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ABSTRACT
Extensive studies have been conducted to investigate Artificial Intelligence (AI) in the
context of time series data. In this article, we investigate the complex domain of
industrial time series, from the dimensions of classical machine learning (ML), deep
neural networks (DNNs) and graph neural networks (GNNs). Current surveys often
focus on a specific methodology or oversee the connection of diverse approaches; our
article bridges this gap by providing an all-inclusive interpretation across numerous
techniques. In addition, the aim of this article is to focus on the core areas of time
series such as forecasting, classification, and anomaly detection. From traditional
methodologies like Autoregressive Integrated Moving Average (ARIMA) and
support vector machine (SVM) methods, the advancements of DNNs, for instance
long-short-term memory (LSTMs), convolutional neural networks (CNNs),
attention mechanisms, and transformers, describe how temporal information is used
for forecasting, anomaly detection, and classification. Then the article discusses the
advances and limitations in ML, DNN, and GNN in order to improve the different
methods in either category. Lastly, we outline future directions and open research
questions with the different methodologies used in time series.

Subjects Artificial Intelligence, Data Mining and Machine Learning, Data Science
Keywords Time series, Industrial, Graph neural networks, Machine learning, Deep learning,
Neural networks, Temporal information, Anomaly detection, Time series classification, Forecasting

INTRODUCTION
The advent of industry and the rapid expansion of today’s industry 4.0 contribute to the
increased complexity and automation of industrial processes. Although industrial
processes on a large scale bring significant economic benefits to the country, the high level
of interconnectivity and complexity within the structure means that even a minor
disruption can result in serious fiscal setbacks and possibly loss of life. Therefore, to
guarantee safe and reliable implementation of the manufacturing idea, fault prediction,
detection, and diagnostic technology are crucial for all planned critical industrial
productions. In Palit & Popovic (2006), we explore the evolving network of use cases like
autonomous robots, system integration, the Internet of Things, simulations, additive
manufacturing, cloud computing, augmented reality, big data, and cyber security that
outline the industrial quarter. As our environment becomes increasingly interconnected,
the synthesis of digital know-how with conventional industrial methods has led to a

How to cite this article Ahmed MJ, Mozo A, Karamchandani A. 2025. A survey on graph neural networks, machine learning and deep
learning techniques for time series applications in industry. PeerJ Comput. Sci. 11:e3097 DOI 10.7717/peerj-cs.3097

Submitted 10 July 2024
Accepted 10 July 2025
Published 25 September 2025

Corresponding author
Muhammad Jamal Ahmed,
muhammadjamal.a@upm.es

Academic editor
Claudio Ardagna

Additional Information and
Declarations can be found on
page 40

DOI 10.7717/peerj-cs.3097

Copyright
2025 Ahmed et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.3097
mailto:muhammadjamal.�a@�upm.�es
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.3097
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/


standard shift. Figure 1 condenses the diverse range of applications within Industry 4.0,
where data analytics, smart systems, and automation converge to transform
manufacturing technology and beyond.

The central driving force behind this advanced technological progress is the
transformative power of big data. Figure 1 serves as a comprehensive guide to the
numerous applications of big data within the industry 4.0, showcasing how data-driven
insights are revolutionizing the global manufacturing sector. The integration of big data
extends from predicting maintenance and optimizing supply chains to providing instant
analytics and facilitating intelligent decision making. This incorporation of big data is
pushing the boundaries of what is achievable in the industrial sector.

In the context of industrial environments, temporal analysis has become crucial for
assessing operational reliability and efficiency and ensuring the safety and longevity of
critical infrastructure. With the influx of temporal data from operational monitoring
processes, the industrial sector is challenged to develop and integrate analytical approaches
to effectively leverage this information to improve decision making and optimize its
operational processes (Bertolini et al., 2021). Figure 2 shows a multistage approach to time
series data analysis, where data is generated at the sensor level, undergoes initial processing
and analysis, and is then transferred to the cloud to improve its accessibility and scalability.

Figure 3 illustrates the core components of the time series, each playing its own role in
unraveling the anonymity of temporal drifts. From the all-encompassing course of trends
to the periodic patterns of periods, to the surging sequences of cyclical effects, to the
impulsive irregularities that add to the complexity, this figure guides the important
workings that form the backbone of time series.

Classical machine learning, deep learning, and graph neural networks are established as
standards for interpreting diverse patterns deeply rooted in time series data in industrial

Figure 1 Applications of big data in industrial sector. Full-size DOI: 10.7717/peerj-cs.3097/fig-1
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settings. In industrial settings, the origins of time series analysis can be traced back to the
revolutionary efforts of Box et al. (2015), who introduced the Autoregressive Integrated
Moving Average (ARIMA) methods. These statistical techniques patented an elementary
landmark in time series forecasting, providing the industrial sector with a robust structure
to forecast demand, optimize production schedules, and maintain inventories. The advent
of ARIMA and similar approaches represented a paradigm shift, allowing industry 4.0 to
use historical data for informed policy making. Classical machine learning approaches,
apparently signified by ARIMA, demonstrated an essential role in founding the early
architectures for analyzing time series. These techniques, rooted in statistical
fundamentals, propose real-world insights, and the interpretability that compiles them is
especially valued for industries that require a vivid understanding of primary dynamics. In
addition, traditional methods such as ARIMA have been shown to be effective in setups
where data have strong temporal shapes and can be represented by means of nonlinear or
linear associations (Makridakis & Hibon, 2000).

Recent advances in conventional machine learning practices have supported the
incorporation of ensemble approaches for the analysis of time-series data. In particular,
gradient-boosting machines and random forests have gained prominence. When dealing
with nonlinear relationships and complex dependencies, ensemble models
(Karamchandani et al., 2023) have seen progress within time series. By assembling
predictions from different methods, these practices increase predictive capabilities and
enhance robustness, making them convenient for various industrial frameworks (Mozo
et al., 2024). Furthermore, ensemble models, conventional machine learning techniques,
have progressed to integrate feature engineering methods, licensing improved illustration

Figure 2 The above figure depicts a setup of time series starting from data collection to storing the
data to be analysed. Full-size DOI: 10.7717/peerj-cs.3097/fig-2

Figure 3 Components that constitute the backbone of time series.
Full-size DOI: 10.7717/peerj-cs.3097/fig-3
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of temporal dependencies and patterns. Feature engineering, coupled with typical
processes such as support vector machine (SVM) and k-Nearest Neighbors (k-NN), has
led to accurate improvements in predicting time-series tasks. These methods illustrate the
adaptability of classical machine learning practices to face the shade limitations produced
by practical industrial sector data in time series contexts. Although classical machine
learning has made significant progress in the time series domain, it is important to
acknowledge its limitations. The insights and interpretation in the real world offered by
these techniques come at the cost of making inferences about the linearity and stationarity
of the data (Iglesias et al., 2023). In situations where time series have complicated
non-linear shapes or experience structural variations, typical machine learning approaches
may fade.

Inscribing these boundaries requires a subtle method that fuses the power of
conventional methods with evolving practices, certifying an adaptive and comprehensive
framework for analyzing industrial time-series data. The field of time-series forecasting has
undergone a groundbreaking metamorphosis with the arrival of deep learning techniques,
with neural networks at the forefront. Graves (2014) presented an influential complement
to this change with the construction of long short-term memories (LSTMs). These
structures were designed to address the shortcomings of conventional techniques and to
capture complicated temporal dependencies by allowing the time-series model to capture
long-term dependencies in the data. The introduction of LSTM techniques has opened
new avenues for dynamic and accurate prediction of time-series data, representing an
innovation in the field of industrial environments. An essential milestone in the direction
of deep learning for the prediction and analysis of time series data was manifested by the
research ofWang et al. (2018), who proposed sequence-to-sequence methods. This novelty
was licensed to industries to predict failure detection and optimize complicated supply
chain processes. Sequence-to-sequence methods had the power to channel input sequences
and produce their output sequences, transforming predictive analytics and enlightening
further understanding and comprehension of temporal dependencies and patterns. The
metamorphic power of deep learning, as demonstrated by these developments, has made it
an essential implement for addressing encounters modeled by practical time series data in
industries (Cutler et al., 2007).

Current research by Yang et al. (2021) has explored attention architectures within deep
learning methods for time series analysis. These mechanisms increase interpretability by
allowing the technique to focus on explicit parts of the input sequence, thereby gaining an
understanding of the aspects that drive the prediction. Approaches such as transfer
learning, in which pre-trained methods are revised for precise industrial setups and adhere
successfully to Schölkopf et al. (2001). This method influences information from one
domain to boost production in the other, an advantageous approach in situations where
there is a limited amount of labeled data. Nevertheless, it is critical to admit the trials
associated with deep learning, together with the need for considerable computational
resources, the amount of labeled data, and possible overfitting in high-dimensional,
multifaceted datasets.
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Anomaly detection is a key player in maintaining the safety and reliability of industrial
settings, certifying the early detection of faults before they intensify into serious problems.
Traditional techniques, such as SVM and isolation forests of Liu, Ting & Zhou (2012), have
been the followers in this field, contributing active solutions for the recognition of
eccentricities of usual behavior. However, the field has undergone a transformative change
with the incorporation of deep learning practices, notably variational autoencoders (VAEs)
(Kingma & Welling, 2022). These techniques have played and continue to play a critical
role in improving anomaly detection capabilities in time series data for industrial
frameworks. VAEs could learn the probabilistic distribution of standard data and,
therefore, it can successfully classify subtle deviations that might indicate anomalous
behavior. The current stream of anomaly detection studies has validated the use of
generative adversarial networks (GANs) in this area, as verified by Akcay,
Atapour-Abarghouei & Breckon (2019), embodies the ability to integrate different deep
learning practices to achieve more robust anomaly detection models. Furthermore, the
integration of deep learning and attention mechanisms has shown potential in anomaly
detection. A recent study by Vaswani et al. (2017) discovers the incorporation of attention
approaches into time series, highlighting their role in illuminated anomaly detection
performance in industrial settings.

Li et al. (2018) comes up with significant arguments by revealing the success of graph
neural networks (GNNs) in the domain of time-series forecasting, exclusively in situations
where time series data in an industrial context have characteristic graphical assemblies.
GNNs go beyond traditional machine learning (ML) and thus captures these associations,
which provides a more comprehensive understanding of the hidden dynamics particularly
valuable in industries. A study by Zhang et al. (2022a) explores the integration of
reinforcement learning with GNN, offering a pioneering exploration of their collective
potential. Reinforcement learning, coupled with the ability of GNNs to handle complicated
dependencies, generates a coactive method that embraces potential for augmenting
decision approaches in response to the dynamic environments of industrial sectors. GNNs
can successfully capture anomalous patterns that are evident in interconnected structures,
giving a robust result for detecting deviations from normal behavior. The research in
Zhang et al. (2022a) illustrates the positive incorporation of GNNs in the detection of
anomalies, demonstrating the applicability of GNNs in several domains, taking into
account the industrial context. Although GNNs offer exceptional capabilities, challenges
remain in terms of interpretability and scalability. Addressing these challenges is crucial to
certifying the unified incorporation of GNNs into the frameworks of industrial sectors (De
Livera, Hyndman & Snyder, 2011). However, with the change in criteria towards neural
networks, interpretability has emerged as a major concern in the industrial field. De Livera,
Hyndman & Snyder (2011) highlighted the importance of interpretability in these
networks and identified its implications for trusting and understanding the conclusions
drawn by these approaches in crucial industrial situations.

