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ABSTRACT
Human motion intention detection is a growing trend in wearable robots. In the
study, a novel transfer learning method based on temporal convolutional network
spatial attention (TCN-SA) is applied for pattern transition recognition under triple
physical loads on different terrains. The proposed approach is used to recognize eight
locomotion modes transition among five dynamic locomotion modes in sequence,
such as level ground walking, stair ascending, stair descending, ramp ascending, and
ramp descending. To address the problem of pattern transition recognition, transfer
learning adapts a model from the source domain to the target domain. Temporal
convolutional network (TCN) relies on local relationships in time sequence and gains
steady gradient propagation. Furthermore, spatial attention (SA) provides insight
into significant components in multi-dimensional feature selection. Pattern
transition recognition based on a transfer learning method achieves higher accuracy
and earlier prediction time (Pre-T). The accuracy of pattern transition detection
reaches 97.46%, 97.62%, and 98.21% in M0, M20, and M40, respectively. In the
process of pattern transition recognition, Pre-T of next locomotion mode in M0,
M20, and M40 are 240–600 ms, 200–410 ms, and 120–420 ms before the step into
that locomotion mode. The proportion of prediction time in a gait cycle (Pre-T/GC)
in M0, M20, and M40 is 14.2–36%, 14.82–28.22%, and 7.4–29.1%, respectively.
Ultimately, the results indicate that the proposed approach fulfills the expected
performance in Pre-T and comparisons with TCN-attention, TCN, residual network
(ResNet), and long short-term memory (LSTM) in assessment criteria. Our study
early detects pattern transition, allowing the exoskeleton to traverse between adjacent
terrains smoothly.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, DataMining andMachine
Learning, Robotics, Neural Networks
Keywords Pattern transition recognition, Transfer learning, TCN-SA, Pre-T, Pre-T/GC

INTRODUCTION
Over the last several decades, wearable devices have been widely developed for various
applications. Exoskeleton robot is regarded as a potential technology for assisting human
movement in recent research. Several potential research directions are discussed to support
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the development of the comprehensive and efficient benchmarking methodology for
exoskeleton robot (Pinto-Fernandez et al., 2020). The latest key technologies and research
topics are analyzed and summarized, including mechanical structure, human-machine
interaction, adaptive control strategies, and evaluation methods for power-assisted walking
efficiency (Qiu et al., 2022). Human motion intention recognition is essential to realize
compliant control in lower limb exoskeletons. Precise and real-time recognition of human
motion intention promotes adaptive and reliable human-machine interaction. Human
motion intention recognition is crucial in advancing lower limb exoskeleton technology (Li
et al., 2023). Pattern transition recognition is an important component of human motion
intention recognition in lower limb exoskeleton. At present, extensive research has been
conducted on advancing suitable locomotion mode recognition methods for lower limb
exoskeleton. These methods are aimed at identifying both steady-state locomotion modes
and transient transitions in real time, which is essential for realizing seamless transition
between adjacent terrains. It facilitates human–machine cooperation and ensures user
safety.

Multiple types of wearable sensors are applied for recognizing many locomotion modes
and patterns transition in the situation of human walking. Parri et al. (2017) put forward
the real-time pattern recognition method of human activities in lower extremity
exoskeleton. The mixed classifier consisted of the time-based approach based on gait
kinematics and the fuzzy-logic method using encoders and force sensitive resistors (FSRs).
Martinez-Hernandez & Dehghani-Sanij (2018) presented the adaptive Bayesian inference
system to recognize three locomotion modes and gait events using inertial measurement
units (IMUs). Tang et al. (2024) studied the dense convolutional network (DenseNet) and
long short-term memory (LSTM) with a channel attention mechanism (SENet) method
(SE-DenseNet-LSTM) for pattern detection using IMUs on three terrains. Sahoo et al.
(2020) developed the prototype for early prediction of locomotion mode transition using
range sensors and FSRs. Tiwari & Joshi (2020) designed the inexpensive wireless gait event
detection approach using infra-red range sensors.

Muscle synergy analysis (MSA) is the descending dimension method that decomposes
abundant muscle excitations into slight temporal synergy excitations. MSA is applied to
pathological population, which is aimed at better understanding the intrinsic physiological
characteristics reflected in muscle activity. Liu & Gutierrez-Farewik (2021) presented the
muscle synergy identification method based on long short-term memory (LSTM) to
predict knee joint moments using surface electromyogram signal (sEMG). Ao et al. (2020)
studied that PCA estimated unmeasured muscle excitations through synergy excitations
extracted from muscles using sEMG. Song, Ma & Liu (2023) proposed online joints angles
prediction method based on LSTM using sEMG. Huo et al. (2018) came up with fast
locomotion mode detection method based on the body sensor system of IMUs and sEMG.
Valid human motion intention prediction thoroughly understood how the brain prepared
for body movement. Bai et al. (2011) put forward the computational method to predict
human movement before it occurred from electroencephalograph (EEG).

