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ABSTRACT

Microorganisms play an important role in many complex diseases, influencing their
onset, progression, and potential treatment outcomes. Exploring the associations
between microbes and human diseases can deepen our understanding of disease
mechanisms and assist in improving diagnosis and therapy. However, traditional
biological experiments used to uncover such relationships often demand substantial
time and resources. In response to these limitations, computational methods have
gained traction as more practical tools for predicting microbe-disease associations.
Despite their growing use, many of these models still face challenges in terms of
accuracy, stability, and adaptability to noisy or sparse data. To overcome the
aforementioned limitations, we propose a novel predictive framework, HyperGraph
Neural Network with Transformer for Microbe-Disease Associations
(HGNNTMDA), designed to infer potential associations between human microbes
and diseases. The framework begins by integrating microbe-disease association data
with similarity-based features to construct node representations. Two graph
construction strategies are employed: a K-nearest neighbor (KNN)-based adjacency
matrix to build a standard graph, and a K-means clustering approach that groups
similar nodes into clusters, which serve as hyperedges to define the incidence matrix
of a hypergraph. Separate hypergraph neural networks (HGNNs) are then applied to
microbe and disease graphs to extract structured node-level features. An attention
mechanism (AM) is subsequently introduced to emphasize informative signals,
followed by a Transformer module to capture contextual dependencies and enhance
global feature representation. A fully connected layer then projects these features into
a unified space, where association scores between microbes and diseases are
computed. For model optimization, we propose a hybrid loss strategy combining
contrastive loss and Huber loss. The contrastive loss aids in learning discriminative
embeddings, while the Huber loss enhances robustness against outliers and improves
predictive stability. The effectiveness of HGNNTMDA is validated on two
benchmark datasets—HMDAD and Disbiome—using five-fold cross-validation
(5CV). Our model achieves an AUC of 0.9976 on HMDAD and 0.9423 on Disbiome,
outperforming six existing state-of-the-art methods. Further case studies confirm its
practical value in discovering novel microbe-disease associations.
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INTRODUCTION

Microorganisms, including bacteria, fungi, archaea, and viruses, play significant roles in
various biological processes despite their small size and simple structure (de Vos et al,
2022). Recent research has revealed that the vast number of microorganisms within

the human body has a profound impact on health. These microbial communities

and their genes, collectively known as the microbiome, are present throughout the
body and are critical to human health and disease (The Human Microbiome Project
Consortium, 2012).

Understanding the relationships between microorganisms and diseases is vital for
uncovering disease mechanisms and developing new therapies. Traditional
biological experimental methods, although invaluable, are often time-consuming and
labor-intensive, making it challenging to process large datasets efficiently. In response to
ongoing challenges in understanding microbe-disease relationships, recent years have
witnessed a surge in the use of artificial intelligence to uncover hidden biological
associations.

Chen et al. (2017) introduce the KATZHMDA model. They designed a heterogeneous
network using KATZ path scoring and enhanced it with Gaussian Interaction Profile (GIP)
kernel similarity metrics. A global random walk strategy was applied across this network.
The model showed promising predictive abilities. However, the inability to generalize
toward unknown nodes weakened its broader applicability. Yin et al. (2022) proposed the
Network Consistency Projection and Label Propagation (NCPLP) framework. They aimed
to improve predictive resilience by integrating data from Medical Subject Headings
(MeSH) and 16S rRNA gene sequences. This was achieved through a combination of
network consistency projection and label propagation algorithms. Although this approach
enhanced the model’s robustness under sparse data conditions, its reliance on the MeSH
system posed a bottleneck. Liu et al. (2023) introduced a fresh perspective by proposing
Multi-Similarity Information Fusion Through Low-Rank Representation to Predict
Disease-Associated Microbes (MSF-LRR). Unlike prior methods, MSF-LRR synergizes
diverse similarity measures through the use of low-rank representation (LRR). Although
effective at extracting local structural patterns, the model’s linear fusion strategy hindered
its ability to capture nuanced distinctions among similarity sources. The Multiple
Similarities and LINE Algorithm (MSLINE) method (Wang et al., 2022) integrates Large-
scale Information Network Embedding (LINE) embeddings and multiple similarity
metrics to build a heterogeneous association network, successfully extracting structural
features, though it struggles with generalizability to novel diseases. Meanwhile,
Heterogeneous Network and Global Graph Feature Learning (HNGFL) (Wang, Lei ¢ Pan,
2022) employs GraRep embeddings and support vector machines to mine
high-dimensional features, excelling at global feature learning but remaining vulnerable to
sparse data distributions. BPNNHMDA (Li et al., 2021) introduces a backpropagation
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neural network (BPNN) architecture, where GIP-derived similarity is used to initialize
weights and enhance convergence. Although it is among the first neural models in this
domain, its fixed learning rate and predetermined initialization strategy may reduce
adaptability. Prediction of Microbe-Disease Associations Based on Deep Matrix
Factorization Using Bayesian Personalized Ranking (DMFMDA) (Liu et al., 2021)
combines neural network embeddings with Bayesian personalized ranking (BPR),
blending the memorization strength of matrix factorization with the generalization
capacity of deep learning. This makes it well-suited for ranking tasks in sparse association
settings. Multi-View Feature Aggregation for Predicting Microbe-Disease Association
(MVFA) (Peng et al., 2023) implements a multi-view learning approach by integrating
non-negative matrix tri-factorization, dual random walks, and capsule networks to capture
both linear and non-linear relational patterns. Despite improved performance, its strategy
for aggregating multi-view features lacks fine-grained control. WMGHMDA (Long ¢ Luo,
2019) introduces weighted meta-graphs to model propagation pathways in heterogeneous
information networks, offering nuanced edge-weighting. However, its complexity and
reliance on detailed network design may limit its scalability. NTSHMDA (Luo ¢ Long,
2020) applies network topological similarity and an improved random walk method to
address class imbalance. Yet, the model is constrained by its dependence on known
topological structures, which hampers prediction for isolated nodes. Yan et al. (2020)
introduced BRWMDA, which integrates bi-random walk processes with symptom-based
data and a similarity adjustment mechanism grounded in a logistic function. Although the
integration of Gaussian Interaction Profile (GIP)-based and phenotype-related data
enhances the overall utility of predictive models, but it cannot predict associations for
microbes that have not been documented before. Huang et al. (2017) introduced the
NGRHMDA model. By combining neighborhood collaborative filtering with
graph-centric scoring methods, it yields improved predictions for frequently studied
microbes. But it tends to overfit due to its dependence on high-frequency associations,
thereby compromising its adaptability to novel instances. In 2021, Long et al. (2021)
introduced GATMDA, a method that leverages the representational power of graph
attention networks (GAT) combined with inductive matrix completion. This approach
enables the model to handle novel microbial and disease instances more effectively. Yet, its
performance may suffer when input data suffer from sparsity or missing biological
descriptors. In 2023, Wang et al. (2023) proposed Graph Convolutional Neural Network
with Multi-Layer Attention (GCNMA) Mechanism for Predicting Potential Microbe-
Disease Associations. It employs a graph convolutional architecture enriched by multilayer
attention schemes. It has shown impressive predictive strength across multiple datasets.
But due to its performance is highly dependent on the structural integrity of the input
graph, when any distortion or incompleteness in the graph can significantly impair
performance.

