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ABSTRACT

Intensity modulated radiation therapy (IMRT) is a prevalent approach for
administering radiation therapy in cancer treatment. The primary objective of IMRT
is to devise a treatment strategy that eradicates cancer cells from the tumour while
minimising damage to the surrounding organs at risk. Conventional IMRT planning
entails a sequential procedure: optimising beam intensity for a certain set of angles,
followed by sequencing. Unfortunately, treatment plans obtained in the optimisation
stage are severely impaired after the sequencing stage due to physical and delivery
constraints that are not considered during the optimisation stage. One method that
tackles the issues above is the direct aperture optimisation (DAO) technique. The
DAO problem seeks to generate a set of deliverable aperture configurations and a
corresponding set of radiation intensities. This method accounts for physical and
delivery time limitations, facilitating the creation of clinically appropriate treatment
programs. In this article, we propose and compare two variable neighbourhood
search (VNS) based algorithms, called variable neighbourhood descent (VND) and
reduced variable neighbourhood search (rVNS). The VND algorithm is a
deterministic variant of VNS that systematically explores different neighbourhood
structures. This approach allows for a more thorough solution for space exploration
while maintaining computational efficiency. The rVNS, unlike traditional VNS
algorithms, does not require any transition rule, as it integrates a set of predefined
neighbourhood moves at each iteration. We apply our proposed algorithms to
prostate cancer cases, achieving highly competitive results for both algorithms. In
particular, the proposed rVNS requires 62.75% fewer apertures and achieved a
63.93% reduction in beam-on time compared to the sequential approach’s best case,
which means treatment plans that can be delivered in less time. Additionally, we
evaluate the clinical quality of the treatment plans using established dosimetric
indicators, comparing our results against those produced by matRad’s tool for DAO
to assess target coverage and organ-at-risk sparing.
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INTRODUCTION

Cancer is a significant global health concern, leading to millions of deaths annually and
imposing substantial economic and social burdens. According to GLOBOCAN, there were
around 20 million new cases of cancer in 2022, resulting in nearly 9.7 million deaths
(Bray et al., 2024). This disease ranks as the second leading cause of death worldwide
(Ritchie & Roser, 2018), with its prevalence having grown over the past four decades
(Quaresma, Coleman & Rachet, 2015). The estimation by the year 2040 considers an
increase in diagnosed cancer cases, with an estimated 28.4 million new cases worldwide,
representing a 47% rise from the 2020 figures, assuming a constant rate based on 2020
national estimations (Sung et al., 2021). The escalating incidence of cancer cases is likely to
be accompanied by higher mortality rates unless adequate resources are allocated to
healthcare systems to manage the growing cancer burden. Primary prevention remains a
highly effective approach, as up to half of all cancers are potentially preventable. However,
significant efforts are needed to integrate existing effective interventions into healthcare
plans (Sung et al., 2021). Recent advancements in research have contributed to
improvements in cancer survival rates, which have nearly doubled over the past forty years
(Anderson ¢ Nichols, 2020; Quaresma, Coleman ¢ Rachet, 2015).

One of the primary methods for treating cancer is radiotherapy. This treatment involves
exposing the patient to high levels of ionising radiation to target and destroy cancer cells.
The planning of radiotherapy treatment has evolved significantly, becoming a pillar in the
fight against cancer, especially in a global context where this disease represents a
considerable burden for society (Bray et al., 2024). In this context, two main approaches
stand out: external radiotherapy, which uses machines to focus radiation beams on the
tumour from outside the body, and internal radiotherapy or brachytherapy, which involves
the direct placement of radioactive material near the tumour for focused dosing, thus
minimising the impact on surrounding healthy tissues. Particularly within external
radiotherapy, intensity modulated radiation therapy (IMRT) has emerged as a prominent
treatment modality, recognised for its ability to precisely direct radiation and tailor it to the
shape of the tumour (Daly, 2020). A 2023 report from Emergen Research highlights the
growth of the global IMRT market, valued at $2.21 billion in 2022. It is projected to
continue expanding, with a compound annual growth rate (CAGR) of 5.4%, driven by
factors such as increasing government incentives and preference for non-invasive cancer
treatments (Emergen Research, 2023). In this study, we concentrate on IMRT, which
administers ionising radiation externally, using a device called a linear accelerator (also
called LINAC), from a set of beam angles around the patient’s body in a step-and-shot
manner, as depicted in Fig. 1.

IMRT, while clinically effective, encounters a number of challenges. These include the
complexity of treatment planning, delivery and quality assurance, which often requires
increased time and effort from clinical staff (Ur Rehman et al., 2018). IMRT’s precise dose
delivery demands advanced imaging and accurate identification of critical structures, as
even slight inaccuracies in defining organ margins can significantly impact treatment due
to IMRT’s sensitivity to marginal errors (Beaton et al., 2019). Additionally, IMRT often
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Figure 1 Linear accelerator from the Centro Oncologico Hondureiio in Honduras (Tello-Valenzuela,
Moyano & Cabrera-Guerrero, 2023). Full-size K&l DOT: 10.7717/peerj-cs.3094/fig-1

involves higher costs due to the need for imaging equipment, linear accelerators,
synchrotrons, advanced software, computer networks, dosimetry and quality assurance
systems, as well as the requirement for a larger, highly trained staff. These challenges
emphasise the importance of continuous research and development to enhance the
efficiency and precision of IMRT treatment planning.

Given its inherent complexity, the IMRT problem is usually tackled as a set of sequential
problems, namely, the beam angle optimisation (BAO), the fluence map optimisation
(FMO), and the multi-leaf collimator sequencing (MLC) problems (Cao et al., 2009). The
BAO problem looks for the optimal beam angle configuration (BAC). For each identified
BAC, the FMO computes the optimal intensities to determine the most effective treatment
plan for the corresponding BAC. Ultimately, a collection of achievable aperture
configurations for the multi-leaf collimator (MLC) and their associated intensities must be
computed (MLC sequencing problem) (Ehrgott et al., 2010).