On diverse terrains, it is crucial to detect pattern transition between neighbor states.
Joshi & Hahn (2016) designed the classification framework of transition type to detect
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direction (ascent/descent) and terrain (ramp/stair) with sensors fusion of sEMG and
accelerometry. Hagio, Fukuda & Kouzaki (2015) evaluated the motor control during gait
transition based on muscle synergy. It is essential to detect human movement intention for
compliant control of exoskeleton. Godiyal et al. (2018) came up with gait phase detection
method based on force myography in steady state and transition between overground and
ramp. Saito et al. (2018) put forward the lower limb muscle synergy identification method
using sEMG during treadmill running on level and inclined ground. Angelidou &
Artemiadis (2023) proposed the subject-specific locomotion mode recognition approach
using sEMG and kinematic to detect human intent to transition in the compliant surface.
Mundt et al. (2020) developed the neural network models to predict ground reaction force
and joint moments based on joint angles in gait analysis using the 3D motion capture
system.

In locomotion-related activities, it is significant to recognize transition between
standing and sitting. Rattanaphon et al. (2020) studied the continuous EEG rhythms
decoding approach in the stage of action observation, motor imagery, and motor execution
for standing and sitting. They assigned the motional work of transition between standing
and sitting in performance. Liu et al. (2019) put forward the three-step control approach to
detect transition between siting and standing using two IMUs in knee exoskeleton. Chen
et al. (2024) proposed the bidirectional long short-term memory (BiLSTM), attention
mechanism, and convolutional neural network (CNN) method (CNN-BiLSTM-Attention)
to segment and identify transition between siting and standing in inertial sensors. Wang
et al. (2022) proposed the multi-feature fusion method in process of motion conversion
from squat/sit to stand. It contributed to recognize pattern transition in rehabilitation
training.

Currently, deep learning methods are widely applied to locomotion modes transition in
assisted exoskeleton. Young & Hargrove (2016) studied user-independent intent
recognition systems to perform seamless transition between adjacent states. Fall
prevention and detection was critical on research of elderly healthcare and humanoid
robot. Jain & Semwal (2022) proposed the preimpact fall detection system based on deep
learning, which contributed to relieve injuring from falls. Qian et al. (2022) studied the
locomotion mode recognition method based on depth sensor and the gait phase estimation
approach based on adaptive oscillator for terrain-adaptive assistive walking. Varol, Sup &
Goldfarb (2010) developed the control strategy and intent detection method to identify 90
patterns transition in the real-time powered prosthesis.

However, few studies focus on pattern transition recognition in outdoor activity. This
article put forward a transfer learning approach based on temporal convolutional network
spatial attention (TCN-SA) for pattern transition recognition under triple physical loads
on different terrains. In the open air, there are five locomotion modes, such as level ground
walking (LW), stair ascending (SA), stair descending (SD), ramp ascending (RA), ramp
descending (RD). There are eight patterns transition between adjacent locomotion modes,
such as LW!SA, LW!SD, LW!RA, LW!RD, SA!LW, SD!LW, RA!LW,
RD!LW. To address similar target problems, transfer learning adapts the model from
source domain to target domain. Transfer learning demonstrates better in detecting
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pattern transition on diverse terrains. Temporal convolutional network can feasibly
capture local dependency in time sequence and obtain stable gradient propagation. What’s
more, spatial attention is adapted to identify and focus on crucial information in
multidimensional features selection. Eventually, multigroup experiments indicate that the
transfer learning method based on TCN-SA reaches the expected effect of pattern
transition recognition in Pre-T and Pre-T/GC. It makes outstanding influence in
comparisons with usual machine learning methods in assessment criteria.

In view of the importance of pattern transition recognition in outdoor activity, the
prominent innovations of our study are mentioned below.

. A novel transfer learning model based on TCN-SA is designed for the sake of pattern
transition recognition in multilevel loads on diverse terrains.

. In transfer learning model, TCN can availably acquire local dependencies in temporal
series by stacking convolution layers and extending the receptive field of convolution
kernel. Moreover, spatial attention enhances model sensitivity to highlight the important
specific spatial region of multiple features.

. It extracts multidimensional features of joint angle to the transfer learning model and
then fine-tunes hyperparameters to recognize pattern transition, which achieves the
predicted effect in the average accuracy.

. In the process of pattern transition recognition, Pre-T of next locomotion mode in three
physical loads are 240–600 ms, 200–410 ms, and 120–420 ms before the step into that
locomotion mode. Pre-T/GC in M0, M20, and M40 are 14.2–36%, 14.82–28.22%, and
7.4–29.1%, respectively.

The main content of this study is arranged in turn. “Materials” depicts experimental
protocol, the equipment configuration, data preprocessing, dataset architecture and
evaluation indicator. “Methods” explains transfer learning, TCN, attention, spatial
attention, and framework of transfer learning model based on TCN-SA in detail. “Results”
displays the hyperparameters comparison, performance of transfer learning model based
on TCN-SA, Pre-T in pattern transition, and Pre-T/GC in pattern transition. “Discussion”
describes performance assessment and comparison to the methods. Finally, “Conclusions”
makes conclusion and expresses limitation and future work.

