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ABSTRACT

Cervical cancer ranks first in incidence among malignant tumors of the female
reproductive system, and 80% of women who die from cervical cancer worldwide are
from developing countries. Visual inspection with acetic acid (VIA) screening based
on artificial intelligence-assisted diagnosis can provide a cheap and rapid screening
method. This will attract more low-income women to volunteer for regular cervical
cancer screening. However, current Al-based VIA screening studies either have low
accuracy or require expensive equipment assistance. In this article, we propose the
Hierarchical Multi-Scale Convolutional Transformer network, which combines the
hierarchical feature extraction capability of Convolutional Neural Network (CNNs)
and the global dependency modeling capability of Transformers to address the
challenges of realizing intelligent VIA screening. Hierarchical multi-scale
convolutional transformer (HMCFormer) can be divided into a Transformer branch
and a CNN branch. The Transformer branch receives unenhanced lesion sample
images, and the CNN branch receives lesion sample images enhanced by the
proposed dual-color space-based image enhancement algorithm. The authors design
a hierarchical multi-scale pixel excitation module for adaptive multi-scale and
multi-level local feature extraction. The authors apply the structure of the Swin
Transformer network with minor modifications in the global perception modeling
process. In addition, the authors propose two feature fusion concepts: adaptive
preprocessing and superiority-inferiority fusion, and design a feature fusion module
based on these concepts, which significantly improves the collaborative ability of the
Transformer branch and the CNN branch. The authors collected and summarized
5,000 samples suitable for VIA screening methods from public datasets provided by
companies such as Intel and Google, forming the PCC5000 dataset. On this dataset,
the proposed algorithm achieves a screening accuracy of 97.4% and a grading
accuracy of 94.8%.

Subjects Bioinformatics, Artificial Intelligence, Computer Vision
Keywords Cervical intraepithelial neoplasia, Image enhancement, Intelligent VIA screening,
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INTRODUCTION

Cervical cancer, with the highest incidence rate among malignant tumors of the female
reproductive system, is witnessing an upward trend globally. According to data from the
World Health Organization (WHO), there are approximately 570,000 new cases of cervical
cancer worldwide each year, resulting in 280,000 deaths, which account for 7.5% of all
cancer-related deaths. In developing countries, cervical cancer is the most prevalent type of
cancer among women, particularly in regions such as Africa, Latin America, and Asia (Qiu
et al., 2024). According to the 2023 statistics released by the National Cancer Center of
China, there were 119,300 new cases of cervical cancer and 37,200 deaths in China (Qiu
et al., 2024).

Currently, the commonly used cervical cancer screening methods include ThinPrep
Cytology Test (TCT) screening, human papillomavirus (HPV) screening, TCT+HPV, and
visual inspection with acetic acid (VIA)/Visual Inspection with Lugol’s Iodine (VILI)
screening. TCT and HPV screenings are the most widely used early screening methods for
cervical cancer. TCT screening is a method where a cervical brush or spatula is used to
collect cell samples from the surface of the cervix, which are then sent to a laboratory for
processing and microscopic analysis to determine the presence of cervical abnormalities.
HPV screening, on the other hand, is a molecular-level test that analyzes genetic material
(DNA or RNA) to detect the presence of high-risk HPV infections. The combination of
TCT and HPV screening, known as TCT+HPV screening, integrates both methods and is
currently the most widely used approach for cervical cancer screening. This combined
method has relatively high sensitivity and specificity, allowing for more effective early
detection and treatment of cervical cancer. However, it is more costly and time-consuming
compared to other methods (Qureshi, Das ¢ Zahra, 2010). VIA/VILI screening involves
visual inspection with acetic acid and Lugol’s iodine staining. Similar to cytological
examinations, this method is effective for cervical cancer screening. It involves applying
acetic acid and iodine to the cervix and visually inspecting it to determine the presence and
grade of lesions. This method is cost-effective, simple to operate, and provides timely
diagnosis (Qureshi, Das ¢ Zahra, 2010; Sankaranarayanan et al., 2004; Ferreccio et al.,
2003), making it particularly suitable for economically underdeveloped areas. Due to the
large number of patients and the limited number of skilled colposcopists, the accuracy of
colposcopy in resource-limited areas is relatively low (Khan, Werner ¢» Darragh, 2017).
Underwood et al. (2012) reported that in some low- and middle-income countries, the
average positive detection rate of colposcopic biopsy is 63.3%, with frequent occurrences of
over-diagnosis or under-diagnosis.

In summary, developing Al-assisted VIA screening methods is highly necessary. Al
algorithms can effectively address the issue of the limited number of colposcopists and
significantly reduce screening costs. This will encourage more low-income women to
voluntarily undergo regular cervical cancer screenings.

Currently, Al-based TCT+HPV screening has become quite mature and has been
widely applied in actual screening practices (Zhang et al., 2017; Rahaman et al., 2021; Singh
¢ Goyal, 2021; Holmstrom et al., 2020; Tang et al., 2021). However, despite their good
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performance in terms of accuracy, these technologies have not shown significant effects in
reducing the time costs of cervical cancer screening, nor have they substantially reduced
the screening costs borne by patients. Nonetheless, these Al-based screening technologies
can bring a certain degree of cost savings and improved work efficiency to healthcare
institutions, but these benefits do not directly translate into advantages for patients.

In contrast, Al-assisted VIA screening methods still require further development. Using
SVM (Asiedu et al., 2018), 134 cervical tissue samples were classified into normal and
abnormal categories, achieving an accuracy of 80%. Another study (Miyagi, Takehara ¢
Miyake, 2019) classified 310 cervical images for CIN classification, achieving an accuracy
of 82.3%. Using FR-CNN for detecting precancerous cervical cells (Hu et al., 2019) with
279 images showed an accuracy of 89%. However, these methods used a small number of
samples, which are not representative. A multimodal CNN trained with 60,000 colposcopy
images and clinical inferences from physicians (Song et al., 2014) achieved an accuracy of
89%, but this method only performed binary classification and could not distinguish the
grades of cervical intraepithelial neoplasia (CIN). Zhang et al. (2020) used DenseNet CNN
to identify cervical intraepithelial neoplasia, but the accuracy was only 73% without the
interference of other cervical disease samples. A recent deep learning technique, ColpoNet,
developed from the pretrained DenseNet model (Saini et al., 2020), performed multiclass
classification on four types of cervical cancer and achieved an accuracy of 81.3%. Li ef al.
(2020) proposed a method for “computer-assisted cervical cancer diagnosis using
time-lapse colposcopic images,” where five images were taken every 30 s after applying
acetic acid to capture the features of cervical intraepithelial neoplasia for AI recognition.
However, this method requires filtered colposcopes, which are expensive and not suitable
for promotion in economically underdeveloped areas. Additionally, taking five delayed
images significantly alters the traditional operation procedures of physicians, and its
accuracy is only 79%. Luo et al. (2020) proposed a deep learning-based method that
combines multiple decision features of CNNs for the classification and diagnosis of
cervical lesions. The classification accuracy rate for 600 cervical images was only 83.5% at
most. Fang et al. (2022) proposed a deep reverse residual network based on an improved
channel attention mechanism for CIN grading. A total of 6,996 samples were used, and the
grading accuracy was 81.38%.

