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ABSTRACT
Sentiment structure analysis in Chinese text typically relies on supervised
deep-learning methods for sequence labeling. However, obtaining large-scale labeled
datasets is both resource-intensive and time-consuming. To address these challenges,
this study proposes Dynamically Detecting Subsequence Uncertainty and Diversity
(DDSUD), a Bidirectional Encoder Representations from Transformers
(BERT)-based active learning framework designed to tackle subsequence uncertainty
and enhance the diversity of imbalanced datasets. DDSUD combines subsequence
uncertainty detection, diversity-driven sample selection, and dynamic weighting,
enabling an adaptive balance between these factors throughout the active learning
iterations. Experimental results show that DDSUD achieves performance close to
fully supervised training schemes with only 50% of the data labeled, and outperforms
other state-of-the-art active learning methods with the same amount of labeled data.
Moreover, by dynamically adjusting the trade-off between subsequence uncertainty
and diversity, DDSUD demonstrates strong adaptability and generalization
capability in low-resource environments, especially in handling imbalanced datasets,
significantly improving the recognition of minority class samples.

Subjects Artificial Intelligence, Computational Linguistics, Data Mining and Machine Learning,
Natural Language and Speech, Text Mining
Keywords Acitve learning, Deep learning, BERT, Sentiment analysis

INTRODUCTION
Sentiment classification plays a crucial role in natural language processing (NLP) with
broad applications in social media monitoring, market research, and customer feedback
analysis (Kamal & Himel, 2023; Rane et al., 2024). By identifying the emotional tone of a
text—positive, negative, or neutral—sentiment analysis enables organizations to extract
actionable insights from large-scale data. It facilitates public opinion tracking, product
improvement, and strategic decision-making (Yaqub et al., 2021; Birjali, Kasri & Beni-
Hssane, 2021).

Traditional sentiment classification methods rely on machine learning algorithms such
as Support Vector Machines (SVMs), Convolutional Neural Networks (CNNs), and
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feature-based models. While effective to some extent, these approaches depend heavily on
handcrafted features and are limited in handling large, unstructured data (Mumuni &
Mumuni, 2024). Deep learning methods like CNNs and Recurrent Neural Networks
(RNNs) improve feature representation through automatic learning (Hu et al., 2020), but
they require extensive labeled data, which is costly and time-consuming to obtain (Albahri
et al., 2023). Furthermore, these models often perform poorly on imbalanced datasets,
where minority sentiments such as negative emotions are underrepresented (Lu,
Ehwerhemuepha & Rakovski, 2022).

Active learning offers a compelling solution by enabling models to selectively query the
most informative samples for annotation, thereby improving performance with fewer
labeled examples (Ren et al., 2021; Fang, Li & Cohn, 2017). This approach is particularly
beneficial in sentiment analysis, where manual annotation is expensive. Moreover, active
learning can mitigate class imbalance by emphasizing underrepresented classes during
sample selection (Schröder & Niekler, 2020).

Despite these advantages, applying active learning to sentiment classification remains
challenging. Traditional strategies such as uncertainty sampling prioritize low-confidence
predictions (Li et al., 2024), which may not effectively capture subtle emotional cues,
especially in short and context-dependent texts. Additionally, these methods often
exacerbate class imbalance by favoring majority class examples, leading to biased models
(Lipton, 2018; Lango, 2019). Most existing frameworks also lack adaptive mechanisms to
adjust sampling strategies based on evolving data distributions (Settles, 2011).

These challenges are further amplified in Chinese sentiment structure analysis. Unlike
English sentiment classification, which primarily involves polarity detection, Chinese tasks
often require identifying fine-grained semantic roles such as emotional cause, target, and
emotion type. These roles are frequently embedded in complex syntactic constructions
with blurred boundaries and long-distance dependencies, increasing annotation and
modeling difficulty. Moreover, Chinese social media texts exhibit flexible syntax, frequent
subject omission, and non-standard expressions, demanding strong contextual reasoning.
In contrast, English texts generally have more stable syntactic structures, making existing
models more transferable.

Although pretrained models such as Bidirectional Encoder Representations from
Transformers (BERT) and Robustly Optimized BERT Pretraining Approach (RoBERTa)
are available for Chinese, they typically inherit training objectives and data characteristics
from English-centric corpora, limiting their effectiveness in modeling implicit sentiment
relationships in Chinese. Our experiments also show that token-level uncertainty
estimation—commonly used in English active learning is inadequate for capturing the
semantic span of sentiment-bearing expressions in Chinese. These limitations often result
in low-quality sampling decisions and incomplete data coverage.

To address these issues, we propose Dynamically Detecting Subsequence Uncertainty
and Diversity (DDSUD), a novel BERT-based active learning framework specifically
designed for imbalanced Chinese sentiment classification. DDSUD introduces three key
components: (1) subsequence uncertainty detection to capture fine-grained ambiguity;
(2) diversity-driven sample selection to ensure representational richness; and (3) a
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dynamic weighting mechanism to balance uncertainty and diversity throughout the active
learning process.