RELATED WORK
The general control architecture of the powered hip and knee exoskeleton is made up of
three control levels. In high-level control, it pays attention to human motion intention
detection. In mid-level control, it determines desired assistive trajectories, joint angles and
joint moment. In low-level control, it directly regulates the actuators to track the desired
assistive trajectories and then adjusts the self-state of exoskeleton. Human motion
intention detection is significant for exoskeleton to supply precise control. Pattern
transition recognition is an important part of human motion intention detection. This
study focuses on mainly pattern transition recognition module based on transfer learning
to realize seamlessly transition between neighbor locomotion modes.
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So far, deep learning approaches are generally employed to detect locomotion modes
transition in assistive devices. Bruinsma & Carloni (2021) designed different deep neural
network models for real-time prediction of eight dynamic locomotion modes and 24
locomotion modes transition among them in one transfemoral osseointegration amputee
using IMUs. Liu, Wang & Huang (2016) proposed the portable terrain recognition module
using the laser distance meter and the IMU. It predicted terrain transition before the step
requested to convert the prosthesis control mode. To develop assistive devices, Grimmer
et al. (2020) estimated the biomechanics of the transition between stair ambulation and
level ground walking. Peng et al. (2016) studied that the individuals adjusted their
biomechanics in anticipation of walking-stair transition. Cheng et al. (2022) put forward
the control framework of modeling the joint kinematics on their steady-state and
transitional gaits between adjustable incline and stairs in powered prosthesis. Soo &
Donelan (2010) presented that step-to-step transitions were separated from mechanical
walking data of other participants for the purpose of assigning advance and return
movements. Moreover, the ankle joints contributed to the task of redirecting the velocity of
the mass center during forward swing.

Pattern prediction was applied to the seamless switching of exoskeleton controllers to
support human walking on various terrains. Li et al. (2024) constructed the multimodal
frame of deep belief network to detect pattern and forecast pattern transition assignments.
It is fuzzy to walking stability assessment in gait transitional phases (loading and
unloading) due to the method limitation and mixed-use biomechanical signals.Mahmood,
Raza & Dehghani-Sanij (2022) put forward that Nyquist and Bode methods utilizing
neuromechanical output/input responded to estimate the stability of gait transition.
Stolyarov, Burnett & Herr (2018) proposed that the real-time movement tracking method
was developed to estimate knee and ankle joint translations using inertial signals in
powered prosthesis across three terrains.

MATERIALS
Experimental protocol
This study involved human participants. All ethical and experimental procedures were
approved by the ethical committee for sports science experiments in Beijing Sport
University (Application No. 2019007H) and conducted in accordance with the protocols
for human motion experiment.

Fifteen healthy participants (5F/10 M, Height: 173.2 � 1.7 cm, Weight: 69.8 � 4.8 kg,
Age: 28.2 � 1.3 years) are voluntary and supplied written informed consent to take part in
the study. As shown in Figs. 1A–1E, the participants with exoskeleton engage in walking
activities in scene. All the participants were divided into three groups. They walked on
three terrains of level ground, stair, and ramp, severally. Each group held up multilevel
loads (0, 20, 40 kg) on the back of human body respectively. M0, M20, and M40 denote
multilevel loads of 0, 20, and 40 kg, severally. First group went straight ahead along the
concrete road. Second group climbed up the stairs and then went back the same way. Third
group went up the ramp with a slope gradient and then followed it back to level ground.
Finally, three groups got through the walking process described above.

Gao et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3099 5/27

http://dx.doi.org/10.7717/peerj-cs.3099
https://peerj.com/computer-science/


The equipment configuration
The STM32F765II microcontroller applies the advanced ARM Cortex-M7 32-bit to the
development board in the system. Data transmission goes through RS485 bus and operates
at the speed of 2 Mb/s with the sampling frequency of 100 Hz. PC equipped with AMD
Ryzen 7 6800H CPU, 32 GB RAM, and Windows 11 (64-bit) serves as the data processing
unit. It is Anaconda 3, Python 3.10, and PyTorch 2.0 in the software environment. A
random algorithm is executed to enable real-time performance verification using
multithreading.

Data preprocessing
Each participant wears the lower limb exoskeleton. FSRs and IMUs attached to feet,
shanks, thighs and trunk of both mechanical legs in exoskeleton are applied to acquire
spatial and temporal data. The body trunk along vertical direction and the thigh are
computed to gain hip angle. The thigh and the shank are calculated to gain knee angle. The
foot IMU in horizontal direction serves as the foot angle. Clinical gait analysis of human
body is applied to define joint angles.

It is indispensable to preprocess original data to promote multidimensional features
consistent and achieve optimal performance. The original data is calculated into ground
reaction force and joint angle, which apparently expresses the diversity in gait analysis.
Degree is used as the unit for measuring joint angle. The calculated joint angles are used as
inputs to the dataset. The packet loss takes advantage of linear interpolation to compensate
the loss in data delivery. Furthermore, joint angle data conducted by normalization plays
as the input data for model training. Therefore, it is significant to preprocess chain in the
dataset.

Evaluation indicator
Comprehensive evaluation index system composed of Pre-T, Pre-T/GC, confusion matrix,
accuracy, precision, recall, and F1 is used to assess performance. Each of these indexes is
interpreted as shown below.

Figure 1 The subjects wearing exoskeleton participate in walking in scene. (A) LW. (B) SA. (C) SD.
(D) RA. (E) RD. Full-size DOI: 10.7717/peerj-cs.3099/fig-1
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Prediction time (Pre-T) is defined as the interval between a vital moment and the point
of heel strike. A vital moment represents predicted point in the machine learning model.
Pre-T/GC represents the proportion of a gait cycle duration consumed by prediction time.

Pre�T=GC ¼ t
T

(1)

where t denotes prediction time, T signifies a gait cycle.
The confusion matrix is generally used to evaluate classification performance. It consists

of four key components and summarizes the model prediction by comparing them with
true labels. True positive (TP) indicates that positive samples are correctly predicted as
positive. True negative (TN) denotes that negative samples are correctly predicted as
negative. False positive (FP) refers to negative samples that are incorrectly predicted as
positive. False negative (FN) refers to positive samples that are incorrectly predicted as
negative.

