are produced. Detailed information is shown in Table 1.

. Graph neural networks. Real-world data structures are very complex and are gradually
characterized by graph structure. Scarselli et al. (2008) proposed the GNN (Scarselli et al.,
2008) as an effective method for the analysis of graph-structured data. In this work, we
focus on GNN as the backbone network of the encoder. For a given graph G, each node vi
has a feature distribution hi, initialized as hð0Þi ¼ xi, then vi at the k-th GNN message
propagation can be stated as,

aðkÞi ¼ AGGREATIONðkÞðfhðk�1Þ
i : i 2 NðiÞgÞ; (1)
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hðkÞi ¼ COMBINEðkÞðhðk�1Þ
i ; aðki Þ: (2)

where bothAGGREGATEð�Þ andCOMBINEð�Þ are trainable functions, serving the purpose
of aggregating and updating messages respectively. After a specified number of iterations, the
READOUT() function is used to aggregate embeddings from all nodes, generating a
graph-level representation. Then, this representation is converted into an output suitable for
downstream tasks through a multi-layer perceptron (MLP), denoted as zG:

zG ¼ MLP ðREADOUTðfhðkÞi ; vi 2 VgÞÞ: (3)

. Gumbel-Softmax. We employ Gumbel-Softmax (Jang, Gu & Poole, 2016) as our
sampling function in this work, which can convert a discrete random variable into a
differentiable continuous distribution via reparameterization, and enabling
backpropagation in neural networks. Assume the network propagation process yields a
collection of discrete feature distributions p1; p2; . . . ; pn, where pi denotes the i-th edge
or node feature,

Pn
i p ¼ 1, then the sampling result zi can be represented as,

zi ¼ exp ðgi þ log piÞ=sPn
j exp ðgj þ log pjÞ=s ; (4)

where s represents temperature coefficient, gi is a pre-collected sample from the Gumbel
(0,1) distribution. It can be observed that the higher the probability of a particular feature
distribution, the more likely it is to be selected during Gumbel-Softmax sampling. For this
purpose, we generate prior probabilities from the original graph to adjust the sampling
distribution in order to maximize the retention of important information in the graph.

Learnable view generator
In this section, we provide a detailed description of the view generators proposed in GCL-
ALG, which includes how to explore graph features, how to incorporate adaptive metrics,
and how to implement feature sampling.

Table 1 Description of notations in the article.

Notion Meaning

V Node set

E Edge set

X 2 RN�F Original feature matrix

A 2 RN�N Original adjacency matrix

D 2 RN�N Degree matrix

NðiÞ 1-top neighbors set of node vi

Ek
n 2 RN�Fk Node embedding in k-th convolution

En 2 RN�Fk Embedding processed through the attention mechanism

Hn 2 RTn�F0 Final node embedding

He 2 RTe�C Final edge embedding

Z 2 RQ�D Graph embedding

S 2 RN Sample matrix
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. Dual-layer feature extraction. Graph neural networks often struggle to simultaneously
capture local connectivity patterns and global topological structures in complex graph
tasks. To address this issue, we propose a dual-layer feature extraction framework that
hierarchically models structural information at different granularities. By leveraging a
local-global complementary feature extraction scheme, the framework enhances the
representational coverage and structural sensitivity, thereby improving the model’s
adaptability to diverse types of graph data.
The view generators integrate a self-attention-based encoder FA and an edge-based
encoder F E, with the primary objective of collaboratively extracting critical structural
information from the graph.
Self-Attention-based GNN encoder. The FA encoder integrates the strong structural
modeling capacity of graph isomorphism network (GIN) with the selective feature
extraction capability of the attention mechanism, enabling it to effectively capture salient
node features within local neighborhoods. Assuming a total of K GIN layers are used, a
new node feature matrix Ek

n 2 RN�Fk is generated after each convolution layer. We
denote [;] is the concatenation operator and the k-th iteration of the iterative aggregation
update formula for node vi as:

hðkÞi ¼ COMBINEðkÞ hðk�1Þ
i ; aðkÞi

� �
; (5)

aðkÞi ¼ AGGREATIONðkÞ fhðk�1Þ
i : i 2 NðiÞg

� �
; (6)

Ek
n ¼ hðkÞ1 ; hðkÞ2 ; . . . ; hðkÞN

h iT
: (7)

Inspired by Transformer (Vaswani et al., 2017), we seamlessly integrate a self-attention
network module after each GIN layer, consciously guiding the network propagation
process to keenly capture more crucial node-level information, thereby elevating the
model’s learning capability to new heights. The hidden layer features Ek

n are mapped to
three different vector spaces: Q 2 RN � Fk, K 2 RN�Fk , V 2 RN�Fk , which respectively
represent the query matrix, key matrix and value matrix.

Q ¼ WqðXkÞT ; (8)

K ¼ WkðXkÞT ; (9)

V ¼ WvðXkÞT ; (10)

where Wq 2 RFk�Fk , Wk 2 RFk�Fk , Wv 2 RFk�Fk are the initialized weight matrices, and
the node embedding En 2 RN�Fk

after the attention mechanism can be expressed as:

En ¼ softmax
QKTffiffiffiffiffi

Fk
p

� �
V : (11)

Edge-based GNN encoder. To compensate for the FA encoder’s limited understanding of
the overall graph structure, the F E encoder is introduced to incorporate higher-order
structural information. F E leverages edge weight to measure the importance of edges in
global information flow, effectively capturing the macro structure and global dependencies