This article is structured as follows. “Related Work” provides a review of related work
on sequence labeling, active learning, and class imbalance. “Methodology” introduces the
DDSUD framework, detailing its core components and scoring mechanism. “Experiments
and Results Analysis” presents the experimental setup, datasets, baseline methods, and
performance evaluations. “Conclusion” concludes the study and outlines directions for
future research.

The main contributions of this work are as follows:

. We propose DDSUD, a novel active learning strategy that systematically integrates
subsequence uncertainty and diversity to improve performance on imbalanced Chinese
sentiment tasks.

. We introduce a dynamic weighting mechanism that adaptively balances uncertainty and
diversity across learning iterations.

. We conduct extensive experiments on a benchmark Chinese dataset, showing that
DDSUD achieves comparable or superior performance to fully supervised models with
significantly fewer labeled samples.

RELATED WORK
Sequence labeling methods in deep learning
In natural language processing, core sequence labeling tasks—including part-of-speech
tagging, named entity recognition, semantic role labeling, and aspect extraction—
constitute foundational analytical layers. By detecting grammatical structures,
predicate-argument relationships, and domain-specific elements (e.g., sentiment targets),
these tasks provide critical feature representations for downstream applications such as
sentiment analysis and slot filling systems. Sentiment analysis, which involves identifying
and classifying opinions expressed in text, is an essential application in NLP, as it provides
valuable insights into public opinion, social trends, and customer feedback (Jim et al.,
2024).

The advent of deep learning has revolutionized traditional methods in NLP, shifting
them from rule-based and statistical approaches to models defined by enhanced accuracy
and contextual awareness. Deep learning techniques have brought a paradigm shift in
sentiment analysis (Sharma, Ali & Kabir, 2024), enabling models to better capture
contextual nuances and improve accuracy.

Part-of-speech tagging
Early part-of-speech (POS) tagging techniques relied on rule-based systems that utilized
manually crafted linguistic features (Berger, Della Pietra & Della Pietra, 1996). Statistical
methods, including Hidden Markov Models (HMM) (Lee, Tsujii & Rim, 2000) and
Maximum Entropy Models (MaxEnt) (Baldwin, 2009), improved performance by
leveraging data-driven techniques. Machine learning models, such as SVMs and
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Conditional Random Fields (CRFs), further enhanced generalization. Nevertheless, deep
learning has set new benchmarks, with models such as Recurrent Neural Networks
(RNNs), Long Short-Term Memory (LSTM) networks (Hu, Hou & Liu, 2024), and
Transformers achieving considerable success in capturing long-range dependencies and
contextual information (Azmi et al., 2025).

Word segmentation
Word segmentation has progressed from rule-based to statistical methods, and more
recently, to deep learning techniques. Traditional approaches encountered challenges due
to linguistic ambiguities, whereas statistical models, such as HMM and MaxEnt, mitigated
some issues but were constrained by the reliance on manually designed features. More
recently, RNNs, LSTMs, and Transformers (Vaswani et al., 2017) have significantly
advanced word segmentation by modeling complex language patterns. Pre-trained models,
such as BERT, have further advanced the field, significantly enhancing segmentation
accuracy (Wei & Guo, 2024).

Deep learning architectures
Deep learning models, particularly BERT and transformer-based architectures, have
significantly advanced sentiment analysis by capturing bidirectional context and
improving accuracy (Kokab, Asghar & Naz, 2022), especially for complex tasks like
sentiment classification. When paired with active learning, these models can effectively
address challenges such as imbalanced datasets by prioritizing informative samples,
reducing the reliance on large labeled datasets. Hybrid models, such as Bidirectional
Encoder Representations from Transformers—Bidirectional Long Short-Term Memory—
Conditional Random Field (BERT-BiLSTM-CRF) (Zhang et al., 2019), further enhance
performance by integrating CRFs, which improve class balance and provide better
representation of underrepresented sentiment classes (Bai et al., 2025). These architectures
have become indispensable tools in both active learning and sentiment analysis, boosting
model efficiency and classification performance, particularly in resource-constrained
environments.

Sequence labeling with active learning
Sentiment classification, especially when dealing with imbalanced datasets, often relies on
extensive labeled datasets, the creation of which is both labor-intensive and
time-consuming (Wertz et al., 2023). Active learning offers an effective solution to this
challenge by prioritizing the annotation of highly informative samples, with a particular
focus on those belonging to underrepresented sentiment classes. By selectively sampling
these data points, active learning not only optimizes the utilization of labeled data but also
enhances model performance by concentrating on instances that contribute most
significantly to improving the predictive capabilities of the model (Jain & Kapoor, 2009).
This targeted approach facilitates more efficient learning and addresses the limitations
imposed by class imbalance.
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Uncertainty-based methods
Uncertainty-based methods, such as Least Confidence (LC) (Agrawal, Tripathi &
Vardhan, 2021) and Token Entropy (TE) (Jacobs et al., 2021), are designed to select
samples where the model exhibits maximum uncertainty. While these methods have
proven effective in sequence labeling tasks, they may prioritize more complex sequences or
fail to capture the full diversity of the dataset. Advanced strategies, such as Lowest Token
Probability (LTP) (Liu, Benjamin & Zador, 2025) and Bayesian Active Learning by
Disagreement (BALD) (Weerasooriya, 2024), address these limitations by incorporating
token-level uncertainty or leveraging model disagreement.