The overview of attentional structures by Vaswani et al. (2017) proved to be an essential
development, allowing practices to focus on serious time sections within time series. This
mechanism not only improved overall accuracy, but also demonstrated good
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interpretability for classification practices, confirming that important information is not
ignored. The evolution of classification practices, as observed in the studies of Taheri,
Gimpel & Berger-Wolf (2019), indicates a constant determination to make even these
methods compatible with the subtle requirements of classification of industrial activity. In
pursuit of filtering classification duties for time series data in industrial frameworks,
current exploration by Li, Wu & Xu (2022) discovers the life-changing potential success of
transformer-based structures. The use of these architectures signifies a retreat from
classical recurrent neural networks and presents a new viewpoint on the classification of
different sequences in the industrial background. The exploration of transformer-based
techniques highlights the adaptability and compliance of neural networks and their
volume to evolve in aggregation with the exclusive challenges modeled by time series data
in Industry 4.0. As industries more and more hold the incorporation of different practices,
from traditional SVMs to front-line transformer techniques, the survey will steer precisely
through apiece standard. The key aspects of our survey are as follows.

. Interdisciplinary synthesis: By linking conventional machine learning approaches,
cutting-edge deep learning frameworks, and evolving graph neural network practices,
this review forms an interdisciplinary description. This combination enables the reader
to grasp the evolution of analyzing time-series data across different technological
domains, providing a broader understanding.

. Comprehensive exploration: This survey not only explores the theoretical underpinnings
of each architype but also offers practical intuitions into their real-world applications.
This all-encompassing exploration provides the reader with a nuanced perspective that
enables informed decision-making about the variety of methodologies built on explicit
application or industry requirements.

. Emerging trends and challenges The advantages and challenges associated with each
standard are addressed; this survey enunciates to the testimony of potential research
directions and emerging trends. This progressive technique is helpful for practitioners,
decision makers, and researchers, looking for a stay to take the modern advances in time
series analysis.

. Applicability across industries: The survey’s emphasis on industrial data adds a layer of
distinction, making it especially relevant to industries that are transforming to the digital
side. By illuminating how each area can be useful in industrial environments, this study
helps as an applied guide for experts navigating the convolutions of time series within
various segments. By being expressive, the data can be applied in industrial frameworks.

. Guidance for future research: The fusion of classical machine learning, deep learning,
and graph neural networks, coupled with a thorough study of challenges, circles the
phase for future research activities. This study not only fuses the current knowledge but
also addresses the branded limitations.

In Table 1, we compare our survey with other surveys. Survey one (Bertolini et al., 2021)
has just investigated ML techniques, the second survey (Drakaki et al., 2022) thoroughly
focuses on ML and DL methods, the third one (Waikhom & Patgiri, 2023) clearly focuses
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Table 1 Comparisons of different survey articles with ours.

ML techniques DL techniques GNNs

Bertolini et al. (2021) ✓ ✗ ✗

Drakaki et al. (2022) ✓ ✓ ✗

Waikhom & Patgiri (2023) ✗ ✗ ✓

Our survey ✓ ✓ ✓

Figure 4 PRISMA diagram to illustrate the study selection process.
Full-size DOI: 10.7717/peerj-cs.3097/fig-4
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on GNN, compared to these surveys we have deep dived into all three techniques
investigated in the surveys mentioned, which is a unique part of our survey.

METHODOLOGY
This section provides a detailed description of the systematic approach used to conduct
this study and the survey on time series analysis for industrial frameworks using graph
neural networks, machine learning, and deep learning.

The literature initially collected was a total of 250 manuscripts. The literature was
collected from different academic databases and sources, including Google Scholar, ArXiv,
PubMed, ACM Digital Library, and IEEE Xplore. Various keywords such as (‘time series
analysis’ OR ‘forecast’) AND (‘machine learning’ OR ‘deep learning’ OR ‘graph neural
networks’) AND (‘fault detection’ OR ‘anomaly detection’). Databases like Google Scholar
are known for their broader coverage, ensuring that gray literature and interdisciplinary
studies are not overlooked. The inclusion of ArXiv was to capture latest and cutting edge
research, which may not be avaiable in peer-reviewed literature. The other databases such
as IEEE Xplore and PubMed were given priority because of peer-reviewed and high-quality
articles in engineering and computational fields. The selection of unsupervised and
semi-supervised learning (SSL) models, was their emphasis on limited labeled data
scenarios most common in industry. The exclusion consists of studies that lacked practical
validation and focused solely theories in industry. In Fig. 4 we show the PRISMA diagram
to illustrate the study selection process. In Fig. 5 we illustrates the yearly studies conducted
and how these studies have rose in all these years. Tables 2 and 3 shows the systematic
search of different articles and the inclusion as well as exclusion criteria of articles.

Figure 5 The number of documents i.e., articles and conferences published yearly. This search was
performed on the Scopus platform. Full-size DOI: 10.7717/peerj-cs.3097/fig-5
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APPLICATIONS OF TIME-SERIES ANALYSIS
Time series forecasting
A critical feature of data exploration involves predicting or forecasting future values based
on historical information. This method finds wide applications in various fields, including
economics, finance, weather forecasting, energy utilization, and industrial manufacturing.
The intention is to get an idea of the elemental trends and patterns within a timely
methodical arrangement of data points to generate accurate predictions. In order to make
effective predictions, we need to understand the different components of time series data,
and these components are necessary to make compelling predictions. The three main
components are: (a) Trends, the long-term direction or movement in the data. Trends can
have no direction, can be down and can be up, (b) Seasonality—the fluctuations or
frequent patterns in the time series data that occur at regular intervals, repeatedly, by
aspects such as the time of the day, a few days, a week, a month, or a season, (c) Noise—the
data that have arbitrary irregularities or fluctuations that are not described by the
seasonality or the trend. It means the inherent unpredictability of pragmatic values.

Time series anomaly detection
This effort focuses on identifying unexpected events and irregularities in an event within
time-series or sequential data. Anomaly detection involves determining the timing of the
abnormal event, while anomaly identification involves gaining significant insight into why,

Table 2 Systematic search on different academic databases (title, abstract, keywords).

Criterion Search terms

ML/DL (“Machine learning” OR “Deep learning” OR “Artificial Intelligence” OR “AI” OR “Neural Network”)

TSC (Classif* OR “Prediction” OR “Forecasting”) AND (“Time series”)

GNN (“Graph neural network” OR “GNN” OR “Graph convolutional network” OR “GCN” OR “Graph attention network” OR “GAT”)

Industry (“Industrial Applications” OR “Manufacturing” OR “Smart Industry” OR “Industry 4.0”)

Type Journal article OR Conference article

Language English

Table 3 Inclusion and exclusion criteria of our survey article (INCL stands for inclusion and EXCL
stands for exclusion).

Criterion Search terms

INCL 1 Time series classification

INCL 2 Time series Forecasting OR Prediction

INCL 3 Time series Anomaly Detection

INCL 4 Only articles that precisely address explainability or interpretability

INCL 5 Only articles that show their approach for industrial time series

EXCL 1 Articles those are published prior to 2007

EXCL 2 Articles without any citations

EXCL 3 Articles that solely conduct analyses purely on the statistics

EXCL 4 Articles those do not involve industry
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where, and how the anomaly occurred. Because anomaly events are often difficult to
obtain, recent research often approaches this task as an unsupervised task, which involves
building a model that characterizes non-anomalous or normal data. This trained model is
then used to identify anomalies by producing a good score each time an anomalous event is
detected.

Time series imputation
The focus is on the estimation and completion of missing or partial data points within a
time series. Ongoing studies in this area can generally be divided into two primary
methods: out-of-sample and in-sample imputation. Out-of-sample imputation deals with
the imputation of missing data that are not available in the training data file, whereas
in-sample imputation involves the imputation of missing values within a given time series
data.

Time series classification
The main goal of classification in time series data is to assign a categorical label to a given
data by considering its characteristics or underlying patterns. Rather than capturing
different sequences within individual time series samples, classification primarily involves
recognizing discriminative patterns that help to separate samples based on their own class
marker, the label.

FOUNDATIONAL MODELS OF TIME SERIES ANALYSIS
Traditional machine learning models are often characterized by their shallowness. In the
context of artificial neural networks (ANN), standard neural networks (NN) typically have
no more than two layers and have limited data processing capabilities in their original state
(Choudhary et al., 2022). In various operations, the need for prior feature engineering
arises when examining extensive data, as well as data with high dimensionality, with
traditional neural networks. Typically, data are processed using dimensionality reduction
techniques, including data mapping techniques such as SOM or Principal Component
Analysis (PCA) (Gewers et al., 2021). As a result, a hybrid intelligent system formed by
combining two or more models becomes essential to effectively analyze complex data.
Deep learning, as indicated by the use of many hidden layers within the architecture of an
artificial neural network (ANN) (Bui et al., 2020), differs fundamentally from conventional
machine learning models in the way in which it learns representations from raw data
(Angelov & Gu, 2019). Several levels of abstraction (Bengio, 2009) are acquired for data
representation in a deep learning model. Essentially, the learning process derives increased
meaning from the data using advanced data abstraction at a higher level (Yassine et al.,
2019). Deep learning methods defeat outdated machine learning techniques in the number
of hidden layers. However, the distinctive and defining aspect of deep learning that
distinguishes it from traditional machine learning is the advanced feature engineering
capabilities of deep learning models. Table 4, presents the use cases, strengths, and
limitations of different models in industrial sector. Table 5, shows the comparative analysis
of different approaches of ML, DNN, and GNN in time series tasks. Table 6 shows a
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continuation of Table 5, depicts the different key performance metrics to better understand
the strengths and limitations.

This uniqueness is characterized by intricate feature abstraction and construction,
which is integrated into the assembly of the technique within the learning process.
Robustness to data variation is a key strength of deep learning models, attributed to their

Table 4 Use cases, strengths, and limitations of different models in industrial sector.

Model
type

References Use Cases Strengths Weaknesses

ARIMA Xu et al. (2022) Time-series forecasting (e.g., sales,
energy demand)

Interpretable, effective for linear
trends and seasonality

Limited to linear dependencies, struggles
with non-stationary data

LSTM Xu et al. (2022) Predictive maintenance, anomaly
detection in time-series

Captures long-term dependencies,
handles sequential data

Computationally expensive, requires large
datasets

CNN Wang et al.
(2020a)

Quality control using visual data,
fault detection

Excels at spatial and hierarchical
feature extraction

Struggles with sequential data, not
inherently interpretable

GNN Chen, Feng &
Wirjanto
(2023)

Supply chain optimization,
industrial IoT, network fault
diagnosis

Models relational and topological
data, scales to complex networks

Computationally demanding, requires
domain knowledge for graph construction

Table 5 Comparative analysis of ML, DNN, and GNN approaches in time series tasks.

Approach Reference Specific
applications in
time series

Computational
complexity

Accuracy Scalability Strengths Limitations

Machine learning
(ML)

Goldsteen
et al.
(2022)

Forecasting:
ARIMA,
Classification:
SVM,
Anomaly
Detection:
Isolation
Forest.

Relatively low for
basic algorithms
(e.g., Linear
Regression, SVM),
but increases with
ensemble methods
(e.g., Random
Forest).

Moderate for
simple models;
varies with data
preprocessing and
feature
engineering.

High, suitable
for small to
large datasets.

Easy to
implement,
interpretable
results, low
resource
requirements.

Performance
depends heavily
on feature
engineering;
limited for
highly complex
datasets.

Deep neural
networks
(DNNs)

Zintgraf
et al.
(2017)

Forecasting:
LSTMs, GRUs;
Classification:
CNNs, MLPs;
Anomaly
Detection:
Autoencoders.

High, due to
training and
optimization of
deep architectures.

High, especially for
large and complex
datasets.

