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ABSTRACT
Human pose estimation aims to locate the human joint positions from images or
videos. This problem has drawn increasing attention and wide applications in
autonomous driving, motion analysis, and intelligence robotics. Some existing works
aggregate movement features from neighbouring frames, which is instrumental in
capturing sufficient information. However, considering the fast motion and pose
occlusion in videos, directly incorporating unaligned additional visual cues from
adjacent frames is prone to introduce noises due to the significant differences in
inter-frame characteristics. In this article, we advocate executing adequate feature
alignment between the keyframe and supporting frames to better utilize neighboring
frame contexts. Towards this end, we propose a novel symmetric U-Net-like feature
alignment algorithm for the human pose estimation task. This algorithm learns
symmetric information at global and local levels for each scale separately to assist the
model in generating accurate results. Specifically, a global alignment block based on
temporal deformable convolution is designed to learn the complex temporal
dynamics between adjacent and current frames to align the features. Moreover, a
local alignment block based on adaptive convolution is presented to optimize the
feature information further and preserve the geometry structures. Coupling these two
modules into a U-Net-like symmetric architecture forms our framework. We show
the effectiveness of our algorithm through the excellent results on two large pose
estimation benchmark datasets: PoseTrack2017 and PoseTrack2018. In addition, we
demonstrate that the proposed model achieves state-of-the-art performance on the
self-built badminton dataset.

Subjects Artificial Intelligence, Data Mining and Machine Learning, Data Science
Keywords Human pose estimation, Global-local symmetry learning, Symmetry feature alignment,
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INTRODUCTION
Human pose estimation, which has attracted increasing attention in the past decade, is to
locate the human configuration from input data, including images and videos. The ability
of machines to estimate and find human joints assists them in understanding the behavior
of human beings, which is significantly important to interact safely and reasonably with
people. As a result, it is hugely coveted in a broad spectrum of applications, such as
human-computer interaction, autonomous driving, intelligence robotics, and animation
production (Basurto et al., 2024; Fang et al., 2023; Rohini et al., 2025).

Recently, approaches explored employing various deep learning-based methods to solve
this task, such as convolutional neural networks (CNN), generative adversarial networks
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(GAN), and Transformer. Existing models can be divided into image-based and
video-based human pose estimation. The early attempts focus on tackling image-based
pose estimation tasks (Wei et al., 2016; Fang et al., 2017). Numerous image-based pose
estimation models have achieved positive performance, especially in computational
efficiency. However, directly utilizing image-based algorithms to tackle video-level tasks
frequently generates unsatisfactory results due to the failure to extract the
temporal-dependent relationship in the video. Specifically, when occlusion or motion blur
occurs, these networks have difficulty capturing complementary information from
adjacent frames, which brings negative impacts on achieving accurate pose estimation
(Feng et al., 2022). Consequently, the video-based human pose estimation models have
been designed to encode adequate motion information from video sequences via various
temporal feature processing modules for improving pose estimation performance. Existing
video-based algorithms directly aggregate information from neighboring frames to
enhance the feature representations of the target frame (Fang et al., 2023; Peng, Zheng &
Chen, 2024;Mehraban, Adeli & Taati, 2024; Naseer et al., 2024; Kumar & Naganaik, 2023).
However, the rapid movement of the human body causes significant differences between
the information at the same position in the adjacent frames. So, the direct aggregation
information method inevitably introduces negative features, such background noise and
irrelevant characters, which brings challenges for efficiently capturing human body
features from neighboring frames (Liu, Li & Huang, 2024; Liu et al., 2023; Naseer et al.,
2023; Naseer, Khan & Altalbe, 2023; Khan et al., 2024).

To solve the shortcomings of existing algorithms, we proposed to capture correlative
human information from consecutive frames to enhance the pose estimation performance
in videos. Our method, termed dense symmetric temporal alignment learning method for
human pose estimation (DSA), which contains a series of parallel global information
alignment blocks and a local information enhancement blocks. In contrast to existing
methods that directly perform multi-frame aggregation, we propose to densely align the
features of supporting frame to the key frame, there by improving the usage of temporal
information and facilitating the model’s robustness in challenging cases such as occlusion
or blur. Moreover, we design a global-to-local alignment paradigm to process large
motions and local details, respectively. We also combine the proposed alignment method
with a symmetric learning framework, enabling capturing more enriched representations.

