The interplay of physical and social wellbeing in older adults: investigating the relationship between physical training and social interactions with virtual social environments

Iman Khaghani Far, Michela Ferron, Francisco Ibarra, Marcos Baez, Stefano Tranquillini, Fabio Casati, Nicola Doppio

Background. Regular physical activity can substantially improve the physical wellbeing of older adults, preventing several chronic diseases and increasing cognitive performance and mood. However, research has shown that older adults are the most sedentary segment of society, spending much of their time seated or inactive. A variety of barriers make it difficult for older adults to maintain an active lifestyle, including logistical difficulties in going to a gym (for some adults, leaving home can be challenging), reduced functional abilities, and lack of motivation. In this paper, we report on the design and evaluation of Gymcentral. A training application running on tablet was designed to allow older adults to follow a personalized home-based exercise program while being remotely assisted by a coach. The objective of the study was to assess if a virtual gym that enables virtual presence and social interaction is more motivating for training than the same virtual gym without social interaction.

Methods. A total of 37 adults aged between 65 and 87 years old (28 females and 9 males, mean age = 71, s.d. = 5.8) followed a personalized home-based strength and balance training plan for eight weeks. The participants performed the exercises autonomously at home using the Gymcentral application. Participants were assigned to two training groups: the Social group used an application with persuasive and social functionalities, while the Control group used a basic version of the service with no persuasive and social features. We further explored the effects of social facilitation, and in particular of virtual social presence, in user participation to training sessions. Outcome measures were adherence, persistence and co-presence rate.

Results. Participants in the Social group attended significantly more exercise sessions than the Control group, providing evidence of a better engagement in the training program. Besides the focus on social persuasion measures, the study also confirms to a virtual gym service is effective for supporting individually tailored home-based physical training for older adults. The study also confirms that social facilitation tools motivate users to train together in a virtual fitness environment.

Discussion. The study confirms that Gymcentral increases the participation of older

adults in physical training compare to a similar version of the application without social and persuasive features. In addition, a significant increase in the co-presence of the Social group indicates that social presence motivates the participants to join training sessions at the same time with the other participants. These results are encouraging, as they motivates further research into using home-based training programs as an opportunity to stay physically and socially active, especially for those whom for various reasons are bound to stay at home.

The interplay of physical and social wellbeing in older adults: Investigating the relationship between physical training and social interactions with virtual social environments

Iman Khaghanifar¹, Michela Ferron², Francisco Ibarra¹, Marcos Báez¹, Stefano Tranquillini¹, Fabio Casati¹, Nicola Doppio³

Corresponding Author:

Iman Khaghanifar¹

Via Sommarive 9, Trento, TN, 38123, Italy

Email address: iman.khaghanifar@unitn.it

¹ Department of Information Engineering and Computer Science, University of Trento, Trento, TN, Italy

² Fondazione Bruno Kessler, Trento, TN, Italy

³ Trento Rise, Trento, TN, Italy

Abstract

Background. Regular physical activity can substantially improve the physical wellbeing of older adults, preventing several chronic diseases and increasing cognitive performance and mood. However, research has shown that older adults are the most sedentary segment of society, spending much of their time seated or inactive. A variety of barriers make it difficult for older adults to maintain an active lifestyle, including logistical difficulties in going to a gym (for some adults, leaving home can be challenging), reduced functional abilities, and lack of motivation. In this paper, we report on the design and evaluation of Gymcentral. A training application running on tablet was designed to allow older adults to follow a personalized home-based exercise program while being remotely assisted by a coach. The objective of the study was to assess if a virtual gym that enables virtual presence and social interaction is more motivating for training than the same virtual gym without social interaction.

Methods. A total of 37 adults aged between 65 and 87 years old (28 females and 9 males, mean age = 71, s.d. = 5.8) followed a personalized home-based strength and balance training plan for eight weeks. The participants performed the exercises autonomously at home using the Gymcentral application. Participants were assigned to two training groups: the *Social* group used an application with persuasive and social functionalities, while the *Control group* used a basic version of the service with no persuasive and social features. We further explored the effects of social facilitation, and in particular of virtual social presence, in user participation to training sessions. Outcome measures were adherence, persistence and co-presence rate.

Results. Participants in the Social group attended significantly more exercise sessions than the Control group, providing evidence of a better engagement in the training program. Besides the focus on social persuasion measures, the study also confirms that a virtual gym service is effective for supporting individually tailored home-based physical training for older adults. The study also confirms that social facilitation tools motivate users to train together in a virtual fitness environment.

Discussion. The study confirms that Gymcentral increases the participation of older adults in physical training compare to a similar version of the application without social and persuasive features. In addition, a significant increase in the co-presence of the Social group indicates that social presence motivates the participants to join training sessions at the same time with the other participants. These results are encouraging, as they motivates further research into using home-based training programs as an opportunity to stay physically and socially active, especially for those whom for various reasons are bound to stay at home.

Introduction

Physical activity, especially in the form of structured exercises, has been linked to positive outcomes in physical, social and mental wellbeing of older adults [Spirduso et. al, 2001]. Engaging in physical activities reduces risk of falls [Thibaud et al. 2012], slows progression of degenerative diseases [Stuart et al. 2008], and improve cognitive performance and mood in older adults [Landi et al. 2010]. Research even suggests that most active older adults are twice as likely to have no disabilities related to daily activities prior to death, compared to the sedentary ones [Leveille et al, 1999].

However, research has shown that, despite the growing evidence that sedentary behavior can be a serious health risk factor, physical inactivity is still prevalent in older adults. In a review of 23 studies investigating sedentary behavior in later life in seven countries measuring everyday activity using an accelerometer, Harvey et al. [Harvey et al., 2013] reported that 67% of older adults are sedentary for more than 8.5 hours during their waking day. Little gender differences were found in the amount of

physical activity in later life, while older adults aged more than 75 were found to be less active than those in the 65-74 age group.

According to the World Health Organization [Cavill, 2006], physical inactivity is also a significant economic burden for the society and the European healthcare systems, bringing about significant direct and indirect costs due to sick leave, mortality, morbidity, poor quality of life, and increased health expenses. For example, it is estimated that, in England, indirect costs of physical inactivity amount to £8.2 billion per year [Department of Health, 2005], while, in Switzerland, direct costs of treatment are estimated at €1.1–1.5 billion [Martin et al., 2001].