Accuracy represents the ratio of correctly classified samples to the total number of
samples.

Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

: (2)

Precision is the ratio of true positive predictions to the total number of samples
predicted as positive.

Precision ¼ TP
TP þ FP

: (3)

Recall is the ratio of true positive predictions to the total number of actual positive
samples.

Recall ¼ TP
TP þ FN

: (4)

F1-score combines precision and recall into a single metric by calculating their
harmonic mean.

2
F1

¼ 1
Precision

þ 1
Recall

: (5)

It is essential to acquire the assessment criteria to generate differences in comparative
approaches. Every experiment is repeatedly conducted to verify the statistical rule of the
network model.

METHODS
Situation of pattern transition
There are multiple locomotion modes transition across diverse terrains, such as level
ground, stair, and ramp. It is composed of standing phase and swing phase in a gait cycle
depicted in Fig. 2. Heel strike not only acts as the end point of last gait cycle, but also plays
as the starting point of subsequent gait cycle. Heel off regards as the dividing line of
standing phase and swing phase. Pre-T is defined as the interval between a vital moment
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and the point of heel strike. Pattern transition appears a critical interval time before
subsequent locomotion mode. In addition, a series of cell array are located in preceding
transition to subsequent locomotion mode. The length of cell array is 60 ms. As described
in Fig. 3, Pattern transition is explicit between two locomotion modes adjacently, such as
LW!SA, LW!SD, LW!RA, LW!RD, SA!LW, SD!LW, RA!LW, RD!LW.

Dataset architecture
All the datasets consist of three types of sub-datasets in three levels of weight, which come
from human walking on different terrains. Pattern transition occurs in swing phase of the
gait cycle in the curves of hip angle, knee angle, foot angle, and foot pressure depicted in
Figs. 4A–4H. Pattern transition is explicit between two locomotion modes adjacently, such
as LW!SA, LW!SD, LW!RA, LW!RD, SA!LW, SD!LW, RA!LW, RD!LW. It
is eight patterns transition among five dynamic locomotion modes in sequence, such as
LW, SA, SD, RA, and RD. The proportion of the training set and the testing set in a dataset
is 4:1. The input features are composed of left and right hip angle, left and right knee angle,

Figure 2 The gait cycle consists of standing phase and swing phase. Pattern transition occurs in swing
phase. Full-size DOI: 10.7717/peerj-cs.3099/fig-2

Figure 3 Eight locomotion modes transition involved in the dynamic states. The lower extremity is
shown in purple. Full-size DOI: 10.7717/peerj-cs.3099/fig-3
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and left and right foot angle. The multiple features and the length of the unit sample are set
to 6 and 6 in input layer, respectively. The matrix size of a cell array consisting of the unit
sample data is set to 6 × 6.

Transfer learning
Transfer learning attracts widespread attention in the rapid development of artificial
intelligence. It is designed to transfer knowledge and adapts the model from source domain
to target domain. It contributes to reduce the sample size requirement of target domain
and accelerate learning process, which improves generalization performance of the model.
There are primarily transfer learning methods, such as model transfer, feature transfer, and
relationship transfer. As shown in Fig. 5, model transfer refers to migrating the model from
source domain to target domain and fine-tuning hyperparameters to adapt to classification
task in the target domain.

The model transfer method involves multiple steps, such as choosing a source model,
determining a transfer strategy, adjusting model hyperparameters, and evaluating model

Figure 4 (A–H) Gait cycle curves of hip angle, knee angle, foot angle, and foot pressure in every locomotion mode transition.
Full-size DOI: 10.7717/peerj-cs.3099/fig-4
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performance. It is necessary to select a suitable pre-trained model to meet the demand of
the target task and the characteristics of source domain. An appropriate transfer strategy
depends on the higher similarity between the source domain and target domain. It
fine-tunes the model hyperparameters on the target domain, which usually involves in
adjusting the parameters of the preceding layers and the final layer to satisfy the needs of
the target assignment. The model performance on the target domain is estimated by
evaluation metrics. As an efficient machine learning method, transfer learning has
advantage on addressing challenges of data scarcity and domain differences.

TCN
As shown in Fig. 6, temporal convolutional network (TCN) is a model framework of deep
learning developed for processing serial data. It combines the parallel processing capability
of CNN with the long-term dependency of recurrent neural network (RNN) and makes it a
powerful tool for sequence modeling tasks. It presents the core characteristics of sequence
modeling and then defines the network structure.

An input sequence x0; x1; . . . ; xT and the corresponding output y0; y1; . . . ; yT are at each
time step. When predicting the output yt is at a specific time step t, the input x0; x1; . . . ; xt
are used to observed. A sequence modeling network is an arbitrary function

f : XTþ1 ! YTþ1 that generates mapping as follows.

ŷ0; ŷ1; . . . ; ŷT ¼ f ðx0; x1; . . . ; xtÞ: (6)

To satisfy the causality constraint, yt only depends on x0; x1; . . . ; xt .
The learning objective in sequence modeling is used to search the network that

minimizes the expected loss Lðy0; y1; . . . ; yT ; f ðx0; x1; . . . ; xTÞÞ between the actual outputs

Figure 5 The conceptual model of transfer learning. Full-size DOI: 10.7717/peerj-cs.3099/fig-5
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and the predicted values, where the sequences and outputs are drawn from the certain
probability distribution.