Li et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3101 8/26

http://dx.doi.org/10.7717/peerj-cs.3101
https://peerj.com/computer-science/


of the graph.We first concatenate the node features to generate preliminary edge features Ee,
and then employ an MLP to parameterize the edge features and extract weight information,

wij ¼ MLP hðKÞi ; hðKÞj

h i� �
; (12)

where hðKÞi , hðKÞi 2 Hn denote the feature vectors of nodes vi and vj respectively after FA

encoder.
To learn the edge weights, we is normalized to a continuous variable between ½0; 1�.
Specifically, we employ pij ¼ sigmoidððlogd� logð1�dÞ þ weÞ=sÞ to represent the weight of
the edge that links nodes vi and vj, where d � Uniformð0; 1Þ and s is a temperature hyper-
parameter. Eventually,F E adjusts the aggregation process of node features using this weight
information, giving greater emphasis to edges with higher weights, thus improving the
model’s emphasis on the edges. In formal terms, the formula for aggregated edge weights can
be denoted as:

hðkÞi ¼ COMBINEðkÞ hðk�1Þ
i ; aðkÞi

� �
; (13)

aðkÞi ¼ AGGREATIONðkÞ phðk�1Þ
i : i 2 NðiÞ

n o� �
: (14)

Then we obtain the final node feature matrix Hn ¼ hðKÞ1 ; hðKÞ2 ; . . . ; hðKÞN

h iT
2 RD�F0 ,

F0 � F. The raw edge feature Ee passes through the projection layer to capture high-order
crossed features, obtaining the final edge feature. He represented by the formula
He ¼ gðEeÞ, where gð�Þ is the projection function.

. Node sampling. With the above procedures, we have successfully generated graph
embeddings that encompass adaptive and crucial features. Now, we need to further
adaptively sample node features and edge features. To be more specific, we again cut
from the perspective of the original graph, generate prior probabilities for nodes and
edges based on the original graph, and incorporate these probabilities into the
subsequent sampling process. The underlying logic of this strategy is to guide the
sampling function to selectively favor nodes and edges in the original graph that are
considered essential, thereby avoiding a completely random or uniform sampling of all
elements.
We leverage the Gumbel-Softmax (Jang, Gu & Poole, 2016) reparametrization trick to
generate a differentiable probability distribution, thus enabling the optimization of the
sampling operation through gradient descent. Additionally, the introduction of Gumbel
noise maintains a certain level of randomness, which is beneficial in preventing the
model from over-concentrating on specific features, thereby mitigating the risk of under-
generalization. Figure 2 takes node sampling as an example to describe in detail the
feature correction and sampling process. The sampling probability of node vi can be
expressed as:

Pi ¼ Gumbel SoftmaxðNode CentðviÞhiÞ; (15)

whereNode Centð�Þ is the node centrality measure formula, hi 2 Hn is the feature vector
of node vi, and Node Centð�Þhi denotes the adaptive sampling probability. With a
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combination of efficiency and performance considerations, we adopt node degree
centrality as the metric function, which is formulated as:

Node CentðviÞ ¼ di
N � 1

: (16)

In this context, N denotes the total number of nodes in the network which node vi
belongs. Degree centrality is the most straightforward and broadly applied measure of
node centrality in network analysis. This metric posits that nodes with more associated
nodes are considered more important. For instance, in social networks, nodes represent
users and edges represent connections between users. Users with a higher degree
centrality tend to have greater influence.

. Edge sampling. The edge sampling process is akin to node sampling, which aims to filter
out edges with infrequent interactions between nodes. We utilize MLP to reduce the
dimensionality of the generated edge features to prevent too much information from
being lost in subsequent sampling, while obtaining a representative edge feature matrix

Figure 2 Diagram of node feature correction and sampling.
Full-size DOI: 10.7717/peerj-cs.3101/fig-2
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He. Then, by performing a Hadamard transformation between He and the learned edge
importance distribution from the original graph, we obtain an adaptive distribution
matrix for the edges. Finally, we use the Gumbel_Softmax function to sample from the
adaptive probability distribution and select the edges to be retained. In this process, eij
represents the edge connecting nodes vi and vj, and hij 2 He represents the feature vector
of edge eij, then we have:

Pij ¼ Gumbel SoftmaxðEdge CentðeijÞhijÞ; (17)

where Edge Centð�Þ indicates edge centrality formula. We choose the average degree
centrality of the two nodes linked by the edge as the edge centrality metric, which can
better preserve the stability of the network structure.

Edge CentðeijÞ ¼
Node CentðviÞ þ Node CentðvjÞ

2
: (18)

Through the aforementioned adaptive encoding and sampling strategies, we successfully
preserve the key elements of the graph’s inherent attributes, which form the foundation
for deep integration of the graph.

Architecture of contrastive learning
In this article, the proposed graph contrastive learning framework adheres to the
well-known InfoMin (Tian et al., 2020) principle, aiming to maximize the mutual
information between the augmented views and the input graph while minimizing the
mutual information between generated views. Following the settings of AutoGCL (Yin
et al., 2022), we adopt three loss functions to constrain the contrastive learning framework:
contrastive loss, similarity loss and classification loss.

Drawing from the previous works (Chen et al., 2020b; You et al., 2020), we use the
normalized temperature-scaled cross entropy loss (NT-Xent) (Sohn, 2016) as our
contrastive loss function to force the positive sample pairs to draw closer while separating
the negative samples. Randomly select a batch comprisingN graphs and obtain 2N views via
two independent view generators. Arbitrarily specify z1;i 2 Zð1Þ; z2;j 2 Zð2Þ as the generated
views from different view generators respectively, and treat the two as a pair of positive
samples. Negative samples are naturally defined as views from the other 2ðN � 1Þ views.
Formally, we define the cosine similarity function hðz1;i; z2;jÞ ¼ z1;i � z2;j

kz1;ik2 � kz2;jk2
. Set the

pairwise objective for each positive pair ðz1;i; z2;jÞ as ‘ði; jÞ, then the overall objective
function can be expressed as Lcl, where s denotes the temperature parameter.