In summary, current Al-assisted diagnostic VIA screening methods are mainly based
on CNN networks, but their accuracy has not yet reached a practical level. With the
introduction of the Vision Transformer (ViT) network, Transformer networks have
gained widespread popularity. Although Transformer networks have strong capabilities in
global context feature extraction, their ability to extract detailed local features is relatively
weak, which is why they are seldom used in medical image processing. To combine the
advantages of Transformer networks in global information extraction with the strengths of
CNNss in local feature extraction, CNN+Transformer fusion networks have been proposed.
CNN-+Transformer networks have also been widely applied in medical image processing
(Xie et al., 2021; Shao et al., 2021; Li et al., 2024).

This article proposes a CNN+Transformer fusion network called hierarchical
multi-scale convolutional transformer (HMCFormer) for intelligent VIA screening. The
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neural network framework of HMCFormer effectively leverages the collaborative strengths
of CNNs and Transformers, demonstrating strong low-level feature extraction capabilities
as well as good performance in capturing global contextual features.

This study presents several notable innovations:

(1) A dual-color space enhancement and fusion algorithm is proposed, which decomposes
images into the Lab and YCrCb color spaces. By increasing the color difference
between the lesion area and the normal cervical skin, the lesion area is accentuated.

(2) The Hierarchical Multi-Scale Pixel Excitation (HMSPE) module is proposed, which
integrates multi-scale feature extraction and multi-level feature extraction with
minimal computational overhead.

(3) Currently, there is no evaluation metric to demonstrate that the CNN+Transformer
fusion network fully maximizes its collaborative potential. To address this, we propose
using mutual information from information theory to evaluate different fusion
methods. We find that performing adaptive preprocessing on the CNN and
Transformer branches before fusion, and incorporating an “advantage and
disadvantage fusion” strategy during fusion, can better leverage the collaborative
potential of the parallel CNN+Transformer network.

(4) In this article, the unaugmented images are fed into the Transformer branch, while the
augmented images are fed into the CNN branch. This approach improves the
network’s recognition accuracy and eliminates the impact of image augmentation on
lesion grading.

(5) After organizing and summarizing multiple public datasets, 5,000 samples suitable for
VIA screening were obtained, forming the PCC5000 dataset.

RELATED WORK

In this section, we will first briefly explain the VIA/VILI screening process and the criteria
for grading cervical cancer. Finally, we will provide a brief introduction to the
CNN-+Transformer network and propose that moderate mutual information is more
suitable for the CNN+Transformer network.

VIA screening procedure and cervical cancer staging criteria
The screening process begins with using a dry cotton ball to wipe off any acetic acid and
mucus, followed by a gentle swabbing of the cervix with a saline-soaked cotton ball or a dry
cotton swab. Subsequently, the entire cervix is coated with a 5% acetic acid solution using a
cotton ball. After a 1-min interval, the reaction of the cervical epithelium to the acetic acid
is directly observed under standard illumination. The lesion area presents as white. A
preliminary diagnosis is made, and the results are documented based on the thickness,
border, and contour of the white lesions (Liu, 2014). As shown in Fig. 1.

The cervical cancer is staged as follows:
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Figure 1 Examples of cervical intraepithelial neoplasia. Full-size K&l DOT: 10.7717/peerj-cs.3088/fig-1

(A) Normal reaction: Healthy cervical cells typically do not undergo any changes
post-acetic acid application. The color of the cervix usually remains unchanged or
becomes slightly paler.

(B) CINI: Post-acetic acid application, there may be a mild white change, which might not
be prominent and only involves the basal third of the cervical epithelium.

(C) CIN2: Post-acetic acid application, the lesion area typically turns white, which is more
pronounced than in CIN1. These white areas involve approximately two-thirds of the
squamous epithelium.

(D) CIN3: Post-acetic acid application, the lesion area prominently turns white. These
white areas involve the upper layer or the entire layer of the squamous epithelium,
manifesting as distinct irregular, coarse, yellow-white lesions.

Comparison of CNN and transformer fusion types

CNNs are particularly adept at capturing local features such as edges, corners, and textures.
However, standalone CNNs often have limitations when it comes to handling global
information. Transformer networks can model long-range dependencies and achieve
global receptive field coverage, but they lack the inductive bias capabilities of CNNs
(Alrfou, Zhao & Kordijazi, 2023; d’Ascoli et al., 2021). In the medical field, the fusion of
CNN and Transformer networks has gained widespread application (Xie et al., 2021; Shao
et al., 2021; Li et al., 2024). In medical image recognition, lesions require sensitivity to both
local texture features and strong global contextual information processing capabilities.
Given that the number of samples is usually limited, the fusion of CNN and Transformer
networks is highly suitable.

Currently, CNN and Transformer fusion methods can be roughly divided into three
types: early layer fusion, sequential fusion, and parallel fusion. Given the distinct
differences in feature extraction and computational mechanisms between Transformers
and CNNs, parallel fusion networks divide the entire network into a Transformer branch
and a CNN branch. These two branches operate independently while sharing information
with each other. This allows the entire network to leverage the strengths of both network
structures while mitigating their respective weaknesses. There are many successful
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Figure 2 The three main CNN-transformer fusion methods. (1) Early layer fusion, (2) sequential
fusion, and (3) parallel fusion. Full-size K&l DOT: 10.7717/peerj-cs.3088/fig-2

examples of parallel fusion networks, including TransXNet (Lou et al., 2023),
Mobile-Former (Zhu et al., 2022), Conformer (Chen, Ningning ¢» Zhaoxiang, 2021),
ScribFormer (d’Ascoli et al., 2021), LEFormer (Chen et al., 2024), Enriched

(Yoo et al., 2023), and CTCNet (Gao et al., 2023). The three main CNN-Transformer
fusion methods are shown in Fig. 2.