Over the last 10 years, the field of computational biology has witnessed substantial
advancements in techniques aimed at identifying links between microbial species and
human diseases. Yet, these methods are still not perfect. Such as sparse data matrices
continue to hinder robust model training, similarity-based learning often suffers from
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imbalance in input distributions, and biases introduced by skewed similarity distributions
can further complicate matters.

To address the limitations inherent in prior methods, this study proposes a new method
called HyperGraph Neural Network with Transformer for Microbe-Disease Associations
(HGNNTMDA). The method employs hypergraph neural networks (HGNNSs) that
incorporate Transformer and contrastive learning. The method employs Huber loss as the
training objective. The primary contributions of this article are:

1. The proposed framework integrates both K-nearest neighbor (KNN) graphs and
K-means clustering-derived hypergraphs. This combination ensures that both
fine-grained and holistic topological information is captured effectively.

2. The approach fuses hypergraph convolutional operations with contrastive learning. The
former enables the model to interpret multifaceted relationships that extend beyond
pairwise links, while the latter promotes consistency across different graph views by
optimizing the similarity of learned embedding. This synergy boosts feature
discrimination across complex biological entities.

3. The approach is modeled through a Transformer encoder. Using self-attention, this
component allows the model to evaluate interdependencies across distant nodes,
ultimately improving the contextual expressiveness of the learned representations.

4. The Huber loss function was employed due to its ability to stabilize gradient descent,
thereby enhancing training reliability. Its resilience to noise and insensitivity to
statistical outliers make it particularly suitable for robust predictive modeling.

MATERIALS AND METHODS

Dataset

To construct the experimental foundation of this study, we relied on two extensively
validated microbial association databases that are frequently cited in biomedical
informatics research. Specifically, the Human Microbe-Disease Association Database
(HMDAD) dataset curated by Ma et al. (2017), accessible at http://www.cuilab.cn/hmdad,
and the Disbiome resource introduced by Janssens et al. (2018), available via https://
disbiome.ugent.be/home, were selected due to their broad coverage of known
microbe-disease relationships and structured annotation formats. It is worth noting that
both datasets are publicly accessible and have been widely adopted in related studies,
providing a reliable benchmark for evaluating predictive models in this domain.

The HMDAD database has meticulously gathered microbe-disease association data
from published literature. At the time of its initial compilation, the dataset comprised a
total of 483 verified interactions, representing 292 distinct microbial taxa and 39 categories
of human diseases. After undergoing preprocessing and normalization steps, 450
associations were ultimately retained for use in this study. Annotated with standardized
biomedical terminologies such as MeSH, HMDAD serves as a valuable resource for
studying microbial involvement in human pathologies.
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Disbiome, developed by Janssens et al. (2018), centers on the concept of microbial
dysbiosis in various disease states. It aggregates a total of 5,573 associations from scientific
publications. Following deduplication and data cleaning, 4,351 associations were
preserved, covering 1,052 microbial taxa and 218 disease categories. Compared to
HMDAD, Disbiome offers broader coverage and further distinguishes itself by providing
information on the direction of microbial abundance changes—indicating whether a
microbe is enriched or depleted in a given disease context—which enhances its utility in
dysbiosis-related research.