‘ði; jÞ ¼ � log
ehðz1;i;z2;jÞ=sPN

m;n¼1
m	n

ehðz1;i;z1;mÞ=s þ ehðz1;i;z2;nÞ=s
; (19)

Lcl ¼ 1
2N

XN
k¼1

½‘ð2k� 1; 2kÞ þ ‘ð2k; 2k� 1Þ� (20)
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In each iteration of GCL-ALG, the original graph G is first input into the view
generators, which produce two adaptive augmentation strategy matrices (or sampling
matrices) S1 and S2, along with their corresponding augmented views ~G1 and ~G2. To avoid
the issue of view collapse, we aim to ensure sufficient diversity between the two augmented
views. To this end, we introduce a view similarity loss function Lsim in the semi-supervised
setting, defined as:

Lsim ¼ 1� kS1 � S2k22: (21)

The loss term penalizes the similarity between the augmentation strategies, explicitly
encouraging the generation of diverse views. Since this mechanism significantly intervenes
in the view generation process, it may disrupt the semantic consistency of the original
graph structure in unsupervised tasks. Therefore, this loss is only used in the
semi-supervised setting.

Finally, to further enhance the model’s ability to fit the known labels and improve the
discriminative power of the learned representations, we introduce a graph classification
loss function Lcls under the semi-supervised setting. Specifically, the original graph G and
its two augmented views ~G1 and ~G2 are jointly fed into the classifier C, and the standard
cross-entropy function ‘cls is applied to compute the prediction loss with respect to the
corresponding label y. The loss is formally defined as follows:

Lcls ¼ 1
3
½‘clsðCð ~G1Þ; yÞ þ ‘clsðCð ~G2Þ; yÞ þ ‘clsðCð~GÞ; yÞ�: (22)

The time complexity
The GCL-ALG algorithm consists of three main parts. The first part is view generator
based on dual-level feature extraction, the first level of feature extraction is based on the
self-concerned encoder corresponding time complexity is OðlaðjEjF þ N2FÞÞ, where la
denotes the number of hidden layers. The second level of feature extraction fuses the edge
weight information mined by the MLP into the GIN message propagation process with
time complexity ofOðleNH2Þ, whereH is the hidden layer dimension, and le is the number
of hidden layers. The second part is a graph encoder with a GIN backbone whose time
complexity is compressed to OðlgðjEjH þ NHÞÞ, where lg denotes the number of hidden
layers of the graph encoder. The third part is the downstream classifier, the unsupervised
representation learning uses SVM as the classifier with OðND2Þ time complexity, the
semi-supervised task predicts the category to which the graph belongs based on the
ResGCN network with OðlsjEjDÞ time complexity, and the migration learning generates
the classification results with the GIN network with OðltED2Þ, where ls, lt represent the
number of hidden layers for semi-supervised and migration learning classifiers,
respectively. Therefore, the total time complexity of unsupervised learning,
semi-supervised learning and transfer learning are compressed as:

OðjEjðF þ HÞ þ NðF2 þH2 þ D2ÞÞ, OðjEjðF þ HÞ þ NðF2 þ H2Þ þ lsjEjDÞ,
OðjEjðF þ HÞ þ NðF2 þH2Þ þ ltjEjDÞ, respectively. The detailed pseudo-code
description of GCL-ALG is given in Algorithm 1.
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EXPERIMENT
Datasets description
Our experiments include generalized datasets from multiple domains. For supervised and
semi-supervised learning, we use the TUDataset (Morris et al., 2020), which provides a
wide range of graph datasets, including but not limited to protein datasets and social
network datasets. In addition, we predict chemical molecule properties and biological
protein functions through transfer learning, in which we adopt the ChEMBL dataset (Mayr
et al., 2018; Gaulton et al., 2011) containing 456K complex biochemical molecules as the
pre-training dataset, fine-tuning the small molecule dataset of the MoleculeNet benchmark
(Wu et al., 2018). We perform statistics based on dataset categories as shown in Table 2.
The TuDataset download link is https://chrsmrrs.github.io/datasets/docs/datasets, the

Algorithm 1 Training learnable view generators with GCL-ALG principle.

Require: Graph Feature Encoder fh ; View Generators Gen� , Gen� ; Iteration Number I; Graph
G 2 fGm : m 2 Mg; Initial Feature Matrix X; xn 2 X; Learning Rate β; Hyperparameters λ, µ.

Ensure: Trained Graph Feature Encoder fh and View Generators Gen�, Gen�.

1: while i ¼ 1 to I do

2: for sampled minibatch fG ¼ ðV ; EÞ; xn : n ¼ 1; 2; . . . ;Ng do

3: for n = 1 to N do

4: set centrality matrix Cnode, Cedge of G using Eqs. (16) and (18);

5: view 1;n ¼ Gen� ðxn; Cnode; CedgeÞ;
6: view 2;n ¼ Gen� ðxn; Cnode; CedgeÞ;
7: z 1;n = fh ðview1;nÞ;
8: z 2;n = fh ðview2;nÞ;
9: end for

10: if unsupervised task or transfer task

11: compute the contrastive objective for minibatch with Eq. (19);

12: L ¼ Lcl ðview1;n; view2;nÞ;
13: end if

14: if semi-supervised task then

15: compute the contrastive loss, similarity,and classification loss from Eqs. (19), (21) and
(22);

16: L ¼ Lcl ðview1;n; view2;nÞ þ Lsim ð z1;n; z2;nÞ þ Lcls ð fh ð xnÞ; z1;n; z2;nÞ;
17: end if

18: Update the params of fh , Gen� and Gen� via gradient descent;

19: h ( h� brhð L Þ, � ( �� br�ð L Þ, � ( �� br�ð L Þ;
20: end for

21: Return fh, Gen�, Gen�;

22: end while
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ChEMBL dataset can be found at https://www.ebi.ac.uk/chembl, and the MoleculeNet
dataset can be downloaded from https://moleculenet.org/datasets-1. The code for our
implementation can be found in https://github.com/lincyli/GCL-ALG.