As mentioned in Salari, Men ¢ Romeijn (2011), one issue with the sequential approach
is the large set of apertures generated to solve the MLC sequencing problem. A treatment
plan with too many apertures leads to longer beam-on time (BoT), meaning patients are
exposed to radiation for extended periods. Longer treatment times are undesirable as they
require patients to remain on the couch for extended periods, increasing the risk of
inaccuracies in treatment delivery due to patient movement (Dzierma et al., 2014) and
reducing the number of patients that can be treated daily. Additionally, the total delivery
time of a treatment plan, which comprises the BoT and the time needed by both the linac
and the MLC to move between beam angles and achieve the next aperture shape
(decomposition time), further contributes to the overall treatment duration (Ahuja &
Hamacher, 2005; Baatar et al., 2005). Therefore, it is crucial to decrease the BoT value to
shorten the radiation exposure time and reduce the likelihood of treatment interruptions
caused by patient discomfort or movement during the procedure.
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One strategy treatment planners use to shorten treatment plans is to simplify the
treatment plan by rounding the intensities at each beam angle, thereby reducing the
number of deliverable aperture shapes required by the treatment plan. However, this
rounding strategy also diminishes the quality of the treatment plan (Rocha et al., 2012). As
we mentioned before, it is simply not possible to deliver the optimal plan obtained from
the FMO problem (as it needs too many aperture shapes). Thus, one strategy proposed in
the literature is to include some additional constraints to the FMO problem so that it
accounts for the physical considerations of the delivery process. This approach enables us
to create a treatment plan that can be directly delivered to the patient without requiring
additional steps. The resulting optimisation problem (i.e., the FMO + delivery constraints)
is referred to as direct aperture optimisation (DAO) (Shepard et al., 2002).

The DAO problem simultaneously optimises the intensities and shapes of the apertures
for each beam in the BAC, ensuring that the treatment plan adheres to the MLC’s physical
limitations. By incorporating these constraints during optimisation, DAO eliminates the
need for post-optimisation adjustments of the sequential approach, improving the overall
quality of the treatment plan (Ludlum & Xia, 2009).

One of the benefits of DAO is its ability to control the number of segments and reduce
the BoT required for each treatment plan, thus minimising radiation leakage and the risk
of secondary cancers, which is a concern with traditional beamlet-based IMRT methods.
According to Broderick, Leech ¢ Coffey (2009), excessive complexity in IMRT plans can
increase treatment time and dosimetric uncertainty. Fortunately, DAO can mitigate these
issues by simplifying the intensity map and reducing the segments required to achieve
high-quality dose distributions.

Aperture shape optimisation and aperture weight optimisation are the two processes
involved in DAO (Romeijn et al., 2005). The initial stage involves calculating and adding to
the treatment plan the deliverable aperture that offers the greatest potential improvement
in the objective function. The aperture weights are usually optimised in the second stage
using exact techniques. Following the above approach, DAO produces solutions of
significantly higher quality than the sequential approach (Ludlum & Xia, 2009).

The DAO problem has been addressed in various ways. Gradient leaf refining is the
foundation of one kind of approach. By determining the link between the objective
function and the leaf position and computing its first derivative, these techniques use the
leaf position as the optimisation variable. Numerous commercial treatment systems, such
as the direct machine parameter optimisation model in the Pinnacle and RayStation
systems (Hardemark et al., 2003; Worthy & Wu, 2009), have included these algorithms.

The column generation methods (Romeijn et al., 2005; Preciado-Walters et al., 2006;
Carlsson, 2008; Zhang et al., 2019; Salari ¢» Unkelbach, 2013) are another well-known kind
of strategies employed in the literature. With this approach, additional deliverable
apertures are gradually added to the treatment plan, rather than establishing the initial
apertures at the beginning of an iteration. In the iteration phase, the pricing problem is
solved to provide a deliverable aperture that can improve the objective function. This
aperture is then incorporated into the treatment plan, and the new aperture weights are
optimised in the master problem. One aspect to consider is that column generation
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approaches in the literature converge quickly but do not impose a hard limit on the
number of apertures, which could lead to excessively long total treatment times and
extremely small apertures (Ripsman et al., 2022).

The DAO problem has also been solved using methods such as stochastic methods
(Shepard et al., 2002; Cotrutz & Xing, 2003; Li, Yao & Yao, 2003; Moyano & Cabrera-
Guerrero, 2020; Cdceres, Araya & Cabrera-Guerrero, 2021; Fallahi, Mahnam ¢ Niaki,
2021; Fallahi, Mahnam & Akhavan Niaki, 2022; Moyano et al., 2023; Tello-Valenzuela,
Moyano & Cabrera-Guerrero, 2023; Tian et al., 2023). These techniques use minor
adjustments to the apertures’ leaf positions at each iteration. A modification in leaf
position is approved when it enhances the objective function value. One issue with
stochastic search and gradient-based leaf refinement techniques is the generation of the
initial solution. The quality of the initial solution influences the quality of the given final
solution as seen in Pérez Cdceres et al. (2019), Cdceres, Araya ¢ Cabrera-Guerrero (2021),
Moyano & Cabrera-Guerrero (2020), Moyano et al. (2023).

Considering the promising results obtained by local search algorithms recently
proposed in the literature (Pérez Cdceres et al., 2019; Cdceres, Araya ¢ Cabrera-Guerrero,
2021; Moyano & Cabrera-Guerrero, 2020; Moyano et al., 2023), in this work, we propose
two variable neighbourhood search (VNS) based algorithms to solve the DAO problem.
The VNS is a versatile metaheuristic search technique known for effectively exploring large
and complex solution spaces, particularly in discrete optimisation problems (Hansen,
Mladenovi¢ & Pérez, 2010). It is well-suited to this problem due to its structured
exploration of multiple neighbourhood structures, which increases the likelihood of
escaping local optima and improving solution quality. This systematic exploration of
diverse neighbourhoods allows VNS to balance intensification and diversification during
the search process (Brimberg, Hansen ¢ Mladenovic, 2010), finding reasonable solutions
quickly and making it a robust choice for solving the DAO problem. Specifically, we
proposed to use two variations of the VNS algorithms: the variable neighbourhood descent
(VND) and the reduced variable neighbourhood search (rVNS). In this study, we evaluate
the performance of our proposed algorithms using a set of clinical prostate cancer cases.
We benchmark the treatment plans generated by our algorithms against those produced by
the traditional sequential method. The findings indicate that our algorithms can produce
deliverable treatment plans with a reduced number of apertures and a notable decrease in
beam-on time. Additionally, when compared to deliverable plans with an equivalent
number of apertures, our approach yields superior results in terms of objective function
values. Finally, we compared our algorithm with a local search proposed in the literature
(Moyano et al., 2023), obtaining competitive results.