Diversity-based methods
Diversity-based active learning methods aim to improve generalization by selecting
samples that differ significantly in the feature space. Classical techniques such as
maximizing margin distances (Bauer et al., 2020) and maximizing class coverage (Huang
et al., 2016) help reduce sample redundancy to some extent. However, these methods
typically treat entire sentences as atomic units and focus only on inter-sentence
differences, overlooking which specific parts of a sentence actually contain informative
content.

This limitation is particularly evident in sentiment structure recognition tasks, where
key emotional elements—such as causes or targets—often reside within short phrases or
subsequences, while the rest of the sentence may carry limited relevance. Relying on global
sentence-level representations to assess sample diversity risks ignoring these high-value
regions, leading to suboptimal selection.

To address this, DDSUD departs from full-sentence modeling and instead segments
each sentence into multiple subsequences that may contain sentiment-relevant
components. By comparing differences among these subsequences, DDSUD identifies
samples that diverge more significantly in key semantic positions. This enhances the
precision of the selection process and improves the model’s ability to distinguish
structurally different samples that might appear similar at the sentence level.

Moreover, under severe class imbalance, this approach helps the model avoid overfitting
to typical expressions of frequent classes, and instead prioritize structurally informative
examples from low-resource categories. As a result, the model achieves better
generalization while improving class-level discrimination.

Hybrid methods
Hybrid active learning methods select training samples by simultaneously considering
model uncertainty and inter-sample diversity. For instance, Batch Active learning by
Diverse Gradient Embeddings (BADGE) (Pelicon et al., 2024) selects data points that the
model is currently uncertain about and that differ significantly from previously selected
samples, thereby improving both representativeness and learning efficiency. Compared to
strategies that rely solely on uncertainty or diversity, these methods more effectively
balance model blind spots and data coverage.
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However, such methods typically operate at the sentence level and cannot determine
which parts of a sentence actually contain the most valuable information (Radmard,
Fathullah & Lipani, 2021). In addition, they often use fixed schemes to combine
uncertainty and diversity, lacking the flexibility to adapt to changes in model status or data
distribution during training. As a result, their performance is limited in tasks involving
complex structure or severe class imbalance.

To overcome these limitations, DDSUD introduces a hybrid sample selection strategy at
the subsequence level. During each selection step, DDSUD segments a sentence into
multiple spans and evaluates which ones exhibit both high uncertainty and high diversity.
This enables more accurate identification of informative training samples. Furthermore,
DDSUD incorporates a dynamic weighting mechanism that adjusts the influence of
uncertainty and diversity based on the model’s evolving state, thereby improving
adaptability and practical effectiveness in real-world training scenarios.

Sample information
In active learning, informativeness typically refers to the extent to which a sample helps
reduce the model’s predictive uncertainty. Samples with higher informativeness are more
likely to improve the model’s decision-making ability. Existing approaches often evaluate
informativeness at the sentence level by selecting samples with the highest prediction
uncertainty for annotation (Schmidhuber, 2015), which has shown effectiveness in tasks
such as text classification.

However, these sentence-level strategies operate at a coarse granularity and fail to
capture local differences in information distribution within the sentence. In many
real-world texts, critical information is not evenly distributed but instead concentrated in
specific phrases or structural components. For example, in sentiment structure recognition
tasks, key elements such as emotion expressions, causes, or targets are often confined to
short subsequences. Sentence-level evaluation tends to obscure such fine-grained
uncertainty, causing the model to overlook the most informative regions.

Radmard, Fathullah & Lipani (2021) proposed a subsequence-based uncertainty
sampling method that identifies uncertain spans within sentences to guide data selection.
While this approach improves local sensitivity, it does not incorporate inter-sample
diversity and lacks a mechanism for dynamically adjusting selection criteria during
training.

To overcome these limitations, DDSUD introduces a subsequence-level information
modeling framework. During each sampling iteration, the model segments input sentences
into multiple candidate spans, evaluates their uncertainty and representativeness, and
selects samples that contain the most informative segments for annotation. This strategy
enables the model to focus on information-dense regions and, combined with a dynamic
weighting mechanism, enhances the adaptability and effectiveness of the sampling
process—particularly in structurally complex or class-imbalanced scenarios.
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Sentiment structure analysis in Chinese text
Sentiment structure analysis plays a crucial role in NLP, particularly in tasks such as
opinion mining and social media sentiment detection (Soong et al., 2019), where
understanding nuanced emotional expressions is vital. The complexity of Chinese textual
sentiment analysis has garnered significant attention in recent years, driven by challenges
such as word meaning ambiguity, contextual variations, and intricate sentence structures,
compounded by the scarcity of comprehensive annotated datasets. These challenges have
motivated researchers to explore both foundational and advanced methods to overcome
the limitations of existing approaches.

Early methods relied on rule-based systems and statistical models, such as HMMs and
Maximum Entropy (MaxEnt) (Malouf, 2010). While these approaches leveraged labeled
data to improve performance, they were constrained by their dependence on handcrafted
features and limited capacity to model long-range dependencies.