The contributions of our method are summarized as follows:

(1) We design a global information alignment block to explore global related connections
between the current and adjacent frames to coarse align them, which can aggregate
more satisfactory information.

(2) We propose a local information enhancement block to encode local detail information
across frames for fine-grained feature alignment, which able to effectively deliver
comprehensive representation.

(3) Extensive experiment results show that our method achieves excellent performance on
three human pose estimation datasets, including PoseTrack2017, PoseTrack2018, and
the self-constructed badminton dataset.
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RELATED WORK
Image-based human pose estimation
Human pose estimation has gained significant attention in recent years. For example,
Wei et al. (2016) proposed a sequential structure model based on CNN, which generated
more accurate results through iterative optimization of each module in the training
process. Fang et al. (2017) designed a symmetric spatial feature encoding network to
capture high-quality pose information from inaccurate bounding boxes. Sun et al. (2019)
built a high-to-low resolution model to maintain multi-resolution mapping features
through feature extraction, which fuses various resolution representations to improve
estimation accuracy. Moon, Chang & Lee (2019) proposed a fully learning-based camera
distance-aware top-down general framework compatible with most existing human body
detection and estimation modules. Kreiss, Bertoni & Alahi (2019) introduced a bottom-up
method for multi-person 2D pose estimation, which leveraging part intensity fields (PIF)
for body part localization and part association fields (PAF) for pose formation. Maji et al.
(2022) developed You Only Look Once (YOLO)-pose, a heatmap-free method for 2D pose
estimation, optimizing the object keypoint similarity metric end-to-end and detecting
poses in a single forward pass.

Video-based human pose estimation
Nevertheless, utilizing image-based approaches to video may leads to reduced
performance, due to motion blur, occlusion, and similar challenges. For solving these
problems, Song et al. (2017) extracted relevant movement features from the temporal
domain by calculating the dense optical flow features between adjacent frames. Luo et al.
(2018) designed an end-to-end architecture that employed a loopy spatio-temporal graph
to encode the consistency of human poses in videos. Bertasius et al. (2019) proposed a pose
warper network based on a space-time distortion mechanism, which improves the label
propagation between frames and benefits the training from sparsely labeled videos. Fang
et al. (2023) combined symmetric integral keypoint regression and pose aware identity
embedding, enhanced by PGPG and knowledge distillation, to accurately localize human
keypoints. Peng, Zheng & Chen (2024) introduced a dual-augmentor framework that
enhances pose estimation generalization through meta-optimization and differential
strategies. Mehraban, Adeli & Taati (2024) built on AGFormer blocks that combine
transformer and GCNFormer streams to enhance 3D structure learning through adaptive
fusion, offering four variants for speed-accuracy trade-offs. Li et al. (2025) designed a
unified MLP-GCN architecture for 3D pose estimation, which efficiently modeling spatial
and temporal dynamics with minimal computational cost. Li et al. (2024) proposed
hourglass tokenizer (HoT) for efficient 3D pose estimation, including a token pruning
cluster to reduce redundancy and a token recovering attention to restore full-length
temporal resolution.

OUR APPROACH
Problem formulation. Presented with a current frame It and its neighboring frame
In ¼ It�2; It�1; It�1; Itþ2h i, we aim to estimate the human joint position of frame It . Our
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goal is to better leverage temporal information from the neighboring frame through the
proposed global and local feature alignment, thereby addressing the common
shortcomings of existing approaches in failing to effectively utilize closely related
information.

Method overview. The pipeline of our designed dense symmetric temporal alignment
(DSA) learning method is illustrated in Fig. 1. The proposed method belongs to the
top-down framework that first uses a person detector to expose each individual in the
video and then performs the task to a simpler single-person pose estimation problem.
Specifically, we first employ the Faster-RCNN (Pankajakshan & Bhavsar, 2020) as a person
detector to obtain the bounding box of the human pose at current frames. The bounding
box is enlarged 25% to ensure that the model captures the pose features at the same
position from the neighboring frames. Then, the pose features are feed to our DSA model
for symmetric aggregating both globally aligned information and local fine-grained visual
context to generate more comprehensive representations. Finally, a detector head is
employed to output the heatmap result of the current frame. Existing methods overlook
the misaligned spatial contexts of different frame, leading to suboptimal performance. We
propose a global to local alignment method, and design global information alignment
block which aligns the global information and focuses large motion contexts. The local
information enhancement block further processes the unaligned local details while
retaining the geometric structure of human keypoints.