The structure of the article is as follows: In ‘Direct Aperture Optimisation’, we cover the
fundamental concepts of IMRT and DAO, along with the mathematical models applied in
this research. ‘Variable Neighbourhood Search Algorithms’ describes the algorithms
developed and implemented for this study. ‘Computational Experiment’ presents the
results from applying our algorithms to a prostate cancer case and discusses the
findings. Finally, in ‘Conclusion’, we draw the main conclusions of our work and outline
future work.
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DIRECT APERTURE OPTIMISATION

The DAO problem integrates FMO and MLC sequencing, such that the resulting
optimisation problem aims to optimise intensities while taking into account the physical
limitations of the MLC (Shepard et al., 2002). Although related, this is a completely
different optimisation problem as we are no longer interested in optimising beamlet
intensities but instead in aperture shapes and their corresponding intensities. This new
formulation resulted in a mixed-integer nonlinear model as each beamlet in the apertures
becomes a {0, 1} (open/closed) variable. The presence of {0, 1} variables means the
problem is highly complex, and thus, we can no longer rely on complete methods as we did
with the FMO problem.

To mathematically represent the IMRT problem, each beam angle is discretised into
smaller units called beamlets. At the same time, tissues and the tumour are divided into
small sub-volumes known as voxels (Ehrgott et al., 2010). Figure 2 provides a graphical
illustration of these concepts.

The IMRT problem can, therefore, be modelled using the representation shown in Fig. 2
(Cabrera-Guerrero et al., 2018a, 2018b). We start by simulating the dosage distribution
that is applied to each region’s voxels. The beam angles are separated into n beamlets,
where 7 corresponds to the total number of beamlets for all beam angles, as was previously
mentioned. Let x € RS be an intensity vector corresponding to .o/, where .o/ represents a
beam angle conﬁgurat_ion (BAC). The vector’s x;, components each indicate how long the
b-th beamlet was exposed to radiation. Equation (1) (Ehrgott et al., 2010; Cabrera et al.,
2018) calculates the radiation dose deposited in voxel v of region r by fluence map x.

n

d(x) =) (Djxy) Ww=12,...,m. (1)
b=1

Total voxels in region r is given by m” in Eq. (1), where r € R={0Oy,...,0q, T}
indicates an element of the collection of regions. OARs are indexed by r = O, with
g =1,...,Q, while the tumour is indexed by r = T. D!, € R™*" is the dose deposition
matrix for region r. The rate at which radiation from beamlet b is deposited into voxel v
inside region r is indicated by D], 2 0 (seen in Fig. 3). When BAC .¢/ is taken into account,
the set of all possible intensity vectors is Z2'(.«7) C R”.

In this study, we consider Eq. (2) as the objective function of our DAO problem
(Romeijn et al., 2003, 2005) Here, parameter m" is, again, the number of voxels of the
region r and Y, is the desired dose for voxels in the region . The function (-), is the
maximum between 0 and (-), d},(x) gives the dose delivered by fluence map x to voxel v of
the region r (see Eq. (1)), and 4, and J, are the penalty weights parameter of under-dose
and overdose related to region r, respectively. As Eq. (2) shows, we consider a mean-
square-error-based objective function in order to obtain actual doses as close as possible to
the prescribed ones, penalising those over (under)-irradiated voxels in the OARs (tumour).

m

minz(x) = > [miz [L(Y, — di(x))” 4+ (di(x) — Y,)j]] : )
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Figure 2 Representation of beam angles and organs discretised into beamlets and voxels, respectively

Full-size K&l DOT: 10.7717/peerj-cs.3094/fig-2
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Figure 3 Radiation is delivered from a subset of beamlets, and it irradiates voxels at both the tumour
and organs at risk (Cabrera-Guerrero et al., 2018c).

Full-size K&l DOT: 10.7717/peerj-cs.3094/fig-3
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Figure 5 Generation of a fluence map from an angle’s apertures and associated intensities (Moyano et al., 2023).
Full-size K&l DOT: 10.7717/peerj-cs.3094/fig-5

Although the model on the Eq. (2) is convex, we cannot directly apply mathematical
programming techniques to obtain the optimal fluence map as we need to account for each
aperture shape and its corresponding intensities (obtaining only the optimal intensity
vector is not enough to produce a treatment plan that the linear accelerator can deliver).
Thus, we need to consider those variables in our model.

Let BAC .o/ = {.o/, ..., o/} be a BAC where the number of beams of such a BAC is
U € N,. Let us now consider a beam angle .oZ.. We then state that the set
H = {(P,I'),...,(PN,IN)}, with (P¢,I°) being the set of ©° aperture shapes and
intensities is a solution to DAO (i.e., a treatment plan that meets deliverable constraints).
Each aperture shape S € P¢ is defined as a binary variable matrix. For a beam angle .o/,
Fig. 4 provides an example of a tuple (P, I°).

Figure 4 shows the possible values a beamlet can take during the optimisation process. If
the beamlet is open (i.e., radiation passes through it), its value equals 1. If the beamlet is
closed (i.e., it is blocked by a MLC leaf), its value equals 0. Matrix elements equal to —1
cover no voxel in the tumour and thus are not considered. It is important to note that the
matrix S is a consecutive 1’s matrix (C1), i.e., 1 values in the same row must be
consecutive, with no 0 value in between them. This is due to the MLC physical constraints.

The intensity vector x, which is utilised in Eq. (1), must be obtained from the DAO
solution in order to evaluate z(x). As a result, we have to add up all of the matrices for
every tuple in H. On Eq. (3) a linear combination of the aperture shapes S{ and their
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Algorithm 1 Variable neighbourhood descent algorithm (VND).
1 H = initialSolution(.e?);

2k=0;

3 localOptimum = false;

4 while localOptimum == false do

5 N = generateNeighbourhood(H, k);

6 H* = bestNeighbour(N);
7 if H* < H then

8 H = H%;

9 k=0;

10 else

11 H' = solverIntensity(H*);
12 if H' < H then

13 H=H'

14 else

15 k=k+1;

16 if k > k.4 then

17 localOptimum = true;
18 end

19 end

20 end

21 end

22 return H;

Algorithm 2 generateNeighbourhood (H, k).

Input: Current solution H, neighbourhood index k
Output: Neighbourhood N

1 Initialize N « ;

2 if k =1 then

3 N « NeighbourhoodMovement ./, (H);

4 else

5 N « NeighbourhoodMovement ./",(H);

6 end

7 return N;

corresponding intensities I for beam angle .7, yields the resulting matrix (Moyano et al.,
2023):

@C
Ac=> S I 3)
i=1
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Once we have obtained the aggregated matrix A., we must map it into an intensity
vector x. To this end, we correlate the location of each beamlet in the aggregated matrix of
beam angle .o7 to its corresponding position b in the intensity vector x of beam angle ..
Figure 5 illustrates the procedure explained above.

