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ABSTRACT
This article studies the multicriteria problems of scheduling a set of n products on a
fabrication facility, focusing on batch availability and precedence constraints. Each
product is composed of two distinct subassemblies: a common subassembly, shared
across all products, and a unique subassembly unique to each product. The common
subassemblies are processed together in batches, with each batch requiring an initial
setup, while unique subassemblies are handled individually. The availability of a
common subassembly is contingent upon the completion of its entire batch (i.e.,
batch availability), whereas a unique subassembly becomes available immediately
after its processing. The product completion time is determined by the availability of
both subassemblies. Strict (weak) precedence means that if a product precedes
another, then the latter can start only after the former is completed (the latter cannot
start earlier than the former). We propose O(n4)-time algorithms to simultaneously
optimize makespan and maximum cost, as well as to lexicographically optimize two
maximum costs and makespan under strict or weak precedence constraints.

Subjects Agents and Multi-Agent Systems, Algorithms and Analysis of Algorithms, Optimization
Theory and Computation, Theory and Formal Methods
Keywords Multicriteria scheduling, Two-subassembly products, Precedence constraints,
Maximum cost, Makespan

INTRODUCTION
Driven by the need to balance conflicting objectives, the field of multicriteria scheduling
has garnered significant attention over the past few decades, see Hoogeveen, 2005, T’kindt
& Billaut (2006). This article studies four specific multicriteria problems related to
scheduling products with two subassemblies on a fabrication facility, subject to either strict
or weak precedence constraints. The focus is on optimizing both makespan and maximum
cost simultaneously, or alternatively, on the lexicographical optimization of two maximum
costs along with makespan.

In formal terms, consider a set T of n products, denoted by T1;T2; . . . ;Tn, to be
processed on a single fabrication facility. Each product, Tj 2 T, consists of two parts: a
common subassembly Tð1Þ

j and a unique subassembly Tð2Þ
j , with respective processing times

tð1Þj and tð2Þj . For aerospace component production, strict precedence constraints might

arise when assembling engines: a turbine blade subassembly (Ti) must be fully completed
before a combustion chamber subassembly (Tj) can start, ensuring safety and structural
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integrity. The facility processes the common subassemblies in batches, where each batch
incurs a setup time d, while the unique subassemblies are processed individually. The setup
time for each unique subassembly is incorporated into its total processing time, as it is
unique to the product it belongs to. Consequently, it is assumed that unique subassemblies
do not require setup times. The two subassemblies of a product may be processed in either
order, but the facility can handle only one subassembly at a time, and no preemption is
allowed during processing.

In this article, we adopt the assumption of batch availability for the common
subassemblies, meaning that a common subassembly becomes available only after the
entire batch to which it belongs has been fully processed (Santos & Magazine, 1985)
(Alternatively, there is the item availability assumption, where a common subassembly
becomes available immediately after its processing is finished). Conversely, unique
subassemblies are considered available as soon as their individual processing is completed.
A product is deemed complete only when both its common and unique subassemblies are
fully processed and available. Moreover, each product, Tj 2 T, is associated with two cost
functions fj and gj, which represent the costs incurred based on the product’s completion
time. It is assumed that these cost functions are regular, meaning fj and gj are
non-decreasing with respect to the product completion times.

In practical terms, the cost functions fj and gj can be linked to real-world manufacturing
metrics. fjðCjÞ often represents lateness penalties, such as contractual fines for delivering
products after their due dates (dj). In just-in-time (JIT) production systems, this could
model penalties for delaying shipments to assembly lines. gjðCjÞ may quantify resource
utilization costs, such as idle machine fees or inventory holding charges for
early-completed products. In aerospace manufacturing, this might reflect the cost of
storing specialized components before final integration. These costs are “regular” because
they increase with completion time, a common assumption in scheduling problems to
align with real-world inefficiencies.

For a given schedule S, let CjðSÞ represent the completion time of product Tj in S. Define
fjðCjðSÞÞ and gjðCjðSÞÞ as two costs associated with Tj in the schedule. The values

fmaxðSÞ ¼ maxjfjðCjðSÞÞ and gmaxðSÞ ¼ maxjgjðCjðSÞÞ correspond to the maximum costs

under these criteria. Notably, two specific cases of maximum cost are the makespan,
CmaxðSÞ ¼ maxjfCjðSÞg, and the maximum lateness, LmaxðSÞ ¼ maxjfCjðSÞ � djg, where
dj denotes the due date for product Tj. The argument S can be omitted in the notation

whenever the context is clear.
In addition, the problems under consideration have either strict or weak precedence

constraints. A product may depend on a set of products that must be completed or started
before it can start. Formally speaking, for the strict precedence relation �, if Ti � Tj (Ti

precedes Tj because of a higher priority), then Tj can start only after Ti is completed in any
feasible schedule. Consequently, the common subassemblies of Ti and Tj must be in
different batches. As for the weak precedence relation �, if Ti � Tj, then Ti must start no
later than Tj in any feasible schedule. Therefore, the common subassemblies of Ti and Tj

may be processed within the same batch.
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The first two problems examined in this article focus on identifying Pareto optimal
schedules that minimize both the makespan Cmax and the maximum cost fmax

simultaneously, while adhering to either strict or weak precedence constraints. Utilizing
the notation conventions established in Hoogeveen (2005), T’kindt & Billaut (2006),
Brucker (2007), these problems are represented as 1j �; 2� subpt;BAjðCmax; fmaxÞ and
1j �; 2� subpt;BAjðCmax; fmaxÞ, where “�” and “�” indicate strict and weak precedence
constraints, respectively. The symbol “2� subpt” refers to “two-subassembly products”,
and “BA” denotes “batch availability”.

Let q and s represent the two performance criteria to be minimized. A schedule S is
considered Pareto optimal or non-dominated if there exists no other feasible schedule S′
for which qðS0Þ � qðSÞ and sðS0Þ � sðSÞ where at least one of these inequalities is strict.
When a schedule S meets these conditions, the resulting objective vector ðqðSÞ; sðSÞÞ is
termed a Pareto optimal point (Hoogeveen, 2005). This approach is referred to as Pareto
optimization or simultaneous optimization.

The last two problems addressed in this article involve finding a lexicographically
optimal schedule under strict or weak precedence constraints, where the criteria fmax, gmax,
and Cmax are prioritized as primary, secondary, and tertiary objectives, respectively. These
problems are represented as 1j �; 2� subpt;BAjLexðfmax; gmax;CmaxÞ and
1j �; 2� subpt;BAjLexðfmax; gmax;CmaxÞ. An optimal solution for 1j � jLexðq1; q2; . . . ;qkÞ
is defined as the best possible schedule for 1j � jqk within the subset of schedules that are
already optimal for 1j � jLexðq1; q2; . . . ;qk�1Þ. This approach is known as lexicographical
optimization or hierarchical optimization (Hoogeveen, 2005).