There are however a variety of barriers that make it difficult for older adults to maintain or increase their physical activity level: lack of easy access to facilities and infrastructures, reduced functional abilities, and lack of motivation [Schutzer et al., 2004]. Among the factors affecting motivation, *self-efficacy* (i.e., perceived capability and confidence), which is a strong predictor of adherence to physical exercises, is less exhibited in older adults compared to other age populations [Phillips et al., 2004]. In addition, older adults and in general people challenged with physical and cognitive decline are less able to leave their homes and participate in physical and social activities on a regular basis.

In addition to reduced physical activity, a reduced participation in social activities along with changes in social roles put older adults at risk of social isolation. Extensive research has found links between social isolation and adverse physical and mental health, e.g., increased mortality rates for older adults, elevated blood pressure, dementia, depression, and cognitive decline [Bower, 1997; Fratiglioini, 2000; Heikkinen and Kauppinen 2004]. On the other hand, engaging in social interactions is beneficial to the health and well-ping of older adults [Fratiglioni, 2000]. Accomplishing practical activities *together* is an indirect mean social ties, which is particularly beneficial for older adults with limited opportunities to interact [Leonardi et al., 2008].

In this paper we present a tablet-based virtual fitness club environment designed, in terms of interaction, metaphors and training programs, to be suitable for older adults. This environment evolved from years of research in home-based training for older adults [Silveira et al., 2013a; Silveira et al., 2013b, Khaghani Far et al. 2012; Khaghani Far et al. 2014]. The specific goal of the latest version, called Gymcentral (gymcentral.net), discussed here, is to motivate people to train by providing users with a fitness club that is both personal (the training program is personalized) and social: members can interact and have the feeling of being in the same virtual space - even if they perform different exercises.

More specifically, we study and report on an intervention designed to understand the effect of **social facilitation**, and in particular of social presence, on the desire of trainees to exercise together, and its impact in the adherence to a training program. We are interested in the following research questions:

Q1. Does Gymcentral motivates the participation of independent-living older adults in home-based training programs?

Q2. Does co-presence, our tool for social facilitation, motivate independent-living older adults to exercise together in a virtual social environment?

Finding the answers to these questions can be very beneficial in understanding if and how home-based training programs can become effective in motivating older adults to train regularly.

Related Work

Virtual environments

Training at home does not feel the same as training outdoors or at the gym. Therefore many home-training setting rely on virtual environments to evoke similar conditions. Ijsselsteijn et al. [Ijsselsteijn et al., 2000] nalysed intrinsic motivation and sense of presence when exercising indoors, using a stationary bike and a projector to show a virtual racetrack. The study involved 24 Philips employees, with an average age of 41.3 years old. Intrinsic motivation scores, presence, and cycling speed were higher for high immersion settings (a 3D real-time first person view of the track, in comparison to a 2D aerial view with a dot representing the user position), and the sense of presence increased when having a virtual coach. Other studies concur, showing that virtual worlds increase the sense of presence, or psychological immersion [Yilmaz, 2013; Grinberg, 2014]. Users feel as being a integral part of the virtual world and get more engaged in the activities, thus making virtual worlds suitable to facilitate social engagement for the health support and physical functioning of the older adults [Molina et al., 2014; Siriaraya et al., 2014].

Most of the aforementioned studies were carried out in care homes or laboratories, under the supervision of therapists or caregivers. Furthermore, physical presence was required to participate together and there were no control groups to test lone participation conditions nor co-presence for remote, independent training settings. In this paper, we measure the effectiveness of the virtual presence (co-presence) on engaging the older adults in exercising sessions.

Gaming technology has also been used to help older adults in training. Devices such as the Kinect¹ [Kayama et al., 2013; Pisan et al., 2013] and the Wii² allow users to use their body movement to control in-game characters. Both customized [Carmichael et al., 2010; Alankus et al., 2010] and off-the-shelf solutions [Jung et al., 2009; Agmon et al., 2011; Jorgensen et al., 2012] have been tried to train older adults. Nonetheless, few have been tested by older adults at home [Agmon et al., 2011] or have used virtual coaches [Carmichael et al., 2010], as these gaming consoles were initially designed for the younger population.

Persuasion technologies for home-based physical interventions

Physical training with technology support has been explored in home-based settings for rehabilitation [Marin et al. 2011] and physical training exercises [Cheok et al. 2005; Brox et al. 2011]. The usability of a home-based training with the Kinect and video instructions [Ofli et al., 2015], as well as with tablets [Silveira et al., 2013a], has been studied with the older population. These solutions, ranging from using a computer with mouse and keyboard, to tablets and game consoles (e.g., Wii, Kinect [Agmon et al., 2011]), were reported usable and effective by healthy older adults.

However, despite the availability of usable technology, motivating older adults to exercise is a challenge. Among the factors affecting motivation, *self-efficacy* (i.e., perceived capability and confidence), is reduced in older adults compared to other age populations [Phillips et. al, 2004; Schutzer et al., 2004]. Other aspects such as the perceived drawbacks (e.g., illness, pain, discipline) and the tendency towards sedentarism (e.g., due to habits or psychological issues) also play against the motivation to engage in physical activity [Phillips et al., 2004].

In order to mitigate these effects, researchers have explored various types of persuasion strategies in the design of training solutions. We classify the persuasion strategies in the literature in two major

¹ www.microsoft.com/en-us/kinectforwindows

² www.wii.com

categories of i) individual motivation strategies, where the persuasion mechanism does not require the presence of a social community and ii) social motivation strategies, where the presence of a social group (e.g, co-participants, family and supporters) has a positive effect on the participant's exercising behavior [Silveira et al. 2013b].

Individual motivation strategies range from appealing and usable interaction design, to self-monitoring, alerts and recommendations, positive and negative reinforcements, and gamification [Fogg, 2002; Oinas-Kukkonen et al., 2008]. Several studies experiments be effectiveness of such strategies with older adults. For example, Albaina et al. [Albaina et al., 2009] designed a virtual coach application that encourages older adults to warmore. The study analyzed the effect of positive and negative reinforcements in motivating the elder and reports higher levels of motivation when a virtual coach is present.