Moderate,
depending on
hardware and
parallelization.

Ability to model
complex
relationships,
no need for
feature
engineering,
effective for
large-scale
data.

Resource-
intensive,
requires
significant
labeled data
and
computational
power; prone to
overfitting.

Graph neural
networks
(GNNs)

Zambon,
Livi &
Alippi
(2022)

Classification:
Node or
graph-level
predictions;
Anomaly
Detection:
Structural
patterns in
graphs.

High, involves
graph
construction and
message-passing
operations.

High, particularly
for data with
inherent graph
structure or inter-
dependencies.

Moderate,
scalability
depends on
graph size and
sparsity.

Captures spatial
and relational
data, handles
irregular data
structures,
interprets
complex
dependencies.

Computationally
expensive,
challenging for
dense graphs or
datasets
without clear
graph structure.

Ahmed et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3097 11/52

http://dx.doi.org/10.7717/peerj-cs.3097
https://peerj.com/computer-science/


advanced intangible representation and feature engineering capabilities (Wang et al.,
2019). In addition, the hierarchical structure inherent in deep networks enables them to
effectively model the intricate nonlinear relationships present in large datasets. In contrast,
traditional ML models often face challenges when dealing with large and high-dimensional
data sets. As a result, ML models rely on feature selection as a dimensionality reduction
method to facilitate the processing of large datasets more efficiently. The difficulty arises in
real-world industrial applications because the large data sets collected are often
contaminated with noise, outliers, and various types of anomaly, which poses a formidable
challenge in feature selection. In the reign of intelligent engineering, autoencoders and
their diversity, recurrent neural networks (RNNs), deep belief networks (DBNs), and
convolutional neural networks (CNNs) stand out as the most widely used DL networks.

Deep belief network
A deep belief network is formed by assembling several restricted Boltzmann machines
(Hinton, 2007). It is worth noting that in a DBN there are connections between layers,
whereas within a layer there are no connections between neurons. The construction of the
network, organized layer by layer, facilitates the development of a classification feature
representation (Lagunas & Garces, 2017). This representation is instrumental in
constructing an advanced representation of the input information. The DBN achieves
input reconstruction by learning a probability distribution in the unsupervised training
process. The Restricted Boltzmann Machine is a propagative stochastic feedforward
artificial neural network known for its effectiveness in feature engineering. Training a DBN
involves training multiple RBMs. The lower RBM, the hidden layer, is considered the
network’s training data, and the output of that RBM serves as the training data for the
higher RBM. Once all RBMs are trained, a fine-tuning procedure is performed using a
backpropagation process with the training information as the output (Lee et al., 2018).

RNNs for time series analysis
There are different classes of neural networks, one of which is RNNs illustrated in Fig. 6,
which are designed to handle sequential and continuous data, making them particularly
useful for analyzing time-series data. Unlike classical feedforward neural networks, RNNs
have networks that formulate cycles, allowing them to maintain a hidden state that
captures information about previous inputs into the system. RNNs take advantage of the
hidden state to capture both temporal and contextual dependencies in sequential data. The

Table 6 Analyzing key performance metrics to better understand strength and limitations.

Approach Reference Errors Interpretability Computational
cost

Suitability for sequential data

ML Goldsteen et al. (2022) High RMSE High Low Poor (non-stationary issues)

DNNs Zintgraf et al. (2017) Low MAE and RMSE, high
F1-score

Moderate and
Low

High Excellent (long-term
dependencies)

GNNs Zambon, Livi & Alippi
(2022)

Low MAE and RMSE, high
F1-score

Moderate High Moderate (topological data)
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scientific design of an RNN involves computing the hidden states at each time interval
based on the input information at that time step and also from the previous time step.
Suppose that the input sequence is denoted as:

X ¼ fxð1Þ; xð2Þ; . . . ; xðTÞg
where xðtÞ characterizes the input at each time step t. Similarly, let

H ¼ fhð1Þ; hð2Þ; . . . ; hðTÞg denote the hidden state sequence. The hidden state which is h(t)
is calculated using the following equation.

hðtÞ ¼ rðWhxxðtÞ þWhhhðt � 1Þ þ bhÞ:
WhileWhx denotes the weight matrix for the input xðtÞ,Whh denotes the weight matrix

for hðt � 1Þ, which is again the hidden state, b h shows us the bias term, and r finally
corresponds to the activation function, generally tanh or ReLU are the most commonly
used activation functions. The hidden state is then used to generate the output at this time
step:

yðtÞ ¼ rðWyh � hðtÞ þ byÞ:
WhileWyh represents the weight matrix for the connection between the output and the

hidden state, by represents the bias term. The RNN can be trained by adjusting the
hyperparameters (Whx;Whh; hbh; hWyh; by) to reduce the loss, which shows the amplitude
of the variance between the actual target and the predicted output y (t).

However, traditional RNNs suffer from the limitations of exploding and vanishing
gradients. The gradient vanishing trick happens when gradients become very small in the
time of backpropagation, making it difficult for the model to learn long-range
dependencies. Gradient exploding occurs when gradients are too large, causing
unpredictability during training.

Long short-term memory
To address the issues discussed in RNN, other advanced RNN designs, known as gated
recurrent units (GRUs) and long short-term memory (LSTMs) illustrated in Fig. 7, have
been brought into the light. LSTMs were designed to overcome the problems of traditional
RNNs, namely the vanishing gradient dilemma, to better learn the long-term dependencies

Figure 6 Recurrent neural network. Full-size DOI: 10.7717/peerj-cs.3097/fig-6
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in sequential time series data. In LSTMs, this is achieved by introducing gating
mechanisms and memory cells to regulate the flow of information between networks.

The key idea is the memory cell, which collects and holds information for long periods
of time. The main building blocks of the memory cell are structured by three gates: the
input gate ðitÞ, the forgetting gate ðftÞ and the output gate ðotÞ. The purpose of these three
gates is to manage the input and output of information. Suppose that at time step t, the
input is Xt , at time step t1, the hidden state is Ht�1, and the memory cell state is Ct�1 at
time step t−1. Furthermore, the input value at time step t is assumed to be Xt , while at time
step t−1 the hidden state value is Ht�1 and the memory cell state is Ct�1 at time step
ft � 1g.

The input gate it ¼ rðWi � ½Ht�1;Xt� þ biÞ, the forget gate ft ¼ rðWf � ½Ht�1;Xt� þ bf Þ,
the candidate cell state ~Ct ¼ tanhðWC � ½Ht�1;Xt� þ bCÞ, the updated memory cell state

Ct ¼ ft � Ct�1 þ it � ~Ct , the output gate ot ¼ rðWo � ½Ht�1;Xt� þ boÞ, and the hidden state
Ht ¼ ot � tanhðCtÞ. In the training process, these parameters (Wf ;Wi;WC;Wo;

bf ; bi; bC; bo) are adjusted to reduce a preferred loss function, of course, using
backpropagation over time.

LSTMs have been extraordinarily successful in several time series data analysis tasks,
including natural language processing, speech recognition, weather forecasting, industrial
process forecasting, and financial forecasting. LSTMs are enabled by their gating
mechanisms to use and carefully update information from earlier time steps, making them
particularly well suited to modeling sequential time series data with complicated
dependencies.

Convolutional neural networks
In particular, CNNs as displayed in Fig. 8, designed for image processing problems have
been revised for time-series analysis by incorporating one-dimensional convolutions. This
design revision allows CNNs to capture hierarchies and local patterns within sequential
time series data. We have also tried to explain how CNNs work on sequential time series

Figure 7 Long short-term memory. Full-size DOI: 10.7717/peerj-cs.3097/fig-7
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data, including the mathematical underpinnings. In the case where we need to analyze time
series data, CNNs use their one-dimensional convolutions to distinguish features or
patterns within the sequential data. In the convolution layers, filters or kernels are applied
to the input sequence of their local segments, capturing relevant patterns, called feature
maps.

Suppose that X is the input time series data of length L, and the number of applied filters
is K. The ith filter at position j, which is the convolution operation, is given by

ðX�WiÞj ¼
PM�1

k¼0 Xjþk, Wi;k þ bi. Where Xjþk is the value of this input sequence at

position jþ k, the weight of the filter is Wi;k for position k, for the ith filter bi is the bias
term and the variable M represents the filter size. The result of the convolution operation is
a feature map for each filter individually. After this process, an activation function, mostly
ReLU, is applied element-wise to familiarize with the nonlinearity: ReLU ðX�Wi þ biÞ. The
reason for this is to learn more complex patterns. To reduce the computational load and
also to reduce the dimensionality, i.e., to down-sample the extracted feature maps, pooling
layers are widely used. Within a certain window, this is MaxPooling ðXÞ ¼ maxðXÞ, which
shows that the maximum or average value is taken by the pooling operation. Further fully
connected layers can be added for advanced abstraction and prediction after one or more
pooling and convolutional layers have been run. The result is classically convolved over
one or more fully connected layers, followed by an activation function as required by the
task. In addition, for effective training and learning, the network uses backpropagation and
various hyperparameter optimizations so that the biases and weights are carefully tuned.
1D CNNs for time series data offer the convenience of dropping dimensionality, learning
hierarchical representations, and capturing local patterns. 1D-CNNs have been effectively
applied in various domains, including weather forecasting, health monitoring, financial
prediction, and industrial process systems.

Figure 8 Convolutional neural networks. Full-size DOI: 10.7717/peerj-cs.3097/fig-8
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Autoencoders
Unsupervised feedforward neural networks are represented as autoencoders shown in
Fig. 9, designed with the goal of having their output closely match the input data. This
architecture consists of encoder and decoder steps, where the encoder transforms the input
information into a latent representation and the decoder reconstructs the input based on
this representation. Typically, gradient descent methods are used to optimize the
hyperparameters of the methods to minimize the reconstruction error. Notable
alternatives to AEs include sparse autoencoders and denoising autoencoders.

Transformers
The dominance of the transformer architecture has emerged as a spotlight in various
domains such as computer vision tasks, natural language processing tasks, but their
employment is not limited to only text or image data. Transformers also play and have
proven competent in the field of time series, presenting an attention-based and parallelized
style. We will briefly discuss the basic and fundamental approaches of transformers.
Self-attention mechanism (Fig. 10): A mechanism that allows each component in the input
sequence to emphasize additional elements in order to capture dependencies regardless of
their locality. Given an input sequence X ¼ fx1; x2; . . . ; xng, the self-attention score eij
between elements xi and xj is calculated as follows eij ¼ softmaxðdkðWqxiÞTðWkxjÞÞ.
Where Wq and Wk are learned weight matrices for queries and keys, and dk is the
dimensionality of the key vectors. Scaled dot product attention: A weighted sum of the
values ðWvxjÞ calculated by the self-attention scores is used to obtain the output for each
position. The weighted sum for each item i is calculated as follows

AttentionðQ;K;VÞ ¼ softmaxðdk QKTÞV .
Multi-head attention (Fig. 11): To increase the capacity of the model, multi-head

attention uses multiple sets of learned linear projections in parallel. Let denote the number
of heads. The output of each head is concatenated and linearly transformed: MultiHead(Q,
K, V) = Concat(head1, head2, …,headh), Wo Here, Wo is another learned weight matrix.