Causal convolution. It means that the output of TCN model depends on the current and
past points. In standard convolution operations, each output value is based on its
surrounding input values, such as current points and past points.

However, the weights in causal convolution are applied to the current and past input
values and ensures the directionality of the information flow and preventing future
information from leaking into the current output. Zeros are typically padded on the right
side of the convolution kernel so that the current and past data is used to compute the
output.

yðtÞ ¼
Xk�1

i¼0

f ðiÞ � xðt�iÞ (7)

where k refers to the kernel size, x denotes the input series, f represents the convolution
kernel.

Dilated convolution. It is employed by TCN to expend the receptive field. The gaps of
dilated convolution are inserted between kernel elements and allows for broader context
capture. Therefore, it is able to grasp the contextual information in the input data. The
dilation factor determines the spacing between elements in the convolution kernel. The
mathematical representation of dilated convolution as follows.

yðtÞ ¼
Xk�1

i¼0

f ðiÞ � xðt�d � iÞ (8)

where d is the dilation rate.

Figure 6 The architecture diagram of TCN. Full-size DOI: 10.7717/peerj-cs.3099/fig-6
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Residual connection. TCN employs residual connections to alleviate the vanishing
gradient problem and improve the training efficiency of deeper networks and optimize
model performance. Residual connections are a key component of residual network
(ResNet). In residual connections, the output of a certain layer in the network directly
added a few layers to another layer, which forms a skip connection.

Given an input x, the output is FðxÞ after going through several layers. The final output
is x þ FðxÞ. It allows gradients to flow directly back to earlier layers during
backpropagation. It reduces the issue of vanishing gradients and enables effective training
of deeper architectures. The output of a residual block is expressed.

output ¼ activationðinputþ FðinputÞÞ (9)

where F represents the combination of the convolution layer and the activation function.
The basic structure of TCN consists of multiple residual blocks. Each residual block

includes dilated causal convolution layer, layer normalization, ReLU activation function,
and dropout layer.

Attention
Attention mechanism allows the model to dynamically adjust the attention weights in
processing data depicted in Fig. 7. It highlights important data and ignores irrelevant
details. It imitates human brain to selectively focus on concrete details selectively, which
demonstrates exceptional performance in processing sequential and high-dimensional
data.

The input to attention mechanism typically is composed of three parts. Query (Q)
represents the processed data currently in the current time step. Key (K) denotes the
features of the reference data used to match query. Value (V) represents the content
associated with each key and contributes to the output of the attention mechanism.

The attention mechanism calculates the relevance between the query and the key and
then performs the weighted average of the values. The formula is mentioned below.

AttentionðQ;K;VÞ ¼ softmax
QKTffiffiffiffiffi
dk

p
� �

V (10)

whereQK> calculates the dot product similarity between the query and the key, the scaling
factor

ffiffiffiffiffi
dk

p
prevents gradient instability from excessive dot product values. Softmax

converts the similarity into weights as probability distribution.

Spatial attention
Spatial attention regards as the adaptive mechanism of spatial region selection to enhance
model performance and efficiency in deep learning. Generally, spatial attention
mechanism achieves enhanced representation of effective spatial features and suppression
of irrelevant spatial features by gaining attention weights for each spatial position.

As shown in Fig. 8, spatial attention mechanism is conducted by the following steps.
Assume that the feature map has a size of CHW, C is the number of channels. H andW are
the height and width, respectively.
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Feature mapping. Each spatial position in the feature map is mapped to an attention score
space. A small convolutional kernel implements the process. It is aimed at generating a
corresponding attention weight for each spatial position.

Weight calculation. Attention weights for each position are computed and then
normalized into a probability distribution by softmax. The sum of attention weights across
all positions equals 1, which prompts the model to emphasize the significant areas and
disregard less relevant ones.

Weighted feature fusion. Those weights are utilized to the original feature map that
results in the weighted feature map. It enhances the feature representation of regions with
high attention weights and suppresses those with low attention weights.

Framework of transfer learning model based on TCN-SA
As shown in Fig. 9, it is the framework of transfer learning model based on TCN-SA.
Transfer learning refers to migrate TCN-SA model from dynamic pattern detection to

Figure 7 The structure of attention mechanism. Full-size DOI: 10.7717/peerj-cs.3099/fig-7

Figure 8 The structure frame of spatial attention model.
Full-size DOI: 10.7717/peerj-cs.3099/fig-8
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classification task and fine-tunes hyperparameters to adapt to pattern transition
recognition.

Transfer learning model initialization
The exoskeleton wearers walk on various terrains of level ground, stair, and ramp,
severally. Generally speaking, it is divided into five dynamic locomotion modes (LW, SA,
SD, RA, RD). The joint angle data is collected by IMUs. The preprocessed joint angle data
goes through TCN to acquire temporal sequence data. TCN are designed for sequence
modeling and time-series analysis. It takes advantage of causal convolution that depends
on past and current points to predict subsequent data at a given time step. It applies dilated
convolutions to obtain long-term dependencies effectively. It exploits residual connections
to raise the training efficiency of neural networks.

Spatial attention mechanism enhances neural network performance by focusing on
most relevant spatial feature mapping. By weight calculation to assign attention weights to
different spatial locations, it is necessary to prioritize critical features and suppress
irrelevant and redundant information. It goes through weighted feature fusion to gain
spatial relationships to improve the model performance, which makes it effective in the
task of spatial dependence analysis.