The structure of this article is as follows: “Literature Review” offers a review of relevant
research in the field. “Algorithms for Pareto Scheduling Two-subassembly Products with
Precedence Constraints” introduces Oðn4Þ-time algorithms for
1j �; 2� subpt;BAjðCmax; fmaxÞ and 1j �; 2� subpt;BAjðCmax; fmaxÞ. “The Experiments”,
the experiment of the Algorithm Cmax-Fmax is given and compared with the algorithm of
1j2� subpt;BAjðCmax; fmaxÞ. “Algorithms for Lexicographical Scheduling
Two-subassembly Products with Precedence Constraints” presents Oðn4Þ-time algorithms
for 1j �; 2� subpt;BAjLexðfmax; gmax;CmaxÞ and
1j �; 2� subpt;BAjLexðfmax; gmax;CmaxÞ. In conclusion, “Conclusions” discusses potential
directions for future research.

LITERATURE REVIEW
For an in-depth exploration of multicriteria scheduling and batch scheduling, readers are
encouraged to consult the surveys provided in Hoogeveen (2005), T’kindt & Billaut (2006),
Herzel, Ruzika & Thielen (2021) and Potts & Kovalyov (2000), Allahverdi et al. (2008),
respectively. In this article, we focus specifically on discussing results that are directly
relevant to the scheduling of two-subassembly products within the context of batch
availability.

Baker (1988) initially introduced the model of scheduling two-subassembly products
with the goal of minimizing total completion time, denoted as 1j2� subpt;BAj�Cj.
Operating under the agreeability assumption—where the processing time of a product’s
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common subassembly is shorter than another’s whenever the same relationship holds for
their unique subassemblies—he devised an Oðn2Þ-time algorithm. Later, Coffman et al.
(1990) enhanced this algorithm, reducing the runtime to Oðn log nÞ. Subsequently,
Gerodimos, Glass & Potts (2000) proposed an Oðn2Þ-time dynamic programming
algorithm for 1j2� subpt;BAjLmax. They also demonstrated that the problem of
minimizing the total number of late products, denoted as 1j2� subpt;BAj�Uj, is NP-hard
(here, Uj ¼ 1 if Cj > dj and Uj ¼ 0 otherwise). To address 1j2� subpt;BAj�Uj, they
provided a pseudo-polynomial time dynamic programming solution. Furthermore, for the
special case of 1j2� subpt;BAj�Uj where all common subassemblies share identical
processing times, they developed an Oðn4 log nÞ-time dynamic programming algorithm.
Wagelmans & Gerodimos (2000) later refined the algorithm in Gerodimos, Glass & Potts
(2000) for 1j2� subpt;BAjLmax, reducing the runtime to Oðn log nÞ. Yang (2004a)
explored a different scenario where common subassemblies are divided into multiple
families, each with setup times that are sequence-independent but not identical. He
introduced a branch-and-bound algorithm aimed at minimizing total completion time. In
a separate study, Yang (2004b) investigated the problem in the context of parallel
machines, with the constraint that both subassemblies of a product must be processed on
the same machine. He proposed two heuristic approaches to generate near-optimal
schedules for minimizing total completion time. Li (2023) examined
1j2�subpt;BAjðCmax; LmaxÞ, a bicriteria scheduling problem for two-subassembly
products on a single facility, focusing on minimizing both makespan and maximum
lateness, and developed an Oðn2 log nÞ-time algorithm with linear memory usage.

If all products consist solely of common subassemblies (i.e., all tð2Þj ¼ 0), then the
problem of scheduling two-subassembly products simplifies to the serial-batch scheduling
problem. This problem can be modeled in two ways based on the batch capacity—the
largest number of products that can be processed within a single batch. The first is the
bounded model, where the batch capacity is limited, denoted as b < n, and the second is the
unbounded model, where the batch capacity is unlimited, denoted as b � n.

Over the past two decades, serial-batch scheduling problems have received extensive
attention and investigation (Baptiste, 2000; Cheng & Kovalyov, 2001; Yuan, Yang & Cheng,
2004; Ng, Cheng & Yuan, 2002; Webster & Baker, 1995; He, Lin & Yuan, 2008; He et al.,
2013a, 2013b; He, Lin & Lin, 2015; Geng, Yuan & Yuan, 2018). Among the contributions,
Baptiste (2000) introduced an Oðn14 log nÞ-time algorithm for 1jSUB; rj; pj ¼ pjLmax and
1jSBB; rj; pj ¼ pjLmax, where products have varying release dates but identical processing

times. In this context, “SUB” refers to the unbounded model of serial-batch scheduling,
while “SBB” refers to the bounded model. Cheng & Kovalyov (2001) explored serial batch
scheduling problems with the objective of minimizing various regular cost functions. For
products with equal release dates, they developed dynamic programming algorithms
aimed at minimizing several key criteria: maximum lateness, the number of late products,
total tardiness, total weighted completion time, and total weighted tardiness, under the
condition of equal due dates. These algorithms are polynomial when the number of
distinct due dates or processing times is fixed. Additionally, they proposed more efficient
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algorithms for certain special cases and established the NP-hardness for several specific
cases of the bounded model.

By suitably adjusting the release dates and due dates, problems
1j �; SUB; rj; pj ¼ pjLmax (involving weak precedence constraints) and 1j �; SUBjLmax

(where products have varying processing times but identical release dates) can be
transformed in Oðn2Þ time into 1jSUB; rj; pj ¼ pjLmax and 1jSUBjLmax (Yuan, Yang &
Cheng, 2004; Ng, Cheng & Yuan, 2002). These transformed problems can then be solved in

Oðn14 log nÞ and Oðn2Þ time, respectively (Baptiste, 2000; Webster & Baker, 1995).
He, Lin & Yuan (2008) developed an Oðn2Þ-time algorithm for problem

1jSUBjðCmax; LmaxÞ. This result was subsequently enhanced to an Oðn5Þ-time algorithm
(He et al., 2013a), and further improved to an Oðn3Þ-time algorithm for problem

1jSUBjðCmax; fmaxÞ (He et al., 2013b). He, Lin & Lin (2015) also proposed an Oðn6Þ-time
algorithm for 1jSBBjðCmax; LmaxÞ. Additionally, Geng, Yuan & Yuan (2018) introduced

Oðn4Þ-time algorithms for both 1jSBBjðCmax; fmaxÞ and 1j �; SUBjðCmax; fmaxÞ. They also
devised an Oðn2Þ-time algorithm for problem 1j �; SUBjðCmax; LmaxÞ, and demonstrated
that problems 1j �; SBB; b ¼ 2jLmax and 1j �; SBB; b ¼ 2jLmax are strongly NP-hard.