Research suggests that **social motivation strategies** are more effective than individual strategies, in particular for the older adults [Carron et al., 1996; Silveira et al., 2013b; Jimison et al., 2013]. *Social support* given by family, friends and caregivers can improve the self-efficacy of older adults and thus increase motivation to engage in physical activity [Resnick et al., 2002; Romero et al., 2010]. *Collaboration* among the peers has also proven to be persuasive. Mubin et al. [Mubin et al., 2008] describes walk2win, a collaborative game that encourages elderly people at care centers to play a game by walking. From the qualitative data collected, Mubin has reported that older adults enjoined more when the activities were collaborative compared to when they were individual.

Using a gaming approach, Fish 'n' Steps got 14 out of 19 people to increase or change their attitude towards physical activity [Lin et al., 2006]. Participants were given pedometers to record their step count and were put together in groups of 4, which collaborated among themselves and competed against other groups. The step count was shown to all others (even other groups) using the metaphor of fishes in a tank (the more steps, the bigger the fish), one experimental condition even made the fish tank's water get darker and loose decoration when team members' step count was not good enough.

Moreover, Anderson-Hanley et al. [Anderson-Hanley et al., 2011] studied the effects of social presence, and in particular of the moderating effects of competition, in the exercise behavior of older adults in a virtual biking environment. In their study, the introduction of competitive avatars enhanced the effort of the competitive participants, without negative effects on the non-competitive ones. However, the effect of the social presence in the long term adherence and social user behavior was not explored in this work.

The aforementioned works report on a positive influence of social support, peer collaboration and competition. However, the effects of virtual social presence on both exercising behavior and long term adherence has not been explored yet in home-based training settings with older adults. In this paper we focus on gaining more insights into this type of social facilitation and their effects.

Materials & Methods

Gymcentral Trainee Application

Gymcentral is designed to *enable* and *motivate* older adults to participate in physical training sessions from home, using a tablet device. The application leverages on social support, in the form of social presence during training sessions, and online and offline social interactions to motivate older adults to meet, interact and exercise.

The design of the application for trainees is based on a virtual environment that mimics the spaces and services found in a real gym. The main features of the tool are the following:

- **Reception**: The entry point to all the services of the gym. A virtual receptionist helps the user in getting oriented and suggests courses of action (Figure 1a).
- Locker room: A virtual representation of a gym locker room, where trainees prepare for the training session and often chat. The locker room enables trainees to i) see who is online and ready for the training session, ii) invite trainees that are absent to join and come online, and iii) interact by sending each other predefined messages in real-time (Figure 1d).
- **Invitation Feature**: A feature, available when a user is in the locker room, that enables trainees to send invitation messages to other trainees inviting them to exercise together (Figure 1d).
- Classroom: The virtual representation of a training room, where users have access to the exercise instructions given by a coach. Trainees are not only able to see the coach but also other trainees exercising at that moment as static avatars (Figure 1c).
- **Progress report**: It allows users to check their progress within the training program. The visualization is through a growing garden metaphor. The mission of the user is to follow the program and, by doing so, grow the garden. While users visit their garden (or their progress) they will see a gardener (a gnome) working there, informing them about the current status of the garden and encouraging them to keep on exercising (Figure 1f).
- Messaging: The bulletin board is a social interactive tool that allows trainees to exchange
 public messages and see each other's training activities. In addition, a private internal email
 allows trainees to have private conversations (Figure 1e).

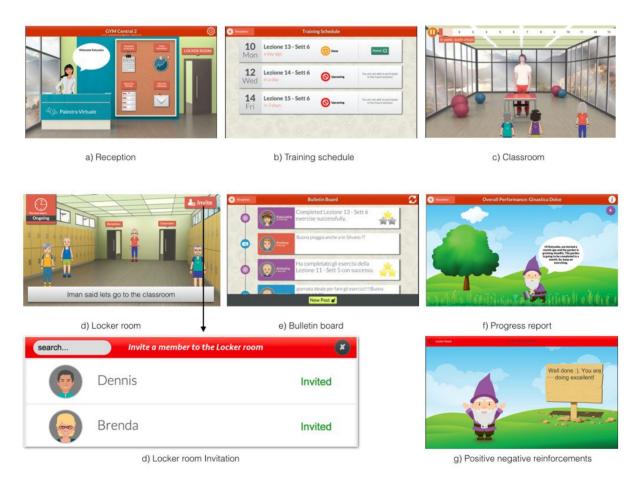


Figure 1- Features of the Gymcentral Trainee application

Persuasive strategies are a major design dimension, and we classify them in two general types i) *individual,* referring to strategies that leverage the individual wills and natural drive and, ii) *social,* referring to strategies that include the presence of a community of people with the roles of family, supporters and peer trainees [Silveira et al., 2013b]. The set of strategies incorporated is derived from

previous work on persuasion (among others, [Oinas-Kukkonen, 2008], [Fogg, 2002]), and implemented in the application as described below:

Individual Persuasion Strategies

- **Self-monitoring**: the application provides trainees with performance monitoring and awareness about their current progress. The progress is visualised using the garden metaphor ([Consolvo et al., 2008]), and is accessible from the reception.
- Positive & Negative reinforcement: the application prompts positive or negative comments about the exercising behavior of the trainee to raise awareness ([Silveira et al., 2013b]). The reinforcement message is displayed after a training session according to the number of exercises completed, with three different states: positive (completeness >= 75%), neutral (75% > completeness >= 25%) and negative (25% > completeness). The message is given by a gnome with a mood that matches the tone of the message (Figure 1g).

Social Persuasion Strategies

- Social Learning (comparison): the application provides social features that allow trainees to compare their performance with others. It offers a bulletin board where the performance of the trainees is automatically shared after a training session [Oinas-Kukkonen, 2008; Silveira et al., 2013b].
- Social support: the application provides social features such as messaging and a bulletin board, enabling trainees to interact with each other and create a community of people supporting each other [Oinas-Kukkonen, 2008; Silveira et al., 2013b].
- **Social facilitation**: social spaces like the locker room and the classroom allow for social awareness. Trainees can see a virtual representation (avatars) of other trainees virtually present in each space. [Oinas-Kukkonen, 2008; Fogg, 2002]
- **Normative Influence**: the application allows sending and receiving invitations to exercise together as a peer pressure mechanism [Oinas-Kukkonen, 2008; Fogg, 2002].