Global information alignment block
Ideally, incorporating features from similar positions of adjacent frames will obtain the
optimal representation of the human pose to improve estimation accuracy. However, the

Figure 1 Overall pipeline of our DSA framework. Full-size DOI: 10.7717/peerj-cs.3100/fig-1
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rapid movements of persons or cameras cause significant spatial shifts of person between
each frame. Existing algorithms direct fuse features from neighboring frames, which
inevitably introduce noise information that is unrelated with the current frame. We instead
propose the global information alignment block (GAB) to obtain a coarse preliminary
alignment of the supporting frame. The GAB computes the spatial alignment parameters
of the global affine transform to achieve coarse preliminary alignments between
neighboring frames. It is worth noting that, unlike existing methods that perform feature
alignment using several deformable convolution layers, we employ a symmetric
architecture that repeatedly employs deformable convolutions to achieve more adequate
feature alignment.

As we know, the simple linear mapping or regular convolution network can be
empolyed to capture spatial features, but it fails to extract satisfactory information from the
complex and variable human poses. In contrast, the deformable convolution network able
to adaptively transform the sampling point of the convolution kernel to selectively encode
information from various spatial locations. Motivated by this, we design GAB based on
deformable convolution network to globally align the supporting frames
Is ¼ It�2; It�1; It�1; Itþ2h i with the current frame It at coarse level.

To facilitate the representation of this operation process, we take the alignment stage of
neighboring frame It�1 as an example.

We first utilize the high-resolution network as the backbone, the state-of-the-art
image-based human pose estimation method, to extract the features from the current
frame and the neighboring frames to obtain the feature vector Ft and Ft�1, respectively.
The HRNet is pre-trained on the human pose estimation dataset (COCO dataset) to obtain
high-resolution human features. The feature vector Ft and Ft�1 feed our GAM to compute
global rearrangement parameters to obtain a preliminary alignment of the supporting
frame feature with the current frame feature.

Specifically, the process stage of GAB is as follows:
Given Ft and Ft�1, the sampling offsets of each pixel in the convolutional kernel h and

the modulated scalars that denote the sampling magnitude M of global affine transform
phase can be obtained as follows:

h ¼ Th Ft � Ft�1ð Þ
M ¼ TM Ft � Ft�1ð Þ (1)

where Th and TM denote the transform nodel that generates h and M, respectively. These
models have the same structure consist of two basic modules with 3� 3 convolution
kernel, which are trained independently without sharing parameters. � denote the
concatenation operation of the features by channel dimension. h ¼ Dpn n ¼ 1; 2; 3;jh
. . . ; <j j:i denotes the offset value of each pixel position on the convolution kernel, <
denotes a standard 3 � 3 convolution kernel, which contains nine pixels with the
coordinates of < ¼ �1�1ð Þ �1; 0ð Þ �1; 1ð Þ . . . 0; 1ð Þ 1; 1ð Þh i.

Subsequently, we input the spatial offset parameter h, the modulation scalar M, and
the neighboring frame features Ft�1 to the deformable convolution model f ð.Þ for
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generating the globally aligned coarse information F̂t�1, which can be formulated as
follows:

F̂t�1 ¼ f Ft�1; h;Mð Þ: (2)

For a pixel p0 in the coarse aligned feature vector F̂t�1 at the rearrangement
transformation stage can be formulated as:

F̂t�1 p0ð Þ ¼
X

pn2<
w pnð ÞFt�1 p0 þ pn þ Dpnð ÞM (3)

where w pnð Þ denotes the weight of pixel pn in the convolution kernel, and pn þ Dpn
indicates the new sampling position of convolution kernel after deformation process
modulating.