This article addresses multicriteria scheduling problems with theoretical significance:
optimizing makespan and maximum cost under batch availability and precedence
constraints. The polynomial-time complexity of our proposed Oðn4Þ algorithms is critical:
it demonstrates it is computationally feasible to obtain optimal solutions for these
problems, contrasting with NP-hard scheduling problems where only heuristic solutions
exist.

To the best of our knowledge, problems 1j �; 2� subpt;BAjðCmax; fmaxÞ,
1j �; 2� subpt;BAjðCmax; fmaxÞ, 1j �; 2� subpt;BAjLexðfmax; gmax;CmaxÞ and
1j �; 2� subpt;BAjLexðfmax; gmax;CmaxÞ have not been studied in previous research. In

this article, we present Oðn4Þ-time algorithms to solve each of these problems. Note that
(Li, 2023) focused on a specific variant of the first problem, where products are not subject
to precedence constraints, and the objective is to minimize maximum lateness rather than
maximum cost.

While earlier studies focused on single-objective batch scheduling, recent research has
shifted toward multicriteria optimization in dynamic manufacturing systems. Li (2024)
proposed a hybrid heuristic for two-subassembly scheduling with energy consumption
constraints, extending the batch availability model to sustainable manufacturing. Hidri &
Tlija (2024) addressed sequence-dependent setup times in hybrid flow shops, a scenario
analogous to our unique subassembly processing with individual setup costs. These
advancements highlight the growing need to model real-world complexities like dynamic
precedence rules and multi-echelon inventory constraints.

Additionally, Li (2024) examined the bounded model for scheduling two-subassembly
products with equal processing times for all common subassemblies. Hidri & Tlija (2024)
and Xu et al. (2024) introduces a heuristic algorithm to solve this complex problem. The
flexible job shop scheduling problem (FJSP) is (Serna et al., 2021) combination problem. In
this context, Li (2024) developed an Oðn2 log nÞ-time algorithm for the simultaneous
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optimization of makespan and maximum lateness, along with an Oðn4Þ-time algorithm for
the lexicographical optimization involving two maximum lateness objectives and
makespan.

ALGORITHMS FOR PARETO SCHEDULING
TWO-SUBASSEMBLY PRODUCTS WITH PRECEDENCE
CONSTRAINTS
In this section, we will present an Oðn4Þ-time algorithm designed to solve problem
1j �; 2� subpt;BAjðCmax; fmaxÞ. Additionally, the final schedule produced by this
algorithm is also optimal for the single criterion problem 1j �; 2� subpt;BAjfmax.
Towards the end of this section, we will demonstrate how minor adjustments to the
algorithm allow it to efficiently solve 1j �; 2� subpt;BAjðCmax; fmaxÞ in Oðn4Þ time as
well.

Precedence constraints on T can be represented using a graph G ¼ <V ;E > , where
each vertex in V corresponds to a product in T, and each edge in E represents a pair
<Tp;Tj > indicating that Tp � Tj, i.e., Tp must precede Tj.

In the context of automotive component manufacturing, a workshop’s production
scheduling problem for gearbox systems can be abstracted into the dual-component
product scheduling model studied in this article. Specifically, each gearbox product
consists of two types of subassemblies: one is a common subassembly shared by all models
(e.g., the gearbox housing), which must be processed in batches with a 2-h mold setup time
(d ¼ 2) required before each batch production; the other is a customized unique
subassembly (e.g., the gear set) for different vehicle models, which requires no additional
preparation time and can be processed individually. During production, strict assembly
sequence constraints exist between some models—for example, the basic-type gearbox
must be completed before the high-performance type—corresponding to the strict
precedence constraint (Ti � Tj) in the model, meaning that the successor product can only
start production after both the common and unique subassemblies of the predecessor
product are completed. This scenario necessitates simultaneous optimization of two key
objectives: minimizing makespan (Cmax) to enhance equipment utilization by reducing idle
time of the CNC machining center, and minimizing maximum delay cost (fmax) to avoid
contractual penalty fees for late deliveries. This scenario necessitates simultaneous
optimization of two key objectives: minimizing makespan (Cmax) to enhance equipment
utilization by reducing idle time of the CNC machining center, and minimizing maximum
delay cost (fmax) to avoid contractual penalty fees for late deliveries.

The integration of these constraints and objectives is visualized in the following
production scheduling flowchart (Fig. 1), which illustrates the batch processing of
common subassemblies, individual machining of unique subassemblies, and the
enforcement of strict precedence relationships within the dual-component scheduling
framework.

Recall that Lawler’s algorithm (Lawler, 1973) solves 1j � jfmax (the problem of
minimizing maximum cost under precedence constraints on a single facility) in Oðn2Þ
time. The algorithm constructs the schedule in reverse order, relying on the following key
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insight: Let U be the set of unscheduled products and PU be the total processing time of all
products in U. If a product Tj has no successors in U and has the smallest fjðPUÞ-value—
i.e., fjðPUÞ ¼ minTj02Ufj0ðPUÞ—then Tj should be scheduled at the last position among all
products in U to achieve an optimal schedule.

In the following algorithm (Algorithm 1: Algorithm Cmax-Fmax), we adapt the idea of
Lawler’s algorithm to schedule the unique subassemblies of products in T0 (where T0

consists of n0 unscheduled independent products, meaning there are no precedence
constraints among them) within a designated time interval ½~t;~t þ �Tj02T0 tð2Þj0 Þ. For
i ¼ n0; n0 � 1; . . . ; 1, we select a product TSðiÞ 2 U ¼ T0nfTSðn0Þ;TSðn0�1Þ; . . . ;TSðiþ1Þg
such that fSðiÞð~t þ �Tj02Ut

ð2Þ
j0 Þ ¼ minTj2Ufjð~t þ �Tj02Ut

ð2Þ
j0 Þ and place it as the last product in

U. The sequence Sð1Þ; Sð2Þ; . . . ; Sðn0Þ represents the indices of the products in T0 which
are processed on the facility during the time interval ½~t;~t þ �Tj0 2T0tð2Þj0 Þ. For simplicity, we
will refer to this sequence as being scheduled in Lawler’s order.

Let us briefly explain the meaning of ~t, which will become clearer in Step 2.2 of
Algorithm Cmax-Fmax. The algorithm essentially involves scheduling products in reverse
order, moving backward along the time axis (from right to left). Suppose we begin
scheduling certain unique subassemblies immediately after the completion of the i-th
batch of common subassemblies (counting from left to right). In this context, ~t
represents the exact beginning time of the first unique subassembly among those being
scheduled.