Social interactions are also a central part of the offerings of the application. Thus, the application provides the following social features:

- **Real-time interactions**: the locker room allows users to interact by exchanging contextual messages in real time (e.g., "Hi", "Let's go to the classroom", "Bye"). Predefined messages are sent by tapping on the avatar of a user and choosing the message.
- **Asynchronous messages**: users can also interact by sending public and private messages. The messaging is asynchronous and behaves like an internal mail system.

Persuasion hypotheses

In this study we investigate the effects of Gymcentral in motivating older adults to engage in virtual training sessions with a group of trainees. We concretely define the following persuasion hypothesis:

- **H1.** Gymcentral increases the participation of independent-living older adults to home-based training. It proposes that Gymcentral is more effective in engaging older adults to follow a training program from home, compared to a simpler version of the same application without social and persuasion features.
- **H2.** Social presence in the form of virtual avatars increases joint participation of independent-living older adults to training sessions. It proposes that being able to see other users during a training session would motivate users to train together.

In the following sections we describe the participants, the study design and the outcome of the measures used to test our hypotheses.

Participants

Participants aged 65 or older, self-sufficient and with a non-frail, transitionally frail or a mild frailty level were considered eligible for the study. Participants' frailty level was measured using the Groningen Frailty Indicator [GFI; Steverink et al., 2001], a validated questionnaire that screens for self-reported limitations in older adults [Bouillon et al., 2013; Drubbel et al., 2013]. The GFI score ranges from zero (not frail) to fifteen (very frail). Older adults were considered eligible for the study with a score lower than 7 (non-frail, transitionally frail or with a mild frailty level).

Older citizens were mainly contacted through two volunteering organizations based in Trento, Italy, which offer different services to independently living older adults. Participants who showed interest in the study were contacted by the researchers to make sure that they conformed to the inclusion criteria, resulting in 40 participants between 65 and 87 years old being selected for the study (29 females and 11 males, mean age = 71, s.d. = 5.7). All participants obtained a formal written approval by their family doctor to allow them to participate in the study. Both doctors and participants received a written outline and explanation of the study before participating.

Out of the initial 40 participants, 4 withdrew at different times during the course of the study due to unpredictable health or family problems. One participant could be replaced because the withdrawal occurred just before the start of the study, while the others could not be replaced since they withdrew during the second half of the study. For this reason, the results are based on data from 37 participants (28 females and 9 males, mean age = 71, s.d. = 5.8, between 65 and 87 years old).

Participants took part in introductory meetings and training sessions about how to use the tablet and the application, and were provided with a written presentation of the study and written instructions for the use of the tablet and the application. The study received ethical approval from the CREATE-NET Ethics Committee on ICT Research Involving Human Beings (Application N. 2014-001).

Study design

In this study we followed a framework for the design and evaluation of complex interventions in health settings described by Campbell et al. [Campbell et al., 2000]. Participants were assigned to the experimental (or **social**) condition and to the **control** condition using a matched random assignment procedure [McBurney & White, 2009; Whitley & Kite, 2013]. This technique is particularly useful to help ensure that different groups are equivalent on one or more characteristics prior to treatment. The variables used in the random assignment were age and participants' frailty level. Pretest analysis of age, frailty, and self-reported physical activity measured with the Rapid Assessment of Physical Activity questionnaire [Topolski et al., 2006] did not reveal significant differences between the experimental and the control group.

Participants in the social condition were given a version of the Gymcentral application that included the virtual social environment, the progress metaphor and the home-based exercise program. In the control condition, participants received a version of the application that focused only on the home-based program, without social or individual persuasion features. In Figure 2 we illustrate the difference in the participation to training sessions.

a) Social participation to training sessions

b) Individual participation to training sessions

Figure 2- Participation to training sessions in the (a) social condition, and (b) control condition

All participants received a 10.1 inch Sony Xperia tablet with Wi-Fi and 3G support, the user guide including the names and telephone numbers of the support team, and instructions about the use of the tablet and the application, one pair of ankle weights to perform the exercises and a folder to allow the vertical positioning of the tablet.

Before starting the exercise program, all participants underwent physical assessment with a personal trainer, in order to allow for personal tailoring of exercise type and intensity, and to personalize the starting level of each participant.

The study was carried out in October-December 2014, in Trento, Italy. The first week was devoted to technical deployment and application testing, followed by 8 weeks of training and 1 week of post-training measurements. The timeline of the study is illustrated in Figure 3.

The exercise program was based on the **Otago Exercise Program** [Gardner et al., 2001], specifically tailored for older citizens, and consisted of 10 levels of increasing difficulty. The program includes simple exercises based on functional everyday movements that could be safely executed at home. Participants from both groups were assigned an initial level by the Coach based on the pre-test analysis. During the exercise program, participants were asked to perform *at least two exercise sessions per week*. They could gradually progress in intensity during the program. In both social and control groups, progression was gradually suggested every week. If participants agreed to level-up, the following level was unlocked, requiring a confirmation from the personal trainer in the case of the social group.

The interventions by the coach during the training were expected to be: i) every week, to advance trainees in the exercise program (level-up) and give them feedback, and ii) upon direct contact from the trainees. The social group was able to contact the Coach using the messaging feature of the application, while the control group could do so by telephonic contact.