Since neither database provides feature vectors directly, researchers typically need to
construct their representations using supplementary biological information or
computational techniques. In this study, we adopted the following feature processing
approach. Microbial features were initially extracted from a text file to form a static
attribute matrix, which may include taxonomic, functional, or genomic information.
Similarly, disease features were loaded from a separate file and may reflect MeSH codes,
phenotypic descriptors, or gene-disease associations. To augment the expressiveness of
these features, we further applied Gaussian kernel-based similarity modeling. Specifically,
Gaussian similarities were computed between microbes and between diseases based on the
microbe-disease interaction matrix. These similarity matrices were then integrated with
the original features to generate updated microbe and disease similarity representations.
This fusion strategy preserves the original attribute information while incorporating
structural insights derived from relational data, thereby improving the model’s capacity to
capture potential microbe-disease associations. By combining static features with
network-based structural similarity, this method provides high-quality feature vectors for
downstream modeling tasks.

HGNNTMDA model overall structure

The HGNNTMDA model undertakes feature extraction and association prediction for
microbial and disease data by integrating various deep learning modules, including
hypergraph convolutional neural network (HGCN), attention mechanism (AM), and
Transformer. The process involves several critical steps: (1) constructing the graph
adjacency matrix using KNN and K-means methods to generate the joint hypergraph; (2)
extracting microbial and disease features with the contrastive learning hypergraph
convolutional network (CL_HGCN) and calculating the contrastive learning loss; (3)
enhancing feature representation through the AM; (4) encoding and processing the
attention-enhanced features using the Transformer encoder; (5) mapping these refined
features into the final embedding space via a fully connected layer; and (6) calculating the
similarity scores between microbial and disease features. Figure 1 illustrates overall of the
HGNNTMDA.

Constructing hypergraph
A hypergraph (Berge, 1984), as introduced by Berge, extends conventional graph theory by
permitting each hyperedge to simultaneously link more than two nodes. This structural
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Figure 1 Diagram of the HGNNTMDA model. Full-size K&] DOT: 10.7717/peerj-cs.3098/fig-1

flexibility enables more accurate representation of complex and higher-order relationships.
In our framework, we construct graph representations using two complementary
strategies. The first employs the KNN (Guerraoui et al., 2023) algorithm to capture local
geometric structure, where each node is linked to its k closest neighbors based on a
distance metric—typically Euclidean distance—resulting in a sparse adjacency matrix that
encodes proximity-based relationships. The second strategy applies K-means clustering to
reveal global structural patterns by grouping nodes with similar features into clusters, each
of which is treated as a hyperedge. This yields a hypergraph incidence matrix, in which a
single hyperedge can simultaneously connect multiple nodes within the same cluster.
Together, these approaches enable the model to jointly capture both local continuity and
higher-order semantic associations in the data.

The adjacency matrix of the KNN graph can be constructed:

A“KNN _ 1, lf Xj S Nk(X,‘) or X € Nk(XJ) (1)
y 0, otherwise

where Ni(x;) represents the set of K nearest neighbors of node x; in the feature space.
Construct the hypergraph correlation matrix as follows:

B 1, lf v; € Cy
Hi = {0, otherwise )

where v; represents the i-th node, C refers to the k-th cluster.

Design CL_HGCN

HGCN (Gao et al., 2023) is a specific implementation of HGNNS, focusing on feature
learning through convolutional operations on hypergraph structures to capture
higher-order relationships. In the proposed HGNNTMDA framework, we integrate
hypergraph convolutional mechanisms with contrastive learning strategies. This
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combination enables the model to capture informative structural features from hypergraph
data while simultaneously enhancing the quality of learned representations through
contrastive optimization.

Based on the hypergraph incidence matrix H constructed in the preceding section, the
normalized hypergraph Laplacian matrix L is calculated as follows:

L=D;*HWD;'H D;!/? (3)

where D, represents the degree matrix of the node, D, represents the degree matrix of the
hyperedge, and W denotes the hyperedge weights matrix.

Given the input node features matrix X, the convolution operation on the hypergraph
can be expressed as:

X' = ReLU(LXW,) (4)

where W denotes a learnable weight matrix, ReLU is the activation function. X’ is the
output feature representation after one hypergraph convolution layer.

In recent years, contrastive learning (Le-Khac, Healy & Smeaton, 2020), as an emerging
learning method, has attracted great interest from a wide range of researchers. Contrastive
learning is a discriminative representation learning framework or method based on the
idea of contrast, which can be regarded as a self-supervised learning method aiming to
learn good feature representations from unlabeled data. Unlike traditional supervised
learning, contrastive learning does not require explicitly labeled labels, but instead
performs self-supervised learning by exploiting the structure and features of the data
itself. The basic idea of contrastive learning is to maximize the similarity between
similar samples and minimize the similarity between dissimilar samples as a way to learn a
more robust and generalized feature representation. Contrastive learning (CL) does not
rely on the labeling of tokens and learns representations of positive and negative
samples from data. It aims to bring similar samples closer to each other, making the
positive and negative samples farther apart through training, thus improving the
classification. As the most common information carrier in real scenarios, graph data
contains rich information, so the analysis and research of graph data have important value.
Contrastive learning methods have demonstrated efficient and stable performance on
graph data processing.

Our framework integrates SimCLR (Chen et al., 2020). By comparing the original input
with the input that has been augmented with data, SImCLR is able to better capture the
intrinsic changes in the data and learn a more robust feature representation. Bidirectional
similarity computation is applied to both positive and negative sample pairs. By pulling
similar samples closer and pushing dissimilar samples apart, the model learns
discriminative and compact embedding representations.