Figure 1 Production scheduling flowchart for automotive gearbox systems. Full-size DOI: 10.7717/peerj-cs.3093/fig-1
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We will utilize the following well-established method for multicriteria scheduling
(Hoogeveen, 2005) to identify Pareto optimal schedules.

Lemma 1 (Hoogeveen, 2005). Let y be the optimal value for the problem of minimizing s
under the constraint q � x̂(where x̂ is a known upper bound on q), and let x be the optimal
value for the problem of minimizing q under the constraint s � y. Then, ðx; yÞ is identified
as a Pareto optimal point for two criteria q and s.

The following lemma outlines the structure of the Pareto optimal schedules that we aim
to identify. The proof is omitted here as it closely parallels the one presented in Gerodimos,
Glass & Potts (2000).

Lemma 2. For every Pareto optimal point in 1j �; 2� subpt;BAjðCmax; fmaxÞ, there is an
associated schedule where the common subassembly of each product is placed in the batch
that directly precedes its unique subassembly.

According to Lemma 2, a feasible schedule can be expressed as a sequence of product-
subsequences Q1;Q2; . . . ;Qn, where Qi comprises the products whose common
subassemblies are processed in the i-th batch. Particularly, we assume that only the last l
product-subsequences are nonempty. Hence, it is evident that the subsequences
Qn�lþ1;Qn�lþ2; . . . ;Qn form a partition of T and must adhere to the precedence
constraints.

The sub-schedule for the products in Qi can be represented as kili, where ki is a batch
containing the common subassemblies of the products in Qi, and li is a unique-
subsequence comprising the unique subassemblies of the products in Qi arranged in
Lawler’s order. Let tðkiÞ ¼ �Tj2Qi t

ð1Þ
j and tðliÞ ¼ �Tj2Qi t

ð2Þ
j represent the processing

times for the batch and the unique-subsequence of Qi, respectively. The processing
time of the entire product-subsequence Qi is denoted by tðQiÞ ¼ tðkiÞ þ tðliÞ.
Additionally, the processing time for any empty product-subsequence is considered to be
zero. The setup time for batch ki is denoted by dðkiÞ, which is d if ki is nonempty, and 0
otherwise. The beginning time and completion time for Qi are denoted by BðQiÞ and
CðQiÞ, respectively. We have the relationship: CðQiÞ ¼ BðQiÞ þ tðQiÞ. Therefore,
we obtain:

Lemma 3. In a feasible schedule S ¼ Q1;Q2; . . . ;Qnð Þ, the relationship is given by:
BðQ1Þ ¼ dðk1Þ, BðQiÞ ¼ CðQi�1Þ þ d ðkiÞ, i ¼ 2; . . . ; n.

A natural feasible schedule Sð0Þ ¼ fQð0Þ
1 ;Qð0Þ

2 ; . . . ;Qð0Þ
n g can be constructed, where Qð0Þ

i

includes all products (vertices) with an out-degree of zero in the graph Gn [n
h¼iþ1 Q

ð0Þ
h ,

i ¼ n; n� 1; . . . ; 1. The construction of Sð0Þ from G requires Oðn2Þ time.
Let � Tð Þ represent the set of all feasible schedules forT. Our focus is on the subset of

schedules in � Tð Þ that possess the characteristics outlined in Lemmas 2 and 3. Define
� T; yð Þ as the set of schedules in � Tð Þ with a fmax-value less than y. Clearly,
� T;þ1ð Þ ¼ � Tð Þ. Let POðTÞ represent the Pareto set, which includes all Pareto
optimal points, with each point associated with a schedule.

We are ready to present the algorithm for solving 1j �; 2� subpt;BAjðCmax; fmaxÞ,
Algorithm Cmax-Fmax (Algorithm 1).
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Step 1 of Algorithm Cmax-Fmax can be executed in Oðn2Þ time. Step 2 requires Oðn2Þ
time for each pass. During each pass of Step 2.1, every product is checked exactly once,
starting from the last product-subsequence and proceeding to the first. Multiple passes of
Steps 2.1 and 2.2 may occur in a single round. Steps 3 and 4 can be completed in Oð1Þ time
per round.

In each pass, at least one product must be moved to the left. It is important to note that
in Algorithm 1, products can only be moved leftward. Given that there are n product-
subsequences, each product can be moved to the left at most n� 1 times. Consequently,
the total number of passes is Oðn2Þ. Therefore, the overall running time of Algorithm
Cmax-Fmax is Oðn4Þ.

Heuristic methods (e.g., Hidri & Tlija, 2024) are typically employed to handle complex
dynamic constraints such as sequence-dependent setup times, but they come at the cost of
optimality. The exact algorithm proposed above achieves a balance between computational
efficiency and solution quality in polynomial time through rational design of batch
structures (e.g., batch processing of common subassemblies and scheduling of unique
subassemblies in Lawler’s order). Compared with heuristic methods, this algorithm
provides theoretical optimality guarantees; compared with high-complexity exact methods
(such as Oðn6Þ algorithms), its computational efficiency is significantly improved. Future

Algorithm 1 (Algorithm Cmax-Fmax).

Step 1. Set POðTÞ ¼ [, e ¼ 0, and yðeÞ ¼ þ1. Let the initial schedule Sð0Þ ¼ ðQð0Þ
1 ;Qð0Þ

2 ; . . . ;Qð0Þ
n Þ be the

natural feasible schedule described earlier.

Step 2. During the ðeþ 1Þ-th round:

Set yðeþ1Þ ¼ fmaxðSðeÞÞ. Adjust SðeÞ ¼ ðQðeÞ
1 ;QðeÞ

2 ; . . . ;QðeÞ
n Þ to construct the new schedule

Sðeþ1Þ ¼ ðQðeþ1Þ
1 ;Qðeþ1Þ

2 ; . . . ;Qðeþ1Þ
n Þ as follows:

Step 2.1. For i ¼ n; n� 1; . . . ; 1, verify the precedence constraints and the inequality f ðeÞj < yðeþ1Þ for each
product Tj in QðeÞ

i . The products in QðeÞ
i should be checked in reverse order.

Case (1). If a product Tk 2 QðeÞ
i is found such that at least one of its successors has already been moved into

QðeÞ
i , and if i ¼ 1, then set Sðeþ1Þ ¼ [ and proceed to Step 3. Otherwise (i 6¼ 1), remove Tk from QðeÞ

i and
insert it into QðeÞ

i�1, appending Tk to the end of QðeÞ
i�1. Job Tk will not be rechecked when next we are checking

QðeÞ
i�1.