PROPOSED METHOD

Network structure

As introduced in “VIA Screening Procedure and Cervical Cancer Staging Criteria”, the
acetowhite images of low-grade cervical intraepithelial neoplasia (CIN1) only exhibit slight
white changes, which may not be apparent. Current neural networks struggle to accurately
and consistently capture these features. However, applying image enhancement (A et al,
2022; Ren, Li & Xu, 2023; Tan et al., 2022) to such images will undoubtedly deepen the
color of the lesion area and increase the texture depth of the lesion. The color and texture
of the lesion area are crucial indicators for distinguishing between CIN1 and CIN2.
Without image enhancement, current neural networks find it challenging to accurately
differentiate between normal samples and CIN1 samples. On the other hand, using image
enhancement can affect the distinction between CIN1 and CIN2. To address this difficulty
and maximize the accuracy of recognizing acetowhite samples of cervical intraepithelial
neoplasia (CIN), this study designed the HMCFormer network and a dual-color
space-based image enhancement technique. HMCFormer is a CNN+Transformer parallel
fusion network. HMCFormer consists of two branches: the Transformer branch, the CNN
branch. We input the original, non-enhanced sample images into the Transformer branch.
The sample images enhanced using the dual-color space-based image enhancement

Feng et al. (2025), PeerdJ Comput. Sci., DOI 10.7717/peerj-cs.3088 6/32


http://dx.doi.org/10.7717/peerj-cs.3088/fig-2
http://dx.doi.org/10.7717/peerj-cs.3088
https://peerj.com/computer-science/

PeerJ Computer Science

H W H W
Original B o et SO o s RN 160767 28
' ' ' ’y Vb '
Image : Stage2 . Stage2 ! I Stage3 11 Staged :
! 1 | L . B 0
' 0 ' o & ; '
o 0 o ' ' '
58 1 = iilece £ x £ e !
LR & (EE L8 a5 2B £ 5% L EE = ' - Non-cervical cancer
T£8 = = ——————— " %F 589 — 2 R e B .
= - e ”; dg S ke 2 wed 0 i % ' | Precancerous lesions
. g . g ¥ F : F 5 g |
: - b 1 =) : ' x2 x2 [ Lo
e . A 0 : gy L, Eotow
Enhancement Fusion of G . g BRI < Rl = 9] o = LR B
Based on Lab channel and i = z ' U ¢ = s — o +," = > S= ' E 9 + CIN2, CIN3
asec on A Bleiannel B3 = oz = 235 . § Z 23 | L g —-2
and YCrCh A . S I R . R
Color Space A — ey | L il T, sy R !
\ f—erxC ' %I-x_ﬁ X o ammmmm=mmTT G '% ;;%):4-(-‘ --------------------------- : e R R '
e e I i
Layer Norm i I~ { v
] ¢, h,w 1
ConvModule t 1 < 0 g 1 N1
k=252, I Z— E% —'AJ— g 9L Z—B% —{9—[ & p——— Auo) 1x}
c=05¢ ] ¢ h,w = ¢ h,w ) l
] 1 h,w, 1.5¢
} : o) €x ¢, h,w ]
. AU0D £X € 1 HMSPE
i GELU 1
[ ; hvse | Re_mutatet : |
k x k Conv ] ConvModule ] SE
| ] ° o k=l g=ilE e " 1 l
= [ v £ ]
BN Ex w B . Lo 3 o) w
B3 o ® X R « = o 1x1 ConV
. sT . S = 3 ] 7} 1
l © hwe Z 2 = S— R 5‘) —~= % g b = — { LN
5 [ w
GELU T = h iy gy e SET - |
A , W, ¢ 1
e Y0 iwae h,w,dc Uy ] ©

Figure 3 HMCFormer network structure. (A) HMCFormer; (B) HMCFormer block; (C) HMSPE block.
Full-size K&l DOT: 10.7717/peerj-cs.3088/fig-3

technique are converted into grayscale images, retaining only texture without color, and
are then fed into the CNN branch, which excels at capturing detailed textures.

The aim of this study is to provide affordable cervical cancer screening for women in
low- and middle-income regions. Thus, the designed network should be capable of
running on low-cost computing devices. This article references networks such as
Swin_Transformer_Tiny (Liu et al., 2021), EfficientNetV2_S (Tan ¢ Le, 2021), and
ConvNeXt_S (Woo et al., 2023). In the Transformer branch, the distribution of
Transformer modules in each stage is (2, 2, 6, 2). In the CNN branch, the distribution of
HMSPE modules in each stage is (1, 2, 2, 1). The model size is controlled to be around

12M. As shown in the Fig. 3.

Dual color space-based image enhancement technology

The application of acetic acid solution to the cervical surface allows for the

detection of cervical abnormalities based on changes in color and the degree of these
changes (Xie et al., 2021). Low-grade CIN typically presents with faint and pale
pinkish-white textures, which are difficult to observe with the naked eye and pose
challenges for computer recognition. Most image enhancement techniques focus on
modifying brightness, contrast, or enhancing high-frequency components to improve
texture visibility. However, colposcopic images of the cervix are generally
well-illuminated and high-resolution, making brightness modifications ineffective for
texture enhancement. Increasing contrast may highlight the lesion areas, but it also
significantly increases the roughness of the skin in these regions. Since skin
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Algorithm 1 Image enhancement.

1. Input:

Image: input image
2. Output:

Img_E: output image

3. Functions:

Lab_image <— Convert to Lab color space(image)

L, A, B <— Split channels(Lab_image), split into three channels

L_eq <— CLAHE(L)

A_eq <— LT_CLAHE(A), apply Local Truncated Contrast Limited Adaptive Histogram Equalization to A channel

B_eq <— LT_CLAHE(B), apply Local Truncated Contrast Limited Adaptive Histogram Equalization to B channel

Lab_eq <— Merge channels(L_eq, A_eq, B_eq)

YCrCb_image <— Convert to YCrCb color space(image)

Y, Cr, Cb <— Split channels(YCrCb_image), split into three channels

Y_eq <— CLAHE(Y)

Cr_eq <— LT_CLAHE(Cr), apply Local Truncated Contrast Limited Adaptive Histogram Equalization to Cr channel

Cb_eq <— LT_CLAHE(CbD), apply Local Truncated Contrast Limited Adaptive Histogram Equalization to Cb channel

YCrCb_eq <— Merge channels(L_eq, A_eq, B_eq)

Img_E <— YCrCb_eqx0.5 + Lab_eqx0.5

Img EG <— RGB to Gray

roughness is a critical factor in the grading of CIN, this approach complicates Al
recognition. Furthermore, the similarity in color between the natural cervical texture and
the lesion texture makes it difficult to enhance the lesion texture through high-frequency
component enhancement.