VARIABLE NEIGHBOURHOOD SEARCH ALGORITHMS

VNS algorithms are metaheuristic search techniques that explore different solutions and
work exceptionally well in discrete spaces (Hansen, Mladenovi¢ & Pérez, 2010). These
techniques use different neighbourhood structures to guide the search process and
improve the quality of solutions.

As described in the work of Hansen ¢ Mladenovic (2009), the algorithm has different
variants. In this article, we decided to use two variations of the VNS algorithms: the VND
and the reduced rVNS. These algorithms are explained in “Variable Neighbourhood
Descent” and ‘Reduced Variable Neighbourhood Search’, respectively. As in any other
Local Search algorithm used on the DAO problem, VNS-based techniques need some key
components to be implemented, such as a strategy to generate their initial solution, a
method to optimise aperture weights and the neighbourhood definitions. In our case, the
proposed VNS-based strategy will use the same components presented in Moyarno et al.
(2023), which is explained in ‘Initial solution’, ‘Aperature weights optimisation’ and
‘Neighborhood definition’, respectively.

Variable neighbourhood descent

The VND is a metaheuristic that uses a set of neighbourhood definitions (in our case, .17,
and /) and ensures that the final solution is locally optimal for all of them. To this end,
this method explores the neighbourhoods using a predefined order. Thus, once a locally
optimal solution is found for the first neighbourhood, the algorithm moves on to the next
neighbourhood and tries to find a better solution. The algorithm returns to the first
neighbourhood whenever a better solution is found. Finally, when the algorithm fails to
find an improved solution across all neighbourhoods, it terminates and returns the best
solution found.

Line 1 of Algorithm 1 generates an initial solution using beam angle configuration
(BAC) .o/ and sets it to H. Then, the index k is set to zero, and the variable localOptimum is
set to false (lines 3 and 4). On line 5, set N is the generated neighbourhood of the current
solution H. This neighbourhood is generated using the function generateNeighbourhood
(H, k) where k is associated with the index move as is shown in Algorithm 2. The best
neighbour is then set to H* (line 6). After we have found the best neighbour, this is
compared to the current solution H (line 7). Suppose the best neighbour solution, H*, is
better than the current solution, H. In that case, H* is set as the new current solution (line
8), and as the current solution has been updated, the index k is reset to the first
neighbourhood definition (line 9); if the H* is not better than H, intensities of H* are
optimised by the solver and the new obtained solution is set to H (line 11). If the new
solution H is better than H, then H is set as the current solution H (line 13); if H is not
better than the current solution H, the index move is increased (line 15). Finally, if the
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Algorithm 3 Reduced variable neighbourhood search algorithm (rVNS).
1 H = initialSolution(.e?);

2 localOptimum = false;

3 while localOptimum == false do

4 N = generateNeighbourhood(H);

5  H*=bestNeighbour(N);

6 if H* < H then

7 H = H*;

8 else

9 H' = solverIntensity(H");

10 if H < H then

11 H=H'

12 else

13 localOptimum = true;
14 end

15 end

16 end

17 return H;

Algorithm 4 generateNeighbourhood (H).
Input: Current solution H
Output: Neighbourhood N

1 Initialize N «— &;

2 N U NeighbourhoodMovement A"y (H);

3 N U NeighbourhoodMovement ./, (H);

4 return N;

Figure 6 Ad-hoc shapes used as an initial solution. Full-size K&] DOT: 10.7717/peerj-cs.3094/fig-6

index k is greater than the number of neighbourhoods defined in k., (that it in our case is
two neighbourhoods), the algorithm sets the local Optimum to true (line 17), the search is
over, and the current solution H is returned (line 22).

Reduced variable neighbourhood search
The reduced rVNS algorithm is also a variant of the VNS algorithm, which has as a main
feature the fact that no transition rule is needed, as all the available neighbourhood
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definitions are considered at each iteration (Gutiérrez Hidalgo, Cabrera-Guerrero ¢ Lagos,
2023). In this variant, the algorithm systematically explores different neighbourhoods
without requiring the discovery of a locally optimal solution before moving to another
neighbourhood. Instead, the algorithm generates neighbourhoods using all available
neighbourhood movements and searches for potential improvements at each iteration.
The process continues iteratively until no better solution can be found, ensuring a
comprehensive exploration of the solution space.

We first generate an initial solution on the Algorithm 3 using beam angle configuration
(BAC) .o/ and set it to H (line 1). Then, the variable localOptimum is set as false (line 2).
On line 4, set N is the generated neighbourhood of the current solution H. Unlike other
VNS-based algorithms, this neighbour is generated using all the available neighbourhood
definitions, as shown in the Algorithm 4. In our case, we generate 20 neighbours using ./
and 24 neighbours using ./. Then, the best neighbour of set N is set to H* (line 5). After
we have found the best neighbour, this is compared to the current solution H (line 6). If the
best neighbour solution H* is better than the current solution H. Then H* is set as the new
current solution (line 7). If H* is not better than H, intensities of H* are optimised by the
solver and the new solution is set to H (line 9). If the new solution H is better than H, then
H is set as the current solution H (line 11). If H is not better than the current solution H,
the algorithm sets the local optimum to true (line 13), and the search is over, returning the
solution H (line 17).

Initial solution

As suggested in Moyano et al. (2023), we employ a set of five predetermined apertures for
each beam angle A, in BAC ./ to produce the first solution, which we refer to as the ad-hoc
technique. These aperture shapes are shown in Fig. 6. The first aperture has a half-open
bottom, the second has a half-open top, the third has a half-open right, the fourth has a
half-open left, and the fifth is completely open.

After we have created the ad-hoc (or any other aperture shape), we set the optimal
intensity If for each aperture by using Gurobi solver (Gurobi Optimization, 2020). The
model we use to obtain such an optimal intensity vector is presented in ‘Aperture Weight
Optimisation’.

Aperture weight optimisation

As mentioned above, every time the algorithm generates a new set of aperture shapes, it
needs to optimise the corresponding apertures’ intensities values (aperture weight
optimisation problem, AWO; Romeijn et al., 2005). The set of aperture shapes in the AWO
problem can be represented as an LP problem. In this case, the set of intensities If, which
range from 7™ (lowest allowed radiation value, usually 0) to y"* (highest allowed
radiation value), are the decision variables in Eq. (3), whereas S} are parameters (i.e., they
are fixed). Both 9™ and y™%* are > 0.