Case (2). If a product Tk 2 QðeÞ
i is found where the inequality f ðeÞk < yðeþ1Þ is violated, and if i ¼ 1 or Tk is the

last product in QðeÞ
i , then set Sðeþ1Þ ¼ [ and proceed to Step 3. Otherwise, remove Tk along with all the

products in QðeÞ
i that are in QðeÞ

i but processed earlier than Tk, and insert them into QðeÞ
i�1 (following the

optimality of Lawler’s order). Append these moved products to the end of QðeÞ
i�1. These products will not be

rechecked when next we are checking QðeÞ
i�1.

Step 2.2. Update the modified schedule SðeÞ as follows: For i ¼ 1; 2; . . . ; n, first process the common
subassemblies of the products in QðeÞ

i as a batch. Then, process the unique subassemblies of the products in

QðeÞ
i individually, following Lawler’s order. Update the cost for each product in the schedule according to

Lemma 3.

Step 2.3. Repeat Steps 2.1 and 2.2 until all inequalities and precedence constraints in the modified schedule SðeÞ

are satisfied. Once no violations remain, let Sðeþ1Þ be the final modified schedule.

Step 3. If Sðeþ1Þ ¼ [, then set POðTÞ ¼ POðTÞ [ fðCmaxðSðeÞÞ; fmaxðSðeÞÞ; SðeÞÞg and return POðTÞ.
Otherwise, if CmaxðSðeþ1ÞÞgt;CmaxðSðeÞÞ, then update POðTÞ ¼ POðTÞ [ fðCmaxðSðeÞÞ; fmaxðSðeÞÞ; SðeÞÞg.

Step 4. Set e ¼ eþ 1 and go to Step 2.
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research can further expand its applicability in industrial scenarios by integrating dynamic
constraint management (e.g., real-time priority adjustment) and parallel computing
technologies (e.g., GPU acceleration).

Lemma 4 Let SðeÞ ¼ ðQðeÞ
1 ;QðeÞ

2 ; . . . ;QðeÞ
n Þ be obtained at the e-th round of Algorithm Cmax-

Fmax, where e � 0. Let S ¼ ðQ1;Q2; . . . ;QnÞ be any one in � T; yðeÞ
� �

. Then,

[n
q¼iQq � [n

q¼iQ
ðeÞ
q , i ¼ n; n� 1; . . . ; 1.

Proof 1 The proof is conducted using induction on e.

The base case e ¼ 0 is verified trivially. The initial schedule Sð0Þ ¼ ðQð0Þ
1 ;Qð0Þ

2 ; . . . ;Qð0Þ
n Þ is

the natural feasible schedule, which inherently satisfies the lemma. This is because each
product in QðeÞ

i must have a successor in QðeÞ
iþ1, and therefore, it cannot be included in Q

ðeÞ
iþ1 in

any schedule in � T; yð0Þ
� � ¼ � Tð Þ, i ¼ 1; 2; . . . ; n� 1.

Assume that the lemma holds for SðeÞ and any schedule in � T; yðeÞ
� �

. Now, consider

Sðeþ1Þ and any schedule S 2 � T; yðeþ1Þ� �
. Since yðeþ1Þ < yðeÞ, S 2 � T; yðeÞ

� �
. By the

inductive assumption, the lemma holds for SðeÞ and S. Therefore, for i ¼ n; n� 1; . . . ; 1, we
have [n

q¼iQq � [n
q¼iQ

ðeÞ
q . Equivalently, we have: for i ¼ 1; 2; . . . ; n, [i

q¼1Q
ðeÞ
q � [i

q¼1Qq.

Consider the first (i.e., rightmost) inequality violation during the ðeþ 1Þ-th round. Let the
first moved product be Tk 2 QðeÞ

i . Since the inequality f ðeÞk < yðeþ1Þ does not hold and the
unique subassemblies of the products in QðeÞ

i are scheduled in Lawler’s order, Tk and all the
products which are in QðeÞ

i but scheduled earlier than Tk cannot stay in [n
q¼iQ

ðeÞ
q . Therefore,

we move these products from QðeÞ
i into QðeÞ

i�1. By the inductive assumption, in S any of these
products cannot stay in [n

q¼iQq, otherwise the last one will complete no earlier than CkðSðeÞÞ
and thus incur an inequality violation.

After moving these products to the left in SðeÞ, we further adjust SðeÞ to obey the precedence
constraints. Observing S accordingly, we can know that S coincides with the adjustment.
Then we consider the next inequality violation, and so on. By repeating this argument, we
ultimately demonstrate that the lemma holds for the ðeþ 1Þ-th round.

By applying the principle of induction, the proof is thereby completed.
We get:

Lemma 5 Let SðeÞ ¼ ðQðeÞ
1 ;QðeÞ

2 ; . . . ;QðeÞ
n Þ be obtained at the e-th round of Algorithm Cmax-

Fmax, where e � 0. Let S ¼ ðQ1;Q2; . . . ;QnÞ be any one in � T; yðeÞ
� �

. Then:
(1) lðSðeÞÞ � lðSÞ, where lðSðeÞÞ and lðSÞ represent the number of nonempty

product-subsequences in SðeÞ and S respectively;
(2) BðQðeÞ

i Þ � BðQiÞ, i ¼ 1; 2; . . . ; n;
(3) CðQðeÞ

i Þ � CðQiÞ, i ¼ 1; 2; . . . ; n.

Lemma 6 Let SðeÞ be obtained at the e-th round of Algorithm Cmax-Fmax, where e � 0. If

SðeÞ ¼ [, then � T; yðeÞ
� � ¼ [. Otherwise, SðeÞ has minimum makespan in all schedules in

� T; yðeÞ
� �

.
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Proof 2 In the implementation of Algorithm Cmax-Fmax, we will get SðeÞ ¼ [ when one of
the following two cases occurs: Case (1). Find a product Tk 2 Qðe�1Þ

i such that at least one of
its successors has already been moved into Qðe�1Þ

i and i ¼ 1. Case (2). Find a product

Tk 2 Qðe�1Þ
i where f ðe�1Þ

k < yðeÞ is violated, and either i ¼ 1 or Tk is the last product in Q
ðe�1Þ
i .

In Case (1), we know that Tk cannot be scheduled without violating the precedence
constraints in any feasible schedule. Therefore, we set SðeÞ ¼ [ indicating that

� T; yðeÞ
� � ¼ [. In Case (2), if i ¼ 1, we know that no feasible schedule can arrange Tk with

a cost less than yðeÞ. If Tk is the last product in Qðe�1Þ
i , then there will be an empty

product-subsequence between two nonempty product-subsequences. We do not need to
consider such a case. Therefore, we also set SðeÞ ¼ [ indicating that � T; yðeÞ

� � ¼ [.