Local information enhancement block
The global information alignment block achieves coarse calibration to preliminarily rectify
spatial shifts or jitter. However, GAB fails to yield satisfactory alignment for some small
parts (e.g., hands and feet), which causes this part feature captured from the supporting
frame F̂t�1 to be weakly associated with the current frame Ft . Moreover, the model keeps
the original geometric structure of the feature during information extraction which is
beneficial to improve the robustness of the feature representation and enhance the pose
estimation accuracy. So, We further propose a local information enhancement block (LEB)
to align local details and produce meticulous fine-tuning at pixel level.

Specifically, taken F̂t�1 and Ft as inputs, we employ an extended spatial transformation
network 4 to computer a transformation matrix Q 2 R2�2 and a translation vector

k 2 R2�1 from the position parametric of pixels.

Q; k ¼ 4 F̂t�1; Ft
� �

: (4)

During this process, the current frame feature matrix Ft is only used as reference
features to participate in the feature propagation process, and their feature values are not
changed.

Then, the adaptively trained transformation matrix Q and translation vector k utilized
to obtain a set of kernel offset parameters O ¼ o1; . . . ; o9h i.
O ¼ Q< þ k (5)

where < denotes the 3� 3 kernel of conventional convolution.
Subsequently, we achieve the local rearrangement operation of each pixel through the

adaptive convolution network to obtain enhanced feature �Ft�1. Specifically, given the
coarse calibrated feature F̂t�1 and the offset parameters O, the computation of each pixel q
in �Ft�1 can be expressed as follows:

�Ft�1 qð Þ ¼
X

oqi 2O
wiF̂t�1 qþ oqi

� �
: (6)

For the pixel q in the output features �Ft�1, the original convolution aggregates the 3� 3
pixels (in the kernel location) around q in input features F̂t�1. In contrast, for each pixel
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location in the original convolutional kernel, an offset o is added to adjust the sampling
(convolution) position in the input features F̂t�1.

We would like to point out that employing the affine transformation to rearrange
information of adjacent frames able to improve the robustness of feature representation
and preserve the geometric structure of local details.

Heatmap generation
Finally, we concat all global-local aligned neighboring frame features and the current
frame feature at the channel dimension and then employ several residual blocks to
aggregate them together to generate improved comprehensive information. We feed them
to a detection head to output the heatmaps of each person at the current frame. Note that
we utilize a stack of 3� 3 convolution layers as the detection head. By effectively capturing
closing related information from supporting frames via our dense symmetric temporal
alignment learning method, our DSA is more suitable for solving visual degeneration tasks
and generating more accurate pose estimation results.

Loss function
The standard pose estimation loss function (Jiao et al., 2022; Liu et al., 2022) is adopted to
supervise the learning of final pose estimates. The goal is to reduce the total Euclidean or
L2 distance between the estimation and the ground truth heatmaps. The loss function can
be formulated as follows:

L ¼ 1
J

XJ

j

vj Hj � Gj

�� �� (7)

where Hj and Gj denote the estimated and ground truth heatmap of joint j, respectively.
vj 2 ð0; 1Þ is visibility of joint j. The total number of joints in each person is J ¼ 15.

EXPERIMENTS
In this section, we evaluate our algorithm on three pose estimation benchmark datasets,
including PoseTrack2017, PoseTrack2018, and the self-constructed badminton dataset.
We first present the experimental settings, including datasets, evaluation metrics, and
implementation details. We then compare our DSA with existing pose estimation methods
in terms of quantitative results and visual results. Finally, we introduce ablation studies to
examine the effectiveness of our proposed component in our algorithm.

Experimental settings
Datasets

PoseTrack dataset is the largest public benchmark dataset for video-based human pose
estimation tasks. The PoseTrack2017 consists of 514 videos with a total of 16,219 frames of
human pose annotations, which are split into 250 video sequences for training and 50
video sequences for validating (Yang et al., 2021). The PoseTrack2018 includes 1,138
videos with 153,615 pose annotations. These are divided into 593 sequences for training
and 170 sequences for validation, respectively (Sun et al., 2019).
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Badminton dataset. We utilize a monocular camera to record multi-player badminton
match videos. Then, HRNet (Sun et al., 2019) has been employed to preliminary localize
the human joints. Finally, the preliminary annotated data is refined by professional data
annotation workers to annotate the human body posture, following a unified metric of 15
keypoints. For each labeled image, three inspectors will cross-check to ensure the accuracy
of the labeling. Unsatisfactory annotations will be redone. The badminton dataset contains
a total of five long video sequences with 13,000 frames. These are split into 10,000 and
3,000 videos respectively for training and testing.