The advent of deep learning has revolutionized the field, with models such as RNNs,
LSTM networks, and transformer-based architectures addressing longstanding challenges
by capturing contextual nuances and modeling complex relationships (Airlangga, 2024).
Building on these foundations, fine-tuned pre-trained models like RoBERTa and A Lite
BERT (ALBERT) (Özkurt, 2024) have significantly advanced sentiment classification by
capturing bidirectional context and reducing reliance on extensive labeled datasets.

Despite the substantial improvements in sentiment classification performance brought
by deep learning, the need for large amounts of labeled data remains a significant
challenge, particularly given the scarcity of such data in practical applications. To address
this, active learning techniques, such as Bayesian Active Learning by Disagreement
(BALD) (Huang et al., 2023), prioritize annotating informative samples while ensuring
balanced class representation.

METHODOLOGY
Overview of DDSUD
This article proposes a BERT-based active learning method, named Dynamically Detecting
Subsequence Uncertainty and Diversity (DDSUD), which overcomes the limitations of
traditional methods that rely solely on sentence-level or token-level uncertainty. DDSUD
dynamically evaluates both subsequence uncertainty and sample diversity, leveraging the
representational power of BERT to select the most representative and effective samples,
thereby improving model efficiency and accuracy. Particularly, DDSUD excels in scenarios
with imbalanced labeled datasets, effectively addressing two major challenges in sentiment
classification tasks: (1) the unreliable identification of informative samples caused by label
imbalance, and (2) the redundancy in sample selection due to the lack of diversity
awareness. By dynamically assessing both the uncertainty of subsequences and the
diversity of representations, DDSUD selects diverse and valuable samples for annotation,
significantly improving learning efficiency and model performance.
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DDSUD integrates three complementary modules:

Subsequence Uncertainty Estimation: this module locates ambiguous segments within
the input sequence using a head-tail pointer strategy and evaluates their uncertainty based
on token-level representations obtained from BERT.

Diversity-Aware Useful Sample Selection: this module quantifies the semantic novelty of
unlabeled samples by measuring the cosine distance between candidate samples and the
labeled sample set, ensuring that the selected samples are both diverse and non-redundant.

Combining Uncertainty and Diversity for Query Scoring: the scores from the above two
modules are fused through a dynamic weighting mechanism. A time-dependent parameter
b gradually shifts the focus from diversity to uncertainty across active learning iterations,
allowing the query strategy to adapt as the labeled set grows.

As illustrated in Fig. 1, the DDSUD framework selects samples through dynamic
uncertainty evaluation and diversity measurement. Subsequence uncertainty (SnorðXÞ) is
evaluated by calculating the cosine similarity of the [CLS] token embeddings from BERT,
focusing on identifying uncertain subsequences. Sample diversity (DnorðXÞ) is measured
using pairwise similarity, ensuring that the selected samples span a wide feature space. The
weighting parameter b is dynamically adjusted, balancing uncertainty and diversity, and
adapting as the labeled set increases.

Additionally, the head-tail segmentation mechanism introduced in Fig. 1 effectively
groups and visualizes the distribution of samples, further ensuring the diversity of feature
representations. This approach not only promotes the selection of diverse samples but also
improves annotation efficiency, enhancing the model’s ability to learn from diverse data.

These three modules work synergistically. In each iteration, DDSUD ranks all unlabeled
samples based on their combined query scores and selects the top h samples for
annotation, thereby significantly improving model performance while minimizing labeling
costs.

Subsequence uncertainty estimation
In traditional active learning, sentence-level or token-level uncertainty is often used to
measure the informativeness of a sample. However, these coarse-grained metrics fail to
capture the localized ambiguities present in Chinese sentiment expressions. DDSUD
addresses this limitation by estimating uncertainty at the subsequence level, enabling a
more detailed analysis of sentence ambiguity.

Given an unlabeled sentence Xu ¼ fx1; x2;…; xng, we first encode it using BERT and
apply a token-level classification layer to calculate the predicted class probabilities for each
token:

pxi;c ¼ SoftmaxðW � hxi þ bÞ; 8xi 2 Xu; c 2 C: (1)

Here, hxi represents the hidden representation of token xi, W and b are the classifier
parameters, and C is the set of class labels.
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To measure the uncertainty of each token, we use a least-confidence approach. The
uncertainty score �xi for each token is calculated as follows:

�xi ¼ �max
c2C

log pxi;c: (2)

To identify ambiguous subsequences within a sentence, we use a head–tail addressing
mechanism. For each input Xu, we extract fixed-length subsequences from both the
beginning and end (head and tail) of the sequence. For each candidate subsequence subX,
we compute the average uncertainty score:

�subX ¼ 1
jsubXj

X

xi2subX
�xi : (3)

The subsequence with the highest uncertainty score, �subX, is selected to represent the
overall uncertainty for the instance:

SðXÞ ¼ max �head;�tailð Þ: (4)

To make the uncertainty scores comparable across instances, we normalize the raw
uncertainty scores SðXÞ using min–max normalization:

SnorðXÞ ¼ SðXÞ �minðSÞ
maxðSÞ �minðSÞ : (5)

The normalized subsequence uncertainty score SnorðXÞ is then used in the query scoring
process to prioritize ambiguous samples for annotation in active learning.