@C
A=N"sr
2 W

Izc c [ymin’ ,ymax].
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Figure 7 Generation of the entire neighbourhood using movement ./"; (Moyano et al., 2023).
Full-size 4] DOT: 10.7717/peerj-cs.3094/fig-7

-
m—

Figure 8 Case where leaves in a row are fully closed. In this case, this aperture setting only allows one
movement per leave, i.e. only two neighbours can be generated for such a row (Moyano et al., 2023).
Full-size K&l DOTI: 10.7717/peerj-cs.3094/fig-8

—
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Figure 9 Two use cases of the intensification operator. The first case comprises apertures a, b and c,
and the second case comprises apertures d and e (Moyano et al., 2023).
Full-size K&l DOT: 10.7717/peerj-cs.3094/fig-9
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Figure 10 Neighbour obtained by using merge operator in apertures a, b, and ¢ (Moyano et al.,
2023). Full-size k] DOT: 10.7717/peerj-cs.3094/fig-10

Neighbourhood movements

To generate the neighbourhood for both algorithms, we use the two neighbourhood
movements proposed by Moyano et al. (2023), called 47, and .43, due to the competitive
results obtained by the authors. These movements consider all the scenarios where a leaf
can cover a beamlet, so it’s a good approach to getting a good aperture set for DAO. The
/1 movement focuses on one single randomly chosen aperture shape. Once this aperture
is chosen, for every leaf in it, two neighbours are computed: one that opens the leaf and the
other that closes it. Given that, every row is composed of two leaves, i.e., each row has, in
general, four neighbours (see Fig. 7). However, as seen in Fig. 8, in some specific cases, we
may have only one neighbour per row, depending on the leaf’s current position.

After generating the set of neighbours, we look for possible enhancements in the
objective function value. Thus, as proposed in Moyano et al. (2023), we keep moving those
leaves that improved our objective function in the same direction until no progress is
accomplished. This movement is called the intensification operator (Moyano et al., 2023).
We apply this operator until no more improvement is achieved.
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Figure 11 Neighbours obtained from 4", (Moyano et al., 2023).
Full-size K&l DOT: 10.7717/peerj-cs.3094/fig-11

Two examples of how the intensification operator works are depicted in Fig. 9 (Moyano
et al., 2023). The first example shows how the aperture b was obtained from a by closing
the left-hand side leaf to the right. We continue to close the leaf, generating the aperture c,
as this movement enhance the treatment plan quality. The second example shows how
from aperture d we can generate aperture e by opening the bottom right leaf to the right.
Since this movement doesn’t lead to an improvement on the treatment’s quality, we end
the procedure and go back to aperture d.

As noted by Moyano et al. (2023), neighbourhood definitions .47 and .4 result in
solutions that are quite similar to the original one. In order to enhance the exploration
capabilities of the algorithm, an additional operator, called merge, is included in our LS
algorithm. With this additional operator, we aim to provide a new solution that combines
all the neighbour solutions that led to an improvement after applying operators .4/ and
. The operation of the merging operator is illustrated in Fig. 10. In this instance, the
objective function value was enhanced by three neighbouring solutions. After that, we
combine these three apertures to create a single new aperture that incorporates the
movements produced at each neighbour independently. For a more detailed explanation
on the merge operator, please see Moyano et al. (2023).

The main difference between movements ./ and ./ is that the leaves that are modified
(either by opening or closing them) belongs to different aperture shapes (movement ./ is
applied to the same randomly chosen aperture shape). Just as in movement ./}, we create
one or two neighbours for every leaf, just like in the .47, as seen in Fig. 11. We also apply
the intensification and the merge operators to the obtained solutions after applying .//.
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Figure 12 Prostate case from CERR. Two OARs (bladder and rectum) are considered.

Full-size K&l DOT: 10.7717/peerj-cs.3094/fig-12

Table 1 Voxels per region in CAS cases.

Case Prostate Bladder Rectum
TRTO001 13,081 19,762 8,500
TRT002 19,652 52,024 10,221
TRT004 9,806 22,597 12,849
TRT005 10,082 23,684 21,171
Table 2 Initial beam angle configurations.

BAC 0, 0, 0 04 05

1 0 70 140 210 280
2 5 75 145 215 285
3 10 80 150 220 290
4 15 85 155 225 295
5 20 90 160 230 300
6 25 95 165 235 305
7 30 100 170 240 310
8 35 105 175 245 315
9 40 110 180 250 320
10 45 115 185 255 325
11 50 120 190 260 330
12 55 125 195 265 335
13 60 130 200 270 340
14 65 135 205 275 345
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Table 3 Value of T;, 4; and J; for function z(x) CERR case.

Organ Y, A, Ay
PTV 76 Gy 5
Rectum 65 Gy 1
Bladder 65 Gy 1
Table 4 Value of T;, 4, and J; for function z(x) for CAS cases.
Organ Y, Ay I
PTV 76 Gy 5
Rectum 55 Gy 1
Bladder 50 Gy 0 1

COMPUTATIONAL EXPERIMENT

This section introduces the experiments performed using the VND and the rVNS
algorithms and analyses the results obtained. ‘Experimental Setup’ describes the prostate
case used in the experiment. Then, in ‘Experiments’, the analysis of the algorithm is made.
To leverage the two neighbourhood moves (.47, and .43) in our VND algorithm, we have
defined two variants: VND;, and VND,;. These variants differ in the order in which the
neighbourhood moves are applied. Specifically, VND;, applies move ./ first, followed by
move /3, meanwhile VND,; applies move ./ first, followed by move /7. Finally, in
‘Clinical Indicators Analysis’, we present a clinical indicator analysis comparing the quality
of the treatment plans generated by our rVNS algorithm with those obtained using the
DAO implementation available in the matRad platform (Wieser et al., 2017).

Experimental setup

This study uses a prostate case from CERR package (Deasy, Blanco ¢ Clark, 2003) to
evaluate our algorithms’ performance. In addition, we used four cases (TRT001, TRT002,
TRTO004 and TRT005) of the CAS dataset (Cabrera-Guerrero et al., 2018a) to evaluate the
performance of the clinical criteria of our best algorithm with the method proposed by
matRad. These cases consider two organs at risk, namely the bladder and the rectum, as
well as the prostate (PTV) (see Fig. 12).