Each pose of datasets contains 15 annotated joints and an additional visibility label for
each joint.

Evaluation metric
We evaluate our proposed method via the standard pose estimation metric (Cuiping, 2021;
Kulkarni & Shenoy, 2021; Sun et al., 2019; Bao et al., 2020), termed the average precision
ðAPÞ. We first calculate the average precision of each joint, and the average over all joints is
obtained as the final performance ðmAPÞ. Note that we merely use the visible joints to
compute the performance value.

Implementation details
Our DSA network is implemented on PyTorch and experimented on 2 Nvidia Tesla P40
GPUs. For training, we employ some data augmentation strategies, including random
rotations ½�45�; 45��, random scale ½0:65; 1:35�, truncation, and horizontal flip. Input
frame size is 384� 288. The Adam Optimizer is employed with a base learning rate of
1e�3 which decays by 10% every 10 epochs. Batch size is set to 48 and trained for 20
epochs. The extract window of supporting frames is set to ð�1;�1; 1; 2Þ. We utilize the
HRNet-W48 (Sun et al., 2019) model to extract visual feature, which is pre-trained on the
COCO dataset.

Comparison with existing pose estimation methods
PoseTrack2017
We first evaluate our model on PoseTrack2017 validation set with the widely adopted AP
metric. Table 1 shows the quantitative results of the above methods in terms of AP and
mAP on the PoseTrack2017 validation set. A total of eight methods are compared,
including PoseTracker (Girdhar et al., 2018), PoseFlow (Xiu et al., 2018), JointFlow
(Doering, Iqbal & Gall, 2018), FastPose (Zhang et al., 2019), SimpleBaseline (ResNet-50)
(Zhang et al., 2020), STEmbedding (Jin et al., 2019), HRNet (Sun et al., 2019), and our
DSA. The proposed DSA framework consistently outperforms these approaches and
achieves a mAP of 77.8. Significantly, our model obtains encouraging performance for the
challenging joints: we achieve a mAP of 73.6 for the wrist and an mAP of 70.0 for the ankle.
Such consistent and significant improvements show that incorporating meaningful
characters from supporting frames outperforms methods that use a single current frame.
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PoseTrack2018
We also benchmark our model with other methods on the PoseTrack18 dataset. Quantitive
results on the validation set are tabulated in Table 2, including STAF (Raaj et al., 2019),
AlphaPose (Fang et al., 2017), TML++ (Hwang et al., 2019), MDPN (Guo et al., 2018),
PGPT (Bao et al., 2020), Dynamic-GNN (Yang et al., 2021), and DSA. As shown in this
table, our approach once again delivers the best performance. Specifically, we can observe
that our model shows a remarkable 78.3 mAP on the validation set, achieving a 0.7 mAP
gain over the Dynamic-GNN (Yang et al., 2021). The estimation results of relatively
difficult joints, such as elbow, wrist, and ankle, consistently outperformed other methods.
These results demonstrate that our model effectively extracts complementary information
from adjacent frames and achieves fine-grained feature alignment, significantly enhancing
estimation accuracy.

Furthermore, we display the visual results for complex scenarios of our algorithm in
Fig. 2, which demonstrate the importance of our method in embracing complementary
cues from neighboring frames. As shown in Fig. 3, our method achieves more robust
results in challenging cases such as occlusion and blur.

Table 1 Performance comparisons on the PoseTrack 2017 validation set.