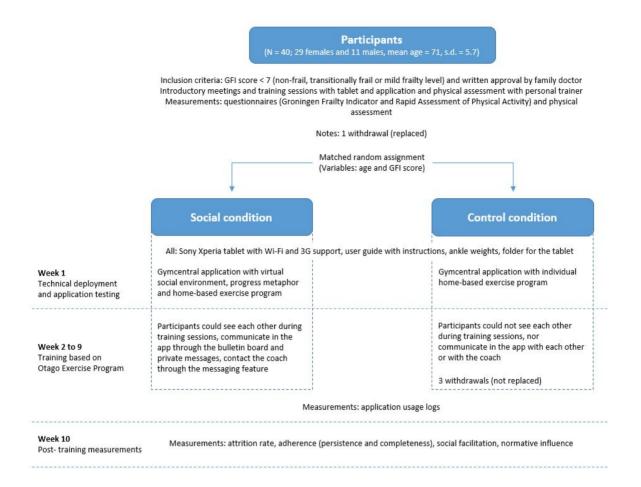


Figure 3 - Flowchart depicting the study setting and timeline

Outcome measures

Attrition

The attrition rate was measured with the proportion of participants lost at the end of the study. Taking into account relevant related studies on IT-based systems for healthy ageing [Silveria et al., 2013a; Silveira et al., 2013b], a 7.5% attrition rate was considered acceptable.

Adherence

The adherence to the exercise program was computed using data about usage patterns collected from the application logs, for both the Control and Social group. In order to better explore adherence patterns, for each participant, two measures were considered. The first is related to **persistence** throughout the eight weeks of the exercise program, and was computed considering the ratio between the number of exercise sessions attended by a participant and the number of the exercise sessions planned in the program. The second measure is related to the level of **completeness** of the exercises sessions, and was calculated considering, for each session, the ratio between the number of exercises completed by a participant and the number of exercises planned for that session. For example, participant A and participant B could both have high scores in the level of completeness, meaning that when they take part in a workout session, they tend to perform most of the exercise completing a high percentage of the session. But, for example, participant A could score lower that participant B in the persistence measure, in case he/she took part in only few of the total number of exercise sessions planned in the program,

while participant B attended a higher number of sessions during the eight weeks of the study. In general, a rate of 70 vas considered an acceptable criterion for success for both measures. More specifically, we expected a higher adherence for the Social group, as a consequence of a higher motivation and engagement in the participation on the program, due to the presence of communication functionalities, and the garden metaphor for monitoring one's progress.

Social facilitation

Users could participate in a training session at any time, and they could join other users or exercise alone. The participations of all the users were logged in the system.

We consider a user participation to be "joint" if there was at least one or more users exercising at the same time for a minimum of 1 minute. On the contrary, if a user participated alone during the entire training session, the participation is considered as "individual". We measure **co-presence** by computing the ratio of joint participations with respect to the total number of participations.

Results

Attrition and adherence rates

Out of the initial 40 participants, 4 withdrew at different moments during the course of the study due to unpredictable health or family problems. One participant was substituted because the withdrawal occurred before the start of the study. This resulted in a 7.5 % attrition rate, measured in terms of the proportion of participants lost at the end of the study. It should be observed, however, that the reasons behind the withdrawal of these participants were solely related to unexpected health and family problems or, in one case, to technical issues regarding Internet connection problems that could not be overcome.

Adherence to the exercise program was computed using data about usage patterns collected from the application logs, both for Control and Social group. In order to better explore adherence patterns, for each participant two measures were considered: i) persistence throughout the eight weeks of the exercise program, and ii) level of completeness of the exercise sessions.

With regard to persistence, a total number of 24 sessions were planned during the eight weeks of the study (3 sessions per week). In order for the exercise program to succeed, participants were asked to carry out at least two of the three sessions that were planned each week. To calculate persistence, the total number of exercise sessions in which each participant took part was divided by 24, the total number of possible training sessions across the 8-weeks period of the study.

The general persistence rate in the two groups was 76 % (SD=22.6 %). More specifically, in the Social group the persistence rate was 85 %, while in the Control group it was 64 % (Fig. 4).

A t-test for independent samples was used to analyse the difference in persistence during the training program between the Social and the Control group. The test showed that the Social group had a significantly higher persistence rate (M=85.4 %, SD=16.1 %) compared to the persistence rate of the Control group (M=64.2 %, SD=24.1 %), t(35)=3.18, p=.003).

Figure 4 - Persistence rate in the Control and Social groups during the eight-week period of the study.

Indeed, grouping the participation by week, distributing the users by number of participations (1, 2 and 3), we see that participants of the study group did not only comply with the Coach instructions (at least two sessions per week, as requested from them), but they did more. This indicates that the various features of *Gymcentral* were more engaging than the simple app.

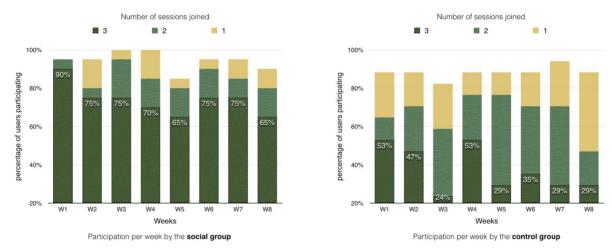


Figure 5 - Attendance rates of the social and control groups per week. Participants in the Social group tended to carry out more than the two working sessions per week that were required.

The second measure related to adherence is the completeness rate, which refers to the extent to which participants tend to complete all the exercises included in a working session once they have begun to work out. The overall completeness rate in the two groups was very high, specifically 90.32 % (SD=17.4 %), meaning that overall participants tended to complete the working sessions once they started. The completeness rate in the Social group was slightly higher compared to that of the Control group, although it was not statistically significant (respectively, M=91.75 %, SD=12.46 % for the Social group, and M=88.63 %, SD=22.24 % for the Control group).

In general, the data shows positive results with regard to attrition and adherence rates, providing evidence for the effectiveness of tablet-based home exercise programs. More specifically, the Social group, who used the system including communication features and the garden metaphor to monitor one's progress, showed a significantly higher persistence rate throughout the study, indicating an increased engagement in the program.

Social Facilitation

A total of 669 participations to the training sessions were registered in the social group, for the 20 participants, and 451 for the 17 participants in the control group. The co-presence in the social group was of 71.86 % (SD=12.53%). In the control group instead, the co-presence was of 36.52% (SD=21.92%). In the latter case, co-presence represents the meetups by chance as users were not aware of each other. Figure 6 depicts the percentage of joint sessions for both social and control groups. The percentage demonstrates the ratio of times in which the trainee was exercising in a "joint" session.