Figure 1 DDSUD framework for sample selection based on uncertainty and diversity.
Full-size DOI: 10.7717/peerj-cs.3091/fig-1
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As shown in Fig. 2, this method is demonstrated with four example sentences. The
model expresses high confidence in certain subsequences, such as those labeled with
Degree and Trigger tags. For example, in sentences 2, 3, and 4, the pronoun “he” is
interpreted as a Sentence Entity or Holder. However, in sentence 1, the conjunction
“because,” which signals causality, introduces more uncertainty in interpreting “he.” This
example illustrates how assessing the uncertainty in specific subsequences enables the
model to precisely identify local areas of uncertainty.

Through this process, DDSUD offers a fine-grained approach for addressing sentiment
ambiguities, enhancing the overall performance of sentiment analysis by targeting specific
uncertainties in the data.

Head–tail addressing algorithm
To identify the most uncertain regions within a sentence, we introduce the head-tail
addressing strategy. This method extracts fixed-length subsequences from both the
beginning and the end of the sentence, then evaluates the uncertainty of each subsequence.
By focusing on the most uncertain parts, we avoid the need to evaluate all possible
subsequences, improving both efficiency and precision in uncertainty localization, as
illustrated in Fig. 3.

Given an unlabeled sequence Xu ¼ fx1; x2; . . . ; xng and a predefined subsequence
length m, the following steps are executed:

1. Extract Subsequences:

○ Head subsequence: subXhead ¼ fx1; . . . ; xmg
○ Tail subsequence: subXtail ¼ fxn�mþ1; . . . ; xng

Holder? Cause?

1

Degree

him . IBack from swimming, feeling sunburnt and exhausted! It’s all because of
just want tocry my heart out !

Trigger
2 I clearly said it was about someone’s black stockings, right? She said her outfit

 today was for him , because it’s his absolute favorite .
Holder Degree Trigger

3
 stormed off, swearing and throwing his hands around, looking 
Kaka’s been sent off! Oh man... I only managed to get a shot of half his back.He

absolutely furious .
Degree Trigger

Holder

Sent_Entity

4
 I’m being tortured by him
Little Tree~ That guy is driving me crazy! He’s so hot and cold with me.  I feel like

, and the more he torments me,  I

Holder

 the more
Degree

 fall for
Trigger

.him

Sent_Entity

Figure 2 Examples of partial labels for samples. Full-size DOI: 10.7717/peerj-cs.3091/fig-2
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2. Compute Token-Level Uncertainty Scores: for each token xi in the subsequences, we
compute the uncertainty score using least-confidence scoring:

�xi ¼ �max
c2C

log pxi;c

where pxi;c represents the model’s predicted probability for token xiunder class c.

3. Compute Average Uncertainty Score for Each Subsequence: the average uncertainty
score for each subsequence is computed as:

�subX ¼ 1
m

X

xi2subX
�xi :

4. Assign the Final Uncertainty Score for Xu: the uncertainty score for the entire
sequence is the maximum of the two subsequences’ uncertainty scores:

SðXuÞ ¼ max�subXhead ;�subXtail :

This method allows the model to focus on the most uncertain regions of a sequence,
improving both the efficiency and precision of uncertainty localization.

In each iteration of the querying process, the model M is initially trained using a
randomly selected sample set to calculate the overall uncertainty score, denoted as �X for
the entire sentence. This score is then stored as �.

A pair of pointers, head and tail, are initialized to represent the beginning and end of
the sentence, respectively. The head-tail addressing mechanism is then executed as follows:

1. Head Pointer Movement: The head pointer is moved one unit to the right, bringing the
head and tail pointers closer together, creating a new subsequence

Figure 3 Head-tail sequence search. Full-size DOI: 10.7717/peerj-cs.3091/fig-3
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subX ¼ fx2; x3; . . . ; xng. The uncertainty score �subX for this subsequence is calculated.
We then compare the magnitude of � with �subX:

○ if � � �subX, this indicates that the uncertainty score of the first token is relatively
high, suggesting that the model is not very confident in predicting its label. In this
case, the movement is reversed, and the head pointer addressing is terminated.

○ If � <�subX, it suggests that the uncertainty score of the first token is relatively low,
indicating a higher confidence. The process continues by moving the head pointer to
the next position.

2. Tail Pointer Movement: after handling the head pointer, the tail pointer is moved one
unit to the left, forming a new subsequence subX ¼ fxi; xiþ1; . . . ; xn�1g. The
uncertainty score �subX is recalculated. Similarly to the head pointer step, if the new
uncertainty score is higher than the current score, the movement is reversed,
terminating the tail pointer addressing.

By performing these head-tail addressing operations, the subsequence with the highest
uncertainty score is identified, which corresponds to the most uncertain region within the
sequence.

Diversity-aware informative sampling
In active learning, selecting samples solely based on uncertainty may lead to redundant
instances that provide similar information to what the model has already seen. To mitigate
this, DDSUD incorporates a diversity-based strategy that encourages the selection of
semantically novel and informative samples.