Encoder and decoder structure (Fig. 12): A transformer typically consists of an encoder
and a decoder. The encoder processes the input sequence, and the decoder generates the

Figure 9 Autoencoder. Full-size DOI: 10.7717/peerj-cs.3097/fig-9
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output sequence. The encoder consists of several layers, each of which contains a
multihead self-attention mechanism followed by feedforward neural networks.
EncoderLayer(X) = FFN(MultiHead(X)). The decoder has an additional multi-head
attention layer that monitors the output of the encoder and allows it to focus on relevant
parts of the input sequence. DecoderLayer(X, EncoderOutput) = FFN(MultiHead(X)
+ MultiHead(X, EncoderOutput)). These basics set the stage for understanding how
transformers can be applied to time series data. In particular, the self-attention mechanism
allows the model to consider global dependencies and capture long-range relationships,
making it suitable for analyzing sequential information.

Figure 10 Self-attention. Full-size DOI: 10.7717/peerj-cs.3097/fig-10
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MACHINE LEARNING: INSIGHTS INTO FORECASTING,
ANOMALY DETECTION, IMPUTATION, AND
CLASSIFICATION STRATEGIES
Exploring the multifaceted field of time series analysis, this section delves into various
works that shed light on prediction, anomaly detection, and classification. By reviewing a
spectrum of methodologies, we unravel the intricacies of temporal data and provide a
comprehensive view of advances in predictive modeling, anomaly detection, and event
classification within the dynamic landscape of time series analysis. Accurate forecasting is
imperative for improving industrial actions, moving towards machine learning, and two
models taking dominance, Autoregressive Integrated Moving Average (ARIMA) and
LSTM network techniques, play a critical and significant role. The study of Xu et al. (2022)
begins a reasonable investigation of ARIMA and LSTM methods, exfoliating light on the
model’s advantages and limitations in prediction accuracy and computational competence.
LSTM prove effective due to their ability to capture long-term dependencies in
circumstances where future outcomes or predictions are significantly influenced by
historical ones. However, it is expected that limitations may arise which can lead to
overfitting, particularly when training with very inadequate data. Although techniques
such as ARIMA are suitable for capturing linear dependencies, a situation may arise where
they fail to adapt quickly to unexpected changes. In the research of Binkowski, Marti &
Donnat (2018), the researchers investigate the analogy of ARIMA and LSTM methods,
highlighting the volume of LSTMs to capture nonlinear dependencies. This study commits

Figure 11 Multi-head self attention. Full-size DOI: 10.7717/peerj-cs.3097/fig-11
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to intuitions in the choice of appropriate techniques based on data characteristics. Hewage
et al. (2020), proposed temporal convolutional networks (TCNs), exploring the functions
of TCNs to demonstrate their success in capturing long-term dependencies, increasing the
accuracy and efficiency to predict time series in industrial progressions.

Techniques such as ensemble learning are further explored in Du (2019). The study
discusses the prediction of wind power generation using ensemble methods and highlights

Figure 12 Encoder-decoder structure. Full-size DOI: 10.7717/peerj-cs.3097/fig-12
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the advantages of combining several techniques to improve accuracy. Probabilistic
prediction is an essential prerequisite, and the study by Pinson (2013), emphasizes
dependent (conditional) autoregressive methods for probabilistic prediction. This study
offers insights into how to deal with uncertainty in prediction, especially in the context of
renewable energy. In industrial time series data, the detection of anomalies is very
important and critical for avoiding machine failures and ensuring system safety. A study
conducted by Jiang et al. (2021) educates us on anomaly detection which is a very beneficial
insight. The research discovers the use of SVM and isolation forests to detect outliers.
SVM, which excels in cases where there are unbalanced classes, nevertheless requires great
care in hyperparameter tuning. On the other hand, isolation forests, which take advantage
of the isolation principle, show competence in training large data sets, making them
suitable and favorable for industrial situations. However, limitations and threats arise
when outliers are deeply rooted in condensed clusters. The research of Ullah & Mahmoud
(2021) extends the argument to use different algorithms for anomaly detection in sensor
data in the industrial Internet of Things (IIoT) environment.

The study provides a proportional analysis and comparison of algorithmic performance
in the context of industrial IoT. Another study by Schubert, Gupta & Wever (2023)
explores scalable anomaly detection. They develop techniques that are scalable for
anomaly detection, keeping in mind the suitability for large dynamic systems, emphasizing
the adaptability in handling growing anomalies in industrial developments. Olivieri,
Colleoni & Bonaccorso (2023) argues on the impression of developing tendencies in
predictive analytics in Industry 4.0, also taking into account anomaly detection. While she
is more focused on the survey of tendencies, she sheds light on the insights of integrating
machine learning models for real-time anomaly detection. Regarding streaming data,
Simkute et al. (2021) discusses techniques for real-time anomaly detection. It also explores
approaches that are best suited to streaming data, a critical requirement in industrial
environments. In the classification orbit, machine learning methods such as neural
networks, k-Nearest Neighbors (k-NN), and Random Forests dominate as key players.
Fahim & Sillitti (2019) shares his thoughts on Random Forests, highlighting its efficiency
in determining valued perceptions and educating decision making. The robustness of
methods such as Random Forests, as opposed to overfitting, demonstrates their suitability
for scenarios and claims where consideration of the decision-making process is very
important. However, due to their ease and simplicity, they may struggle to capture
complicated relationships in complicated time series data. Shrestha, Krishna & von Krogh
(2021) explore k-NN precisely for the classification domain in time series. They
highlighted the success of k-NN in capturing local patterns, assembling it to be a valued
tool in very dynamic environments of the industry. However, we keep in mind the high
dimensionality of time series data, which will have its challenges and will require careful
attention. Wang et al. (2021b) sheds light on different classification models in the time
series domain, which include neural networks, k-Nearest Neighbors and Random Forests.
The investigation provides insight into the advantages and disadvantages of different
approaches. In investigating the classification domain in time series with respect to
machine learning methods, Guigou (2019) provides an overview that summarizes the
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growing landscape of machine learning models for classification in the context of time
series. The comparative analysis of Wang et al. (2022) enhances the perception of
classification in time series data.

ADVANTAGES AND LIMITATIONS OF MACHINE LEARNING
MODELS IN INDUSTRIAL TIME SERIES ANALYSIS
In the domain of industrial time series investigation, machine learning techniques suggest
several advantages, but they contend with integral limitations. With considerable
advantages, machine learning models in the industrial time series domain, it is inescapable
to endorse their limitations and constraints. Idowu, Strüber & Berger (2021) The scalability
of ML techniques is discussed in detail; they provide useful insights into the application of
ML at scale, focusing on the benefits of appropriate handling of large industrial datasets
using distributed computing. However, there is the possibility that, considering the
technological essence of scalability, constructive adaptation may be required for explicit
industrial practice. Speaking of the interpretability of ML methods, Zhang et al.’s (2022b)
research highlights the importance of constructing black-box methods that are
interpretable. Although it provides direction on how to achieve interpretability, the
hypothetical nature of the argument may require a real-world transformation for industrial
frameworks. Furthermore, the Shalev-Shwartz, Shammah & Shashua (2018) investigation
of generalization highlights encounters with generalisation in industrial settings. They also
impart practices to promote model robustness, highlighting the need for techniques to
adapt to different operating environments.

However, the hypothetical nature of the argument requires practical investigation for
certain industrial settings. The ethical considerations associated with the production and
use of ML methods are addressed in Jaton (2021). The research discovers the possible
social effects of automation and artificial intelligence in industrial settings, highlighting the
importance of accountable machine learning protocols. While the emphasis on ethical
considerations may be crucial, it may require additional research for practical
implementation in various industrial settings. Adapting to the evolving nature of industrial
operations is one of the essential qualities of the volume of ML methods, allowing
immediate integration of changes in data arrangements (Tseng et al., 2021). This
conformance is particularly valuable in industries where operational situations change
vigorously, polishing the competence of models to maintain accuracy in the seam of
changing conditions. However, realizing the generalizability of these robust techniques
across diverse industrial settings requires additional investigation. ML methods have
established substantial success in predicting sustainable use within industrial operations
(Koste & Malhotra, 1999). By examining time series or sequential data, these techniques
can predict machine deterioration, enabling positive maintenance interventions and
limiting unexpected breakdowns.

The predictive skills of ML promise to extend the maintenance route, thus significantly
improving functional productivity. On the other hand, the practical application of
predictive maintenance approaches requires meticulous validation in contrast to concrete
machine settings to guarantee effectiveness and reliability. Furthermore, the combination
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of ML techniques promises to improve automation and optimize complex processes in
industrial control systems (Jiang et al., 2021). These techniques, skilled enough to adapt
data patterns and learn these patterns, are likely to advance real-time decision-making and
asset allocation efficiency. Nevertheless, the placement of ML in control systems requires
an exhaustive inspection of the consistency and safety of the inferences, since in industrial
frameworks any failure could have unadorned penalties. Regardless of these advantages, in
industrial frameworks, time series analysis lacks the interpretability of ML techniques and
its residue is a substantial encounter (Carvalho, Pereira & Cardoso, 2019).

The intrinsic complication of certain algorithms can obscure their decision processes,
making it difficult to extract meaningful information from time-series data. Addressing
this encounter requires advanced methods to improve the interpretability of these
techniques without compromising their predictive accuracy. Furthermore, the energy
competence of these methods in environments where the industry is resource constrained
is a significant concern (Aldhaheri et al., 2024). Deploying and training skeptic ML
methods requires extensive computational power, and ensuring the energy competence of
these methods is imperative for sustainable industrial operations. Discovering
optimization strategies and energy-efficient ML designs is the key to mitigating the
environmental burden of extensive ML implementation in industrial frameworks. These
techniques offer considerable support in the analysis of industrial time series, but their
implementation is not free from limitations and restrictions.

The consideration of unbalanced data sets, trivial in industrial settings, is crucial to
avoid biased methods. Qian, Vaddiraju & Khan (2023) Focal points to the obligation of
developing models to grasp imbalances occurring in data classes, guaranteeing reliable
technique results. An important concern that poses adversarial attacks, particularly in
dangerous industrial arrangements (Aryal, Gupta & Abdelsalam, 2022). Shielding ML
techniques from premeditated data handling involves vigorous security benchmarks that
protect decision processes persuaded by model productivities. The resource-intensive
nature of the training of complicated machine learning techniques presents a threat to
smaller industrial units with inadequate computational frameworks (Abdeldayem et al.,
2022). Regularizing the implementation of machine learning in different industrial settings
requires the advancement of resource-efficient training approaches and lightweight model
architectures. Interpretability remains a crucial challenge, especially in applications that
are very critical in safety critical aspects where the decision-making method is crucial
(Papenmeier, Englebienne & Seifert, 2019). The generation of interpretable and transparent
machine learning techniques, customized to industrial requirements, is crucial for
fostering trust and facilitating operational decision making.

In ML implementation, ethical considerations deserve careful consideration, as
emphasized by Boardman (2022). Talking of socio-economic impacts and biases in ML
education requires the expansion of explicit ethical contexts for the use of industrial ML
(Boddington, 2023). Exploring the multifaceted sociotechnical perspective is significant for
supporting responsible AI protocols in the industrial sector. In conclusion, while ML
techniques hold excessive potential for analyzing time series in industrial environments,
certifying security, mitigating imbalance, regularizing access, reviving interpretability, and
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acquainting with ethical issues are dynamic steps towards their active and responsible
implementation in industrial frameworks.