To enhance the neural network’s ability to recognize lesions more effectively, this article
innovatively proposes increasing the color contrast between the lesion texture and the
normal cervical skin texture. This approach highlights the lesion texture without
significantly deepening it. We first decompose the image into the LAB and YCrCb color
spaces. Using the locally truncated contrast-limited adaptive histogram equalization
(LT_CLAHE) algorithm introduced in this study, we increase the contrast between the
texture color and the background color. The LT_CLAHE algorithm achieves localized
histogram equalization and is applied to the A, B, Cr, and Cb color channels, selectively
equalizing certain colors while leaving others unchanged. This method effectively
enhances the color difference between the lesion area and the normal cervical skin without
significantly altering the overall image contrast, thereby avoiding the deepening of texture
and increased roughness that could impair neural network recognition. Before use, we
convert the enhanced image into a grayscale image, removing color information, and this
grayscale image (Img_EG) is used as input for a CNN branch. This step eliminates color
information, further reducing the adverse effects of image enhancement on Al-based
grading of cervical intraepithelial neoplasia (Algorithm 1).
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Figure 4 Image enhancement effects. (A) Original image; (B) enhanced image; (C) grayscale image.
Full-size K&l DOT: 10.7717/peerj-cs.3088/fig-4

The enhancement effect is shown in Fig. 4.

Local truncated contrast-limited adaptive histogram equalization

Traditional contrast-limited adaptive histogram equalization (CLAHE) reallocates the
pixel points of each sub-block by evenly distributing the number of clipped pixels to each
gray level of the histogram.

The speStep 1: The input image was divided into non-overlapping sub-blocks of equal
size, with M representing the number of pixels in each sub-block.

Step 2: Calculate the histogram. The histogram of the sub-blocks is represented by h(x),
with x representing the gray level, which falls within the range of [0, L — 1], and L denoting
possible gray levels.

Step 3: Calculate the clipLimit with the formula

M-M/L
cliplimit = — # (1)
L  normClipLimit

Step 4: Pixel point redistribution. For each sub-block, h(x) is clipped using the
corresponding clipLimit value. Therefore, the clipped pixels are redistributed between 0
and D.

L-1

total E = Z(max(h(x) — clipLimit, 0)) (2)

x=0
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total E 2
ora D=3xL 3)

In the equation, total E refers to the total number of pixel values exceeding

avgBIncr =

clipLimit. avgBIncr refers to the average number of pixels increased per gray level in the
histogram. The above allocation process is repeated until all clipped pixels are
redistributed, as shown in Fig. 5. If h'(x) denotes the histogram after pixel redistribution of
h(x), then we have:

/ . h(x) (x > D)
H(x) = { h(x) + avgBIncr (x < D). @

In this formula, upperLimit = clipLimit — avgBIncr.

Step 5: Histogram equalization. Histogram equalization was performed on h'(x), with
f(x) expressing the equalization result.

Step 6: Reconstruction of pixel gray value. Based on f(x), the gray values of the central
pixel points of each sub-block were obtained and used as a reference to calculate the gray
values of each point in the output image by employing the bilinear interpolation technique.

Downsampling module

In this article, different downsampling modules are employed in the Transformer branch
and the CNN branch. In the Transformer branch, the original Patch Merging from Swin_T
(Liu et al., 2021) is used. After passing through the Patch Merging layer, the height and
width of the feature map are halved, while the depth is doubled. In the CNN branch, this
article adopts the DownSample structure from ConvNext (Woo et al., 2023). A separate

downsampling layer uses a 2 x 2 convolution with a stride of 2, and layer normalization
(LN) is added before each downsampling layer to stabilize training. The downsampling

steps are (4, 2, 2, 2).

Transformer branch

The primary advantage of a parallel CNN+Transformers network lies in its ability to
maximize the synergistic potential of both the Transformer and CNN branches, leveraging
the strengths of both architectures while compensating for their respective weaknesses.
However, significant differences exist between Transformers and CNNs in terms of feature
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extraction and computational mechanisms, making it challenging to fully harness the
collaborative advantages of both branches. When local features extracted by the CNN
branch are fed into the Transformer branch, they may gradually be eliminated in the
subsequent global feature extraction processes. This not only hinders the collaborative
potential but can also lead to a decline in the performance of the Transformer branch.

To enhance the interaction between the CNN and Transformer branches, this article
adopts the structure of the Swin Transformer (Liu et al., 2021) as the main framework for
the Transformer branch.

The Swin Transformer employs a sliding window mechanism to perform self-attention
calculations within local regions, a process that resembles the convolution operations in
convolutional neural networks (CNNs). As a result, the features obtained from the Swin
Transformer bear greater similarity to those extracted by CNNs compared to other
Transformer architectures. The Swin Transformer features a pyramidal structure, which,
like the similarly pyramidal CNN branch, captures features at comparable scales within
each stage. This structural similarity facilitates the survival of features when integrated into
the opposite branch during subsequent computations. Furthermore, the computational
complexity of each layer in the Swin Transformer is reduced from the quadratic
complexity of traditional Transformers to linear complexity. This improvement in
computational efficiency is particularly advantageous when processing high-resolution
medical images.

This article emulates the Swin Transformer by constructing the Transformer branch
through repeated use of W-MSA-m, SW-MSA, and W-MSA modules. In stages 0, 1, and 3,
an SW-MSA module is first utilized, followed by a W-MSA-m module. The formulation is

as follows:

&= SW_MSA(LN(x'71)) + £ (5)
x' = MLP(LN(&'))) + &' (6)
=W MSA -m(LN(x'),LN(y')) + «/ (7)
XU = MLP(LN(E))) + & (8)

Here, SW-MSA refers to shifted window multi-head self-attention (Liu et al., 2021), and
W-MSA represents window multi-head self-attention (Liu et al., 2021). W-MSA-m is an
attention module improved upon W-MSA, specifically designed to effectively integrate
information from the CNN branch. The details of this module will be thoroughly discussed
in “HMCFormer Block”. LN and MLP denote layer normalization and multi-layer
perceptron, respectively.