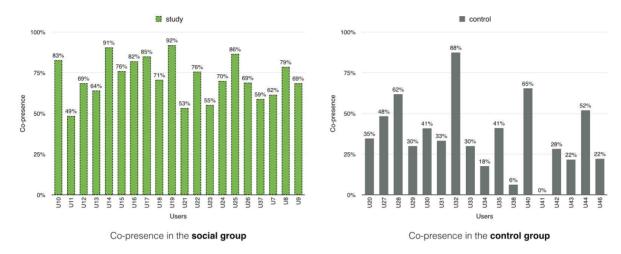


Figure 6 - Percentage of co-presence in the social and control groups

A t-test for independent samples showed a significant difference between the social and the control group (t(35)=6.14, p<.001). However, to compensate the effect of a higher number of participants in the Social group and to get a conservative estimate, we excluded the three most active participants from the social group (U7, U13, U26) along with all their data, and analysed co-presence in this new condition. The difference is still significant, with a co-presence of 62.68% for the remaining 17 participants of the Social group, compared to the 36.52% of the control group (t(32)=3.90, p<.001). This result suggests that participants in the social group were motivated to join the sessions at the same time.

Further analysis beyond our outcome measures were done for informative purposes:

a) Co-presence and the motivation to stay online

We further investigated the influence of co-presence in the motivation of users to stay in the classroom, by comparing the difference in the time spent by each user in the "joint" and "individual" sessions. The results point to an average raise of 10.81 minutes (SD=16.52) in the time spent in joint sessions for the social group, and of 6.62 minutes (SD=10.14) for the control group (since the control group participants were not able to see the presence of each other, we can relate the fact that longer exercising sessions results in a higher chance of meeting the difference of 4.19 minutes in favour of the social group is not however significant according to t-test analysis (t(35)=0.91, p=0.37).

b) Co-presence and the motivation to finish the exercises in one session

In the study settings, training sessions were composed of 12 to 13 activity bouts. However, participants could optionally perform all of the designated activity at once (once in a row) or complete the session activities partially (e.g., activity 1 to 5) and return later to the same training session to perform the

remaining activities (e.g., 6 to 13). Thus, we analysed the ratio of completed sessions at once in three situations of i) completed at once when exercising individually and in joint sessions, ii) completed at once individually and, iii) completed at once in joint sessions.

From the 669 recorded sessions for the 20 participants of the Social group the ratios are as: i) completed individual+joint=40.75%, ii) completed individual=34%, iii) completed joint=42.42%. For the 451 recorded sessions for the 17 participants of the control group the ratios are i) completed individual+joint=39.46%, ii) completed individual=34.92%, iii) completed joint=50.51%. Although the completion ratio for joint sessions is higher in both social and control groups, this is mostly caused by the fact that longer sessions increase the chance of meeting with the other trainees, and in any case the difference is not significant.

c) Success rate of invitations to join a training session

Participants in the social group were given the possibility to send invitations to the other trainees, by asking them to join to the classroom with them. Out of 20 participants of the Social group, 11 participants had sent at least 1 invitation. We account for 129 invitations received, and the percentage of invitations that caused trainees to to join within 2 minutes of notice is 50.59 % indicating that a considerable number of received invitations caused the participants to start training.

Discussion

The use of Gymcentral as technological support for home-based training has been effective in keeping independent-living older adults motivated during the training program. We discuss our results addressing each of our initial hypotheses:

H1. Gymcentral increases the participation of independent-living older adults to home-based training

The results indicate that the Social group had a significantly higher persistence ate (M=85.4%, SD=16.1%) compared to the persistence rate of the Control group (M=65.1%, SD=24.6%), t(34)=2.98, p=.005. This confirms our hypothesis that Gymcentral increases the participation of older adults to home-based training programs, compared to a simpler version of the same application without social and persuasion features. In terms of completene of training sessions, the level for both groups has been very high, with no statistical difference between both, suggesting that users tend to finish their sessions once they have started.

Furthermore, we have observed that trainees have not only complied with the minimum requirements of the Coach in terms of sessions per week (2 sessions), but performed even more. These results are encouraging as they suggest that the effects of the application are not limited to compliance but promote real engagement.

H2. Social presence in the form of virtual avatars increases joint participation of independent-living older adults to training sessions.

We have seen a significant difference between the Social group, where co-presence was in place, with respect to the control group, where meetups happened by chance as users were not aware of each other (t(35)=6.14, p<.001). The difference remains significant and large even when we correct, in a conservative way, for the slightly larger number of participants in the Social group (t(32)=3.90, p<.001). This result suggests that the social presence motivated participants to join the training sessions at the same time, thus confirming our hypothesis. A limitation of the analysis is that the level of participation of the social group was higher, as a result of the persuasion strategies that were in place, and this factor could not be isolated for this particular analysis.

As users could pause training sessions and complete them at multiple times, we explored if users tended to complete sessions at once, or spend more time training, while in presence of others. We have not seen any significant difference in both, which is in line with our previous finding that once users start, they tend to complete their training sessions, whether in a social or individual condition. In addition, the success rate of our invitation feature was encouraging, motivating further study into the effects of normative influence in co-presence.

Conclusion

In this paper we have introduced a virtual fitness environment to promote home-based physical training in independent-living older adults. The application, namely Gymcentral, incorporates individual and social persuasion strategies, featuring social facilitation tools to motivate long-term adherence and co-presence in training sessions. We have investigated the effectiveness of our design and its influence in an intervention study, with promising results.

The design of the virtual gym, including the persuasion and social features, has been very successful in keeping older adults motivated during the training program. Older adults in the intervention group have not only shown a level of compliance with the training program significantly higher with respect to the control group, but also a superior level of engagement seen in trainees performing more training sessions than those initially prescribed. We suspect the difference is mainly due to the social features, but given to the limitations in the study setting we are not able to confirm this.

We have also seen that older adults prefer to train with others. It has been observed in the higher level of co-presence in the Social group compared to the meetings by chance in the Control group. This result is encouraging, as it motivates further research into using home-based training programs as an opportunity to stay physically and socially active, especially for those who for various reasons are bound to stay at home.