DEEP LEARNING: INSIGHTS INTO FORECASTING,
ANOMALY DETECTION, IMPUTATION, AND
CLASSIFICATION STRATEGIES
Starting from the pioneering frontier of time series investigation, this segment explores the
competence of deep learning techniques in reshaping the field of prediction, anomaly
detection, and classification. From extracting multifaceted temporal patterns to improving
interpretability, these cutting-edge methods demonstrate the changing latent of deep
learning across diverse applications within the domain of time series analysis. The
increasing diffusion of technology has led to a gradual intensification in the use of soft
measurement techniques for monitoring and analyzing industrial systems. The complexity
inherent in thermal-hydraulic processes, heat-mass transfer, and physicochemical
reactions within various industrial frameworks, including those in the petroleum, nuclear,
thermal, chemical, and power sectors, poses challenges in establishing highly accurate
mechanism models for predicting operational states (Kadlec, Gabrys & Strandt, 2009).
Therefore, unlike methods based on mechanism models, time series prediction using a
data-driven approach proves to be more appropriate and offers improved development
and applicability to process systems within the industrial sector (Kano & Ogawa, 2010;
Karl Pearson, 1901).

Recently, the term deep learning has been applied to methods that use different layers to
capture latent features at advanced and more abstract levels. Deep learning attempts to
select complex abstract features employing both non-linear and linear changes, providing a
viable approach to address this problem. In the historical literature, four typical deep
learning models have been defined and are widely used in time series forecasting tasks in
many process systems in industrial environments. These models include deep belief
networks, recurrent neural networks, encoder-decoder, and convolutional neural
networks. These well-known models have shown successful applications in a variety of
predictive or forecasting tasks. Recurrent neural networks stand out as a popular choice for
achieving high performance in forecasting and prediction tasks. Examples include
prediction of remaining useful life (RUL) for aircraft engines designed by Yan, Shao &
Wang (2004), prediction of solar power level proposed byMiao et al. (2019), prediction of
soft sensor industrial data established by Wang et al. (2024), and a system to predict the
temperature of long-term steam generator (SG) in a nuclear facility reported by Yuan et al.
(2020).

In addition, some scholars are trying to model hybrid methods, either in their
unique forms or different forms, to effectively address the forecasting task. For
example, Nguyen, Liu & Zio (2020) designed an approach that combines a variational
recurrent unit with a Bayesian network in an IoT framework to achieve time series
forecasting in meteorological data (Das & Ghosh, 2019). Wang et al. (2021a) proposed a
CNN-LSTM network as a solution to forecast the levels in electrical power structures
(Zheng et al., 2023). Zheng et al. (2023) used a hybrid CNN-LSTM model to capture 2D
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link information and retain long-term memory to predict different traffic scenarios. Lima
et al. (2021) integrated LSTM-CNN with an autoencoder to predict time series in metal
packaging plants. Another study (Zhang et al., 2023) used principal component analysis
for the direct extraction of multivariate time series features and combined it with a
CNN-GRU method, which is again a hybrid model. A study by Wang et al. (2020a)
introduced the variational mode decomposition integrated with a GRU technique.
Furthermore, Yu et al. (2022a) supported a method for predicting wind speed using an
LSTM-based method with empirical wavelet transform. Recently, there has been a growing
passion and interest in deep neural networks (Zintgraf et al., 2017), driven by numerous
demonstrated successes in various tasks (Jain, Nandakumar & Ross, 2016).

The proven ability of these methods to detect advanced correlations in complex data,
often characterized by significant volume and dimensionality, contributes to their
popularity (Vakaruk et al., 2021). This trend has not spared anomaly detection from
multivariate time series data, which has witnessed a surge in DNN-based methods. These
methods have proposed systematic developments and demonstrated improved
performance, as highlighted in Rana et al. (2020). Methods based on deep neural networks
seek to acquire deep latent representations of time series in multivariate data, allowing the
inference of a model of variability. This learned model is then used to classify anomalies in
previously unseen data. The surge in the adoption of deep neural network architectures is
driven by the need to understand potentially complex data patterns underlying the
temporal evolution of multivariate time series data. Building on the aforementioned
rationale and inspired by the laudable achievements of DNNs in various domains,
researchers have shifted their focus away from direct contrasts with other traditional
approaches, such as conventional techniques or statistical methods, including machine
learning (Avci et al., 2021).

This tendency has motivated researchers to develop increasingly complex models to
improve the performance of DNN-based models. However, this is often done without
substantial theoretical or empirical evidence demonstrating their superiority over more
established techniques documented in research (Vakaruk et al., 2023). Training
DNN-based techniques is a complex process that involves the evaluation of a significant
number of hyperparameters, requiring large training model sizes and significant
computational characteristics. Furthermore, the complexity of these models continues to
increase with the ongoing development of larger and more complex architectures. On the
contrary, traditional models tend to be simpler, easier to understand, lighter in weight, and
often well adapted to the practical constraints of real-world applications.

Therefore, it is essential to determine whether the complication introduced by deep
neural network methods is an essential trade-off for performance gains, or whether the
advances reported in recent years are misleading (Al-Garadi et al., 2020) and advocate a
preference for traditional methods. Several studies have investigated the actual benefits of
DNN-based methods in various application domains. An initial study by Jiao et al. (2020)
demonstrated that methods using conventional linear regression techniques outperformed
methods based on deep neural networks in blind reconstruction in single-pixel imaging
and an optical cryptosystem outbreak. Zhang et al. (2018) introduced a constancy test and
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showed that image reconstruction methods based on deep neural networks have a high
sensitivity to small perturbations in the input images during training, leading to
unbalanced results.

In addition, Maron et al. (2021) has shown that even small changes in the input to a
deep neural network, often imperceptible to an individual, can disrupt even the most
proficient neural networks. This underscores the lack of robustness of methods based on
deep neural networks and the fact that these models rely heavily on large amounts of data.
The concept of a digital factory envisages a highly digitized and networked integration of
equipment and machinery, designed to increase production and value through
self-optimization and automation. In a computerized industrial process, equipment
settings are closely linked to both productivity and quality. A stable process contributes to
an increase in value, while an efficient process reduces assembly time and supports
production. Therefore, the timely detection of faults or the anticipation of potential
anomalies in the equipment is critical. The equipment used in digital factories includes
manufacturing equipment, structure equipment, and logistics digitization equipment.

Manufacturing equipment is responsible for ensuring that products are manufactured
efficiently and to excellent standards. Meanwhile, infrastructure plays a key role in
supplying gas, water, chemicals, and electricity to the manufacturing system. It is also
involved in the management of chemical waste and wastewater treatment. Logistics
digitalization facilities are tasked with transporting goods from the point of origin to the
other point. Although various machine learning methods are used to identify anomalies,
faults, and damage in such industrial systems (Fernandes, Corchado & Marreiros, 2022),
deep learning models have shown significant potential in this regard. Data-driven models
play a key role in improving system operation in large manufacturing industries, as they
have the ability to identify potential failures without requiring extensive knowledge of the
domain. Chevrot, Vernotte & Legeard (2022) used an LSTM-based autoencoder to study
the standard state of the equipment and identify anomalies in various multivariate time
series streams related to production equipment machines. The LSTM-based autoencoder
consists of an encoder and a decoder, each of which incorporates long- and short-term
memory networks, which are modifications of recurrent neural networks. Following the
revolutionary impact of convolutional neural networks in computer vision (Smith, Smith
& Hansen, 2021), scientists have extended their application to the analysis of time series
data (Shumway & Stoffer, 2017). CNN-based diagnostic and fault detection models have
demonstrated their effectiveness in managing multivariate time series data from
semiconductor manufacturing developments in studies such as Hsu & Liu (2021), Zhu
et al. (2021).

ADVANTAGES AND LIMITATIONS OF DEEP NEURAL
NETWORKS
In the dominion of time series investigation, multifarious practices and methods address
definite challenges. A study Gaugel & Reichert (2023b) proposes an efficient labeling
technique for time series, using a segmental strategy with three dedicated modules for
probable performance developments. The challenges continue in rapid fashion
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engineering, where a deep learning architecture in Wang et al. (2021b) integrates visual,
time series, and textual data to improve the detection of different trends in the fashion
industry, regardless of the constraints imposed by the lack of historical data. For fault
diagnosis, a technique integrating LSTM and the residual convolutional neural network
validates the efficiency of extracting characteristics from time series data with compact
training effort (Yao, Yang & Li, 2021).

Challenges include understanding the details of the model, a lack of data to evaluate,
and the effect of small data proportions. In industry and engineering, an optimization and
machine learning method highlights waste reduction and resource savings, encountering
limited set of certain instances, and data accessibility complications (Dambros et al., 2019).
Feature extraction based on scalable hypothesis tests (Weichert et al., 2019) presents
feature extraction with great efficiency, integrating metainformation with parallelization
and time series. It lacks to further address the prerequisite of domain knowledge and also
very incomplete points on evaluation metrics. Another study (Christ, Kempa-Liehr &
Feindt, 2017), proposes a feature selection based on principal component analysis,
confronted with extensive execution work and a lack of standard datasets.

Reasonable research in anomaly detection techniques for industrial control systems
highlights the effect of size set in training, illustrates implementation variances, and reveals
limitations in method diversity. Some studies such as Wang, Yang & Li (2020), which
introduces how to form an image for signals, also illuminate practical applications, but
weaken in the discussion of network architecture and in-depth comparative analysis. An
approach (Tziolas et al., 2022) for unbalanced data using a GAN and feature extractor
limits the argument on the in-depth description and research on hyperparameter tuning
details and how they built the feature extractor. Liu, Hsaio & Tu (2019) introduces process
optimization, a tensor structure for ensemble modeling, and data transformation.
Constraints arise from the installation of frequent techniques in production and a limited
argument on unbalanced data encounter. Incorporating data analytics and sensors to
improve process manufacturing, they propose an ARIMA-based predictive maintenance
technique, deficient in detail of key metrics and speaking of security as well as privacy
concerns. In tissue engineering, the combination of time series technique and dielectric
spectroscopy demonstrate improved prediction with LSTM, but deficit precision on
external validation, dataset size, and pertinence to longer-term value situations. Kim et al.
(2023) presents Gated CNN-based Transformer, which demonstrates effective soft-sensor
modeling but shortcomings in comprehensive analysis of trade-offs and component
effects. Liu et al. (2021) proposes contrastive predictive coding (CPC) to label effectiveness
but has limitations in real-world scenarios and comparisons.

Jiang et al. (2019) investigates multi-head CNN-RNN for anomaly detection, which uses
independent CNNs for different sensors, but finds limitations in baseline comparison.
Zhang et al. (2021) introduces a hybrid model of bidirectional deep inner partial least
squares (DiPLS) with LSTM, which shows better developments in interpretability but
requires careful consideration of the extended computational task. The transfer probability
of Markov chains (Kanawaday & Sane, 2017), a feature extraction technique, expresses
limitations in lack of intuition in information security, insufficient comparison debate, and
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sensitivity to hyperparameters. The attention-based architecture (Jatti, Sekhar & Shah,
2021) for soft sensor simulation presents spatiotemporal attention, but has a deficit in
exploring the model interpretability and sensitivity tasks in industrial frameworks. Giving
manufacturing process data to a branched LSTM as a spatial sequence investigates fault
detection, but limitations arise in terms of tuning hyperparameters essentials applicability.
Transfer learning setups for time series partitioning provide insights into training speed,
but deep investigation of layer-frozen residues is a challenge. Ali Nemer et al. (2022)
introduces a linear-discriminative generative-discriminative method, this technique
competently discovers deep neural network pipelines, highlighting productivity over
precision. Limitations consist of the trade-off between accuracy and efficiency, limited
validation, and domain specificity. Geng et al. (2022) presents a TC-GATN architecture
that employs temporal causal graph attention networks that engage nonlinear
relationships, which also faces challenges in dependence on causality information and
complexity.