First, the normalized cosine similarity is used to compute the similarity between two
embedded representations:

. Zi " Zj
sim(z;,z;) = ——— 5
=:3) = {2 Ma ©)
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where z; and z; represent feature representations embedded in the space. - represents the
dot product of a vector. ||| represents the corresponding Euclidean norm (i.e., their L2
norm).

Assuming there are 2N samples in the batch, the loss formula for each positive sample
pair (z;,z;) can be expressed as:

exp(sim(z;, zj)/C)
Ziil exp(sim(z;, z¢) /C)

where C is a temperature parameter, usually taken as a small positive number (such as 0.1

CL_loss = —log (6)

or 0.2), which controls the smoothness of the similarity distribution. A smaller C will make
the distinction between similar sample pairs more distinct. k represents other samples in
the batch (including negative samples).

Attention mechanism

The AM (Brauwers ¢» Frasincar, 2023) is designed to better capture important information
and structure in the input data. AM is not a separate and complete model, but a technique
that can be embedded into any model. By using this technique, the model can be targeted
to learn the important information and thus improve the overall performance of the
model. When dealing with huge input data, the computing speed of the neural network
will be significantly reduced, in order to improve the training speed, the AM can be
introduced, the core idea of the mechanism is to select the most critical part of the
information to be processed, so as to accurately capture the most important features in the
information, and realize the improvement of the computational efficiency. The AM is
essentially a weighted processing. Integrating the AM module into HGCN can significantly
enhance in the model’s capacity to allocate suitable weights to key nodes and edges. The
AM allows the model to focus more precisely on the most relevant features, leading to
better accuracy and efficiency.

In our proposed framework, attention is integrated at the channel level. Specifically, two
separate streams of node embeddings, which are derived from distinct graph learning
branches, as independent feature channels. These channels are first concatenated to form a
joint representation. Following this, global average pooling is performed on each to extract
high-level descriptors that reflect their respective activation patterns. These global features
are subsequently fed into a two-layer feedforward neural network. The first layer applies a
nonlinear transformation that helps uncover deeper semantic cues, while the second layer
employs an activation function (e.g., sigmoid) to generate normalized importance scores.
The final output is a recalibrated feature representation refined by the AM, which
improves the model’s ability to capture meaningful patterns for downstream tasks such as
representation learning or classification.

We concatenate the two feature matrices along the channel dimension, then transpose
the result and denote it as X. Subsequently, we perform global average pooling on each
channel of X to obtain channel-level statistics, which is formally defined as follows:

1 d n

Z= ﬂz le,c,i,j for ¢=1,2 ()

i=1 j=1
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where z. represents the global average of the c-th channel. X, ;; represents the value at
positions i and j of channel c. d represents the feature dimension. n represents the number
of samples.

Subsequently, the relative importance of each channel is captured using a two-layer fully
connected neural network. The first layer performs a linear transformation to generate
intermediate hidden representations. The calculation is as follows:

Hiddenlayer_output = ReLU(W] - z+b;) (8)

where W; and b; represent the parameters of the first layer linear transformation.
To determine the final attention weights assigned to each feature channel, a secondary
linear transformation is applied. The calculation is as follows:

s =Sigmoid(W, - h + b,) 9)

where W, and b, represent the parameters of the second layer linear transformation. The
Sigmoid compresses continuous values into the interval (0, 1), ensuring bounded
importance scores that can be interpreted as probability-like weights.

Once calculated, these attention weights are used to rescale the original feature
representations on a channel-wise basis. A new weighted feature map is generated through
this process, with each channel being adjusted based on its learned significance. The
computation is as follows:

X, =s.®X, for ¢=1,2 (10)
where s represents the attention weight of the c-th channel (ranging between 0 and 1). X,
represents the weighted feature map of the c-th channel. ® denotes channel-wise
multiplication.

After obtaining the weighted features, an essential subsequent step is to transpose and
concatenate them. These processed features are then fed into a Transformer encoder for
more in-depth semantic analysis. As Xu, Zhu ¢ Clifton (2023) highlighted in 2023, the
Transformer encoder, built upon the multi-head self-attention architecture, has the unique
ability to examine multiple aspects of the input simultaneously. It focuses on different
representational subspaces, allowing it to uncover complex dependencies among features
that might be missed by other methods.

Loss function selection

In the training of deep neural networks, selecting an appropriate loss function plays a
pivotal role, as it significantly influences convergence rate, model fitting capacity, and
generalization ability. One widely adopted loss metric is the mean absolute error
(MAE), also referred to as the L1 loss, which computes the average of the absolute
discrepancies between predicted outcomes and actual target values. A lower L1 loss
indicates improved alignment between the model predictions and ground truth data. Due
to its constant gradient, L1 loss contributes to stable training dynamics and is
inherently robust against anomalous data points. However, this stability often comes at the
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cost of slower convergence. The formal mathematical formulation of L1 loss is given as
follows:

1 n
Ll,l - — i—Ai 11
oss n; lyi — ¥il (11)

where y; represents the true value, y; is the predicted value, and 7 is the number of samples.