Baselines
The effectiveness of the proposed method is verified by comparing it with the following 13
baseline approaches on three tasks: unsupervised learning, semi-supervised learning, and
transfer learning.

. InfoGraph (Sun et al., 2019): A method for learning graph representations based on
maximizing mutual information.

. GraphCL (You et al., 2020): A method that explores diverse features through
combinatorial graph augmentations.

. GCA (Zhu et al., 2021): The method leverages network centrality and adaptive data
augmentation to retain important elements.

. JOAO (You et al., 2021): The method constructs an augmentation-aware projection head
to find the optimal augmentation strategy from a predefined pool of augmentations.

. AD-GCL (Suresh et al., 2021): An augmentation method that employs adversarial
learning to delete edges, based on a max-min mutual information framework.

Table 2 Summary of the TUDataset benchmark dataset (Morris et al., 2020) for unsupervised and
semi-supervised learning experiments and datasets of biochemical molecules from Mayr et al.
(2018), Gaulton et al. (2011), and Hu et al. (2019) for transfer learning.

Dataset Utilization #Graphs Avg.#Nodes Avg.#Edges #Classes

Social networks

IMDB-B unsupervised 1,000 19.8 96.53 2

COLLAB unsupervised/semi-supervised 5,000 74.5 2,457.78 3

REDDIT-M-5K unsupervised/semi-supervised 4,999 508.8 594.87 5

Biochemical molecules

MUTAG unsupervised 188 17.93 19.79 2

PROTEINS unsupervised/semi-supervised 1,113 39.06 72.82 2

NCI1 unsupervised/semi-supervised 4,110 29.87 32.30 2

DD unsupervised/semi-supervised 1,178 284.32 715.66 2

chembl_filtered Pre-training 430,702 22.75 27.86 2

Chemical molecules

BBBP Finetuning 2,039 24.06 25.95 2

Tox21 Finetuning 7,831 18.57 19.29 3

ToxCast Finetuning 8,576 18.78 19.26 3

SIDER Finetuning 1,427 33.64 35.36 2

ClinTox Finetuning 1,477 26.16 27.88 2

MUV Finetuning 93,087 24.23 26.28 3

HIV Finetuning 41,127 25.51 27.47 2

BACE Finetuning 1,513 34.09 36.86 2
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. AutoGCL (Yin et al., 2022): A method that uses data-driven active learning to adjust
node dropout and feature masking probabilities in order to maximize retention of the
original semantics.

. SimGRACE (Xia et al., 2022): An Augmentation-Free graph contrastive learning
framework via Gaussian-Perturbed Encoders.

. RGCL (Li et al., 2022): A rationale-aware graph contrastive learning framework
grounded in the principle of invariance.

. GPA (Zhang et al., 2024): A graph contrastive learning method with personalized
augmentation selector for graph-level adaptive augmentation.

. Infomax (Velickovic et al., 2018): An approach for learning node representations by
maximizing local-global mutual information.

. EdgePred, AtrrMasking, and ContextPred: Node-level pre-training methods proposed
by Pretrain-GNN (Hu et al., 2019), involving original edge prediction, learning node/
edge attributes, and predicting surrounding graph structures with subgraphs for training
GNN to explore deep representations.

Experiment settings
To ensure fair comparison, GCL-ALG reports the average results over five runs with
different random seeds. The model is implemented using the PyTorch deep learning
framework and trained on NVIDIA RTX 3090 (24 GB) and NVIDIA A40 (48 GB) GPUs.

In order to evaluate the proposed method, the following three evaluation criteria are
introduced, where for all metrics higher values indicate better performance:

(1) Accuracy (ACC) refers to the proportion of correctly classified samples to the total
number of samples, which can effectively evaluate datasets with balanced class
distributions. We adopt ACC to assess the graph classification performance in both
unsupervised and semi-supervised learning tasks.

(2) F1-score is the harmonic mean of precision and recall, which is more suitable for
datasets with imbalanced class distributions. Introducing F1-score into unsupervised
learning and semi-supervised learning tasks can more comprehensively evaluate the
model’s performance on different classes.

(3) Receiver operating characteristic area under the curve (ROC-AUC) score measures the
ability of a model to distinguish between positive and negative classes at all
classification thresholds. Unlike metrics such as accuracy, it is relatively robust to class
imbalance, making it particularly suitable for evaluating model performance on
imbalanced or distribution-shifted target domains in transfer learning scenarios.

All experiments in GCL-ALG are conducted according to the settings in Table 3. We
reproduce the experimental results of automated data augmentation methods (You et al.,
2021; Suresh et al., 2021; Yin et al., 2022), the classical contrastive frameworks (You et al.,
2020; Sun et al., 2019), and the Pretrain-GNN (Hu et al., 2019) method, where AutoGCL
(Yin et al., 2022) reports on joint training strategies in a semi-supervised task. For
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AD-GCL (Suresh et al., 2021), we use the model with dynamically adjusted regularization
parameters, i.e., AD-GCL-OPT. And for GraphCL (You et al., 2020), we adopt the default
augmentation strategy, random4.