For the CERR case study, the prostate has 15,172 voxels, the bladder has 22,936 voxels,
and the rectum has 18,128 voxels. The cases of CAS, as shown in Table 1, range from 9,806
to 19,652 voxels for the tumour, 19,762 to 52,024 voxels for the bladder, and 8,500 to
29,346 voxels for the rectum. Regarding computational cost and scalability, it is important
to note that while the rVNS framework itself demonstrates good scalability to more
anatomically complex cases, solver performance may be impaired as the number of regions
of interest increases. However, complex anatomical sites, such as head-and-neck, typically
present smaller target volumes and OARs compared to prostate cases, which can reduce
the overall problem size and mitigate this effect.
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Table 5 Results reported by the rVNS, VND;, and VND,; algorithms for the CERR dataset.

rVNS VND;, VND;;
BAC z(x) #ap BoT z(x) #ap BoT z(x) #ap BoT
1 48.83 20 77.9 50.8 17 80.0 49.71 18 78.5
2 48.96 19 75.9 51.5 16 79.3 50.07 18 77.0
3 49.33 20 78.5 51.1 17 81.3 49.97 18 78.7
4 48.52 19 79.3 50.1 17 82.7 49.07 18 80.3
5 48.53 19 72.0 49.7 16 78.9 49.34 18 74.1
6 47.96 18 77.4 49.9 16 81.9 49.19 17 80.1
7 48.04 19 76.6 494 16 80.6 48.77 18 76.6
8 48.82 20 72.8 50.5 16 75.3 49.55 18 72.5
9 49.29 20 77.1 51.0 16 79.6 49.81 18 76.4
10 49.23 20 79.4 51.9 16 83.8 50.35 18 82.9
11 49.06 21 78.6 51.2 16 84.0 49.85 18 77.9
12 48.30 19 80.3 49.7 16 85.8 48.94 17 81.2
13 48.21 20 76.2 50.0 17 80.0 48.95 17 75.2
14 47.75 19 78.9 48.6 17 83.6 48.20 17 80.9
Average 48.63 19 77.2 50.4 16 81.2 49.41 18 78.0

We consider 72 available beam angles, all on the same plane in all the cases. Just as in
Moyano et al. (2023), we consider a set of 14 equidistant BACs to do our experiments, as is
shown in Table 2. We run our algorithm 30 times per BAC, being 30 a widely accepted
value for statistical analysis (Hays ¢ Winkler, 1970). On average, the methods need around
10 min and depend mainly on the size of the prostate case (number of voxels and beamlets)
as well as on the quality of the initial set of apertures. Thus, we acknowledge that better
times can be achieved if more effective initial apertures are generated. This is part of our
future work. The maximum memory required by the algorithms was 6.5 GB.

The prescribed dose values and associated penalty weights used in the objective function
z(x) (see Eq. (2)) are presented in Tables 3 and 4. Table 3 corresponds to the same
parameters used in Moyano et al. (2023), enabling direct comparison of results. Table 4, on
the other hand, presents the parameters used for the CAS dataset, where more stringent
dose limits were imposed on OARs to reflect a more clinically demanding scenario.

Tables 3 and 4 shows the penalty weights for under/over irradiated voxels, 4, and 4,
min

max

respectively. Also, we consider an intensity range of [0, 20] for " and y™*, respectively.

Finally, we consider five apertures for each beam angle A¢ for both datasets.

Experiments
Table 5 presents the result obtained after running the rVNS, VND,,, and VND;,
algorithms across 14 different BACs shown in Table 2. The table is analysed based on three
metrics: the objective function value (z(x)), the number of apertures used (#ap), and the
beam-on time (BoT).

Further statistical analysis reveals significant differences in the performance of the three
optimisation algorithms across various BACs. Overall, the rVNS algorithm achieved lower
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Table 6 Results reported by the hybrid local search algorithm (LS) used in Moyano et al. (2023) for
the CERR dataset.

LS
BAC z(x) #ap BoT
1 49.10 18 75
2 49.83 18 75
3 49.76 19 78
4 49.24 18 83
5 49.51 18 70
6 48.92 19 80
7 48.35 19 77
8 49.23 19 73
9 50.39 19 78
10 50.14 19 77
11 50.05 19 76
12 48.77 19 81
13 48.98 19 73
14 48.27 18 82
Average 49.33 19 77.3

Table 7 Wilcoxon-Mann-Whitney-H-test p-values for rVNS, VND;,, VND,; and LS.

p-value rVNS VND;, VND;; LS
rVNS 0.0000 0.0000 0.0000
VND, 1.0000 1.0000 1.0000
VNDy, 1.0000 0.0000 0.9794
LS 1.0000 0.0000 0.0205

objective function values than VND,, and VND,,;, indicating its effectiveness in
minimising the total dose deviation. Specifically, rFVNS demonstrated an average
improvement of 3.51% over VND;; and a 1.58% improvement over VND,;. This
performance advantage suggests that rVNS is more capable of fine-tuning the treatment
plan to meet the desired dose distribution, which could lead to more precise and clinically
effective treatments. Regarding BoT, rVNS also showed a reduction in treatment duration,
with an average decrease of 5.18% compared to VND,, and 1.03% compared to VND,;.
The reduction in BoT is clinically significant because shorter treatment times reduce
patient discomfort and the likelihood of patient movement, which can compromise the
accuracy of radiation delivery. However, it is essential to note that rVNS required a slightly
higher number of apertures compared to VND,;, and VND,;, which may increase the
complexity of treatment delivery. The trade-off between the number of apertures and the
improvement in the objective function and BoT should be carefully considered, as more
apertures can result in longer setup times and potentially more complex machine
operations.
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Table 8 Results reported by the sequential approach in the CERR dataset (Moyano et al., 2023).
Sequential approach

BAC z(x*) z(r(x*)) #ap BoT  z(r»(x*)) #ap BoT  z(ry(x*)) #ap BoT
1 42.98 44.84 140 196 49.29 87 192 61.54 51 204
2 43.40 43.40 140 215 48.76 84 212 61.72 52 224
3 43.70 4498 144 203 48.83 87 202 72.87 49 208
4 43.53 45.06 145 206 51.77 89 208 66.48 50 212
5 43.23 44.55 142 200 47.40 89 202 67.48 51 204
6 43.05 44.47 149 212 49.23 90 208 66.05 50 208
7 42.86 44.48 152 212 48.05 96 214 62.96 49 212
8 43.06 44.70 146 197 48.00 88 196 61.75 48 196
9 43.66 45.03 141 186 50.62 83 190 70.76 46 192

10 44.14 45.71 144 200 51.21 89 204 59.64 47 200

11 43.83 45.02 138 190 51.97 86 190 68.84 47 200

12 43.31 44.35 144 214 47.38 94 212 64.03 55 228

13 42.84 4498 157 229 49.05 98 226 82.49 56 232

14 42.85 44.24 142 217 48.57 92 214 68.45 51 220

Average 42.85 44.24 142 217 48.57 92 214 68.45 51 220

When comparing the rVNS results to the Hybrid LS algorithm proposed by Moyano
et al. (2023) (Table 6), rVNS demonstrated a modest improvement in the objective
function values, with a 1.48% improvement. The BoT difference between the two
algorithms was negligible, indicating that both methods perform similarly in this regard.
Notably, the number of apertures required by both algorithms was identical, suggesting
that rVNS does not increase the complexity of the treatment plan when compared to the
LS approach.