The dense connectivity allows fully connected layer to extract complicated and
high-level representations from the input data. By aggregating information across
multidimensional features, fully connected layer is used for decision-making and feature
combination and makes it effective in model performance. Therefore, the transfer learning
model based on TCN-SA carries out pattern detection assignment.

Figure 9 The structure frame of transfer learning model based on TCN-SA. Full-size DOI: 10.7717/peerj-cs.3099/fig-9
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Knowledge transfer
The exoskeleton wearer walks across neighboring terrains, which provides seamlessly
transition between adjacent locomotion modes. The joint angle data goes through data
preprocessing to get ready for features extraction and fusion. Multidimensional features
data is put into the transfer learning model by knowledge transfer. Then, it is essential to
fine-tune the hyperparameters of the transfer learning model. Moreover, it imports into
fully connected layer and the transfer learning model training in order. At last, the transfer
learning model based on TCN-SA recognizes pattern transition. Three sub-datasets in
three physical loads execute the flow path in turn mentioned above.

RESULTS
The hyperparameters comparison
In terms of many locomotion modes transition across different terrains, the
hyperparameters comparison experiments are mainly conductive to analyze the influence
of channel numbers, kernel size, and learning rate on accuracy of pattern transition
recognition shown in Fig. 10. Multigroup experiments in transfer learning model based on
TCN-SA are conducted as follows.

Part 1: In the hybrid model, kernel size 6 and learning rate 0.005 are set as the constants.
It performs the comparative experiments of the channel numbers. It demonstrates the
relationship of channel numbers and accuracy in the proposed model. To verify the impact
of channel numbers on accuracy, they are set to 24, 32, 48, 64, and 72 respectively in
Fig. 10A. When the channel number is 48, the mean value reaches peak.

Part 2: In the hybrid model, the channel number 48 and learning rate 0.005 play as the
constants. It shows the comparative experiments of kernel size. To confirm the impact of
kernel size on accuracy of the hybrid model, they are set to 4, 6, 8, 10, and 12, severally in
Fig. 10B. When the kernel size is 6, the mean value achieves a high level.

Part 3: In the hybrid model, the channel number 48 and kernel size 6 serve as the
constants. Learning rate is applied to the comparative experiments. It displays the
correlation of learning rate and accuracy in the proposed model. To verify the impact of
learning rate on accuracy in the proposed model, they are set to 0.001, 0.005, 0.01, 0.015,
and 0.02 respectively in Fig. 10C. When learning rate is 0.005, the mean value achieves the
higher level.

Performance of transfer learning model based on TCN-SA
In Table 1, the framework of the transfer learning model is evident in the aspect of the
hyperparameters choice. The kernel size and the number of channels in the convolutional
layer are 6 and 48 separately. In model training, the batch size and the epochs are set to 6
and 100, severally. The learning rate and the scale factor are 0.005 and 0.2, respectively.

As described in Figs. 11A, 11B, the performance of TCN-SA takes advantage of the
layered K-fold cross validation. The K values are set to 3 and 5, severally. Each fold’s score
is in the range of 97% to 99%. In the training process, the dataset is divided into K groups
with same size. K-1 folds serve as training and the Kth fold remains validation. In cross
validation, the stability of the evaluation result largely depends on the K value. The layered
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Figure 10 (A–C) The channels, kernel size, and learning rate in the hyperparameters optimization.
Full-size DOI: 10.7717/peerj-cs.3099/fig-10

Table 1 The structure and parameters of the transfer learning model based on TCN-SA.

Stages Parameters Values

Data preprocessing Cell array 6

Input size 6

Model structure Kernel size 6

Channels 48

Learning rate 0.005

Scale factor 0.2

Training parameters Optimizer Adam

Batch size 6

Epochs 100

Figure 11 (A, B) The K-fold cross validation of the transfer learning model based on TCN-SA in M0, M20, M40. (C) The time of the hybrid
model in M0, M20, M40. Full-size DOI: 10.7717/peerj-cs.3099/fig-11
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K-fold confirms that the sample proportion for each locomotion mode transition is steady
in every fold.

It takes the calculation time in resource consumption to model training and testing
once. As shown in Fig. 11C, the calculation time for multigrade loads is approximately
0.51 ms, 0.35 ms, and 0.32 ms, respectively. It reduces computational complexity and saves
resource cost. To verify the prominent performance of TCN-SA on pattern transition
recognition, the following experiments are carried out in time analysis.

Pre-T analysis in pattern transition
Prediction time (Pre-T) is analyzed to verify the efficiency of the proposed model in the
real-time process of pattern transition. The recognition effects of Pre-T in multilevel loads
are depicted in Fig. 12. During eight locomotion modes transition, the hybrid model can
display the real-time performance of detecting pattern transition between two neighboring
states steadily.

Pre-T and the errors in M0 serve as the referenced time. In M20, Pre-T of LW!RD,
RA!LW, LW!RA, SD!LW, SA!LW, and LW!SA declines rapidly. Pre-T of
RD!LW and LW!SD grow gradually. The errors of LW!SD, SA!LW, and LW!SA
rise rapidly. The errors of RD!LW, LW!RD, and RA!LW drop off dramatically.

During pattern transition recognition, Pre-T of next locomotion mode in three levels of
weight are 240–600 ms, 200–410 ms, and 120–420 ms before the step into that locomotion
mode. On the whole, the mean prediction time in M20 is more stable than that in M0.