Conversly, if SðeÞ 6¼ [, then by Lemma 5, SðeÞ has minimum makespan in all schedules in

� T; yðeÞ
� �

.

By integrating the results of Lemmas 1 and 6, we obtain the following result:

Theorem 1 Algorithm Cmax-Fmax solves problem 1j �; 2� subpt;BAjðCmax; fmaxÞ in Oðn4Þ
time. Moreover, the final schedule generated by the algorithm has the minimum makespan
in all optimal schedules for 1j �; 2�subpt;BAjfmax.

To solve 1j �; 2� subpt;BAjðCmax; fmaxÞ (the weak precedence constraints), we need to
modify Step 1, Step 2.1 and Step 2.2 of Algorithm Cmax-Fmax slightly. In Step 1, we set the
initial schedule Sð0Þ ¼ ð[;[; . . . ;[;TÞ, where the common subassemblies of the
products inT are first processed as a batch, followed by the unique subassemblies, which
are processed individually according to Lawler’s order while adhering to the precedence
constraints. That is, we use the actual Lawler’s algorithm (Lawler, 1973) to schedule the
unique subassemblies of the products in T in the time interval

½dþ �Tj02Ttð1Þj0 ; dþ �Tj02Ttð1Þj0 þ �Tj02Ttð2Þj0 Þ. In Step 2.1, since the common subassemblies

of Tk and its successors can be in the same batch, we do not need Case (1). We just need
Case (2) to ensure that the predecessors of Tk and Tk obey the weak precedence
constraints. In Step 2.2, the unique subassemblies of the products inQðeÞ

i must be processed
individually, following Lawler’s order and complying with the precedence constraints.

Then we get:

Theorem 2Modified Algorithm Cmax-Fmax solves problem 1j �; 2� subpt;BAjðCmax; f maxÞ
in Oðn4Þ time. Moreover, the final schedule generated by the algorithm has the minimum
makespan in all optimal schedules for 1j �; 2� subpt;BAjf max.

THE EXPERIMENTS
In this section, we present experimental results of our Algorithm Cmax-Fmax. Next, we will
compare with algorithms for Pareto scheduling two-subassembly products without
precedence constraints. The algorithm, implemented in PyCharm, was tested on randomly
generated instances. We varied key factors. The number of jobs n 2 ð10; 100Þ. The
processing time for the common subassembly is uniformly distributed over the integer
range [1, 5], and the processing time for the unique subassembly is uniformly distributed
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over the integer range [1, 10]. To implement the algorithm, 10 experiments were
conducted for each order of magnitude of the job.

The average and maximum running times of Algorithm 1 in the article are shown in
Table 1. In Table 2, we present the running times of the problem
1j2� subpt;BAjðCmax; fmaxÞ. To more effectively demonstrate the variation in average
execution time relative to the number of jobs across both experimental conditions, the
temporal performance trends are visualized in Figs. 2 and 3. using linear graphical
representations.

Figure 2 demonstrates Algorithm Cmax-Fmax performance With precedence constraints.
This figure compares the average and maximum execution times of Algorithm Cmax-Fmax

under precedence constraints. The x-axis represents the number of jobs (ranging from 10
to 100), while the y-axis shows the runtime in seconds. The linear trend demonstrates that
the algorithm’s runtime scales polynomially with problem size, as expected from its
theoretical Oðn4Þcomplexity.

Figure 3 demonstrates Algorithm Cmax-Fmax performance without precedence
constraints. Similar to Fig. 1, this figure plots the runtime of Algorithm 1 but excludes

Table 1 Computational times of Algorithm Cmax-Fmax with precedence constraints.

Number of jobs Average-time (s) Max-times (s)

10 2.107859e−04 2.729893e−04

20 7.882357e−04 8.480549e−04

30 1.990342e−03 2.228498e−03

40 4.230165e−03 7.481098e−03

50 6.762409e−03 7.446527e−03

60 1.205318e−02 1.517057e−02

70 1.542490e−02 1.956534e−02

80 2.106686e−02 2.891660e−02

90 3.026404e−02 3.747702e−02

100 4.073451e−02 5.063152e−02

Table 2 Computational times of Algorithm Cmax-Fmax without precedence constraints.

Number of jobs Average time (s) Max time (s)

10 1.636958E−03 2.530813E−03

20 1.394284E−02 1.494074E−02

30 5.668330E−02 5.867529E−02

40 1.624435E−01 1.744251E−01

50 3.673631E−01 3.688035E−01

60 7.248310E−01 7.265387E−01

70 1.296956E+00 1.299667E+00

80 2.157462E+00 2.162263E+00

90 3.386713E+00 3.426600E+00

100 5.072271E+00 5.111201E+00
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precedence constraints. The steeper slope of the curves indicates that Algorithm Cmax-Fmax

with precendence constraints significantly reduce computational overhead.
The computational efficiency comparison between Algorithm Cmax-Fmax (with

precedence constraints) and Algorithm Cmax-Fmax (without precedence constraints) is
quantified in Fig. 4. This area chart tracks the growing performance gap as job size (n)
increases from 10 to 100. Key observations include: At n ¼ 10, the time difference is
minimal (0.0014 s). The gap grows polynomially, reaching 5.03 s at n ¼ 100. This
visualization demonstrates how Algorithm 1’s strategic batch scheduling under
precedence constraints consistently outperforms traditional approaches, particularly for
n > 50 where the difference becomes operationally significant in real-world scheduling
scenarios.

The significance of algorithm running time extends beyond mere efficiency; it also
serves as a quantitative indicator of theoretical solvability, thereby determining whether
the model can transition from a theoretical framework to practical implementation.

Figure 2 Average-time trend of Algorithm Cmax-Fmax with precedence constraints as the number of
jobs increases. Full-size DOI: 10.7717/peerj-cs.3093/fig-2
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For real-world instances (n � 100), Oðn4Þensures solvability within seconds. Compared
to others, slower algorithms (e.g., Oðn6Þ for bounded batch scheduling He, Lin & Lin
(2015)) become infeasible.

ALGORITHMS FOR LEXICOGRAPHICAL SCHEDULING
TWO-SUBASSEMBLY PRODUCTS WITH PRECEDENCE
CONSTRAINTS
Existing exact methods mostly focus on bi-objective optimization, while this article first
achieves three-objective lexicographical optimization (fmax; gmax;Cmax), which is closer to
the multi-dimensional optimization needs in practical manufacturing (such as considering
delay penalties, resource costs, and makespan simultaneously).