Experimental results and analysis
Unsupervised learning
In this subsection, we provide an in-depth analysis of the performance of the view
generator in graph classification tasks under an unsupervised learning framework. Table 4
presents a detailed comparison of our method against other mainstreammethods on seven
datasets in terms of classification accuracy (ACC) and F1-score. The following is our
specific analysis based on the experimental results:

. Compared with classical graph contrastive learning methods (e.g., InfoGraph (Sun et al.,
2019), GraphCL (You et al., 2020)), GCL-ALG demonstrates significant performance
advantages on most datasets. This improvement stems from the fact that traditional
methods rely on fixed augmentation parameters (such as edge deletion rate and attribute
masking probability), which are insufficiently adaptable to the structural characteristics
of different graph data. In contrast, our learnable augmenter adjusts augmentation

Table 3 Hyper parameters detailed settings.

Task Hyperparameter Setting

s 0.5

Optimizer Adam

Unsupervised lr 0.001

Epoch 100

Batch size 128

Hidden layers 3/5-layers GIN

Embedding dimension 128

Transfer Pretrain lr 0.001

Pretrain batchsize 256

Pretrain epoch 100

Pretrain hidden layers 5-layer GIN

Pretrain embedding Dimension 300

Finetune lr 0.001

Finetune batchsize 32

Finetune epoch 50

Finetune hidden layers 5-layer GIN

Finetune embedding Dimension 300

Finetune dropout 0.5

Semi-supervised lr 0.001

Epoch 100

Batch size 128

Hidden layers 3-layers ResGCN

Embedding dimension 128
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strategies through parameter optimization, enabling the model to better capture the
intrinsic properties and distributional features of graph data.

. Compared with four advanced automated data augmentation methods (JOAO (You
et al., 2021), AD-GCL (Suresh et al., 2021), AutoGCL (Yin et al., 2022), RGCL (Li et al.,
2022)), GCL-ALG achieves the best overall performance, with average rankings of 1.8 in
ACC and 1.4 in F1-score. Existing automated methods typically focus on
single-dimensional information, lacking the integration of multi-level features. Our
method explicitly identifies critical nodes and edges through a centrality-driven
mechanism, preserving discriminative substructures while applying appropriate
perturbations, thereby effectively balancing structural integrity and representational
effectiveness in augmented views. Moreover, the dual-level feature extraction framework
captures both global and local structural and feature information, ensuring that
augmentation is performed on reliable features and reducing the risk of information loss
and semantic drift.

. Compared with the augmentation-free method (SimGRACE (Xia et al., 2022)),
GCL-ALG consistently outperforms across all datasets, with average improvements of
2.5% in ACC and 3.1% in F1-score. This result indicates that although SimGRACE (Xia
et al., 2022) avoids potential semantic distortion by eliminating augmentation, its
reliance solely on encoder perturbation limits its ability to capture essential structural
features. In contrast, GCL-ALG adopts an autoencoder-driven trend sampling strategy
to generate diverse augmented views, which is more effective in enhancing the
expressiveness of graph representations. Additionally, GCL-ALG exhibits significantly
lower standard deviation than SimGRACE (Xia et al., 2022), suggesting higher

Table 4 The mean ± std experimental results for the unsupervised graph classification task based on the TuDataset benchmark datasets are
shown below. Bold numbers and underlined numbers indicate the best and second-best results, respectively. A.R. stands for average rank.