Method Head Shoulder Elbow Wrist Hip Knee Ankle mAP

PoseTracker (Girdhar et al., 2018) 67.5 70.2 62 51.7 60.7 58.7 49.8 60.1

PoseFlow (Xiu et al., 2018) 66.7 73.3 68.3 61.1 67.5 67 61.3 66.5

JointFlow (Doering, Iqbal & Gall, 2018) – – – – – – – 69.3

FastPose (Zhang et al., 2019) 80 80.3 69.5 59.1 71.4 67.5 59.4 69.6

ResNet-50 (Zhang et al., 2020) 81.7 83.4 80 72.4 75.3 74.8 67.1 76.4

STEmbedding (Jin et al., 2019) 83.8 81.6 77.1 70 77.4 74.5 70.8 76.5

HRNet (Sun et al., 2019) 82.1 83.6 80.4 73.3 75.5 75.3 68.5 76.9

AlphaPose (Fang et al., 2023) – – – – – – – 76.9

DSA 82.9 84.2 80.9 73.6 76.8 76.2 70.0 77.8

Table 2 Performance comparisons on the PoseTrack 2018 validation set.

Method Head Shoulder Elbow Wrist Hip Knee Ankle mAP

STAF (Raaj et al., 2019) – – – 64.7 – – 62.0 70.4

AlphaPose (Fang et al., 2017) 63.9 78.7 77.4 71.0 73.7 73.0 69.7 72.5

TML++ (Hwang et al., 2019) – – – – – – – 74.6

MDPN (Guo et al., 2018) 75.4 81.2 79.0 74.1 72.4 73.0 69.9 75.0

PGPT (Bao et al., 2020) – – – 72.3 – – 72.2 76.8

Dynamic-GNN (Yang et al., 2021) 80.6 84.5 80.6 74.4 75.0 76.7 71.8 77.6

AlphaPose (Fang et al., 2023) – – – – – – – 74.7

DSA 81.5 85.1 81.4 74.8 75.6 77.1 72.3 78.3
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Badminton dataset
To further evaluate the proposed method, we compare DSA with existing methods in our
self-constructed badminton dataset, including CPM (Wei et al., 2016), LSTM-PM (Luo
et al., 2018), ResNet-50 (Zhang et al., 2020), HRNet (Sun et al., 2019), and our DSA. The
evaluation results are tabulated in Table 3. We observe that HRNet (Sun et al., 2019) has
achieved an impressive accuracy of 70.3 mAP, while our proposed method obtains the best
performance of 72.8 mAP on this dataset. We also achieve a 79.8 and 78.5 mAP for the
Head and the Shoulder joint, respectively. As illustrated in Fig. 4, we display the visual
results on the badminton dataset.

Ablation study
We perform ablation experiments focused on investigating the contribution of each
component in the proposed DSA algorithm, including a global information alignment

Figure 2 Visual results of our algorithm on the PoseTrack 2017 and 2018 dataset.
Full-size DOI: 10.7717/peerj-cs.3100/fig-2

Figure 3 Visual results of our algorithm on challenging case of PoseTrack 2017 and 2018 dataset.
Full-size DOI: 10.7717/peerj-cs.3100/fig-3
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block (GAB), a local information enhancement block (LEB), and U-Net-like architecture.
All experiments are conducted on the PoseTrack2017 validation set. All experiments are
performed on the PoseTrack2017 validation set, with results reported in Table 4.

Global information alignment block
We investigate the influences of employing different number of supporting frames for
feature aggregation, where the number is set to 2, 6, and 4 (complete model). As presented
in the first and second lines of Table 4, we observe that an unreasonable number of
supported frames causes negative impacts to pose estimation. The model utilized two
supporting frames with 75.9 mAP, this reveals that the estimation accuracy is reduced due
to the insufficient supporting information contained in the shorter sequence. The model
employed six supporting frames with mAP drops of 0.3, which suggests that aggregate
information from long-distance frames introduces irrelevant information. As shown in the
third and sixth lines, the algorithm fails to adapt to feature geometry in the coarse
alignment stage causing a slight degradation in estimation accuracy. The GAB has been
removed the mAP falls from 77.8 to 74.3. This significant performance drop demonstrates
the important role of this component in the feature extraction process. We conduct an
ablation study on the temporal alignment. From the results in rows 6 and 7 of Table 4, the
temporal alignment brings significant performance improvements.

Figure 4 Visual results of our algorithm on the badminton dataset.
Full-size DOI: 10.7717/peerj-cs.3100/fig-4

Table 3 Performance comparisons on the badminton dataset.