Mean squared error (MSE), also known as L2 loss function. It quantifies the discrepancy
between the predicted output and the actual value by averaging the squared differences
across all observations. The formal expression of L2 loss is defined as:

_1¢ 32
L2_loss = n; (yi — i) (12)

Huber loss combines the advantages of L2 Loss and L1 Loss. The core idea of Huber loss
is to penalize smaller errors with squared error and switch to absolute error for larger
errors. This design makes Huber loss not be overly affected by squared error when facing
outliers, and also avoids the problem of slower convergence of absolute error. It introduces
a threshold parameter, when the error is less than the threshold, L2 Loss is used, and when
the error is greater than or equal to the threshold, the L1 Loss is used. By adjusting the
threshold parameter, Huber loss can balance between L2 Loss and L1 Loss, so as to adapt to
different data distributions and modeling needs. The definition of Huber loss is as follows:

1
—a* if|a| <6
2

Huber _loss(a) = (13)

1
0 <|a| - 55) otherwise

where a is the difference between the predicted and actual values, and ¢ is the threshold
parameter.

To improve its ability to infer potential associations between microbes and diseases, the
proposed HGNNTMDA model adopts an integrated loss strategy. Specifically, Huber loss
is utilized as the primary measure to assess the reconstruction error between the model’s
predictions and the actual ground truth values. Contrastive Loss operates on the learned
feature embeddings, targeting the model’s capacity to discriminate between semantically
similar and dissimilar samples. By minimizing intra-class distances and maximizing
inter-class distances in the latent space, this loss facilitates more effective separation of
Microbe and disease representations—thereby improving the model’s capacity to
distinguish biologically relevant associations. By adopting this integrated loss strategy, the
model demonstrates superior performance in tasks involving microbial-disease association
prediction.

Experimental results and analysis
Experimental setup

The experiments in this research were performed using Python (version 3.11.5, 64-bit) on
Spyder (version 5.4.3, conda). The implementations relied on the PyTorch deep learning
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Table 1 Initial default settings for hyperparameters.

Hyperparameter Parameter meaning Parameter
value
Ir learning rate 0.0001
weight_decay A regularization technique that adds the L2 norm (sum of squared weights) to the loss function to prevent 0.00001
overfitting.
k_neigs the number of nearest neighbors to select 13
clusters Number of Clusters 9
n_head Number of Attention Heads 8
nlayer Number of Layers 2
epochs Number of Epochs 200
dropout Dropout Rate 0.5

framework and the DGL graph neural network framework. The computational
environment included an Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz with 24GB RAM
and an NVIDIA RTX 4070 GPU with 12GB RAM.

Evaluation metrics

To comprehensively assess the predictive performance of the proposed model, multiple
evaluation criteria were adopted, including accuracy, specificity, precision, F1-score, the
receiver operating characteristic (ROC) curve, and the area under the receiver operator
characteristic (ROC) curve (AUC). The detailed computation procedures align with those
described by Zhu et al. (2021).

Given the inherent sparsity and imbalance in biological datasets, we implemented a data
resampling strategy to artificially balance the training and testing sets, thereby enhancing
the robustness of performance evaluation. We employed 5CV to evaluate model accuracy.
This validation scheme involves partitioning the dataset into five equally sized folds, where
each fold serves as a test set in one iteration, while the remaining four folds are used for
training. Such a rotation mechanism guarantees that every sample is utilized for both
validation and learning, effectively reducing variance due to data partitioning.

Experimental results on the HMUDAD database

In this subsection, we initially establish a set of hyperparameter combinations as the
default values for benchmarking (see Table 1). These values are used to perform
performance validation experiments on the HGNNTMDA model. Figure 2 illustrates the
experiment results for the 5CV experiments on the HMDAD database, utilizing the
hyperparameters specified in Table 1.

As shown in Fig. 2, the consistent decline in loss alongside the gradual increase in
accuracy highlights the HGNNTMDA model’s promising performance on the
classification task. The accuracy trend demonstrates a continuous improvement
throughout the training process, suggesting that the model progressively enhances its
classification ability and becomes more adept at predicting the correct categories. The
model achieved an average AUC of 0.9748 across 5CV experiments, which underscores its
robustness and generalization ability.
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Figure 2 Initial experimental results. (A) Loss curve. (B) Accuracy curve. (C) ROC curve. (D) Evaluation metric value.

Full-size k&l DOL: 10.7717/peerj-cs.3098/fig-2

Parameters analysis on HMUDAD database

To systematically investigate the sensitivity of the HGNNTMDA model to key
hyperparameters, we conducted a comprehensive analysis focusing on several core training
hyperparameters, including the number of epochs, learning rate (Ir), weight decay,
neighborhood size (k_neigs), number of clusters (clusters), number of graph convolution
layers (nlayer), and attention heads (n_head). All experiments were implemented using
5CV on the HMDAD dataset to ensure consistency in evaluation. Considering the
potential variability introduced by random data partitioning within the 5CV protocol, each
experiment was independently repeated 100 times. The reported results represent the
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Table 2 Range of values for hyperparametric analysis.