The fused techniques of Gamage, Klopper & Samarabandu (2022) integrate XGBoost
and GRU, to extract features and timing knowledge, highlighting key feature outputs but
demanding additional investigation of security and scalability fears. A method of
Schockaert (2020) employing continuous learning reports a nonstationary challenge in data
distribution, but has deficiency in strict evaluation and neglects resource and privacy
concerns. A study by Fährmann et al. (2022) introduces a segmental data driven system to
predict failures in different machines, it adapts to variations but lacks on how to handle
data correctness, class imbalance, and lack of feature facts. Canizo et al. (2019) propose a
hybrid prototype for anomaly detection in industrial IoT frameworks, which emphasizes
real-time intuitions but requires additional investigation of privacy and scalability issues.
The research by Wang, Bao & Qin (2023) presents a technique to predict multistep time
series data in industrial processes, proposing a self-motivated transfer learning architecture
that integrates multitasking and domain adaptation. However, there is a clear lack of
detailed elucidation of a number of workings, including neural network construction and
hidden layer selection principles, which limits the robustness of the technique. Limiting
generalization to real-world industrial settings with a dataset of 2,859 samples also raises
questions about model scalability. A new method by Zang, Liu &Wang (2018), for the sole
purpose of maintenance prediction in the case of industrial drying hoppers, uses a deep
learning technique that targets unbalanced data in time series scenarios. However, the lack
of a physics-based prototype poses challenges in terms of interpretability. Limitations in
accurately characterizing abnormal procedures and bias in event classification influence
the reliability of the technique in various industrial settings.

The use of generative techniques to integrate time series with image coding for fault
detection is an innovative method. But it faces challenges in reconstructing the image and
obsessiveness with data size, complementing concerns about versatility in different
industrial settings. Neural network using Bayesian knowledge introduced by Yuan et al.
(2021), which is a stochastic device to detect anomaly refrigeration engineering.
Uncertainty actions for curative activities depend on inadequate labor comfort,
questioning practical relevance in real industrial setups. A deep network-based hybrid
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architecture of Li (2021), for short-term multivariate time series prediction in the
industrial IoT setting, merges several mechanisms. However, its precise suitability to the
Industrial IoT framework and limited insight into selected features affect its
interpretability. The preliminary hyperparameter service and its reworking by means of
Bayesian optimization license additional investigation (Gaugel & Reichert, 2023a). The
method for fault detection using 1D CNNs (Shojaee et al., 2021) in time series scenarios
adapted to architectural improvements. Lack of highlighting how to handle a small
training size, balancing fault event intricacy, overfitting concerns with appropriate
sequence length for flawless performance.

GRAPH NEURAL NETWORKS: INSIGHTS INTO
FORECASTING, ANOMALY DETECTION, IMPUTATION,
AND CLASSIFICATION STRATEGIES
As we navigate the complicated realm of time series, this unit sheds light on the
contributory character of GNNs in transforming forecasting, anomaly detection, and
classification. From interpreting complicated dependencies within systems that are highly
interconnected, to demonstrating an all-encompassing use of temporal information,
GNNs position themselves at the forefront of modernization, restructuring the changing
aspects of time series submissions through their exceptional graph-oriented method.
Time-series forecasting involves predicting future values in a time sequence by relying on
past observations. The roots of time series forecasting can be identified in models
(Li et al., 2018) that are statistically autoregressive. Their sole purpose is to use a linear
combination of past values within a time series to predict its future values. In recent years,
deep learning-based approaches have shown significant efficacy in predicting time series
results, demonstrating a superior ability to capture non-linear temporal and spatial
patterns (Gao & Ribeiro, 2022). Various methods have been used for time series prediction,
including attention-based neural networks, CNNs, and RNNs. However, several
approaches, including LSTNet (Pan et al., 2019) and temporal pattern attention-long
short-term memory (TPA-LSTM) (Zambon et al., 2019), indirectly model or tend to
overlook the complex dynamic spatial correlations present in time series. To effectively
and explicitly model the spatial and temporal dependencies within the multivariate time
series data, there have been notable advances in the use of methods based on GNNs. This
has led to improved forecast performance. Forecasting models based on GNNs can be
categorized and studied from different perspectives (Ahmed et al., 2021). In terms of
forecasting tasks, many models focus on multistep forecasting—predicting several
successive future steps using historical data.

In contrast, a minority deals with single-step forecasting, i.e., predicting only a single or
next arbitrary step ahead. The analytical dissection of these time series forecasting models
involves three perspectives: exploring spatial (i.e., intervariable) dependencies, examining
intertemporal dependencies, and architecturally integrating temporal and spatial modules.
The relationships between spatial elements, also known as intertime series connections,
have a significant impact on a model’s ability to forecast (Guo et al., 2019). Some of the
methods such as (1) spatial GNNs, (2) spectral GNNs, or (3) a fusion of both are
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commonly used by contemporary research in some cases where they are faced with
accompanying graph structures and time series data that can be used to illustrate the
strength of connections in them to model and capture these spatial dependencies in time
series. In the early stages, GNN-based forecasting models mainly used ChebConv (Wu
et al., 2019) to approximate graph convolution using Chebyshev polynomials, effectively
modeling and capturing dependencies between time series. As an example, ChebConv
layers and temporal convolution were combined to effectively capture temporal and spatial
patterns. Proposing temporal and spectral graph neural networks, StemGNN (Chen et al.,
2020) aims to use the frequency domain and ChebConv convolutional neural networks to
extract complex patterns from time series.

Subsequent relevant studies have mostly followed this approach, using ChebConv to
introduce inventive modifications and to model spatial time-series dependencies. Such
adaptations include multigraph construction (Wang et al., 2020b; Zheng et al., 2020),
attention mechanisms (Zhang et al., 2020a; Guo et al., 2019), and hybrid combinations of
the two (Yu et al., 2020). Based on StemGNN, theoretical evidence has recently been
provided by Paassen et al. (2020) that demonstrates the advantages of using spectral GNNs
to model different signed time series relationships. This includes variables with strong
negative and positive correlations in a multivariate time series. It was also found that for
such tasks, any orthonormal family of polynomials can achieve comparable expressiveness,
albeit with different empirical performance and convergence rates. Inspired by the recent
successes of spatial GNNs (Chen, Segovia & Gel, 2021), an alternative line of research
model dependencies between time series through graph diffusion (Lan et al., 2022; Liu
et al., 2022) or message passing (Choi et al., 2022). Looking at the graph, it becomes clear
that these approaches are specific simplifications in contrast to those based on spectral
GNNs, which highlight robust local homophilic tendencies (Shao et al., 2022; Chauhan
et al., 2022). In early techniques such as DCRNN (Yu et al., 2022b) and Graph WaveNet
(Cui et al., 2021), GRU (Zhao et al., 2020), temporal convolution or graph diffusion layers
are integrated to effectively capture patterns in time series data. In later studies, graph
diffusion has been used by some approaches such as Spatio-Temporal Graph Diffusion
Network (ST-GDN) (Deng & Hooi, 2021) and graph time series (GTS) (Grattarola et al.,
2020). On the contrary, spatio-temporal graph convolutional networks (STGCN) (1st),
which is a later iteration of ST-MetaNet (Dai & Chen, 2022) and STGCN (Zambon, Livi &
Alippi, 2022), adopted graph convolutional network (GCN) (Han &Woo, 2022) and graph
attention network (GAT) (Chen et al., 2022c) to characterize spatial dependencies,
allowing the aggregation of information from neighboring time series. Other relevant
studies, including multi-range attentive bicomponent GCN (MRA-BGCN) (Wu et al.,
2021), Spatio-Temporal Graph Neural Networks (STGNN) (Chen et al., 2022a), graph
multi-attention network (GMAN) (Guan et al., 2022) and adaptive graph convolutional
recurrent network (AGCRN) (Srinivas, Kumar Sarkar & Runkana, 2022), introduced
adaptations to capture relationships between time series through message passing. The
spatial-temporal synchronous graph convolution was introduced by Spatio-Temporal
Synchronous Graph Convolutional Network (STSGCN) (Chen, Feng &Wirjanto, 2023) to
improve learning efficiency.
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This extension of GCN is specifically designed to capture both spatial and temporal
dependencies within localized spatio-temporal graphs. Before using graphs and
temporal convolutions, Spatio-Temporal Fusion Graph Neural Network (STFGNN) (Chen
et al., 2022b) formed fusion graphs that integrated spatial and temporal aspects using
dynamic time wrapping (DTW). Zero-Inflated Graph Convolutional Networks (Z-
GCNETs) (Zhou, Zeng & Li, 2022) improved current approaches by integrating prominent
time-dependent topological data, with particular emphasis on zigzag persistence images.
Multiscale temporal graphs were introduced by METRO (Duan et al., 2022) to represent
dynamic temporal and spatial relationships within time series data. This was achieved by
incorporating cross-scale graph fusion modules and single-scale graph updates, with the
aim of integrating the modeling of spatial-temporal dependencies. An alternative avenue
of extension is the integration of graph propagation, which allows the merging of
substructures and higher-order relationships within the network. Examples of this include
spatial graph propagation (SGP) (Aldhaheri et al., 2024) and multivariate time-series graph
neural network (MTGNN) (Chauhan et al., 2022). Specifically, SGP uses multihop spatial
processing and reservoir computing to generate precomputed spatio-temporal
representations, resulting in efficient and scalable predictive models. Graph propagation
and continuous graph propagation were introduced by subsequent research efforts such as
multivariate time-series graph ordinary differential equation (MTGODE) (Ao & Fayek,
2023) and temporal pattern graph neural network (TPGNN) (Srinivas, Kumar Sarkar &
Runkana, 2022) based on temporal polynomial coefficients. Comparable contributions in
this area include spatio-temporal graph ordinary differential equation (STGODE)
(Chauhan et al., 2022) and spatio-temporal graph neural controlled differential equation
(STG-NCDE) (Shao et al., 2022).

Unlike GAT-centric approaches, methods based on graph transform (Zambon, Livi &
Alippi, 2022) can capture extended spatial dependencies due to their extensive coverage,
which puts them in a distinct category of improved techniques. The goal of time series
anomaly detection is to detect data observations that deviate from the typical pattern
established by the data generation process. Any data point that falls outside this pattern is
characterized as an anomaly, while data points within the established pattern are referred
to as normal data. It is worth noting that in the literature, terms such as novelty and outlier
are often used almost interchangeably with the term anomaly. Deviations from standard
conditions may manifest themselves as a single data point or as a series of observations.
Unlike regular time-series data, anomalies present a challenge in characterization due to
two main factors. Firstly, they tend to be associated with infrequent events, making the
collection and labeling process difficult. Second, defining the full range of possible
anomalous events is typically unattainable, compromising the effectiveness of supervised
learning methods. As a result, unsupervised detection techniques have been extensively
explored as a pragmatic approach to solving complex real-world problems. Historically,
approaches such as distance-based methods and distributional techniques have been
widely used to identify anomalies in time series data. Using distance metrics, the former
category measures the deviation of observations from representative data points, while the
latter focuses on identifying anomalies by targeting points with low probability. As the
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complexity of the data generation process increases and the dimensionality of the
multivariate time series expands, these approaches become less effective.

With the advancement of deep learning, initial studies have suggested the use of
recurrent models that employ both reconstruction and prediction approaches for
improved anomaly detection in multivariate time series data. Prediction and
reconstruction strategies rely on prediction and reconstruction errors as measures of the
discrepancy between expected and actual signals. The idea is that if a model trained on
normal data has difficulty predicting or reconstructing certain data, there is a greater
likelihood that such data are indicative of an anomaly. However, recurrent models
(Aldhaheri et al., 2024) have been found to do a poor job in explicitly modeling pairwise
interdependence between pairs of variables, thereby limiting their effectiveness in
identifying complex anomalies (Angelov & Gu, 2019). Recently, GNNs have shown
significant potential in bridging this gap by skillfully capturing both spatial and temporal
dependencies between variable pairs (Ali Nemer et al., 2022). An unsupervised approach to
anomaly detection requires models to develop a comprehensive understanding of the
characteristics that define normality within a given dataset (Canizo et al., 2019). Advances
in anomaly detection and diagnosis have led to the introduction of more comprehensive
backbone and scoring modules (Cheng et al., 2023), largely influenced by the adoption of
GNN methods (Choi et al., 2022).