In M40, Pre-T of LW!RD, RA!LW, LW!RA, SD!LW, LW!SD, SA!LW and
LW!SA go down dramatically. Pre-T of RD!LW rises distinctly. The errors of
LW!RD, RA!LW, LW!RA, SD!LW, and LW!SD drop off slowly. The error of
LW!SA rises rapidly.

The average prediction time decreases distinctly in multigrade loads. The errors in three
levels of weight are 65–220 ms, 45–170 ms, and 36–130 ms before Pre-T of next
locomotion mode. In the proposed model, most locomotion modes transition between two
adjacent states are steadily predicted before next locomotion mode.

Pre-T/GC analysis in pattern transition
Pre-T/GC is shortened form of the ratio of prediction time to a gait cycle. Pre-T/GC is
statistical to confirm the real-time performance of the proposed model during pattern
transition. It is essential for identifying pattern transition between two states adjacently.
Most transitions begin early in swing phase prior to next locomotion mode.

As described in Fig. 13, it emphasizes Pre-T/GC and the errors during eight locomotion
modes transition in multigrade loads. In M0, their proportion of Pre-T/GC are more than
25% in LW!SA, SD!LW, and LW!RD, respectively. In M20, their ratio of Pre-T/GC
are more than 25% in RA!LW and RD!LW. In M40, their ratio of Pre-T/GC are more
than 25% in LW!SA, SD!LW, LW!RD, and RD!LW. For locomotion modes
transition, Pre-T/GC in multilevel loads are 14.2–36%, 14.82–28.22%, and 7.4–29.1% in a
gait cycle. The errors of Pre-T/GC in multigrade loads are 3.68–14.97%, 2.85–8.8%, and
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2.14–9.65%, respectively. The proposed model can seamlessly detect transition between
two states adjacently, which presents the real-time effect in triple physical loads.

DISCUSSION
Performance assessment
In this part, the transfer learning method based on TCN-SA has prominent performance
on pattern transition detection by contrast with TCN-attention, TCN, ResNet, and LSTM
in the assessment criteria of accuracy, precision, recall, and F1. Confusion matrix displays
true values and predicted values in standard of division to grasp how the accuracy
continuously changes.

In TCN-SA, Figs. 14A–14C depicts that the precision, recall, and F1 of eight locomotion
modes transition in M0, M20, and M40 gradually go up. As described in Figs. 14D–14F,
the accuracy of their confusion matrixes in multilevel loads achieves 97.46%, 97.62%, and
98.21%, severally.

Figure 12 (A–C) Pre-T of eight patterns in M0, M20, and M40. Full-size DOI: 10.7717/peerj-cs.3099/fig-12

Figure 13 (A–C) The proportion distribution in eight patterns transition. The ratio between prediction time and gait cycle in M0, M20, and M40.
Full-size DOI: 10.7717/peerj-cs.3099/fig-13
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Figure 14 (A–C) The performance evaluation of the transfer learning model based on TCN-SA in precision, recall, and F1. (D–F) The
confusion matrixes of them for pattern transition recognition. Full-size DOI: 10.7717/peerj-cs.3099/fig-14

Figure 15 (A–C) The performance evaluation of the TCN-attention model in precision, recall, and F1.
Full-size DOI: 10.7717/peerj-cs.3099/fig-15
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In TCN-attention, the accuracy of their confusion matrixes in multigrade loads reaches
96.38%, 96.43%, and 96.13%, severally. As shown in Figs. 15A–15C, the precision, recall,
and F1 of eight locomotion modes transition in three levels of weight gradually increase
and then go down.

In TCN, the accuracy of their confusion matrixes in M0, M20, and M40 achieves
95.89%, 96.83%, and 94.94%, severally. As displayed in Figs. 16A–16C, the precision, recall,
and F1 of eight locomotion modes transition in triple physical loads gradually go up and
then sharply decrease.

In ResNet, the accuracy of their confusion matrixes in M0, M20, and M40 reaches
96.35%, 95.12%, and 96.3%, respectively. As described in Figs. 17A–17C, the precision,
recall, and F1 of eight locomotion modes transition in multilevel loads go down in
difference.

In LSTM, the accuracy of their confusion matrixes in M0, M20, and M40 achieves
81.49%, 86.2%, and 88.52% severally. As illustrated in Figs. 18A–18C, the precision, recall,
and F1 of eight locomotion modes transition in multigrade loads dramatically decrease.

Hence, the experimental results demonstrate that the accuracy of TCN-attention, TCN,
ResNet, and LSTM is less than 97%. The transfer learning method based on TCN-SA has
prominent effect in assessment criteria of precision, recall, and F1. It is apparent that the
proposed method adequately improves the efficiency of pattern transition recognition.

Generalization capability
As described in Fig. 19A, the comparative experiments of one-to-one and many-to-many
groups are carried out to clarify the generalization capability. In the one-to-one
experiments, lower limb motion data from a single subject is used for both training and
testing the hybrid model. In the many-to-many experiments, lower limb motion data from
multiple subjects is used to train the hybrid model, which is then evaluated on the
preprocessed data from the separated multi-subject sample. The results of multiple
experimental groups demonstrate that the hybrid model provides good performance for
individual independence. The proposed method shows excellent consistency in
recognizing pattern transition. Moreover, the hybrid approach performs strong
generalization capability across 15 subjects in the self-constructed dataset.