Dataset Metric InfoGraph GraphCL JOAOv2 AD-GCL AutoGCL SimGRACE RGCL GCL-ALG

MUTAG ACC 89.10 ± 1.48 88.99 ± 0.92 88.14 ± 0.88 88.31 ± 1.68 89.03 ± 0.73 87.26 ± 1.25 87.21 ± 0.68 90.37 ± 0.27

F1 88.09 ± 0.64 87.75 ± 0.74 87.46 ± 0.81 85.67 ± 2.02 88.37 ± 1.23 85.77 ± 1.96 86.29 ± 0.78 89.44 ± 0.37

PROTEINS ACC 75.53 ± 0.74 75.04 ± 0.35 74.79 ± 0.50 73.31 ± 0.75 75.46 ± 0.54 74.41 ± 0.51 74.67 ± 0.33 76.33 ± 0.35

F1 74.55 ± 0.52 74.07 ± 0.50 73.83 ± 0.42 71.85 ± 0.49 75.08 ± 0.48 73.71 ± 0.72 73.65 ± 0.32 75.57 ± 0.54

DD ACC 77.28 ± 1.83 78.07 ± 0.34 78.89 ± 0.32 74.68 ± 0.58 77.63 ± 0.85 76.72 ± 0.66 77.67 ± 0.31 77.73 ± 0.72

F1 77.08 ± 0.57 77.63 ± 0.70 77.77 ± 0.64 74.00 ± 0.69 76.69 ± 0.55 75.93 ± 1.10 76.38 ± 0.94 79.87 ± 0.78

NCI1 ACC 79.24 ± 1.00 78.84 ± 0.31 79.32 ± 0.24 69.43 ± 0.68 81.52 ± 0.48 77.09 ± 2.17 77.38 ± 0.71 80.74 ± 0.29

F1 79.29 ± 0.39 78.66 ± 0.52 73.83 ± 0.42 68.87 ± 0.35 81.24 ± 0.52 77.58 ± 0.73 77.04 ± 0.21 80.69 ± 0.23

COLLAB ACC 71.04 ± 3.11 70.98 ± 0.29 72.75 ± 0.78 73.23 ± 0.98 68.65 ± 2.90 69.62 ± 3.12 70.92 ± 0.88 72.16 ± 0.54

F1 66.06 ± 0.94 66.58 ± 1.02 68.33 ± 1.03 69.73 ± 0.85 62.21 ± 8.08 64.20 ± 5.65 67.64 ± 0.81 69.24 ± 1.07

IMDB-B ACC 72.32 ± 1.85 71.32 ± 0.65 71.70 ± 0.57 71.14 ± 0.72 73.26 ± 2.27 69.90 ± 3.54 71.04 ± 0.49 74.38 ± 0.63

F1 72.06 ± 0.43 71.22 ± 0.54 71.38 ± 0.51 70.57 ± 0.76 71.85 ± 2.18 70.20 ± 0.79 70.11 ± 0.68 74.23 ± 0.56

REDDIT-M-5K ACC 55.24 ± 3.11 55.72 ± 0.21 55.33 ± 0.20 54.62 ± 0.70 52.62 ± 4.57 54.54 ± 4.11 55.25 ± 0.73 55.35 ± 0.44

F1 55.29 ± 0.29 55.04 ± 0.46 54.86 ± 0.26 53.01 ± 0.61 51.44 ± 4.42 54.75 ± 0.78 55.03 ± 0.64 55.13 ± 1.29

A.R. ACC 3.7 3.7 3.4 6.0 4.2 7.1 5.8 1.8

F1 3.1 4.0 4.4 6.5 4.1 6.4 5.8 1.4
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robustness and confirming the effectiveness of well-designed learnable augmentations
over augmentation-free approaches.

. Dataset-based analysis. GCL-ALG consistently ranks among the top three across all
datasets, showing excellent performance and strong generalizability across different
types of datasets. In social networks, where high connectivity and complex structures
may cause topological distortion under augmentation, and in biochemical molecules,
where structural links carry chemical semantics, GCL-ALG’s centrality-guided strategy
effectively identifies and preserves key substructures, leading to improved performance.
Furthermore, GCL-ALG maintains stable and superior results across datasets ranging
from the small-scale MUTAG (188 graphs) to the large-scale REDDIT-M-5K (4,999
graphs), further validating its strong robustness to varying graph scales.

Transfer learning
To further validate the broad applicability of the proposed algorithm, we conduct transfer
learning experiments to evaluate its performance on biochemical molecular property
prediction tasks. Following the setup in GraphCL (You et al., 2020), we first pretrain the
graph view generators on the large-scale biomolecule dataset CHEMBL (Mayr et al., 2018;
Gaulton et al., 2011), and then fine-tune it on several downstream chemical molecule
datasets of varying scales. As shown in Table 5, GCL-ALG consistently demonstrates
superior performance across all target datasets, achieving an average ranking of 1.7,
outperforming all baseline methods. Specifically, GCL-ALG achieves the best results on the
blood-brain barrier penetration (BBBP) dataset, US EPA Toxicity Forecaster (ToxCast),
ClinTox, and HIV, with average performance improvements of 2.97%, 1.54%, 13.43%, and
1.3%, respectively. This indicates that the view generators in GCL-ALG are capable of
successfully learning diverse graph features and intrinsic structural patterns during the
pretraining phase, and the learned representations demonstrate strong generalization
ability during the fine-tuning stage.

Table 5 The results of transfer learning experiments for predicting biochemical molecular properties (mean ROC-AUC ± std). Bold numbers
represent the best performance and underlined numbers denote the second-best performance.

Method BBBP Tox21 Toxcast SIDER ClinTox MUV HIV BACE A.R.

No Pretrain 65.8 ± 4.5 74.0 ± 0.8 63.4 ± 0.6 57.3 ± 1.6 58.0 ± 4.4 71.8 ± 2.5 75.3 ± 1.9 70.1 ± 5.4 –

Infomax 71.08 ± 0.57 75.78 ± 0.71 63.31 ± 0.38 59.96 ± 0.55 73.56 ± 1.96 79.95 ± 1.55 78.92 ± 0.44 78.47 ± 1.71 6.5

EdgePred 73.11 ± 0.46 76.37 ± 0.34 64.32 ± 0.36 61.90 ± 0.64 71.15 ± 1.36 77.49 ± 0.62 78.28 ± 0.64 82.73 ± 1.21 4.3

AttrMasking 72.17 ± 0.84 77.22 ± 0.49 64.69 ± 0.65 61.99 ± 0.64 80.82 ± 5.39 78.59 ± 1.41 78.59 ± 0.47 80.19 ± 0.74 3.6

ContextPred 73.21 ± 0.55 76.10 ± 0.49 64.26 ± 0.33 61.45 ± 0.60 71.32 ± 1.08 79.46 ± 0.78 78.71 ± 0.41 81.97 ± 1.12 4.2

GraphCL 70.96 ± 0.88 74.65 ± 0.67 62.24 ± 0.52 61.24 ± 0.71 63.68 ± 2.05 75.10 ± 1.42 76.91 ± 1.49 81.00 ± 1.20 9.0

JOAOv2 73.17 ± 0.76 75.72 ± 0.48 64.17 ± 0.53 62.68 ± 0.38 79.56 ± 2.28 76.78 ± 1.07 78.01 ± 1.01 79.12 ± 1.20 5.6

AD-GCL 68.49 ± 1.21 76.12 ± 0.36 62.52 ± 0.12 59.98 ± 0.41 73.71 ± 1.67 75.64 ± 0.91 77.36 ± 0.83 81.24 ± 1.06 7.6

AutoGCL 70.84 ± 0.92 76.14 ± 0.56 63.76 ± 0.34 63.70 ± 0.76 77.75 ± 2.90 76.77 ± 1.17 78.05 ± 0.67 79.69 ± 0.45 5.7