Even more importantly, the overall perception of the application has been very positive. Indeed, the association of older adults who participated in the study has formally requested to continue using the service, and new training programs are currently under development. In addition, similar studies are currently being replicated in Russia and the Netherlands to analyse the effects of cultural differences, and of different training programs.

Acknowledgements

We particularly thank Daniele Didino of TPU for his feedback and support in the statistical analysis. We also thank Associazione per i Diritti degli Anziani (A.D.A), Associazione per l'invecchiamento attivo (Auser), and Smart CROWDS Trento and their staff for their help and support during the study.

References

Agmon M, Perry CK, Phelan E, Demiris G, and Nguyen HQ. 2011. *A pilot study of Wii Fit exergames to improve balance in older adults*. Journal of Geriatric Physical Therapy 34:161-167.

Alankus G, Lazar A, May M, and Kelleher C. 2010. *Towards customizable games for stroke rehabilitation*. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems: ACM. p 2113-2122.

Albaina IM, Visser T, van der Mast CA, and Vastenburg MH. 2009. Flowie: *A persuasive virtual coach to motivate elderly individuals to walk*. Pervasive Computing Technologies for Healthcare, 2009 PervasiveHealth 2009 3rd International Conference on: IEEE. p 1-7.

- Anderson-Hanley C, Snyder AL, Nimon JP, and Arciero PJ. 2011. Social facilitation in virtual reality-enhanced exercise: competitiveness moderates exercise effort of older adults. Clinical interventions in aging 6:275.
- Bouillon K, Kivimaki M, Hamer M, Sabia S, Fransson EI, Singh-Manoux A, Gale CR, and Batty GD. 2013. *Measures of frailty in population-based studies: an overview.* BMC geriatrics 13:64.
- Bower B. 1997. Social links may counter health risks. Science News 152:135-135.
- Brox, E., & Hernandez, J. E. G. (2011). Exergames for elderly: Social exergames to persuade seniors to increase physical activity. In Pervasive Computing Technologies for Healthcare (PervasiveHealth), 2011 5th International Conference on (pp. 546–549). IEEE. doi:10.4108/icst.pervasivehealth.2011.246049
- Campbell M, Fitzpatrick R, Haines A, Kinmonth AL, Sandercock P, Spiegelhalter D, and Tyrer P. 2000. Framework for design and evaluation of complex interventions to improve health. BMJ 321:694-696.
- Carmichael A, Rice M, MacMillan F, and Kirk A. 2010. *Investigating a DTV-based physical activity application to facilitate wellbeing in older adults*. Proceedings of the 24th BCS Interaction Specialist Group Conference: British Computer Society. p 278-288.
- Carron AV, Hausenblas HA, and Mack D. 1996. *Social influence and exercise: A meta-analysis*. Journal of Sport and Exercise Psychology 18:1-16.
- Cavill N, Kahlmeier S, and Racioppi F. 2006. *Physical activity and health in Europe: Evidence for action*. Copenhagen, DK: WHO Library.
- Cheok, A. D., Lee, S., Kodagoda, S., Tat, K. E., & others. (2005). A social and physical inter-generational computer game for the elderly and children: Age invaders. In Wearable Computers, 2005. Proceedings. Ninth IEEE International Symposium on (pp. 202–203). IEEE.
- Consolvo S, Klasnja P, McDonald DW, Avrahami D, Froehlich J, LeGrand L, Libby R, Mosher K, and Landay JA. 2008. *Flowers or a robot army?: encouraging awareness & activity with personal, mobile displays.* Proceedings of the 10th international conference on Ubiquitous computing. Seoul, Korea: ACM. p 54-63.
- Department of Health. 2005. *Choosing activity: a physical activity action plan.* London: Department of Health.
- Drubbel I, Bleijenberg N, Kranenburg G, Eijkemans RJ, Schuurmans MJ, de Wit NJ, and Numans ME. 2013. *Identifying frailty: Do the Frailty Index and Groningen Frailty Indicator cover different clinical perspectives? A cross-sectional study.* BMC family practice 14:64.
- Field A. 2013. Discovering statistics using IBM SPSS statistics: Sage.
- Fogg BJ. 2002. Persuasive technology: using computers to change what we think and do. Ubiquity 2002:5.
- Fratiglioni L, Wang H-X, Ericsson K, Maytan M, and Winblad B. 2000. *Influence of social network on occurrence of dementia: a community-based longitudinal study.* The Lancet 355:1315-1319.
- Gardner MM, Buchner DM, Robertson MC, and Campbell AJ. 2001. *Practical implementation of an exercise-based falls prevention programme*. Age Ageing 30:77-83.
- Grinberg AM, Careaga JS, Mehl MR, and O'Connor M-F. 2014. *Social engagement and user immersion in a socially based virtual world*. Computers in human behavior 36:479-486.
- Harvey JA, Chastin SF, and Skelton DA. 2013. *Prevalence of sedentary behavior in older adults: a systematic review.* International journal of environmental research and public health 10:6645-6661.
- Heikkinen R-L, and Kauppinen M. 2004. *Depressive symptoms in late life: a 10-year follow-up.* Archives of gerontology and geriatrics 38:239-250.
- Ijsselsteijn W, Kort Yd, Westerink J, Jager Md, and Bonants R. 2006. *Virtual fitness: stimulating exercise behavior through media technology.* Presence: Teleoperators and Virtual Environments 15:688-698.
- Jimison HB, Klein K, and Marcoe JL. 2013. *A socialization intervention in remote health coaching for older adults in the home*. Engineering in Medicine and Biology Society (EMBC), 2013 35th Annual International Conference of the IEEE: IEEE. p 7025-7028.