Hyperparameter name Values range

Ir 0.0001-0.05

weight_decay 0.00001-0.005

k_neigs [3,4,5,6,7,8,9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]
clusters [2,3,4,5,6,7,8,9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]
dropout [0.2, 0.3, 0.4, 0.5]

epochs [100, 200, 300, 400, 500, 600, 700, 800, 900, 1000]

10 Max: 0.9804 0.98
0.980

09 097 Max: Q9694
0973 Max: Q.9730

08 0970

AuC
AU
AUC

2 0.965
0.960

0955

0.950

0.0001 0.0005 0.001 0.005 0.01 005 3 4 5 6 7 8 9 1011 1213 14 15 16 17 18 19 20 1605 5e:05 0.0001 0.0005 0.001 0.005
Ir _neigs weight_decay

A B C

0985

1.00 0.980
Max: Q.9956 Max: Q.9831
0.975 Max:Q:9740

0970

0965

AUC
AUC
AUC

0.97 0960
0955

0950

095 0945

00 200 300 400 500 600 700 800 900 1000 02 03 04 05 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20
epoch dropout clusters

D E F

Figure 3 Hyperparametric analysis. (A) Ir. (B) k_neighs. (C) weight_decay. (D) epoch. (E) dropout. (F) clusters.
Full-size K4l DOT: 10.7717/peerj-cs.3098/fig-3

mean performance across these iterations, thereby minimizing the impact of sampling
fluctuations and enhancing statistical robustness.

First, we conducted a more detailed investigation into the impact of each
hyperparameter on the model’s predictive performance. AUC was employed as the
primary performance indicator throughout. The exact search intervals and candidate
values for each hyperparameter are summarized in Table 2. Figure 3 illustrates the impact
of each parameter on model performance.

The parameter Ir determines the step size during parameter updates. Figure 3A shows
that an Ir of 0.0005 yields the highest AUC. The parameter k_neigs, which specifies the
number of neighbors each node is connected to, influences the density of the KNN graph
and inter-node relationships. As shown in Fig. 3B, the optimal value for k_neigs is 11.
Weight decay, a regularization method that discourages large weights to reduce overfitting,
reaches its optimal AUC at 0.00005, as displayed in Fig. 3C. Dropout, another
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Table 3 Optimal hyperparameter settings for the HMDAD dataset.

Hyperparameter name Parameter value
Ir 0.0005
weight_decay 0.00005

k_neigs 11

clusters 10

n_head 2

nlayer 2

epochs 800

dropout 0.2

regularization technique that involves randomly omitting neurons during training to
combat overfitting, achieves its highest AUC when the training epochs reach 800, as seen
in Fig. 3D. Figure 3E shows that a dropout rate of 0.2 produces the highest AUC value.
Lastly, the number of clusters, which determines data partitioning and affects graph
connectivity, achieves the maximum AUC with 10 clusters, as indicated in Fig. 3F.

In the Transformer encoder, the number of heads (n_head) in the multi-head AM
significantly affects model performance. More heads allow the model to compute multiple
attention scores in parallel, improving computational efficiency and enabling the capture
of diverse representations. However, too many heads can increase computational and
memory overhead. The number of layers (nlayer) in the encoder indicates the stacked
layers used, impacting the model’s ability to capture complex features and dependencies.
While more layers can enhance model representation, they also increase the risk of
vanishing or exploding gradients, especially without proper regularization or
normalization.

To further examine the joint sensitivity of the HGNNTMDA model, we investigated the
interaction between the Ir and the number of attention heads (n_head) by adjusting
n_head values (2, 4, 8, and 16) alongside a range of Ir values, consistent with those listed in
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Figure 5 Experimental results after parameter optimization. (A) Loss curve. (B) Accuracy curve. (C) ROC curve. (D) Evaluation metric value.
Full-size K&l DOT: 10.7717/peerj-cs.3098/fig-5

Table 2. As illustrated in Fig. 4A, the optimal configuration, yielding the highest AUC, is
n_head = 2 and Ir = 0.0005. In addition, we assessed the combined impact of Ir and the
number of layers (nlayer) by varying nlayer from 2 to 8 while exploring different Ir values.
Figure 4B indicates that the optimal setting is nlayer = 2 and Ir = 0.0005. This observation
underscores the considerable influence that the interplay between architectural depth and
learning rate exerts on the predictive capabilities of the HGNNTMDA model.
After thorough experimentation and critical evaluation of each hyperparameter’s

contribution, we chose a set of optimal hyperparameter combinations shown in Table 3.
Figure 5 illustrates that fine-tuning the model’s hyperparameters produced a noticeable
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Table 4 Optimal hyperparameter settings for the disbiome dataset.

Hyperparameter name Parameter value
Ir 0.0002
weight_decay 0.000006
k_neigs 3

clusters 19

n_head 2

nlayer 2

epochs 800

dropout 0.2

enhancement in performance. Under 5CV, the average AUC increased by more than 2%.
This uplift implies enhanced capacity for generalization and more accurate classification
on the HMDAD dataset.

Experimental results on the disbiome database

In order to fully assess the stability and generalization ability of the proposed model, we
conducted five more cross-validation experiments on the Disbiome dataset. Due to the
relatively limited size of the HMDAD dataset, in the previous experiments, we performed
hyperparameter optimization search by analyzing each important hyperparameter
individually. However, the Disbiome database is rich in data, with more complete disease
types and microbial types, and the data volume is a bit larger. Therefore, during the
experiments, we used the Optuna (Akiba et al., 2019) method to search for optimal
hyperparameters within the proposed model. Optuna uses a Bayesian optimization
algorithm to help the user find the best combination of hyperparameters in as few
experiments as possible by using an intelligent search strategy. The hyperparameter search
ranges of Optuna are still using the ranges specified in Table 2 in the previous section. The
best hyperparameter combinations obtained by hyperparameter optimization on the
Disbiome dataset by the Optuna method are shown in Table 4.