Let XL be the labeled set and Xu an unlabeled candidate. We use the hidden
representation of the [CLS] token from BERT as the semantic embedding of a sequence,
denoted as hX 2 Rd. The diversity of Xu is assessed by its dissimilarity to the labeled set
embeddings:

simðXu;XL
i Þ ¼

hXu � hXL
i

jjhXu jj � jjhXL
i
jj ; 8XL

i 2 XL: (6)

We then compute the average similarity between Xu and all labeled samples:

�SðXuÞ ¼ 1
jXLj

X

XL
i 2XL

simðXu;XL
i Þ: (7)

The diversity score DðXuÞ is defined as the inverse of this average similarity:

DðXuÞ ¼ 1��SðXuÞ: (8)

To normalize the diversity scores across the unlabeled pool, we apply min–max
normalization:

DnorðXuÞ ¼ DðXuÞ �minðDÞ
maxðDÞ �minðDÞ : (9)
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1. Extract the [CLS] representation hXu for each unlabeled instance using BERT.

2. Compute cosine similarity between hXu and each hXL
i
in the labeled set.

3. Compute the average similarity �SðXuÞ and derive diversity score DðXuÞ ¼ 1��SðXuÞ.
4. Apply normalization to get DnorðXuÞ for scoring.

This strategy ensures that selected samples not only contain uncertain information but
also provide novel semantic content, thereby enhancing the diversity of the training set and
improving generalization.

Combining uncertainty and diversity for query scoring
To effectively guide sample selection during active learning, DDSUD combines two
complementary scores for each unlabeled instance: subsequence-level uncertainty and
semantic diversity. Each component captures a different aspect of informativeness:

. SnorðXÞ: the normalized uncertainty score derived from subsequence entropy.

. DnorðXÞ: the normalized diversity score computed from cosine similarity with labeled
samples.

To balance these two signals dynamically during training, we define a time-dependent
scoring function:

QðXÞ ¼ b � DnorðXÞ þ ð1�bÞ � SnorðXÞ: (10)

Here, b 2 ½0; 1� is a weighting factor that controls the emphasis between diversity and
uncertainty. Following a curriculum-style schedule, we set b to gradually decay with
respect to the active learning round t:

bt ¼ b0 � ct (11)

where b0 is the initial weight (e.g., 0.9) and c 2 ð0; 1Þ is a decay coefficient.
This mechanism encourages exploration in the early stages (favoring diverse samples),

and gradually shifts focus toward uncertainty-based exploitation as more labeled data
become available.

At each iteration, all unlabeled instances are scored using QðXÞ, and the top-h ranked
samples are selected for annotation.

Step-by-step query workflow
In DDSUD, the three core modules operate in a coordinated sequence to perform query
selection during each active learning iteration. The process is executed as follows:

1. For each unlabeled sample Xu, apply the head–tail addressing strategy to locate its most
ambiguous subsequence, and compute the normalized uncertainty score SnorðXuÞ.

2. Compute the diversity score DnorðXuÞ by evaluating its semantic distance to the labeled
set based on [CLS] embeddings.
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3. Combine both scores using the dynamic weighting parameter bt to calculate the final
query score:

QðXuÞ ¼ bt � DnorðXuÞ þ ð1� btÞ � SnorðXuÞ:
4. Rank all unlabeled samples according to QðXuÞ and select the top-h samples for

annotation.

5. Add the newly labeled samples to the training set, and continue to the next round.

This workflow ensures that DDSUD adaptively selects samples that are not only
uncertain but also semantically novel, maximizing annotation efficiency across iterations.

EXPERIMENTS AND RESULTS ANALYSIS
Dataset
The dataset used in this study is the publicly available Chinese Textual Affective Structure
(CTAS) dataset, specifically designed for affective structure recognition in Chinese social
media text. Each sentence in CTAS is annotated at the token level using the BIO tagging
scheme, covering emotion-related components such as Trigger, Degree, Cause, and
Holder, among others. In addition to span-level role labels, each token is also assigned a
part-of-speech tag and semantic category, enabling fine-grained analysis of affective
structures within complex linguistic contexts.

To ensure the robustness and generalizability of experimental results, the dataset is
partitioned into training, validation, and test subsets using an 8:1:1 ratio. Furthermore,
five-fold cross-validation is adopted: in each fold, data is randomly split, the model is
trained on distinct partitions, and the final results are averaged across all folds. This design
helps mitigate variability caused by specific data splits and provides a more stable
performance estimate.

The CTAS dataset is publicly accessible online (https://github.com/pdsxsf/CTAS).

Baseline strategies
To evaluate the efficacy of our method, we conducted a comparative analysis against
established baseline approaches. A detailed description of these methods is provided
below.

Let X denote the set of unlabeled samples, where XU represents the unlabeled dataset
and XL represents the labeled dataset. In this framework, X specifically refers to individual
samples drawn from the unlabeled dataset XU , and SnorðXÞ represents the diversity score
calculated based on the similarity between each sample and the labeled dataset XL. This
method allows for effective quantification of the representativeness of unlabeled samples,
enabling the prioritization of samples with higher information content during the
sampling process.