- Jorgensen MG, Laessoe U, Hendriksen C, Nielsen OBF, and Aagaard P. 2012. Efficacy of Nintendo Wii training on mechanical leg muscle function and postural balance in community-dwelling older adults: a randomized controlled trial. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences:gls222.
- Jung Y, Li KJ, Janissa NS, Gladys WLC, and Lee KM. 2009. *Games for a better life: effects of playing Wii games on the well-being of seniors in a long-term care facility.* Proceedings of the Sixth Australasian Conference on Interactive Entertainment: ACM. p 5.
- Kayama H, Nishiguchi S, Yamada M, Aoyama T, Okamoto K, and Kuroda T. 2013. *Effect of a Kinect-based exercise game on improving executive cognitive performance in community-dwelling elderly*. Pervasive Computing Technologies for Healthcare (PervasiveHealth), 2013 7th International Conference on: IEEE. p 362-365.
- Khaghani Far, I., Silveira, P., Casati, F., & Baez, M. (2012). *Unifying Platform for the Physical, Mental and Social Well-Being of the Elderly*. Embedded and Multimedia.
- Landi F, Abbatecola AM, Provinciali M, Corsonello A, Bustacchini S, Manigrasso L, Cherubini A, Bernabei R, and Lattanzio F. 2010. *Moving against frailty: does physical activity matter?* Biogerontology 11:537-545.
- Leonardi C, Mennecozzi C, Not E, Pianesi F, and Zancanaro M. 2008. Supporting older adults social network: the design of e-inclusion communication services. Gerontechnology 7:153.
- Leveille SG, Guralnik JM, Ferrucci L, and Langlois JA. 1999. *Aging successfully until death in old age: opportunities for increasing active life expectancy*. American Journal of Epidemiology 149:654-664.
- Lin JJ, Mamykina L, Lindtner S, Delajoux G, and Strub HB. 2006. *Fish'n'Steps: encouraging physical activity with an interactive computer game*. Proceedings of the 8th international conference on Ubiquitous Computing. Orange County, CA: Springer-Verlag. p 261-278.
- Marin, J. G., & Navarro, K. F. (2011). Serious Games to Improve the Physical Health of the Elderly: A Categorization Scheme. CENTRIC 2011, The, (c), 64–71.
- Martin BW, Beelerb I, Szucsb T, Smalac AM, Brüggerd O, Casparise C, Allenbachd R, Raeberf P, and Martia B. 2001. *Economic benefits of the health-enhancing effects of physical activity: first estimates for Switzerland.* Schweizerische Zeitschrift für «Sportmedizin und Sporttraumatologie», 49:131-133.
- McBurney D, and White T. 2009. Research methods: Cengage Learning.
- Molina KI, Ricci NA, de Moraes SA, and Perracini MR. 2014. *Virtual reality using games for improving physical functioning in older adults: a systematic review.* Journal of neuroengineering and rehabilitation 11:156.
- Mubin O, Shahid S, and Al Mahmud A. 2008. Walk 2 Win: towards designing a mobile game for elderly's social engagement. Proceedings of the 22nd British HCI Group Annual Conference on People and Computers: Culture, Creativity, Interaction-Volume 2: British Computer Society. p 11-14.
- Ofli F, Kurillo G, Obdrzalek S, Bajcsy R, Jimison H, and Pavel M. 2015. *Design and Evaluation of an Interactive Exercise Coaching System for Older Adults: Lessons Learned.*
- Oinas-Kukkonen H, and Harjumaa M. 2008. A systematic framework for designing and evaluating persuasive systems. Persuasive technology: Springer, 164-176.
- Phillips EM, Schneider JC, and Mercer GR. 2004. *Motivating elders to initiate and maintain exercise*. Archives of physical medicine and rehabilitation 85:52-57.
- Pisan Y, Marin JG, and Navarro KF. 2013. *Improving lives: using Microsoft Kinect to predict the loss of balance for elderly users under cognitive load.* Proceedings of The 9th Australasian Conference on Interactive Entertainment: Matters of Life and Death: ACM. p 29.
- Resnick B, Orwig D, Magaziner J, and Wynne C. 2002. The effect of social support on exercise behavior in older adults. Clinical Nursing Research 11:52-70.
- Romero N, Sturm J, Bekker T, De Valk L, and Kruitwagen S. 2010. *Playful persuasion to support older adults' social and physical activities*. Interacting with Computers 22:485-495.
- Schutzer KA, and Graves BS. 2004. *Barriers and motivations to exercise in older adults*. Preventive medicine 39:1056-1061.

- Short J, Williams E, and Christie B. 1976. The social psychology of telecommunications.
- Silveira P, Daniel F, Casati F, and de Bruin ED. 2013a. *Motivating and assisting physical exercise in independently living older adults: a pilot study.* International journal of medical informatics 82:325-334.
- Silveira P, van de Langenberg R, van het Reve E, Daniel F, Casati F, and de Bruin ED. 2013b. Tablet-Based Strength-Balance Training to Motivate and Improve Adherence to Exercise in Independently Living Older People: A Phase II Preclinical Exploratory Trial. Journal of Medical Internet Research 15.
- Siriaraya P, Ang CS, and Bobrowicz A. 2014. *Exploring the potential of virtual worlds in engaging older people and supporting healthy aging*. Behaviour & Information Technology 33:283-294.
- Spirduso WW, and Cronin DL. 2001. Exercise dose—response effects on quality of life and independent living in older adults. Medicine & science in sports & exercise.
- Steverink N, Slaets J, Schuurmans H, and Van Lis M. 2001. *Measuring frailty: developing and testing the GFI (Groningen Frailty Indicator)*. Order 501:17134.
- Stuart M, Chard S, Benvenuti F, and Steinwachs S. 2008. *Community exercise: a vital component to healthy aging.* Healthcarepapers 10:23-28; discussion 79-83.
- Thibaud M, Bloch F, Tournoux-Facon C, Brèque C, Rigaud AS, Dugué B, and Kemoun G. 2012. *Impact of physical activity and sedentary behaviour on fall risks in older people: a systematic review and meta-analysis of observational studies*. European Review of Aging and Physical Activity 9:5-15.
- Topolski TD, LoGerfo J, Patrick DL, Williams B, Walwick J, and Patrick MMB. 2006. *The Rapid Assessment of Physical Activity (RAPA) Among Older Adults*. Preventing Chronic Disease 3.
- Whitley BE, and Kite ME. 2013. Principles of research in behavioral science: Routledge.
- Yilmaz RM, Topu FB, Goktas Y, and Coban M. 2013. Social presence and motivation in a three-dimensional virtual world: An explanatory study. Australasian Journal of Educational Technology 29.