In stage 2, we emulate the Swin Transformer Tiny by using six Transformer modules. At
this stage, the features have become increasingly abstract, necessitating a greater number of
Transformer modules to enhance the model’s nonlinear representational capacity,
enabling it to process more complex features and relationships. Since W-MSA-m is
designed to receive information from the CNN branch, only one can be used per stage.
Therefore, in stage 3, we add a Swin Transformer block both before and after the
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HMCFormer block. Each Swin Transformer block consists of one W-MSA and one SW-
MSA. The formulation for the Swin Transformer block is as follows:

X = SW_MSA(LN(x"1)) + ! (9)
x' = MLP(LN(%)))) + & (10)
= W_MSA(LN(x), LN (")) + «' (11)
Xt = MLP(LN(Z"*))) + & (12)

In our Transformer branch, the embedding dimension C is set to 32, the window size is
set to 7, and the number of heads is configured as (3, 6, 12, 24).

CNN branch

Multi-scale feature extraction enhances a model’s ability to comprehensively understand
images by detecting and describing target features across different scales, thereby
improving the accuracy of tasks such as object detection and image classification (Szegedy
et al., 2024; Xu et al., 2024). This capability is crucial for the recognition of cervical cancer
images. Multi-level feature extraction has also gained popularity, as cross-stage feature
transmission enables the extraction and reuse of features at various levels. This approach
effectively captures a wide range of features, from low-level ones (e.g., edges, textures) to
high-level ones (e.g., object shapes, semantic information). Such feature transmission and
fusion strategies help improve gradient flow and alleviate the vanishing gradient problem,
allowing deep networks to train more effectively and extract features more efficiently, as
seen in the C3 structure of CSPNet (Wang et al., 2020) and the C2f structure in yolov8
(Wang et al., 2024). The thickness, texture, boundaries, and contours of lesion areas are
critical features for determining the grade of cervical intraepithelial neoplasia, making the
ability to comprehensively extract multi-scale and multi-level features an urgent necessity.

To achieve comprehensive multi-scale and multi-level feature extraction with minimal
computational overhead, this article introduces the innovative HMSPE module. As
illustrated in the figure, HMSPE effectively integrates multi-scale and multi-level feature
extraction. Given an input feature vector, it is first passed through a 1 x 1 convolution and
then divided into four sub-channels: x1, x2, x3, and x4 each having the same feature size.
To accomplish multi-scale feature extraction, we employ a combination of 5 x 5
convolution, 3 x 3 convolution, and 3 x 3 dilated convolution. Unlike other multi-scale
feature extraction approaches, we draw inspiration from the MobileNetV2 (Sandler et al.,
2018) block structure by incorporating 1 x 1 convolutions for channel expansion and
compression, achieving efficient feature representation and computation. While this
operation may seem to increase computational complexity, our experiments show that the
HMSPE module exhibits strong expressive power, requiring only one or two HMSPE
modules per stage to achieve satisfactory performance. This is in contrast to prior work,
which often necessitates multiple applications of multi-scale feature extraction modules
within each stage to achieve comparable expressive power. Overall, this approach
significantly reduces computational cost.
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Let the computation of the 5 x 5 Conv block be denoted as (x), the computation of the
3 x 3 Conv block as, and the computation of the 3 x 3 Dilated Conv block as. The input
feature vector is denoted as x.

f5xs5(x) = Conv) 2y "% (GELU(Convi 2" **(x))) +x (13)
f3x3(x) = Conv) 2y "% (GELU(Conv3 3" (x))) +x (14)
f2 (x) = Cony?3¢7025¢ (GELU( DilatedConvgfgfiz?‘SC(X)> ) +x. (15)

For the x1 sub-channel, no operation is performed. The x2 sub-channel utilizesa 5 x 5
Conv block, while the x3 sub-channel follows the sequence of a 3 x 3 ConV block > 3 x 3
DilatedConV block - 3 x 3 DilatedConV block. The x4 sub-channel applies a sequence of
3 x 3 ConV block > 3 x 3 ConV block > 3 x 3 DilatedConV block. When the dilation
factor d = 1, the receptive field of a 3 x 3 Dilated Conv is similar to that of a 5 x 5 Conv.
Thus, two 3 x 3 Dilated Conv blocks with d = 1 are used as a substitute for the 5 x 5 Conv.
Drawing inspiration from the progressive convolution and feature fusion concepts of the
Res2Net block (Gao et al., 2019), further scale expansion is achieved. The formulation of
the HMSPE module is as follows:

yl = PEM(Concat(x1, f5.5(x2))) (16)
y2 = PEM(Concat(f3 ,f3dx3 (fsxs5(x2) + f3x3(X3)))) (17)
Y3 = PEM(Concat(f3X3(f3X3 X4) f},dx3(f3dx3(f5x5(X2) + f3><3(X3))))) (18)

y4 = PEM (Concat (f3.3(x4), fir 5 (F3x3 (Faxa(x4)) + fih 3 (Fsxs(x2) + f3x3(x3))))  (19)
Y = Cancat(yl +y2,y3 + y4) + x.

The pixel-wise excitation module (PEM), as illustrated in the Fig. 6, is designed to
independently excite and enhance each pixel of the input feature map. After concatenating
the multi-scale and multi-level feature vectors, they are fed into the PEM module, which
enhances the representational capacity of high-dimensional features, aiding the model in
better capturing complex image information. LN denotes layer normalization, and Y
represents the output of the HMSPE module.

The structure in which the CNN branch receives inputs from the Transformer branch
will be detailed in “HMCFormer Block”. CNN networks require a large number of
channels to capture the rich features and texture information present in images. Typically,
CNNs need more channels than transformers. However, to facilitate seamless
cross-fusion, it is important to ensure that the number of channels in the Transformer
branch and the CNN branch are as consistent as possible. To increase the number of
channels in the CNN branch, an additional HMSPE module is introduced in both
Stage 2 and Stage 3, as shown in Fig. 3C. The HMSPE module, inspired by the
MobileNetV3 (Koonce ¢ Koonce, 2021) architecture, first doubles the number of
channels using a 1 x 1 convolution, followed by an HMSPE module, and then an SE
module with another 1 x 1 convolution to align the number of channels with the
Transformer branch. This approach not only ensures channel consistency between the
CNN and Transformer branches but also alleviates the demand for more feature channels
in the CNN network.
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Figure 6 Hierarchical multi-scale pixel excitation (HMSPE) module.
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In our CNN branch, the size of the embedded spatial dimension C is set to 32.