After setting the model hyperparameters to the optimal hyperparameter combinations,
the quintuple cross-validation experiments were repeated several times to evaluate the
operational performance of the proposed model on the Disbiome dataset. The
corresponding results shown in Fig. 6 indicate that the model performs well on several key
evaluation metrics, thus validating the model’s adaptability and predictive ability.

Comparison with other models

In order to evaluate the predictive performs of our proposed HGNNTMDA model, we
benchmarked its performance against six well-known methods: KATZHMDA (Chen et al.,
2017), NTSHMDA (Luo ¢ Long, 2020), BRWMDA (Yan et al., 2020), NGRHMDA
(Huang et al., 2017), GATMDA (Long et al., 2021) and GCNMA (Wang et al., 2023). All
comparative experiments were run under the 5CV scheme on both the HMDAD and
Disbiome datasets.
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Figure 6 Experimental results on the Disbiome database. (A) Loss curve. (B) Accuracy curve. (C) ROC curve. (D) Evaluation metric value.
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Figure 7 presents the results of the comparison. It is worth highlighting that the
HGNNTMDA model achieved the highest AUC scores in both datasets. It is
demonstrated that the HGNNTMDA model has significant advantages over other

competing methods.

Ablation experiment

To better understand how the contrastive learning module and the AM each influence the
HGNNTMDA architecture, we carried out an ablation study. We conducted 5CV on two
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datasets: HMDAD and Disbiome. In the ablation experiment, we built two pared-down

variants of the original model:

(1) HGCN_ATT: retains the AM but does not employ contrastive learning during

training;
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Table 5 Comparison of performance index values for choosing different loss functions.

Loss function AUC Accuracy F1_score Specificity Precision
HMDAD L1 loss 0.5806 0.5000 0.0000 0.5000 0.6667

L2 loss 0.9724 0.9250 0.9222 0.9234 0.9249

Huber loss 0.9976 0.9889 0.9890 0.9833 0.9839
Disbiome L1 loss 0.5006 0.5000 0.6667 0.0000 0.5000

L2 loss 0.9332 0.8865 0.8839 0.9092 0.9051

Huber loss 0.9423 0.8826 0.8815 0.8922 0.8904

Note:

The best results are marked in bold.
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Figure 9 Top 10 candidate microorganisms for colon cancer.
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(2) HGCN_CL: removes attention-related components while preserving the contrastive

learning strategy.

By comparing these two variants, we can clearly see how each component contributes to
the overall performance of the HGNNTMDA framework. The hyperparameters in the
experiments of the two variant models on both datasets still use the best combination of
hyperparameters obtained in the previous experiments.

The results of the comparison experiments between the HGNNTMDA model and the
two variants of the model are shown in Fig. 8. From the comparative outcomes illustrated
in the figure, it becomes apparent that the full HGNNTMDA model delivers consistently
higher performance than the two pared-down variant models. Experimental results
demonstrate that these components work best in concert and that their joint contribution
is essential for achieving robust and stable prediction results.
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Table 6 Predicted top 10 microbes for colon cancer by HGNNTMDA.

Rank Microbe Evidence
1 Helicobacter pylori PMID: 30430119 (Mansour et al., 2018)
2 Clostridium difficile PMID: 21272802 (Kariv et al., 2011)
3 Staphylococcus aureus PMID: 34678970 (Ahmad-Mansour et al., 2021)
4 Staphylococcus PMID: 36557606 (Wei et al., 2022)
5 Actinobacteria PMID: 37633504 (Pongen et al., 2023)
6 Proteobacteria PMID: 38329696 (Wang et al., 2025)
7 Firmicutes PMID: 33492552 (Chattopadhyay et al., 2021)
8 Clostridium coccoides PMID: 29667480 (Gomes, Hoffmann & Mota, 2018)
9 Stenotrophomonas maltophilia PMID: 22232370 (Brooke, 2012)
10 Burkholderia PMID: 34346791 (Bach et al., 2022)

To investigate the impact of various loss function choices on the predictive performance
of the model, we designed another set of ablation experiments. We conducted three
different experiments using three loss functions: L1 Loss, L2 Loss, and Huber Loss. The
results are presented in Table 5.

Table 5 presents the mean results derived from 100 independent experimental
repetitions. On the HMDAD dataset, the model consistently achieved optimal
performance when trained with the Huber Loss function across all runs. In contrast, for the
Disbiome dataset, the model utilizing L2 Loss occasionally yielded the best outcomes,
although such instances were comparatively infrequent.