SimGRACE 70.51 ± 0.94 74.78 ± 0.76 62.41 ± 0.63 60.91 ± 0.51 60.95 ± 2.02 75.45 ± 2.07 76.97 ± 0.71 81.21 ± 1.59 9.1

RGCL 71.37 ± 0.62 74.98 ± 0.18 63.21 ± 0.26 60.95 ± 0.34 86.47 ± 0.65 73.51 ± 0.59 76.08 ± 0.72 75.99 ± 0.24 8.2

GCL-ALG 74.48 ± 0.78 76.54 ± 0.31 65.03 ± 0.25 62.71 ± 0.97 87.33 ± 0.91 77.52 ± 0.90 79.09 ± 0.62 82.00 ± 1.14 1.7
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Semi-supervised learning
Finally, we evaluate the semi-supervised classification performance of baseline approaches
and GCL-ALG using 10-fold cross-validation. According to the experimental results
shown in Table 6, we have the following analyses:

. Robustness performance. GCL-ALG achieves training performance close to that with
full supervision even when using only 10% labeled data. Notably, on the PROTEINS and
DD datasets, the performance gap remains within 3%, highlighting the model’s strong
feature extraction capabilities and robustness under data scarcity.

. Advantages of the view generator. According to experimental results, GCL-ALG
achieves an outstanding average rank of 2.6 in terms of ACC and F1-score. This
advantage stems from its context-aware adaptive augmentation strategy, which aligns
well with the intrinsic structure of the graphs. Compared to AutoGCL (Yin et al., 2022),
GCL-ALG shows performance improvements ranging from 0.33% to 19.78%. Against
GPA (Zhang et al., 2024), it achieves average gains of 0.78% in ACC and 1.16% in
F1-score, validating the effectiveness of the proposed adaptive strategy.

. Limitation analysis. Despite its overall strong performance, GCL-ALG exhibits certain
limitations in specific scenarios. On the small and sparse molecular dataset NCI1 under
low label rates, edge-level augmentations may induce substantial changes in graph
connectivity, leading to information loss and compromised classification performance.
Furthermore, GCL-ALG demonstrates only moderate effectiveness on the
REDDIT-M-5K dataset, which can be attributed to a dual sparsity problem under
limited supervision—characterized by sparsity in both class distribution and label
availability. This condition hinders the model’s ability to learn discriminative features for
minority classes, while centrality-based augmentation may be skewed toward dominant
class structures, resulting in imbalanced representation learning.

. Performance across dataset types. Based on the experimental results from
unsupervised, semi-supervised, and transfer learning, GCL-ALG demonstrates superior
performance on biological and chemical molecular datasets. These graphs typically

Table 6 The semi-supervised graph classification performance on the TuDataset benchmark datasets with 10% labeled data. Bold numbers
indicate the best performance and underlined numbers indicate the second-best performance.

Dataset Metric Full data 10% Data GCA GraphCL JOAOv2 AD-GCL AutoGCL SimGRACE GPA GCL-ALG

PROTEINS ACC 78.68 ± 0.50 73.19 ± 1.63 73.85 ± 5.56 72.67 ± 1.53 75.14 ± 1.87 73.96 ± 0.47 75.02 ± 0.32 71.09 ± 0.91 73.18 ± 0.17 75.78 ± 0.62

F1 77.40 ± 0.45 72.13 ± 1.45 72.23 ± 1.35 73.07 ± 0.68 71.93 ± 1.05 71.04 ± 0.45 74.48 ± 0.39 70.45 ± 0.96 71.89 ± 0.72 75.26 ± 0.29

DD ACC 81.59 ± 0.26 76.78 ± 1.14 76.74 ± 4.09 75.48 ± 1.02 74.88 ± 1.10 77.91 ± 0.73 77.64 ± 0.52 74.50 ± 0.89 76.24 ± 0.31 78.82 ± 4.71

F1 80.58 ± 1.12 75.89 ± 1.12 74.94 ± 0.55 74.35 ± 1.25 74.19 ± 0.99 74.82 ± 0.37 77.32 ± 0.53 73.70 ± 0.81 75.19 ± 0.15 78.54 ± 1.02

NCI1 ACC 84.90 ± 0.27 76.00 ± 0.45 68.73 ± 2.36 74.12 ± 0.55 73.77 ± 0.51 75.18 ± 0.31 70.01 ± 0.37 73.48 ± 0.56 74.14 ± 0.38 68.92 ± 0.46

F1 84.85 ± 0.30 75.89 ± 0.46 67.65 ± 2.23 74.46 ± 0.42 73.62 ± 0.47 73.66 ± 0.63 69.79 ± 0.57 73.15 ± 0.52 72.69 ± 0.02 69.41 ± 0.32

COLLAB ACC 83.49 ± 0.19 75.01 ± 0.63 74.32 ± 2.30 73.83 ± 0.36 75.14 ± 0.33 75.82 ± 0.26 77.45 ± 0.32 74.02 ± 0.43 70.17 ± 0.19 76.73 ± 0.31

F1 81.05 ± 0.36 71.57 ± 0.85 70.17 ± 2.09 70.57 ± 0.34 71.97 ± 0.39 70.99 ± 0.41 73.54 ± 0.46 70.45 ± 0.68 68.37 ± 0.79 73.87 ± 0.84

REDDIT-M-5K ACC 56.27 ± 2.77 34.63 ± 0.96 32.95 ± 10.89 52.33 ± 0.54 50.90 ± 0.63 53.49 ± 0.28 37.11 ± 1.04 50.81 ± 0.46 53.76 ± 0.24 51.14 ± 0.75

F1 53.26 ± 2.53 33.77 ± 0.48 28.91 ± 9.59 52.22 ± 0.32 51.76 ± 0.65 50.35 ± 0.33 29.18 ± 1.22 48.69 ± 0.44 52.08 ± 0.59 48.96 ± 0.98

A.R. ACC – 4.8 6.8 6.0 4.8 2.6 4.2 7.4 5.3 3.2

F1 – 4.4 7.0 3.8 4.8 5.2 4.0 7.2 5.4 3.2
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exhibit well-defined functional motifs and stable topological structures, which align well
with the centrality-guided adaptive augmentation strategy employed by GCL-ALG. In
contrast, social network graphs exhibit more complex and hierarchical structures, where
a single centrality measure is insufficient to capture the multifaceted information,
thereby limiting performance improvements relatively. Future work may explore the
integration of multiple centrality metrics or community structural features to further
enhance the model’s ability to represent and learn from social network data.