HMCFormer block

The HMCFormer block is a crucial module for enabling the exchange of information
between the Transformer and CNN branches. As discussed in d’Ascoli et al. (2021), Chen
et al. (2024), Yoo et al. (2023), Gao et al. (2023), and Xu et al. (2024), integrating features
from Transformers and CNNs can leverage their synergistic capabilities. Different fusion
methods can have a significant impact on the overall network performance. However, no
existing work has proposed a scientific approach to evaluate whether a fusion method
effectively harnesses the synergistic potential of both architectures. To address this, we

propose using mutual information, a concept from information theory, to assess the

effectiveness of different fusion strategies.
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Let X denote the features from the Transformer branch and Y denote the features from
the CNN branch, with the mutual information between X and Y denoted as I(X;Y). The
mutual information is defined as:

I(XY) = H(X) + H(Y) — H(X, Y) (20)

where H(X) is the entropy of the random variable X representing the information content
of the Transformer branch, H(Y) is the entropy of the random variable Y, representing the
information content of the CNN branch, and H(X, Y) is the joint entropy of the random
variables X and Y.

A comprehensive analysis of I(X;Y), H(X), and H(Y) can effectively evaluate whether
the network fully leverages the synergistic potential of the two branches. Ideally, when both
H(X) and H(Y) are relatively large, I(X;Y) should satisfy the condition
I(X;Y) < H(X) + H(Y) — Max(H(X), H(Y)). High values of H(X) and H(Y) indicate a
high degree of feature diversity in the Transformer and CNN branches, which enhances
the model’s ability to understand different aspects of the input data, making it
advantageous for classification tasks. If I(X;Y) is slightly less than
H(X) + H(Y) — Max(H(X), H(Y)), this suggests a strong correlation between the
Transformer and CNN features, with minimal redundancy, indicating that the network is
effectively utilizing the synergistic potential of both branches. Conversely, if
I(X;Y)>H(X) + H(Y) — Max(H(X), H(Y)), it indicates a high degree of redundancy
between X and Y, leading to inefficient network performance. On the other hand, if
I[(X;Y) <H(X) + H(Y) — max(H(X), H(Y)), it suggests that there is little correlation
between X and Y, indicating that the network has not fully exploited the synergistic
capabilities of the two branches.

As demonstrated in our experiments, which will be detailed in “Comparative
Performance of HMCFormer”, traditional element-wise addition or concatenation
operations do not yield optimal results. Previous studies (d’Ascoli et al., 2021; Yoo et al.,
2023; Xu et al., 2024) have proposed related weighted fusion methods. However, these
methods tend to diminish the influence of the CNN branch on the Transformer branch,
resulting in a lower H(X) value. In Transformer networks, the distinctiveness of the
features extracted from image patches tends to diminish as the network depth increases,
causing them to become increasingly similar or indistinguishable (Diko et al., 2024). This
characteristic necessitates a larger sample size for Transformer networks compared to
CNNes. Integrating information from the CNN branch into the Transformer branch can
effectively mitigate this issue. The related weighted fusion method (d’Ascoli et al., 2021;
Yoo et al., 2023; Xu et al., 2024) involves first fusing the Transformer and CNN branches
using various algorithms to obtain a fused feature map, and then adding this fused feature
map to both the Transformer and CNN branches. Our research found that this approach is
highly inefficient; the positive impact on the Transformer branch primarily comes from
the information in the fused feature map originating from the CNN branch. The
mechanism by which this fusion method works is as follows: during the fusion process
between the Transformer and CNN branches, a significant amount of information from
the CNN branch is lost. When the fused feature map is subsequently added to the
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Transformer branch, the information from the Transformer branch holds a relative
advantage over the CNN-derived information in the fused feature map. This ensures that
the Transformer can largely maintain its informational independence while still acquiring
the valuable insights from the CNN branch, preventing the Transformer network from
losing its uniqueness as network depth increases. Directly fusing the information from the
CNN branch, which is at an informational disadvantage, with the Transformer branch is a
more efficient approach compared to the related weighted fusion method.

To maximize the synergistic potential of both branches, this article introduces the
concepts of adaptive preprocessing and superiority-inferiority fusion. Adaptive
Preprocessing: Given the distinct differences in features and computational mechanisms
between Transformers and CNNs, information exchange between the CNN branch and
the Transformer branch should first pass through an adaptive structure before fusion is
implemented. Superiority-inferiority fusion: The information from the CNN branch that is
fed into the Transformer branch should be at a moderate disadvantage relative to the
information from the Transformer branch, and vice versa. This approach ensures the
independence of each branch’s information, maintaining relatively high values for H(X)
and H(Y). The fusion method proposed in Yoo et al. (2023) aligns with the concepts of
adaptive preprocessing and disadvantageous fusion introduced in this article. However,
this method remains somewhat rudimentary and offers considerable room for
improvement.

In the proposed model, the fusion of CNN branch information into the Transformer
branch is not performed at the end of each stage, as is common in other parallel networks,
but instead occurs within the second attention module of each HMCFormer Block. The
global feature extraction capability of ViT-based networks significantly improves with
increased network depth. By conducting the fusion in the second attention module, the
information from the CNN branch undergoes only half the attention computation
compared to the original Transformer information in each stage, thus achieving the
intended superiority-inferiority fusion. Compared to the fusion method in d’Ascoli et al.
(2021), Yoo et al. (2023), and Xu et al. (2024), the approach proposed in this article ensures
that the Transformer branch retains its informational advantage while fully incorporating
the information from the CNN branch. The features from the CNN branch undergo
adaptive preprocessing through a layer normalization (LN) and multi-layer perceptron
(MLP) module before being fed into the second attention module (W_MSA_m) of the
HMCFormer block. The W_MSA_m module represents an enhancement of the original
W_MSA, enabling it to effectively integrate information from the CNN branch.

We divide the feature map into multiple windows. Let X represent the feature map from
the Transformer branch and y represent the feature map from the CNN branch. The
expression for the module is as follows:

Y = LN(MLP(y))

1

b= Whe Y K= WY o = W, @)
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h (1) T h 1,0\ T
Attention§1 = softmax (Qi (Ki ) \/—g_qi (ki) ) (V}h + V?) (23)
k

Let X; denote the input features of the feature map X within window 7, and Y; denote the
input features of the feature map Y within window i. W, W, Wy are the weight matrices
for the linear transformations.