To ascertain the existence of a statistical difference among the algorithms proposed in
this article (rVNS, VND;,, VND,;, and the LS algorithm), we analyse whether the
benchmark data corresponds to a normal distribution. We employ the Kolmogorov-
Smirnov-Lilliefors test (Lilliefors, 1967), positing the null hypothesis Hy: that the data
corresponds to a normal distribution, and the alternative hypothesis H;: that they do not.
For rVNS, VND,;, VND,;, and LS, we achieve p-values smaller than 0.05. Therefore, we
cannot say that the data corresponds to a normal distribution. Given we cannot assume
normality and the independence of samples, we evaluate our algorithms utilising the
non-parametric Wilcoxon-Mann-Whitney test, which does not necessitate a normal
distribution of the data.

We do the Wilcoxon-Mann-Whitney test with the null hypothesis Hy: 1, — 1, > 0 and
the alternative hypothesis H;: 1, — 1, <0. Here, , and 7, represent the mean values. In
Table 7, we conducted 12 pairwise comparisons for each combination of rVNS, VND,,
VIND,;, and LS algorithms to analyse the p-values, with a significance threshold of 0.05,
where 7, represents column algorithms and #, denotes row algorithms. Table 7
demonstrates that rVNS outperforms the VND;,, VND,;, and LS methods considerably
regarding the objective function.
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Table 9 Quality indicators considered in the experiments.

Indicator Definition

X Average dose delivered to a region

o Standard deviation of the dose delivered to a region

Min Minimum dose delivered to a region

Max Maximum dose delivered to a region

D, Minimum dose that receives the X% of the region

Vi Volume that receives at least X Gy

Hj, Homogeneity Index. It is computed as (%) x 100, where D'/ is the prescribed dose

We conclude by comparing the rVNS algorithm with the sequential approach detailed
in Table 8. Table 8 presents the optimal value indicated in column z(xx), derived from the
objective function outlined in Eq. (2). Columns z(r(x%)), z(r2(xx)), and z(r4(xx))
represent the intensity vector with intensities rounded to the nearest integer, the nearest
multiple of 2, and the nearest multiple of 4, respectively. For each rounding, we show the
number of aperture shapes computed by the MLC sequencing algorithm, as obtained from
the method described by Baatar et al. (2005) (#ap), along with the BoT of the complete
treatment plan. The objective function value obtained by the rVNS algorithm was
compared to the optimal intensity vector derived from the sequential approach, revealing
that the sequential method yields values that are 12.63% superior to those obtained by the
rVNS algorithm. The disparity diminishes as intensity values are rounded from the
optimal intensity vector. Rounding the intensities of the optimal fluence map to the nearest
multiple of 2 (z(r2(x*))) results in a difference of only 0.123%. Moreover, while our
algorithm exhibits a comparable objective function value to the r2(x*) treatment plan, it
consistently requires fewer aperture shapes than those derived from the sequential
approach, demonstrating a reduction of 62.75% compared to the most favourable outcome
of the sequential method. Furthermore, rounding to values exceeding two results in a
treatment plan that is significantly inferior to all plans derived from our methodology. The
BoT of the rVNS is consistently smaller than that achieved by the sequential approach,
with a reduction of 63.93% compared to the optimal case of the sequential method. The
rVNS algorithm presents a competitive alternative in the objective function for rounding
to values exceeding 1, as it consistently generates treatment plans characterised by fewer
apertures and reduced BoT, while preserving high treatment quality.

Clinical indicators analysis

As discussed in previous sections, in IMRT, the values of objective functions do not always
provide direct clinical insights for practitioners. Instead, they often rely on clinical
indicators to assess the quality of a treatment plan. Table 9 summarises the clinical
indicators used in this study. In this section, we analyse a set of clinical indicators obtained
through our approach and compare them with those produced by the matRad software
(Wieser et al., 2017). It is important to note that the DAO algorithm implemented in
matRad is considered experimental, as mentioned in the official documentation.
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Table 10 MatRad and rVNS algorithms obtained quality indicators for the PTV, Bladder, and
Rectum regions in four clinical cases of the CAS dataset.

MatRad rVNS
PTV
Case x o Min D50 D98 HI76 X o Min D50 Dgs HI76

TRT001 7546 235 6125 7575 6927 10.03 71.72 450 56.79 72.68 61.79 1847
TRT002 74.85 2.03 63.01 7495 7023 860 62.13 887 32.04 6239 44.64 36.23
TRT004 7582 127 67.73 7584 7281 550 7395 509 5474 7521 59.28 23.76
TRT005 7512 243 5848 7543 69.15 9.66 7211 321 5936 7232 6476 14.14
Rectum

Case x o Max Dsg Dog Vss X o Max Ds Dyg Vss
TRT001 31.19 18.84 7396 3424 154 0.09 37.54 2382 7479 4291 023 0.29
TRT002 27.00 17.10 70.82 29.16 1.52 0.05 31.13 2377 7473 30.73 015 0.23
TRT004 1920 20.78 7031 543 0.00 0.04 2124 2292 79.72 1571 0.03 0.13
TRT005 2649 16.52 7419 2720 161 0.05 2692 2224 7694 21.04 012 0.17
Bladder

Case x c Max D5y Dyg Vo X o Max Ds Dyg Vso
TRT001 33.12 21.64 81.03 2694 530 023 4193 2217 77.73 4176 226 042
TRT002 1856 2446 81.57 502 0.06 0.15 2376 2532 94.09 1435 001 0.25
TRT004 625 14.52 7803 196 0.00 0.04 994 2152 83.00 0.74 002 0.10
TRT005 2823 24.71 8053 1882 225 023 3522 2674 77.75 2975 026 0.35

Additionally, unlike our rVNS algorithm, the matRad algorithm does not limit the number
of apertures in the generated solution, which may influence the results.

We conducted experiments on four prostate cancer cases presented in ‘Experimental
Setup’ (TRT001, TRT002, TRT004, and TRT005) from the CAS dataset (Cabrera-Guerrero
et al., 2018a). For each case, we assessed clinical indicators using rVNS and the matRad
DAO tool. The latter requires parameter configuration before optimisation. In our matRad
experiments, the following parameters were used: Bixel width set to 8 mm, Gantry angles
configured to BAC 6 for TRT001, TRT002, TRT004 and TRT005. The Couch angle was
fixed at 0° for all cases, and only one fraction was considered per treatment plan.