The goal of time series classification is to assign a categorical label to a given time series,
and this assignment is based on the inherent features or patterns within the time series. As
highlighted in a recent review (Ali Nemer et al., 2022), the initial literature on time series
classification focused mainly on distance-based methods for assigning class labels to time
series (Liu, Ting & Zhou, 2012) and ensemble techniques such as hierarchical vote
collective of transformation-based ensembles (HIVE-COTE) (Lines, Taylor & Bagnall,
2018). However, despite their state-of-the-art performance, both approaches face
scalability limitations when applied to high-dimensional or large datasets. Exploring the
possibilities of deep learning techniques, experts have initiated efforts to improve the
effectiveness and scalability of time series classification approaches in response to these
limitations. The potential of deep learning lies in its ability to capture complex patterns
and hierarchies of attributes, and it has proven effective in addressing the challenges of
time series classification, especially when dealing with datasets that contain a large number
of training labels. For an in-depth exploration of time series classification using deep
learning, we recommend the recent survey byHerrmann &Webb (2021). An aspect of this
field that adds an element of intrigue, and is not covered in the aforementioned (Ali Nemer
et al., 2022), is the use of GNN for time series classification. By transforming time-series
data into graph representations, the robust capabilities of GNNs can be used to capture
patterns at both localized and overarching levels. Capturing intricate relationships between
different samples of time series data within a given dataset is a strength of GNNs. The
conversion of a single variable time series into a graph using the Series2Graph
methodology aims to recognize unique patterns that enable precise classification using a
GNN. In this method, each time series is considered as a graph, where the graph acts as
input to the GNN and produces outputs for classification.
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First, the decomposition of each series into subsequences produces nodes, and these
nodes are connected by edges to represent their relationships. After this transformation, a
GNN is used for graph classification. The Time2Graph+ approach first introduced the
Series2Graph perspective (Zhang et al., 2020b). The Time2Graph + modeling procedure
follows a two-step approach: first, a time series is transformed into a graph of shape lets,
and then a GNN is used to understand the connections between these shape lets. The
Time2Graph algorithm divides each time series into sequential segments when creating a
shape-let graph. It then uses data mining techniques to assign characteristic shape lets to
these subsequences. These shapes let you act as nodes within the graph, establishing
connections through edges. The formation of edges between nodes is determined by the
likelihood of a shape to occur sequentially in a given time series.

As a result, the transformation of each time series produces a graph in which the nodes
are shape lets, and the edges are the transition probabilities between these shape lets.
Following the construction of the graph, Zerveas et al. (2021) uses a graph attention
network in conjunction with a graph pooling operation to extract the overall
representation of the time series. The resulting representation is then fed into a classifier to
assign class labels to the time series.

ADVANTAGES AND LIMITATIONS OF GRAPH NEURAL
NETWORKS
GNNs are greatly successful in the industrial sector due to their competence to model
dense relational structures, compelling them standard for applications such as industrial
IoT (IIoT), supply chain optimization, and predictive maintenance. Contrasting to
traditional techniques, which strain interconnected data, GNNs certainly attain
dependencies involving nodes, permitting more anomaly detection and precise predictions
in industrial systems. For instance, in predictive maintenance, GNNs can investigate
sensor data from interconnected technology to identify immediate signs of failure,
curtailing expensive downtime. In supply chain management, they optimize logistics by
modeling relationships between suppliers, warehouses, and distributors, reducing
disruptions and developing efficiency. Furthermore, GNNs scale successfully to large
networks, such as power grids, where they can predict failures and improve energy
distribution. Although computationally demanding, they are substantially more
competent than fully connected deep networks when dealing with structured data. Their
capability to learn from graph-based dependencies, pooled with enhanced interpretability,
makes GNNs a needed tool for adopting in industrial challenges that concern complex,
interconnected systems.

Li et al. (2018) proposes a novel technique for modeling spatial dependencies in traffic
flows. It fuses sequence-to-sequence framework, diffusion convolution, and scheduled
sampling practice to capture both temporal and spatial dependency. However, the
limitations consist of the lack of interpretability and complexity of deep neural networks,
likely costly computation, and the dependence on a precise representation of the road
network graph. Gao & Ribeiro (2022) introduces a time-then-graph architecture for
time-based graphs and demonstrates a fluency advantage over time and graph. Although
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better performance is achieved for certain tasks, limitations include an emphasis on certain
events, possible inadequacies for edge-level prediction, and the need for further theoretical
investigation. Research in Pan et al. (2019) presents a common house of attributed graphs,
but expresses limitations in treating significant generalization as a result of lack of
elementary operators of mathematics. The sequences generated by graphs have vital
complexity and are constrained by hidden variables, posing challenges in grasping
complicated dependencies. The study of Zambon et al. (2019) introduces a technique to
predict traffic flow using the spatio-temporal graph CNN, a characteristic of this method is
the adaptability to predict traffic flow. While successfully capturing active features, there
are limitations when dealing with ordinary 2D or 3D network input and an explicit lack of
attention to apparent inducing aspects such as weather. Guo et al. (2019) presents Graph
WaveNet, an integration of dilated causal convolution with graph convolution for
spatiotemporal graph simulation. Limitations arise from issues such as scalability and
ambiguities in the training of hidden dependencies.

The research in Wu et al. (2019) focuses on traffic prediction using the Multi-Range
Attentive Bicomponent, which successfully captures both the node and the edge
relationships. Interpretability is challenged due to the complexity of the model and the
study is deficient in showing training-time insights. In addition, Chen et al. (2020)
proposes a model for traffic prediction that implements a structure learning convolution,
involving convolutional neural networks in graph domains. Limitations arise in the areas
of hyperparameter sensitivity and computational complexity. Moving forward, the
research of Wang et al. (2020b) presents synchronized graph convolutional neural
networks that can capture both spatial and temporal dependencies in different network
data predictions. Despite consistently outperforming benchmarks, the challenges lie in
performance differences due to dataset specificity and a lack of detail on internal
mechanisms. The research proposed by Zheng et al. (2020), data adaptive graph generation
node adaptive and parameter learning modules for traffic prediction.

The technique achieves high-tech effectiveness, but challenges include a lack of
thorough model evaluations and a comprehensive investigation of internal mechanisms.
Zhang et al. (2020a) presents a mechanism to dwell on the issues of long-term graph
convolutional networks and the differentiable architecture search for both spatial and
temporal traffic forecasting. The study lacks a comprehensive analysis of the model,
including the need to compare the model with existing state-of-the-art models. On the
other hand, research by Song et al. (2020) proposes a spatio-temporal graph based on
transformers for crowd trajectory prediction, relying exclusively on attention techniques.
Although successful, limitations include potential degradation in predicting impulsive
activity and challenges in handling constant time series sequential data. In summary, each
study presents novel methods and frameworks for various time series prediction tasks, but
these studies also express common limitations, such as problems of interpretability, model
complexity, and limitations in dealing with external aspects or diverse datasets.

More comprehensive and comprehensive surveys are needed to improve the
applicability and understanding of these techniques. The study in Yu et al. (2020)
introduces a novel graph neural network with an output layer to focus on predicting graph
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controls for graph-to-graph training. Graph controls or edits offer a formative and
comprehensive illustration for innumerable changes in graph constructions, reviving
computational competence and interpretability compared to prevailing approaches. Graph
edits are well thought out and valuable in terms of sparsity. However, the method
recognizes the limitation of the Markovian postulation, which implies imminent research
to discover alternative frameworks. The need to fuse nonstructural data through
alternative designs is also recognized. The scope of evaluation is inadequate and requires
development in complex and diverse situations. The study by Paassen et al. (2020) presents
graph convolutional networks with a time-aware zigzag topological layer for
time-dependent graph neural networks.

The addition of zigzag trajectories increases the system’s ability to predict time series on
graphs, which means higher performance on different datasets. Nevertheless, its efficiency
may be inadequate for time-dependent structures, and limitations related to mathematical
context and generalizability are not systematically discovered. In Chen, Segovia & Gel
(2021), a framework for predicting traffic flow has been developed using a data-driven
approach to build dynamic graphs with spatio-temporal dependencies. Although the
techniques are successively applied, their generalizability to other domains or tasks is not
categorically established. The reliance on past data to make the spatio-temporal distance
hyperparameter sensitive is illustrative and heralds possible robustness concerns. Research
conducted in Lan et al. (2022) introduced a graph module known as a temporal
polynomial to capture the correlation representation of dynamic variables in the
prediction of multivariate multidimensional time series. It supports limitations associated
to real-world procedures, causal construction, and causal knowledge. The emphasis on
adhering to these limitations is projected for future work.

Furthermore, in Liu et al. (2022) the authors introduce a hybrid model that integrates
spatio-temporal graphs with neural controlled differential equations for traffic prediction.
While superior in performance to reference models, it has a clear deficiency in detailing its
comparative study and intuitions into the hyper-parameter sensitivity and the interface
between neural-controlled differential equations and graph-controlled networks. Choi
et al. (2022) presents a pre-training technique called TSFormer for long-term evidence
learning in GNN. It successfully addresses the method’s limitation in capturing long-term
dependencies. However, scalability concerns remain and the characterization of “long-
term” needs further investigation. A study by Shao et al. (2022) discusses the prediction of
variable subsets and presents a technique that uses a non-parametric wrapper.

Although competent, its performance is inclined by hyperparameters, and the
postulation of variables preoccupied at casual may not embrace continuously (Jin et al.,
2024). Scalability constraints associated with large datasets are not widely discovered.
Graph structures in a regularized framework by Chauhan et al. (2022), integrate implicit
and explicit graphical structures in a regularized framework to handle multivariate time
series prediction. The technique’s understanding of hyper-parameters and the
configuration of cultivated graph structures with interpretability are accredited. While
scalability remains unexplored. In the research conducted by Yu et al. (2022b), they
introduce a framework that learns temporal graphs from multivariate time series and that
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too at manifold scales (Chai et al., 2024), overcoming static variable importance modeling
constraints. However, it lacks further analysis of interpretability, scalability, and
computational complexity properties (Li et al., 2024). The work of Cui et al. (2021)
presents an innovative structure for detecting anomalies in multivariate time series using
the graph attention network. In the run through, each research presents novel methods to
detect anomalies in multivariate time series (Qin et al., 2024), addressing numerous
features such as relationship learning (Guo et al., 2024), graph-based modeling, and
anomaly metric strategy. Although all the work presented acknowledges positive
limitations, additional analysis and detailed exploration is needed to improve the
reasoning behind these innovative approaches and their applicability in the real world.

ENHANCING MODEL INTERPRETABILITY AND
EXPLAINABILITY
Interpretability and explainability are important to ensure understanding and trust in AI
models (Bell et al., 2022), particularly in the framework of convoluted constructions such
as DNNs and GNNs. In this segment, we explore approaches intended to enhance the
interpretability and explainability of such models, in view of current progressions and
dedicated tools custom-made for DNNs and GNNs.