In this section, we focus on presenting an Oðn4Þ-time algorithm designed to solve
problem 1j �; 2� subpt;BAjLexðfmax; gmax;CmaxÞ. Towards the end of this section, we will

Figure 3 Average-time trend of Algorithm Cmax-Fmax without precedence constraints as the number
of jobs increases. Full-size DOI: 10.7717/peerj-cs.3093/fig-3
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demonstrate how slight modifications to the algorithm enable it to also solve problem

1j �; 2� subpt;BAjLexðfmax; gmax;CmaxÞ in Oðn4Þ time.

Let S	 represent the final schedule produced by Algorithm Cmax-Fmax. According to
Theorem 1, S	 achieves the minimum makespan in all optimal schedules for problem
1j �; 2� subpt;BAjfmax.

Let � T; fmaxðS	Þð Þ denote the set of feasible schedules for T whose fmax-values are
equal to fmaxðS	Þ. It is important to note that Lemma 2 (with “Pareto optimal” replaced by
“lexicographically optimal”) and Lemma 3 still apply to 1j �; 2� subpt;BAjLexðfmax;

gmax;CmaxÞ. Therefore, our focus is on the schedules in � T; fmaxðS	Þð Þ that exhibit the
properties described in Lemmas 2 and 3. Let � T; fmaxðS	Þ;Yð Þ represent the set of
schedules in � T; fmaxðS	Þð Þ whose gmax-values are less than Y. Consequently, we have
� T; fmaxðS	Þ;þ1ð Þ ¼ � T; fmaxðS	Þð Þ.

Figure 4 Average time difference between algorithm Cmax-Fmax (With precedence constraints) and
algorithm Cmax-Fmax (Without precedence constraints). Full-size DOI: 10.7717/peerj-cs.3093/fig-4
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We are ready to present the algorithm for solving
1j �; 2� subpt;BAjLexðfmax; gmax;CmaxÞ, Algorithm Fmax-Gmax-Cmax (Algorithm 2).

For further details on the cyclic queue data structure and its basic operations,
DEQUEUE and ENQUEUE, the reader may refer to Cormen et al. (2022).

Similar to the time complexity analysis of Algorithm Cmax-Fmax, it can be demonstrated
that the running time of Algorithm Fmax-Gmax-Cmax is Oðn4Þ.

We get:

Lemma 7 Let SðeÞ ¼ ðQðeÞ
1 ;QðeÞ

2 ; . . . ;QðeÞ
n Þ be obtained at the e-th round of Algorithm Fmax-

Gmax-Cmax, where e � 0. Let S ¼ ðQ1;Q2; . . . ;QnÞ be any one in � T; fmaxðS	Þ;Y ðeÞ� �
.

Then, [n
q¼iQq � [n

q¼iQ
ðeÞ
q , i ¼ n; n� 1; . . . ; 1.

Lemma 8 Let SðeÞ ¼ ðQðeÞ
1 ;QðeÞ

2 ; . . . ;QðeÞ
n Þ be obtained at the e-th round of Algorithm Fmax-

Gmax-Cmax, where e � 0. Let S ¼ ðQ1;Q2; . . . ;QnÞ be any one in � T; fmaxðS	Þ;Y ðeÞ� �
. Then:

Algorithm 2 (Algorithm Fmax-Gmax-Cmax).

Step 1. Set e ¼ 0 and Y ðeÞ ¼ þ1. Let the initial schedule Sð0Þ ¼ ðQð0Þ
1 ;Qð0Þ

2 ; . . . ;Qð0Þ
n Þ ¼ S	, where S	 is the

last schedule generated by Algorithm Cmax-Fmax. The products in Qð0Þ
i are stored in a cyclic queue,

i ¼ 1; 2; . . . ; n.

Step 2. During the ðeþ 1Þ-th round:

Set Y ðeþ1Þ ¼ gmaxðSðeÞÞ. Adjust SðeÞ ¼ ðQðeÞ
1 ;QðeÞ

2 ; . . . ;QðeÞ
n Þ to construct the new schedule

Sðeþ1Þ ¼ ðQðeþ1Þ
1 ;Qðeþ1Þ

2 ; . . . ;Qðeþ1Þ
n Þ as follows:

Step 2.1. For i ¼ n; n� 1; . . . ; 1, for each product Tj in Q
ðeÞ
i , check both the precedence constraints and the two

inequalities f ðeÞj � fmaxðS	Þ and gðeÞj <Yðeþ1Þ. The products in QðeÞ
i are checked in reverse order, starting from

the end of the queue.

Case (1). If a product Tk 2 QðeÞ
i is found where at least one of its successors has already been moved into QðeÞ

i ,
and if i ¼ 1, then set Sðeþ1Þ ¼ [ and proceed to Step 3. Otherwise (i 6¼ 1), remove Tk from QðeÞ

i and insert it
into QðeÞ

i�1, appending it to the end of QðeÞ
i�1. Job Tk will not be rechecked when next we are checking QðeÞ

i�1.

Case (2). If a product Tk 2 QðeÞ
i is found where either f ðeÞk � fmaxðS	Þ or gðeÞk <Yðeþ1Þ is violated, let EkðSðeÞÞ

denote the set of products that are in QðeÞ
i but processed earlier than Tk in SðeÞ. Let SEkðSðeÞÞ represent the set

of suitable earlier products of Tk. That is,
SEkðSðeÞÞ ¼ fTj 2 EkðSðeÞÞjfjðCkðSðeÞÞÞ � fmaxðS	Þ ^ gjðCkðSðeÞÞÞ <Yðeþ1Þg:We then distinguish between two
different subcases:

Subcase (2.1). SEkðSðeÞÞ 6¼ [.

Pick a product in SEkðSðeÞÞ and let it be scheduled immediately after Tk in the same product-subsequence. Thus,
this product is completed exactly at CkðSðeÞÞ.

Subcase (2.2). SEkðSðeÞÞ ¼ [.

If i ¼ 1 or Tk is the last scheduled product in QðeÞ
i , then set Sðeþ1Þ ¼ [ and proceed to Step 3. Otherwise,

(DEQUEUE) remove Tk along with all the products in EkðSðeÞÞ, and (ENQUEUE) insert these products into

QðeÞ
i�1. These products will not be rechecked when next we are checking QðeÞ

i�1.

Step 2.2. Update the modified schedule SðeÞ ¼ ðQðeÞ
1 ;QðeÞ

2 ; . . . ;QðeÞ
n Þ as follows: For i ¼ 1; 2; . . . ; n, first process

the common subassemblies of the products in QðeÞ
i as a batch. Then, process the unique subassemblies of the

products in QðeÞ
i individually in the sorted order (which may differ from Lawler’s order). Update the two

maximum costs for each product in the schedule according to Lemma 3.