Case studies
To further validate the predictive accuracy and reliability of the HGNNTMDA model, we
conducted a case study focusing on colon cancer, one of the most dangerous malignant
tumors (Chen et al., 2024). The HGNNTMDA model was employed to predict the
likelihood of association for each microbial candidate disease. These associations were then
ranked in descending order. The top 10 candidate microorganisms for colon cancer were
selected for validation and analysis. Figure 9 presents these top 10 candidate
microorganisms. All top 10 microorganisms identified by the HGNNTMDA model as
associated with colon cancer have been experimentally confirmed, as detailed in Table 6.
Helicobacter pylori and Clostridium difficile have been associated with the initiation
and progression of ulcerative colitis, a persistent inflammatory bowel condition that
significantly elevates the risk of colorectal malignancy (Kariv et al., 2011; Mansour et al,
2018). In a similar vein, Staphylococcus aureus and other members of the Staphylococcus
genus are known to secrete virulence factors that can interfere with host immune
regulation and may, under certain pathological contexts, contribute to tumor development
(Ahmad-Mansour et al., 2021; Wei et al., 2022). While Actinobacteria have demonstrated
therapeutic potential in oncology through the biosynthesis of bioactive metabolites, their
relevance to colorectal cancer remains indirect and requires further clarification (Porngen
et al., 2023). The phylum Proteobacteria has been found in elevated abundance within
dysbiotic intestinal environments and colorectal tumor models, suggesting its participation
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in inflammation-associated tumorigenesis (Wang et al., 2025). In contrast, a decline in
beneficial Firmicutes, especially butyrate-producing taxa, is thought to compromise
mucosal barrier integrity, thereby fostering a pro-tumorigenic state (Chattopadhyay et al.,
2021). Although Clostridium coccoides has not been directly implicated in colorectal
cancer, it is involved in metabolic pathways related to obesity, an established risk factor for
cancer development (Gomes, Hoffmann ¢ Mota, 2018). Stenotrophomonas maltophilia,
typically classified as an opportunistic pathogen, is frequently isolated from inflamed
gastrointestinal tracts and may promote chronic inflammatory conditions conducive to
neoplasia (Brooke, 2012). Additionally, Burkholderia species, characterized by diverse
metabolic capabilities, are known producers of secondary metabolites that may influence
the tumor microenvironment, albeit without direct experimental linkage to colorectal
cancer (Bach et al., 2022).

In conclusion, among the microbial candidates predicted by the HGNNTMDA model,
at least four demonstrate direct empirical connections to colorectal cancer, while the
remaining taxa exhibit indirect or mechanistically plausible associations through
inflammatory, immunological, or metabolic pathways. These validation results further
demonstrate the robust predictive performance of the HGNNTMDA model and provide
valuable insights for microbe-based disease diagnosis and treatment.

DISCUSSION

Over the past few years, researchers have increasingly focused on developing
computational strategies to predict associations among microbes, miRNAs, and various
human diseases. These algorithmic frameworks have yielded encouraging findings and, to
some degree, have propelled progress in biomedical informatics. Still, critical limitations
persist. Such as a key concern lies in the scarcity of experimentally verified microbe-disease
associations, which results in inherently sparse interaction networks. Because the majority
of existing models depend on these known links for training, the performance of such
models often deteriorates when applied to sparsely connected datasets.

To mitigate this issue, we present HGNNTMDA, a composite architecture that
synergizes hypergraph neural networks, attention-based feature selection, and
Transformer encoders. This framework processes Microbe-disease data through a
sequence of interlinked modules. The HGNN layer updates node representations by
aggregating multi-order neighborhood information. Meanwhile, embedding the
Transformer module within the hypergraph topology allows the model to capture
non-local semantic relations across heterogeneous biomedical entities. This combination
not only boosts predictive reliability but also reduces the model’s sensitivity to noisy or
incomplete data.

However, due to the limited number of validated associations, the resulting hypergraph
is highly sparse. This sparsity can negatively impact the quality of node embedding,
particularly for entities with few connections. To address this challenge, a contrastive
learning objective is incorporated under a self-supervised framework. This design allows
the model to extract latent structural signals beyond direct supervision, thereby enhancing
its generalizability in sparse scenarios. The synergy between attention and contrastive

Zhu et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3098 21/25


http://dx.doi.org/10.7717/peerj-cs.3098
https://peerj.com/computer-science/

PeerJ Computer Science

learning boosts the model’s sensitivity to biologically meaningful signals, leading to
improved generalization.

We evaluated the predictive performance of HGNNTMDA by comparing it with several
established benchmark models. These models include KATZHMDA, NTSHMDA,
BRWMDA, NGRHMDA, GATMDA, and GCNMA. Comparative experiments were
performed on the HMDAD and Disbiome datasets, using 5CV to ensure robustness. The
results show that HGNNTMDA consistently achieves higher predictive accuracy than
these benchmark models. Ablation experiments were designed for the HGNNTMDA
model, and the results of the ablation experiments on the HGNNTMDA modules showed
that removing any of the HGNNTMDA modules resulted in different degrees of
degradation of the overall performance of the HGNNTMDA model, which suggests that
each of the HGNNTMDA modules designed in this article is effective. Complementary
case studies further validated that the predictions made by the model align well with
experimentally verified microbe-cancer associations, attesting to its biologically sound
nature.

CONCLUSION

This study introduces a hybrid model HGNNTMDA designed to predict human
microbe-disease associations. The model integrates three core components: HGNNs,
Transformer-based encoders, and attention-driven feature selection. To assess its
effectiveness, we conducted empirical evaluations on the HMDAD and Disbiome datasets.
To enhance the robustness of the experimental findings, we implemented a 5CV strategy
during model evaluation. The model outperformed six commonly used baseline
algorithms in predictive accuracy. Ablation analyses and comparisons with advanced
models further proved the approach’s stability and practical value. One important
direction for future investigation involves optimizing the structure of the hypergraph
neural network and exploring different hyperedge definitions to increase the model’s
expressive power.
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