As shown in Fig. 19B, it demonstrates the effectiveness of pattern transition recognition
across many locomotion modes on two public datasets. In this study, two public datasets
(GIOT-2024 and EPIC-2023) from EPIC Lab in Georgia Institute of Technology are the
human lower-limb biomechanics and exoskeleton wearable sensors datasets. There are
cyclic activities (level ground, stair ascending, stair descending, ramp ascending, and ramp
descending) from several subjects without loads in normal speed in three terrains. The
collected data from IMU and force plate attached to exoskeleton is at the sampling
frequency of 200 Hz. The diversity of indoor activities provides a valuable basis for
validating the robustness and generalizability of the proposed approach.
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Figure 17 (A–C) The performance evaluation of the ResNet model in precision, recall, and F1. Full-size DOI: 10.7717/peerj-cs.3099/fig-17

Figure 18 (A–C) The performance evaluation of the LSTM model in precision, recall, and F1. Full-size DOI: 10.7717/peerj-cs.3099/fig-18

Figure 16 (A–C) The performance evaluation of the TCN model in precision, recall, and F1. Full-size DOI: 10.7717/peerj-cs.3099/fig-16
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Comparison to the approaches
In Table 2, this study is in contrast with many international advanced approaches in
certain diversity background. We proposed the transfer learning method based on
TCN-SA for eight locomotion modes transition in multilevel loads using IMUs on
different terrains. Furthermore, the average accuracy of pattern transition recognition is
97.76%.

Figueiredo et al. (2020) studied that Gaussian support vector machine (SVM) model had
the desired effect in nine locomotion modes transition recognition using IMUs. Papapicco
et al. (2021) proposed that binary tree method predicted motion intention in next step
using IMUs. Camargo et al. (2021) put forward the combined classifier of latent
Dirichlet allocation (LDA), SVM, and deep belief network (DBN) for pattern transition
detection using sEMG and IMUs. Su et al. (2019) studied CNN model for pattern

Table 2 Comparison to recent methods.

References Methods Scenes Sensor type Transition Subjects Accuracy (%)

Figueiredo et al. (2020) Gaussian SVM Outdoor IMU 9 10 Healthy 97.65

Papapicco et al. (2021) Binary tree Indoor IMU 4 10 Healthy 95.6

Camargo et al. (2021) LDA, SVM, DBN Indoor EMG, IMU 8 15 Healthy 96

Su et al. (2019) CNN Outdoor IMU 8 10 Healthy 94.15

1 Transtibial amputee 89.23

Liu, Wang & Gutierrez-Farewik (2021) MSI Indoor EMG, IMU 27 8 Healthy 94.5

Liu & Gutierrez-Farewik (2023) MSP Indoor EMG, force plate 7 9 Healthy /

This study TL-TCN-SA Outdoor IMU 8 15 Healthy 97.76

Figure 19 (A) The relation of the accuracy and many subjects in pattern transition recognition. (B)
The impact of pattern transition recognition on two public datasets.

Full-size DOI: 10.7717/peerj-cs.3099/fig-19
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transition detection using IMUs in healthy and disabled participators. Liu, Wang &
Gutierrez-Farewik (2021) came up with the muscle synergy-inspired (MSI) method of
non-negative matrix factorization (NMF) and non-negative least squares (NNLS) for 27
locomotion modes transition using sEMG and IMUs. During pattern transition detection,
prediction time of next step was about 300–500 ms before the step into that locomotion
mode. Liu & Gutierrez-Farewik (2023) demonstrated that muscle synergy patterns (MSP)
method based on NMF, NNLS and LSTM for seven locomotion modes transition using
sEMG and force plate reached accurate moment prediction.

Hence, it is evident that internal factors of wearable sensors significantly affect pattern
transition detection, such as sensor types and corresponding application scopes. There is a
clear distinction between indoor and outdoor scenes in current studies. In addition, the
differences between healthy and mobility-impaired individuals reported in many studies
may lead to variation in detection performance.

CONCLUSIONS
We put forward the transfer learning method based on TCN-SA for pattern transition
recognition in multilevel loads across diverse terrains. Collecting human movement data
from 15 subjects using IMUs for transfer learning model training and validation. The
experiments of hyperparameters choice are conducted to improve the transfer learning
model framework. Moreover, the experiments of eight locomotion modes transition in
multigrade loads are carried out to verify the prominent performances of Pre-T and Pre-T/
GC. In contrast with TCN-attention, TCN, ResNet, and LSTM, the proposed method has
excellent effect on pattern transition detection. Experiment results demonstrate the
strength of the proposed method in assessment criteria of accuracy, precision, recall, and
F1. The proposed method makes good difference in pattern transition recognition under
triple physical loads that paves the way for research and development in the future.

LIMITATION AND FUTURE WORK
Up to now, our approach has good effect on capability of pattern transition recognition on
diverse terrains, such as flat ground, stair, and slope. The population group of this study is
limited to healthy adult. Human motion data is acquired by the restricted biomechanical
sensors attached to wearable robot, such as IMUs and FSRs. In the near future, pattern
transition detection is expected to be conducted in rugged terrains, such as swamps and
hillsides. The dynamics and kinematics of human walking may vary across different ethnic
groups from various regions, such as Asia, Europe, Africa, and Latin America. A 3D
camera will be integrated with wearable robot to recognize complex terrains in the field.
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