Method Head Shoulder Elbow Wrist Hip Knee Ankle mAP

CPM (Wei et al., 2016) 70.1 61.5 69.0 66.5 55.6 59.8 51.2 61.9

LSTM-PM (Luo et al., 2018) 71.2 63.5 69.2 67.0 57.0 61.2 52.0 63.0

ResNet-50 (Zhang et al., 2020) 72.3 71.0 70.5 69.8 62.1 66.4 57.8 67.1

HRNet (Sun et al., 2019) 76.8 73.2 71.1 70.5 68.6 69.8 59.8 70.3

DSA 79.8 78.5 75.6 71.2 70.8 72.3 61.9 72.8
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Local information enhancement block
We explore the contribution of the proposed local information enhancement block.
Removing this block results in a noticeable dip of 1.3 mAP, which provides empirical
evidence that our proposed LEB is effective for extracting fine rearranged information of
adjacent frames to improve the robustness of feature representation and preserve the
geometric structure of local details.

U-Net-like architecture
As shown in Table 5, we study the influence of the symmetric U-Net-like architecture.
Specifically, we construct a baseline that performs cascaded global-to-local feature
alignment within six layers. This baseline significantly reduces the performance by
1.9 mAP, with the final mAP 75.9. This demonstrates the effectiveness of the proposed
symmetric U-Net-like architecture.

DISCUSSION
The proposed dense symmetric temporal alignment (DSA) framework demonstrates
significant advancements in video-based human pose estimation by effectively addressing
the challenges of temporal misalignment and noisy feature aggregation in dynamic
scenarios. The integration of global and local alignment mechanisms allows the model to
refine temporal features hierarchically, outperforming existing methods on
PoseTrack2017, PoseTrack2018, and a self-constructed badminton dataset. These results
demonstrate that explicit temporal alignment mitigates noise from rapid motion and
occlusion while preserving structural consistency. By decoupling global and local
alignment, the method provides a modular framework that could integrate with other
architectures to enhance long-range dependency modelling. Furthermore, the strong
performance on the badminton dataset highlights its applicability in sports analytics,

Table 4 Ablation studies of different components in DSA performed on PoseTrack2017 validation
set. “r/m X” denotes removing X module in the framework.

Method mAP

Two neighboring frames 75.9

Six neighboring frames 77.5

GAB with regular convolution layer 77.2

r/m HAM 74.3

r/m LEM 76.5

r/m alignment 72.6

DSA, complete 77.8

Table 5 Ablation studies of U-Net-like architecture in DSA performed on PoseTrack2017 validation
set.

Method mAP

r/m U-Net-like architecture 75.9

DSA, complete 77.8
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where rapid motions and occlusions are prevalent. This suggests potential use cases in
real-time athlete performance monitoring or rehabilitation systems. Future work could
integrate lightweight detectors or explore end-to-end architectures to enhance efficiency.
Additionally, we will extend temporal reasoning beyond adjacent frames, which may
further improve robustness in complex multi-person interactions. Overall, DSA advances
pose estimation and highlights the broader potential of symmetric temporal alignment in
feature learning for achieving accurate pose estimation.

CONCLUSION
In this article, we investigate the video-based human pose estimation task from the
perspective of effectively leveraging support contexts from adjacent frames via symmetry
feature alignment. We propose a dense symmetric temporal alignment U-Net-like
framework to progressively rearrange the supporting frames with the current frame.
Specifically, we design a global information alignment block to explore global-related
connections that allow abundant auxiliary information to be aggregated from the
supporting frames. Our local information enhancement block further aligns local details
and produces meticulous fine-tuning at the pixel level to effectively deliver comprehensive
representation. Extensive experiments confirm that our method significantly surpasses
existing work on three different benchmark datasets, including PoseTrack2017,
PoseTrack2018, and the self-constructed badminton dataset. In the future, we will
extending the proposed DSA framework to other video-related tasks such as 3D human
pose estimation and action recognition. The symmetric feature alignment approach can
also be integrated into existing pose-tracking pipelines to enhance motion similarity
assessment for improved data association. Additionally, exploring lightweight adaptations
of the model for real-time applications on edge devices could further broaden its
practical utility.
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