DDSUD: our approach employs a BERT-based framework that enhances dataset diversity
through subsequence uncertainty detection, diversity-driven sample selection, and
dynamic weighting. These mechanisms allow DDSUD to adaptively balance uncertainty
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and diversity throughout the active learning process, thereby improving both efficiency
and performance, especially when dealing with imbalanced datasets.

Token Entropy (TE): Token Entropy is a sample selection strategy that quantifies the
uncertainty of each token within a given sample. The model first predicts the label
probability distribution for each token, then calculates the information entropy for each
token, selecting those with the highest entropy for labeling.

Entity-Aware Subsequence Active Learning (EASAL): this method (Liu et al., 2023)
leverages BERT and queries entity-aware subsequences for each sentence. The uncertainty
scores of these subsequences are then ranked in descending order to select the
highest-ranking subsequences, thereby maximizing labeling information with a limited
number of labels.

Least Confidence (LC): the Least Confidence (LC) method (Lewis, 1995) selects data
points with the lowest confidence scores among the most probable label sequences, aiming
to annotate the most uncertain samples. In our experiments, the confidence is computed as
the probability of the most likely label sequence predicted by the BERT+CRF model, and
samples with the lowest scores are selected in each iteration. However, this method may
inadvertently prioritize longer or syntactically complex sequences, potentially overlooking
other informative samples during training.

RANDOM: in addition to the previously mentioned baselines, RANDOM was selected as
an additional baseline strategy.

Environment and parameter settings
The computational environment and experimental parameters used in this work are
summarized in Table 1. All experiments were performed on a Linux-based system utilizing
an NVIDIA GeForce RTX 3090 GPU, ensuring robust computational capacity for training
and evaluating the BERT+CRF framework. Critical hyperparameters such as learning rate
and batch size were systematically optimized to balance model accuracy with resource
efficiency.

In particular, the parameter initial selection fraction refers to the proportion of the
unlabeled dataset that is randomly selected for initial annotation before the active learning
iterations begin. This initial seed set provides labeled samples to bootstrap model training.
For example, a value of 5% indicates that 5% of the unlabeled data is labeled in advance
prior to querying.

Given BERT’s training stability and structural suitability for sequence labeling tasks, it is
adopted as the backbone encoder in this study. Compared with models such as RoBERTa
and ALBERT, BERT is easier to fine-tune under low-resource settings, offers more efficient
inference, and has been widely applied in active learning for both sequence labeling and
text classification tasks. To avoid potential confounding effects introduced by architectural
differences during the evaluation of sampling strategies, we prioritize a controllable and
reproducible standard model.
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Comparative experiments
To assess the effectiveness of DDSUD, we conducted comparative experiments against
several baseline strategies, and the results are shown in Fig. 4.

As shown in Fig. 4, DDSUD consistently outperforms other active learning methods
across various training set sizes. The F1-score of DDSUD improves steadily as training
data increases, with particularly large gains under low-resource settings. At 50% labeled
data, DDSUD achieves an F1-score of 0.5430, closely approaching the 0.5479 score of a
fully supervised BERT+CRF model. The performance gap is less than 0.5%, demonstrating
that DDSUD can reach near full-supervision accuracy with only half of the labeling cost.

Table 1 Experimental environment and parameters.

Environmental parameters Value

Operating system Linux

GPU NVIDIA GeForce RTX 3090

Model BERT+CRF

Learning rate 5e−5

Max len 256

Epoch 100

Batch size 64

Query batch fraction 5%

Initial selection fraction 5%

Length of subsequence 2

0.56

0.53

0.54

0.55

0.49

0.50

0.51

0.52

Training Set Size
5% 10% 20% 30% 40% 50% 60% 70% 80%

F1
 s

co
re

Figure 4 Comparative strategy effectiveness. Full-size DOI: 10.7717/peerj-cs.3091/fig-4
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These findings highlight DDSUD’s capacity to effectively combine diversity and
subsequence-level uncertainty for sample selection. In contrast, EASAL—based solely on
subsequence uncertainty—shows only moderate improvements. Although EASAL
performs better than random sampling in certain settings, its overall gains remain limited
compared to DDSUD, indicating that uncertainty alone is insufficient.

TE and LC strategies exhibit relatively stable but less impressive performance,
particularly under smaller training sizes. This suggests that focusing solely on confidence
or entropy may not be effective for complex sequence labeling tasks.

Overall, DDSUD provides a more comprehensive sample selection mechanism by
dynamically integrating uncertainty and diversity, making it especially suitable for class-
imbalanced, low-resource scenarios. Additional evidence of robustness is provided in
Table 2, which shows how DDSUD better expands the coverage of minority labels over
multiple selection rounds.

Ablation study
To clarify the contributions of subsequence uncertainty detection and the dynamic
weighting factor in the DDSUD framework, we designed two simplified model variants
and conducted systematic comparisons against the full DDSUD model. The details are as
follows:

Model Variants.

. DDSUD (Full Model): incorporates both subsequence uncertainty detection and a
dynamic weighting factor b, which adaptively balances uncertainty and diversity during
sample selection.