Compared to traditional element-wise addition or concatenation operations, using the
proposed W_MSA_m module for fusion enables more fine-grained feature integration,
allowing for a more detailed merging of the features from the two tensors. This approach
helps capture more complex feature relationships. According to the evaluation metrics
proposed in this article, the H(X) value obtained using this fusion method is significantly
higher than that of other fusion methods.

When integrating the information from the Transformer branch into the CNN branch,
we replicated the aforementioned approach by performing the fusion between the first
HMSPE module and the second HMSPE module within each HMCFormer Block.
Transformers and CNNs exhibit significant differences in feature representation and
computational mechanisms. To accommodate these differences, we processed the feature
tensor from the Transformer branch using a 3 x 3 Conv block followed by a 1 x 1 Conv
block for adaptive preprocessing before concatenating it with the output feature tensor of
the HMSPE module. In each stage, the information from the Transformer branch
undergoes nearly half the HMSPE computations compared to the original CNN branch,
leading to the Transformer-derived information being at a disadvantage post-
concatenation. This step effectively achieves the goal of integrating the Transformer
branch’s information at a disadvantageous position. The fused feature tensors from the
two branches are then integrated through a MobileNetV2 Block structure.

Let Y}, denote the feature tensor output from the HMSPE module, and X denote the
feature tensor from the Transformer branch.

F(X) = Conv} ¢~ “(GELU((Convs,;'¢(X)))) (24)
F1 = Concat(Y}, F(X)) (25)
You = Shufﬂe(Conv‘llgl_'c(SE (Convfgl_"lC(Fl)))). (26)

Let Y, denote the output after fusion in the CNN branch, and SE represent the SE
attention module. According to the evaluation metrics proposed in this article, the H(Y)
value obtained using this fusion method is slightly higher than that of the fusion method
described in d’Ascoli et al. (2021) and Yoo et al. (2023).

Using the fusion method proposed in this article, the three metrics—I(X;Y), H(X), and
H(Y)—all show improved performance. This indicates that the proposed fusion approach
effectively leverages the synergistic advantages of both the CNN and Transformer
networks.
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Table 1 Data sources.

Name

Database

Identifier URL

Google cervical cancer
segmentation

GitHub

Intel & MobileODT cervical Kaggle

cancer screening dataset

google/cervical-cancer-segmentation https://www.kaggle.com/datasets/madhurieseth/
cervical-cancer-my-dataset

intel-mobileodt-cervical-cancer-screening  https://www.kaggle.com/competitions/intel-
mobileodt-cervical-cancer-screening/data

NIH cervical cancer dataset The cancer TCIA.2016.0]5042YQ https://www.cancerimagingarchive.net Official
imaging archive Website: https://www.cancerimagingarchive.net/
(TCIA)

Dataset introduction

The proposed HMCFormer was trained and tested on publicly available cervical image
datasets (https://www.kaggle.com/datasets/madhurieseth/cervical-cancer-my-dataset;
https://www.kaggle.com/competitions/intel-mobileodt-cervical-cancer-screening/data;
https://www.cancerimagingarchive.net). As shown in Table 1.

After organizing and classifying these three public datasets, 5,165 samples suitable for
VIA screening were obtained, which we refer to as the PCC5000 dataset. This dataset
includes 2,066 samples of non-cervical intraepithelial neoplasia, 1,212 samples of CINI,
1,225 samples of CIN2, and 662 samples of CIN3. All images were re-annotated by
professional gynecologists.

Data preprocessing

To evaluate the model performance more comprehensively, we applied a five-fold
cross-validation method on 5,165 samples. Specifically, the dataset was divided into five
subsets of equal size. In each iteration, one subset was chosen as the validation set, another
as the test set, and the remaining three subsets were combined as the training set. This
process was repeated 5 times, ensuring that each subset was used as the validation and test
set once. Finally, the results from all five iterations were averaged to obtain the overall
performance metrics of the model.

During the data preprocessing stage, we applied the following specific methods and
steps to augment the input images: (1) Resized the images to 260 x 260; (2) Randomly
cropped the images to 224 x 224; (3) Randomly rotated the images within a range of [-15,
15] degrees; (4) Randomly flipped the images with a 50% probability; (5) Converted the
images to tensors and normalized them.

Implementation details

The experiments were conducted on an Intel ® Core ™ i7-7700K with a CPU of 4.2 GHz
and a RTX2080Ti graphics card with 11 GB of memory. The neural network experiments
were carried out using the PyTorch 1.9.0 and Ubuntul8.0 LTS software environment. The
network input was set to 3 x 224 x 224, with a batch size of 24, and Epochs = 300. Learning
Rate Scheduling.
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Initially, the model was pre-trained using the ImageNet1K dataset for 50 epochs.
Subsequently, we utilized the weights obtained from the pre-trained model on
ImageNet1K for transfer learning and conducted further training on our dataset.

Evaluation metrics

To verify the effectiveness of the proposed network, we computed evaluation criteria such
as accuracy, specificity, sensitivity, precision, recall, and F1-score. In these metrics, TP
refers to true positive, TN to true negative, FP to false positive, and FN to false negative.

A TP+ TN (27)
ccuracy =
YT TPYFP+EN+ TN
Sensitivi P (28)
ensitivity = ————
ty TP+ FN
TN
Specificity = ————— 29
pecificity TN + FP (29)
Recall x Precision
Fl-score = 2 X — (30)
Recall + Precision
Recall x Precision
Fl-score = 2 X — (31)
Recall + Precision
K Po = Pe (32)
appa =
pp 1—p,
_ TP+1IN
" Total Samples
_ (TP+FP)-(TP+FN)+ (EN+ TN) - (FP+ TN)
¢ N e (Total Samples)®
+
. -~ I(p;>p;
AUC — >ic1 2 L(pi>pj) ‘ (33)

N, N_
e N.: Number of positive samples, N_: Number of negative samples

o pi: Predicted probability of the i-th positive sample, p;: Predicted probability of the j-th
negative sample.