Step 2.3. Repeat Steps 2.1 and 2.2 until all inequalities and precedence constraints in the modified schedule SðeÞ

are satisfied. Once no violations remain, let Sðeþ1Þ be the final modified schedule.

Step 3. If Sðeþ1Þ 6¼ [, then set e ¼ eþ 1 and go to Step 2. Otherwise, return SðeÞ.
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(1) lðSðeÞÞ � lðSÞ, where lðSðeÞÞ and lðSÞ represent the number of nonempty
product-subsequences in SðeÞ and S respectively;

(2) BðQðeÞ
i Þ � BðQiÞ, i ¼ 1; 2; . . . ; n;

(3) CðQðeÞ
i Þ � CðQiÞ, i ¼ 1; 2; . . . ; n.

Lemma 9 Let SðeÞ be obtained at the e-th round of Algorithm Fmax-Gmax-Cmax, where e � 0.
If SðeÞ ¼ [, then � T; fmaxðS	Þ;Y ðeÞ� � ¼ [. Otherwise, SðeÞ has minimum makespan in all
schedules in � T; fmaxðS	Þ;YðeÞ� �

.

Theorem 3 Algorithm Fmax-Gmax-Cmax solves 1j �; 2�subpt;BAjLexðfmax; gmax;CmaxÞ in
Oðn4Þ time.

To solve 1j �; 2� subpt;BAjLexðfmax; gmax;CmaxÞ, we need to modify Step 1 and Step
2.1 of Algorithm Fmax-Gmax-Cmax slightly. In Step 1, we set the initial schedule Sð0Þ ¼ S	,
where S	 is the last schedule generated by modified Algorithm Cmax-Fmax. In Step 2.1, since
the common subassemblies of Tk and its successors can be in the same batch, we do not
need Case (1). We just need Case (2) to ensure that the predecessors of Tk and Tk obey the
weak precedence constraints.

Then we get:

Theorem 4 Modified Algorithm Fmax-Gmax-Cmax solves

1j �; 2� subpt;BAjLexðf max; gmax;CmaxÞ in Oðn4Þ time.

For Algorithm Fmax-Gmax-Cmax, we perform the same experiment as in “The
Experiments”. The running time of problem 1j �; 2� subpt;BAjLexðfmax; gmax;CmaxÞ is
shown in Table 3.

Table 3 Computational times of algorithm Fmax-Gmax-Cmax.

Number of jobs Average time (s) Max time (s)

10 5.454063E−04 2.706051E−03

20 1.091480E−03 2.664328E−03

30 2.777719E−03 9.774208E−03

40 1.028388E−02 5.631423E−02

50 9.011396E−03 5.189085E−02

60 1.748489E−02 7.746744E−02

70 1.449437E−02 4.745579E−02

80 1.357992E−02 2.614021E−02

90 3.757528E−02 1.367950E−01

100 2.615252E−02 8.715153E−02

Table 4 Detailed difference.

Aspect Algorithm Cmax-Fmax Algorithm Fmax-Gmax-Cmax

Objective Bicriteria Pareto optimization:
minðCmax; fmaxÞ

Lexicographic tri-criteria optimization:
min fmax ! min gmax ! minCmax

Theoretical basis Lemma 2 (Batch adjacency property) Theorem 4 (Lexicographic optimality)

Output Pareto frontier POðTÞ Optimal schedule Slex
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Table 4 systematically compares two scheduling algorithms, Algorithm Cmax-Fmax and
Algorithm Fmax-Gmax-Cmax, thereby highlighting their distinct optimization paradigms,
theoretical underpinnings, and outputs.

Algorithm Cmax-Fmax targets bicriteria Pareto optimization (minimizing Cmax and fmax

simultaneously) and leverages Lemma 2 to simplify batch sequencing, yielding a Pareto
frontier POðTÞ of non-dominated solutions. In contrast, Algorithm Fmax-Gmax-Cmax

enforces lexicographic tri-criteria priority (fmax ! gmax ! Cmax) grounded in Theorem 4,
producing a optimal schedule Slex. These design choices reflect trade-offs between
exploring solution diversity (Cmax-Fmax) and enforcing strict priority (Fmax-Gmax-Cmax),
enabling application-specific deployment.

CONCLUSIONS
In this article, we explored four multicriteria scheduling problems involving
two-subassembly products with precedence constraints on a fabrication facility, assuming
batch availability of the common subassemblies. We introduced an Oðn4Þ-time algorithm
for the simultaneous optimization of makespan and maximum cost under both strict and
weak precedence constraints. Additionally, we proposed an Oðn4Þ-time algorithm for the
lexicographical optimization of two maximum costs and makespan, also under strict or
weak precedence constraints. Future research could focus on developing algorithms with
improved time complexity for these scheduling problems. A particularly intriguing
direction would be to explore Pareto optimization for a general min-max objective
function, in conjunction with a general min-max or min-sum objective function.

This study provides a foundational framework for multicriteria scheduling of
two-subassembly products, but several promising avenues for extension exist, particularly
those that balance theoretical rigor with industrial applicability:

(1) Parallelization for industrial-scale instances. Given the Oðn4Þ time complexity of the
proposed algorithms, developing GPU-accelerated or distributed (MapReduce)
implementations represents a high-impact direction. Such optimizations would bridge the
gap to real-world manufacturing scenarios with large product portfolios (e.g., automotive
subassembly lines), where real-time scheduling is critical.

(2) Dynamic precedence constraint management. Extending the model to handle
real-time updated precedence graphs (e.g., in flexible manufacturing systems) is vital for
Industry 4.0 applications. Xu et al. (2024) proposed an incremental scheduling algorithm
with Oðn3Þ complexity per update, which could be integrated with our Pareto optimization
framework to accommodate dynamic priority changes (e.g., rush orders or machine
failures). This enhancement would improve adaptability in volatile production
environments.

(3) Energy-aware multicriteria optimization. Incorporating energy consumption as a
tertiary objective aligns with sustainability trends in manufacturing. Recent work by Hidri
& Tlija (2024) shows that dual-objective algorithms can be extended to three criteria with
only polynomial complexity growth. For example, minimizing energy use during batch
setup (d) or unique subassembly processing (tð2Þj ) could be integrated into the
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lexicographical optimization framework, balancing makespan, cost, and environmental
impact.

These directions are based on the theoretical foundation of this research and also
address the unmet demands in industrial scheduling, ensuring the continuous relevance in
both academic research and practical applications.
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