. DDUD (w/o Subsequence Uncertainty): removes subsequence-level uncertainty
scoring while retaining the dynamic weighting strategy, relying solely on overall
sample-level uncertainty for selection. This variant is used to isolate the contribution of
subsequence analysis.

. SUD (Static Weight): replaces dynamic b with a fixed value (b ¼ 0:5), while keeping the
subsequence uncertainty mechanism intact. This allows us to assess the effect of adaptive
weighting on learning flexibility and performance.

Table 2 Minority class label variation.

Label Sampling strategy Initial quantity Quantity after first iteration Quantity after second iteration

Cause DDSUD 50 91 129

SUD 50 74 110

Negation DDSUD 19 29 54

SUD 19 28 46

Property DDSUD 6 23 32

SUD 6 12 20

Compared entity DDSUD 4 8 11

SUD 4 7 13
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Experimental Setup and Failure Criteria. All models are trained on the same dataset
under consistent settings (BERT+CRF, learning rate 5� 10�5, batch size 64, maximum
sequence length 256, and 5-fold cross-validation) to ensure a fair comparison. We define a
failure round as one in which the F1-score falls below 0.50 or when the sampling strategy
leads to non-convergent training.

Comparison Results. As shown in Fig. 5, the results consistently demonstrate the
effectiveness of both core modules. Across training set proportions from 20% to 80%, the
DDSUD model consistently outperforms both simplified variants in F1-score. This
confirms the complementary benefits of combining fine-grained subsequence uncertainty
with a dynamic sample weighting strategy. The subsequence mechanism provides more
precise identification of ambiguous regions, while dynamic adjustment improves the
model’s adaptability to changing data distributions.

Conclusion. The ablation study indicates that the two core modules in DDSUD offer
mutual reinforcement. Subsequence-level uncertainty improves the focus of the model on
critical segments, and dynamic weighting enhances the flexibility of the sample selection
process. Together, they contribute to superior performance and better generalization
under low-label, imbalanced scenarios.

Case analysis
The effectiveness of dynamic probing is evaluated by analyzing the distribution of labels
assigned to minority class samples in the training dataset. Table 2 presents a statistical
comparison between DDSUD and its variant SUD, emphasizing the improvements
introduced through dynamic detection.

Figure 5 Results of ablation experiments. Full-size DOI: 10.7717/peerj-cs.3091/fig-5
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When utilizing the DDSUD sampling strategy, the number of samples for each minority
class label increased substantially after the first and second iterations. For instance, the
Cause label initially had 10 samples, which increased to 91 after the first iteration and
further to 129 after the second iteration. Conversely, the Subsequence Uncertainty
Detection (SUD) sampling strategy resulted in smaller increases, with the same label
reaching 74 samples after the first iteration and 110 after the second.

This observation indicates that the DDSUD sampling strategy surpasses both the SUD
sampling strategy and baseline approaches in increasing the number of minority class
samples. By dynamically adjusting the weights of subsequence uncertainty and diversity,
the DDSUD strategy effectively augments minority class samples in datasets with
imbalanced label distributions, enhancing the learning capacity of the model for minority
classes and improving performance on imbalanced datasets.

CONCLUSION
In this work, we propose DDSUD, a novel BERT-based active learning framework
designed to tackle challenges in sentiment classification for Chinese text, particularly in
scenarios with imbalanced datasets and limited labeled data. DDSUD integrates
subsequence uncertainty detection, diversity-driven sample selection, and dynamic
weighting, offering a comprehensive and adaptive approach to active learning. This
framework significantly improves sentiment analysis performance, especially in
resource-constrained and challenging environments.

Experimental results show that DDSUD outperforms traditional active learning
methods, particularly in improving the representation of underrepresented categories such
as “Cause” and “Negation”. By focusing on granular subsequences and utilizing dynamic
probing, DDSUD facilitates effective sample selection, leading to significant gains in model
accuracy and generalization. Ablation studies further emphasize the key roles of
subsequence uncertainty detection and dynamic weighting. Together, these components
enable DDSUD to adapt to evolving data distributions and precisely target task-specific
information.

Looking ahead, we outline several strategic research directions: (1) Structural
uncertainty extension: applying the core principles of DDSUD to other Chinese NLP tasks
involving complex structure prediction, such as event extraction and semantic role
labeling; (2) Data expansion: collaborative annotation of additional datasets for sentiment
structure recognition when resources permit; (3) Generalization potential: adapting
structural uncertainty quantification to broader sequence labeling tasks with
comprehensive state of the art (SOTA) comparisons; (4) Architecture refinement:
optimizing the dynamic weighting mechanism through data-driven techniques for
enhanced contextual adaptability; (5) Real-time integration: exploring reinforcement
learning and stream processing implementations for rapid-insight applications like social
media monitoring.

Through these developments, the innovative design of DDSUD positions it as a
foundational framework for advancing active learning techniques, particularly in
resource-constrained and linguistically complex scenarios. Its scalability and adaptability
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offer transformative potential for sentiment analysis and beyond, paving the way for more
equitable and efficient learning systems.
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