Detailed analysis of the encoder mechanism
To systematically evaluate the effectiveness of the dual-layer feature extraction framework
and the synergy between its constituent modules, we conduct ablation experiments
focusing on the independent contributions and interactive effects of structural modeling
strategies based on self-attention mechanisms and edge load information. The experiments
employ an SVM classifier, with training repeated 10 times under different random seeds.
In each run, the unsupervised graph representation learning process is iterated for 100
epochs to ensure the stability and reliability of the results. Figure 3 reports the maximum,
minimum, and average performance of GCL-ALG and its structural variants on two
representative graph classification datasets, IMDB-B and PROTEINS. The variants include
GCL-ALG-Attention, which contains only the self-attention-based GNN encoder; GCL-
ALG-Weight, which includes only the edge-based GNN encoder; and GCL-ALG-None,
which excludes both components. The results yield the following insights:

. Synergistic enhancement effect. From Fig. 3, it can be observed that for methods GCL-
ALG-None, GCL-ALG-Weight, GCL-ALG-Attention, and GCL-ALG, their
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classification performances in both datasets show a progressive improvement. The
GCL-ALG model, which jointly integrates both components, consistently outperforms
all other variants in terms of maximum, minimum, and average performance.
Specifically, GCL-ALG achieves average improvements of 1.39% on IMDB-B and 0.47%
on PROTEINS compared to the GCL-ALG-None baseline. This not only validates the
individual effectiveness of each component, but also highlights the positive
complementarity between them.

. Differential module contributions. The experimental results reveal that GCL-ALG-
Attention yields average gains of 0.83% and 0.29% on IMDB-B and PROTEINS,
respectively, while GCL-ALG-Weight achieves only 0.48% and 0.15%. This discrepancy
indicates that, in the context of unsupervised graph representation learning, the
dynamically adaptive attention mechanism offers superior discriminative capacity
compared to static structural measures such as edge load, enabling more effective
identification of local structural features relevant to the task.

Hyperparameter analysis
In this section, we analyze the sensitivity of the Gumbel-Softmax temperature parameter s
in the GCL-ALG algorithm. s controls the sharpness of the edge sampling probability
distribution in the learnable view generator, directly affecting the balance between the
diversity and the information completeness of the generated views. To explore the impact of
s on different types of graph data, we conduct experiments with s 2 0:1; 0:5; 1:0; 2:0; 5:0,
using two representative datasets: IMDB-B and PROTEINS. As shown in Fig. 4, the
IMDB-B dataset achieves the best performance of 74.37% when s ¼ 0:5, after which the
performance gradually decreases as s increases. The PROTEINS dataset reaches its peak
performance of 76.54% at s ¼ 1:0 and maintains relatively stable performance within the
range s 2 ½0:1; 1:0�, but shows a significant performance drop when s 
 2:0. The analysis
indicates that IMDB-B performs best at a moderate s value, suggesting that an appropriate
degree of randomness helps alleviate the issue of local structure dependency. As a
biologically meaningful graph dataset rich in features, PROTEINS maintains stable
performance within the range s 2 ½0:1; 1:0�, but exhibits a decline when s 
 2:0, indicating

Figure 4 Sensitivity analysis of the Gumbel-Softmax hyperparameter s.
Full-size DOI: 10.7717/peerj-cs.3101/fig-4
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that excessive randomness disrupts its inherent feature-structure correlations. It is worth
noting that both datasets show a performance drop when s 
 2:0, confirming that an overly
high temperature introduces excessive noise, which weakens the effective gradient signal
and affects the learning of the view generator. Overall, except for the performance
degradation at higher temperature values, the model exhibits limited sensitivity to s and
good robustness, with the regularization and fully connected structures also contributing to
mitigating performance fluctuations. Based on the above experimental results, we
recommend setting the temperature parameter s within the range ½0:5; 1:0�.

CONCLUSION
In this article, we propose a novel data augmentation approach to address the challenges
posed by the tremendous heterogeneity of graph structure data and the constraints of
existing data augmentation strategies. The approach is rooted in learning probability
distributions from adaptive graph structures, creating dynamic, learning, adaptive view
generators that efficiently extract graph features relevant to downstream tasks. To achieve
this goal, GCL-ALG applies the attention mechanism and edge load information to two
distinct GNN encoders and optimizes the adaptive sampling strategy under the guidance
of the network centrality metric. Extensive analysis and experiments demonstrate the
superiority of our proposed GCL-ALG approach over other automated data augmentation
methods on multiple tasks. Furthermore, we investigate the individual contributions as
well as the combined effects of the attention mechanism and edge weights, and the results
reveal a synergistic relationship between them.

In future research, attributes will be integrated into learnable feature mining, aiming to
the ability of the model to learn relationships between attributes and underlying graph
structures, thereby achieving more effective and comprehensive graph representation
learning. Meanwhile, optimizing samples by incorporating neighborhood information is
also worthy of in-depth exploration.
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