Model simplification and feature importance
An approach to improving interpretability is to simplify the model techniques. For DNNs,
practices such as distillation, feature reduction, and pruning can support the generation of
more interpretable techniques without significantly affecting performance (Gosiewska,
Kozak & Biecek, 2021). Likewise, in GNNs, custom-made generalization plans for graph
structures can be helpful in understanding the model’s decision-making method.
Furthermore, feature importance methods such as SHapley Additive Explanations (SHAP)
and Local Interpretable Model-agnostic Explanations (LIME) can deliver understanding
into the role of distinct features to the model’s predictions, by this means setting off
interpretability (Gosiewska, Kozak & Biecek, 2021).

Post-hoc explanation methods
The objective of these methods is to provide interpretable intuitions into model
predictions without altering the fundamental architecture. Methods such as occlusion
analysis, saliency maps, and gradient-based techniques can provide significant
explanations for DNNs by stressing vital sections of input data that affect output (Han,
Srinivas & Lakkaraju, 2022). In the same way, in GNNs, techniques like graph
visualization mechanisms and graph attention techniques can clarify the rank of nodes and
edges in decision-making methods.

Attention techniques and layer-wise relevance propagation
Attention techniques have appeared as commanding tools to set the stage for
interpretability in DNN models. By robust weighting of input features built on their
importance to assignment, attention techniques offer spontaneous enlightenment for
model predictions (Achtibat et al., 2024). With reference to GNNs, attention techniques
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can help categorize significant nodes and edges in the graph, enabling an improved
understanding of the model’s performance. Another technique, layer-wise relevance
propagation, points relevance scores to separate layers of the neural network, subject to
understanding of how input features assist to the output.

Counterfactual explanations
These explanations provide an exclusive perspective on model interpretability by
supplying explanations for distinct predictions planted on hypothetical states. By making
counterfactual instances that advance to diverse results, these practices help users
recognize the decision limitations of the model and categorize actionable understandings
to develop fairness and model performance (Guidotti, 2022).

Tools for model interpretability
Quite a few dedicated libraries and tools have been established to enable model
interpretability for DNNs and GNNs. For example, libraries including Captum and
TensorFlow Explainability offer the use of many customized explanation methods for
DNN models (Kaur et al., 2020). Similarly, tools such as the Deep Graph Library provide
services for interpreting and visualizing GNNs, making them more accessible to
practitioners and researchers. Integrating these tools and approaches into the evaluation
and development of DNNs and GNNs can meaningfully enhance their explainability,
interpretability, nurturing trust, and adoption in applications associated with the real
world (Bell et al., 2022). As the field progresses, more research into customized innovative
frameworks and techniques for multipart models will be important to endorse
accountability and transparency in AI systems.

ETHICAL CONSIDERATIONS, SECURITY AND DATA
PRIVACY CHALLENGES
Although improving model interpretability and scalability is decisive, it is also imperative
to consider ethical issues, security challenges, and data privacy, particularly in the context
of time series analysis in industrial frameworks (Albahri et al., 2023). This section dives
into the ethical inferences of implementing AI practices, the prerequisite for preserving
data privacy, and recommends practices and best strategies to direct these compound
issues reliably. Implementing AI techniques in industrial contexts can have reflective
ethical consequences, mainly when decisions based on these techniques influence entities
or communities (de Almeida, dos Santos & Farias, 2021). Biases in the unintended
consequences, algorithmic fairness, and training data of model predictions are some
serious ethical issues that require careful consideration (Beil et al., 2019). It is important to
certify that models are accountable, fair and transparent to moderate latent harms and
safeguard impartial consequences for all participants. Modern AI techniques, exclusively
DNN architectures, regularly need immense data for training, raising concerns about data
privacy and security (Zareen, Akram & Ahmad Khan, 2020). Time series in industrial
frameworks can contain sensitive data, such as confidential business, personal
identification, or actions of proprietary processes (Díaz-Rodríguez et al., 2023). Protecting
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these data against breaches, misuse, or unlicensed access is paramount in ensuring
compliance and trust with control frameworks such as the General Data Protection
Regulation and the California Consumer Privacy Act (Alexander, 2019).

Best practices and guidelines that integrate data privacy, security, and ethical
considerations in the deployment and development of AI models require a positive
adherence and method to the best practices. For example: Documentation of data sources,
model architecture, and decision-making processes needed to be present to support
accountability and transparency. Reduce the retention and collection of personally
identifiable information to minimize the risk of unauthorized access and privacy breaches
(Goldsteen et al., 2022). Consider methods such as differential privacy and data
anonymization to protect sensitive data while preserving the utility of the information for
model training and analysis (González-Sendino, Serrano & Bajo, 2024). Ensure that these
AI models are free from interpretable and explainable biases to encourage fairness and
reduce the risk of accidental consequences (Omotunde & Ahmed, 2023). Implement robust
security actions, including encryption, auditing, and access controls, to protect data against
unauthorized access and cyber threats (Borgman, 2018). Acquire up-to-date consent from
users concerning sharing practices, data collection, and usage, also make available
transparency about how their data is being used to deploy and build AI models.

OPEN QUESTIONS, CHALLENGES, AND PROPOSED
SOLUTIONS
From our investigation, it is apparent that although the progress in time-series research is
still quite extensive, there are still loads of open issues and research questions to be
addressed. It is evident that further studies are needed in most of the industrial approaches
in the context of time series. Hence, adding together to the already research work, the
following are still complementary to open gaps in research.

High-dimensional anomaly detection
Identifying anomalies in high dimensional data is challenging because of not identifying
precise local correlations, thus using techniques such as UMAP, t-SNE, or autoencoders,
can be employed to convert high-dimensional data into lower-dimensional illustrations,
preserving important correlations whereas dropping computational complexity. In
addition, algorithms like graph-based anomaly detection that take advantage from the
correlations between dimensions can be investigated. Also, incorporating attention
mechanisms with current anomaly detection techniques can vigorously spotlight
significant features, focusing on the challenge of unsuitable feature selection.

Ensemble methods
Traditional ML techniques such as clustering usually fail to provide robust outcomes for
anomaly detection. Ensemble techniques, which merge outputs from multiple methods,
deliver a favorable alternative. Hence, finding methods to choose the base learners and
accurate subspaces is valuable. In addition, deciding on the right combination and quantity
policies is still a challenging and open research problem to adopt. Implementing
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heterogeneous ensemble learning a combination of diverse methods (e.g., SVMs, decision
trees, and neural networks) to leverage their original strengths. Stacking techniques or
voting mechanisms can additionally improve anomaly detection accuracy. By developing
adaptive ensemble techniques that dynamically choose subspaces and base learners
constructed on data characteristics, enhancing both detection quality and runtime.

Evolving data dimensions
The loss or arrival of existing or new dimensions during the period is yet another
stimulating open research area for the future. In prospective application areas such as
anomaly detection in IoT or industrial IoT devices, sensors can be on or off periodically,
and innovative techniques are required to detect anomalies or outliers more competently
in this challenging and stimulating scenario. By developing incremental learning
algorithms that can easily adapt to modifications in data structure over different time
periods. Methods such as adaptive LSTMs and online GNNs can deal with dynamic
time-series data and evolving graph structure. Furthermore, incorporating techniques such
as transfer learning can be adapted so that models trained on one set of dimensions to new
data, reducing retraining struggles.

Scarcity of public real-world datasets
Unlike data set sources for conventional ML problems for time series, publicly available
real-world data sets for industrial data are very scarce. One key reason is that, in industry,
data is believed to be extremely confidential—the data hold wear and tear or faults in their
products reasonably for predictive maintenance. This has serious significance in the
research work in this domain, because of public non availability of real-world data,
research is classically steered by academia in association with industry, manufacturers, or
suppliers, and in companies themselves. Hence, a non-efficiency in follow-up research and
lack of reproducible research. Encouraging industry-academia cooperation to initiate
anonymized datasets however making certain and preserving data privacy. Also,
employing data synthesis approaches, such as generative adversarial networks (GANs), to
make realistic industrial data for research. Exploring domain adaptation techniques that
can transfer knowledge from accessible datasets to unseen, new industrial domains,
minimizing reliance on explicit datasets.

Lack of labeled data
There is a lack of labeled data in industry, operating with datasets of real-world industry
propose the prospect of being capable of assessing developed techniques in practice.
Consequently, real-world data is frequently not or only incompletely labelled, since to
annotate this volume of data requires expert knowledge and is hugely time-consuming.
However, employing self-supervised learning and semi-supervised learning approaches to
take advantage of unlabeled data. As well, techniques like pseudo-labeling and contrastive
learning can improve model performance without the need of extensive labeling. In
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addition, developing annotation bases employing active learning, where models rank first
the most useful data points for skilled labeling, optimizing annotation attempts.

Representation of training data
Finding representative training datasets is quite challenging due to the scale and variety of
industrial applications and its products. Using simulated data from software-in-the-loop
systems to accompany real-world data. Exploring domain-specific data augmentation and
GANs approaches to improve dataset representativeness and diversity. Designing
algorithms that are competent of leveraging synthetic data while easing domain differences
using methods like domain adversarial neural networks (DANNs).

Model interpretability
The issue with non-interpretability of complex ML models demands details for the
replacement of components. With maintenance that is interval-based the justification is
insignificant; conversely, with utilizing advanced ML techniques, e.g., deep learning
models, interpretation and explanation of the techniques and their choices turn into a
challenge. By utilizing Explainable AI (XAI) methods such as LIME, SHAP, and attention
visualization to present understandings into model decisions. Aim on acquiring
interpretable designs like prototype-based learning models. Coming to GNNs, it is quite
challenging to interpret them critical industrial systems because of opaque decision
process, regulatory compliance, and trust in automation. For instance, to trace certain
decisions input will be quite difficult in GNNs, in healthcare or energy industry they
demand XAI for accountability, and industrial stakeholders require transparency to trust
GNNs. However, we can use attention mechanisms for influential nodes and edges in
GNNs, also the use of XAI techniques as discussed earlier is advisable, and employ graph
visualization tools. Furthermore, exploring hybrid techniques which combines
interpretable ML approaches with deep learning to balance explainability and accuracy.
For example, incorporate rule-based systems or decision trees with neural networks to
increase interpretability.

By focusing on these challenges with far-forward techniques and algorithms, the
research society can substantially augment the scalability, robustness, and applicability of
time-series in industrial frameworks.

CONCLUSION
In summary, this comprehensive survey acts as a guide to the vast field of time-series
analysis within industrial data. It starts with the basic principles of traditional machine
learning, which provided insights for forecasting, demand management, and production
optimization. As the industrial landscape evolved, the integration of deep learning
architectures led to a transformative phase. ML, DL, and GNN approaches have shown
great promise in various fields, as well as in time series. To run through the past, investigate
the present, and analyze the future, in this survey, we made several contributions to the
application of ML, DL, and GNNs theory in the domain of time series. The merits and
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limitations of DL and GNN were evaluated in detail compared to traditional ML
approaches. In addition, the tendencies of industrial frameworks were considered in detail
to explain the significance and necessity of AI algorithms for time-series modeling. Key
ML, DL, and GNN models and frameworks were summarized and reviewed to facilitate
the use and development of AI-based tools. Despite the contributions of ML, DL, and
GNNs limitations, exits that open doors for further investigation. With DL and GNNs
interpretability remains the issue, their “black-box” nature remains a significant challenge,
methods should focus on integrating XAI techniques. GNNs hold promise, but it has issues
in adaptability and scalability in various industrial scenarios, the focus should be shifted to
domain specific adaptations. The scarcity of labeled, publicly available and representative
industrial data hinders benchmarking and reproducibility; addressing this problem
requires collaborative efforts between industry and academia. Promising research
questions and points for future run were explored shortly. However, challenges remain,
including concerns about the interpretability of deep learning models and the need for
graph-based solutions tailored to different industrial applications.
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