On the matRad tool for PTV, we set the parameter OP = 1, function parameter to
‘squared deviation,” and the parameters 4, = 5 and Y" = 76. For the Bladder and Rectum,
we set OP = 2, function parameter to ‘squared Overdosing,’ A = 10, and DT = 65.
Unfortunately, the experimental DAO tool in matRad does not allow explicit constraints
on the number of aperture shapes. Consequently, solutions generated using matRad
contained, on average, 2.7 times more aperture shapes than those produced by our
approach. This is important because, as noted in the literature, a treatment plan should
reduce the number of apertures to reduce the complexity of IMRT plans as much as
possible, as overly complex plans deliver unnecessarily high MU and excessive radiation
(Broderick, Leech & Coffey, 2009).

Table 10 shows the obtained results for both rVNS and the matRad algorithms. As we
can see, the results for the PTV are generally similar across most cases. On average, our
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rVNS algorithm slightly under-irradiates the PTV compared to matRad. This is
particularly evident in Case 2 (TRT002), where the mean dose (x) delivered by rVNS is
62.13 Gy, significantly lower than the 74.85 Gy from matRad, and the Dyg drops from
70.23 to 44.64 Gy. Despite this, rVNS achieves clinically acceptable coverage in other cases,
such as Case 3, where Dsy and Dyg are comparable to those from matRad. We must recall
that matRad achieves those coverage levels at a cost of producing way more apertures.

From Table 10, it is also clear that the OARs (Rectum and Bladder) receive higher doses
with our approach. For instance, in Case 1, the mean dose to the rectum increases from
31.19 Gy (matRad) to 37.54 Gy (rVNS), and the Vss5 nearly triples from 0.09 to 0.29.
Similar trends can be observed for the bladder, with Case 1 showing a rise in mean dose
from 33.12 to 41.93 Gy, and a V5 increase from 0.23 to 0.42. Overall, the matRad DAO
tool manages to reduce the dose to the OARs by around 3-5 Gy on average and produces
lower values in volumetric dose indices such as Vs5 and V5y. Moreover, while rVNS tends
to produce slightly higher maximum doses to the rectum and bladder in some cases, this is
expected given the strict limit on the number of aperture shapes. For instance, in the
bladder, the maximum dose reaches 94.09 Gy in Case TRT002 with rVNS, compared to
81.57 Gy with matRad. A similar trend is observed in the rectum across cases.

CONCLUSION

This article compares different algorithms based on variable neighbourhood search
combined with mathematical programming to generate a radiation therapy treatment plan
for cancer by solving the DAO problem. The methods proposed in this article can identify
a range of aperture shapes and intensities for each beam angle of a specified BAC. Unlike
the ones obtained by the traditional sequential approach, all these treatment plans are
deliverable, and they all exhibit clinically acceptable delivery times. Furthermore, despite
the algorithm’s limitation to five aperture shapes per beam angle, resulting in a maximum
of twenty-five aperture shapes, our proposed methods can generate treatment plans that
yield highly competitive objective function values.

The algorithms discussed in this article achieved reduced treatment planning time
compared to traditional sequential methods, allowing a quicker plan generation without
sacrificing quality. This is crucial for enhancing patient outcomes, as better-optimised plans
can reduce side effects and improve the accuracy of tumour targeting, ultimately
contributing to more effective cancer control. The ability to generate competitive treatment
plans even under constraints, such as using only a limited number of apertures per beam,
highlights the practicality and applicability of these algorithms in clinical settings,
potentially leading to improvements in both treatment effectiveness and patient safety.

While the results obtained in this study demonstrate the effectiveness of the rVNS
proposed algorithm compared with the LS method reported in the literature, it is
important to highlight certain limitations. Although the rVNS algorithm does not
outperform the matRad DAO tool, it still produces competitive treatment plans from a
clinical indicators perspective. These results motivate further improvements to our
method, particularly in balancing the trade-off between target coverage and OAR sparing.
Importantly, our current implementation restricts the solution to only five aperture shapes
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at most, which limits the algorithm’s flexibility. As highlighted in Ciceres, Araya ¢
Cabrera-Guerrero (2021), reducing the number of apertures can significantly degrade plan
quality. Since matRad has no such constraint, it can more effectively conform to the PTV
while sparing the OARs, especially in anatomically complex scenarios. However, this better
coverage achieved by matRad comes at a cost of more aperture shapes, which in turn lead
to more MU delivered to patients. Thus, while matRad favours the PTV coverage at a cost
of more complex treatment plans, our algorithm obtains quite competitive results, keeping
the complexity of the treatment plan low and limiting the number of MU of the produced
treatment plans.

While this study focused on prostate cancer cases, which provide a well-established
starting point for DAO research due to their regular geometry and common use in
benchmark datasets, we acknowledge that validating our method on more anatomically
complex tumour sites, such as head-and-neck cases, is essential to assess its broader
applicability. Our local search strategy, based on small, incremental neighbourhood
movements, is inherently adaptable and should generalise well to irregular anatomical
configurations, though.

In addition, we can identify various research directions to improve the results obtained
by our approach. First, exploring new neighbourhood movements would allow us to find
better-quality treatment plans. Some interesting movements that can be adapted from
other algorithms used in the literature include the crossover movement of the genetic
algorithm proposed by Cao et al. (2009) and the repair heuristic used for the particle
swarm optimisation in Tello-Valenzuela, Moyano ¢ Cabrera-Guerrero (2023).
Furthermore, other techniques, such as memetic algorithms, can be explored to leverage
the ability of LS to find high-quality aperture shapes and the genetic algorithms’ capacity to
explore the search space. Finally, focusing on new strategies to generate better initial
solutions within our framework might be a worthwhile research direction, as this would
enable the algorithm to further reduce computational time.

Finally, regarding computational cost and scalability, it is worth noting that the rVNS
framework exhibits good adaptability to more anatomically complex cases. While solver
performance may be affected as the number of regions of interest increases, sites such as
head and neck typically involve smaller target and OAR volumes, which can mitigate this
effect. Moreover, the tendency of our algorithm to favour solutions with fewer active
apertures further contributes to maintaining efficient computation times. As part of our
future work, we plan to conduct a more detailed analysis of runtime behaviour across a
broader range of anatomical scenarios to better support the clinical applicability of the
proposed methods.
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