Comparative performance of HMCFormer

To compare the network performance of HMCFormer, we selected 23 representative
neural networks: ResNet50 (Allmendinger et al., 2022), EfficientNet (2021) (Tan ¢ Le,
2021), ConvNeXt (2022) (Woo et al., 2023), ConvNeXtv2 (2023) (Woo et al., 2023),
MobileNetV3 (2021) (Koonce ¢ Koonce, 2021), Swin_T (2021) (Liu et al., 2021),
SwinV2_T (2022) (Liu et al., 2022), Pvt_v2 (2022) (Wang et al., 2022), FastViT (2023)
(Vasu et al., 2023), EfficientFormer (2022) (Li et al., 2022), ConTNet (2023) (Liu et al.,
2023a), AgentSwin (2024) (Han et al., 2023), AgentPVT (2024) (Han et al., 2023), Mlla
(2024) (Han et al., 2024), CASViT (2024) (Zhang et al., 2024), SwiftFormer (2023) (Shaker
et al., 2023), PoolFormer (2023) (Yu et al., 2022), EfficientViT (2023) (Liu et al., 2023b),
Vmanba (2024) (Liu et al., 2024), WLAMFormer (2025) (Feng et al., 2025), Conformer
(2021) (Chen, Ningning & Zhaoxiang, 2021), and TransXNet (2024) (Lou et al., 2023).
Among these, there are five CNN-based networks, 11 Transformer-based networks, and
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Table 2 Comparison of binary classification performance.

Network model Params (M) FLOPs (G) Accuracy Sensitivity Specificity Error rate Precision F1

Resnet50x0.75 16.8 3.14 0.806 0.841 0.790 0.193 0.661 0.741
EfficientNet-b3 12.3 2.01 0.866 0.702 0.947 0.133 0.866 0.775
ConvNeXt-small 124 2.13 0.930 0.859 0.962 0.071 0.918 0.895
ConvNeXtv2-Tiny 15.3 2.32 0.916 0.837 0.954 0.083 0.899 0.867
MobileNetV3-L 4.2 0.28 0.813 0.682 0.876 0.187 0.728 0.704
Swin_Tinyx0.5 134 2.18 0.814 0.803 0.819 0.185 0.684 0.739
SwinV2_Tx0.5 12.2 2.03 0.860 0.745 0.916 0.139 0.813 0.777
Pvt_v2_bl 12.8 2.04 0.897 0.859 0.934 0.102 0.926 0.892
SwiftFormer-L1 12.05 1.604 0.928 0.850 0.966 0.071 0.924 0.886
EfficientViT-M5 1247 0.525 0.918 0.898 0.938 0.081 0.933 0.915
PoolFormer-S12 11.9 1.813 0.922 0.898 0.941 0.0076 0.941 0.920
CAS-ViT-m 12.03 1.66 0.920 0.888 0.948 0.081 0.933 0.915
Agent-Swin-tx0.75 15.5 2.46 0.923 0.906 0.935 0.076 0.912 0.909
Agent-PVT-T 11.6 2.0 0911 0.878 0.938 0.092 0.933 0.908
FastVit-SA12 10.9 1.92 0.922 0.898 0.958 0.077 0.969 0.932
EfficientFormer-S 13.6 2.03 0.933 0.872 0.963 0.066 0.920 0.895
ConTNet-XS 12.2 1.94 0.930 0.861 0.964 0.069 0.921 0.890
Conformerx0.5 18.1 2.88 0.920 0.863 0.948 0.079 0.891 0.877
TransXNet-L 12.8 1.83 0.947 0.913 0.963 0.052 0.924 0.919
Vmanba-Tx0.5 15.1 2.84 0.933 0.872 0.963 0.066 0.920 0.895
WLAMFormer-L 13.5 2.847 0.943 0.918 0.970 0.062 0.921 0.919
MLLA-tx0.75 13.5 2.68 0.937 0.978 0.907 0.062 0.887 0.930
HMCFormer (Ours) 12.5 1.78 0.974 0.981 0.968 0.025 0.958 0.970

Note:

The bold entries in the comparison table indicate the results of the model proposed in this article.

seven hybrid networks. To correspond to the scale of the proposed network in this article,
we chose models around 12M in size for all 16 neural networks.

As shown in Table 2, HMCFormer significantly outperforms other neural network
architectures across various metrics in binary classification. Since the primary goal of this
article is to achieve intelligent cervical cancer screening, accurately identifying all potential
cervical cancer cases is crucial, particularly in terms of sensitivity and accuracy.
HMCFormer achieves an accuracy of 97.4%, sensitivity of 98.1%, and an F1-score of
97.0%, demonstrating superior performance across key metrics. Compared to other
top-performing Transformer models, EfficientFormer-S lags behind HMCFormer by 3.1%
in accuracy, 10.9% in sensitivity, and 7.5% in F1-score. Additionally, HMCFormer excels
in reducing computational resources, with 1.1M fewer parameters and 0.25G fewer FLOPs
than EfficientFormer-S. For CNN architectures, ConvNeXt-small is the best-performing
model, but HMCFormer surpasses ConvNeXt-small in accuracy, sensitivity, and F1-score
by 4.4%, 12.2%, and 8.1%, respectively. Although HMCFormer has 1M more parameters
than ConvNeXt-small, it still reduces FLOPs by 0.35G, showcasing its high computational
efficiency. In the case of CNN+Transformer fusion models, TransXNet-L is the

Feng et al. (2025), PeerdJ Comput. Sci., DOI 10.7717/peerj-cs.3088 20/32


http://arxiv.org/abs/2408.03703?context=cs
http://dx.doi.org/10.7717/peerj-cs.3088
https://peerj.com/computer-science/

PeerJ Computer Science

ROC Curve Comparison

1.00 — e
L PP PR L e T A P e

0.95 -

0.90

0.85 -

True Positive Rate
8

¢ ;E Models (AUC)

fif HMCFormer (AUC=0.992)
WLAMFormer (AUC=0.989)
TransXNet (AUC=0.990)

HH EfficientFormer (AUC=0.986)
1 e CAS-Vit (AUC=0.985)

¥ ~-— ConvNeXt (AUC=0.984)

'S/ A I N oo ConvNeXtv2 (AUC=0.981)

0.75 E
:

0.65 = T T T T T T
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

Comparison of mgggﬁepr%%mgr?cggﬁqﬁst dataset

Figure 7 Model ROC comparison. Full-size k] DOT: 10.7717/peerj-cs.3088/fig-7

best-performing model other than HMCFormer. However, HMCFormer outperforms
TransXNet-L in accuracy, sensitivity, and F1-score by 2.7%, 6.8%, and 5.1%, respectively.
Moreover, HMCFormer demonstrates significant advantages in both parameters and
FLOPs, with 1M fewer parameters and 0.95G fewer FLOPs than TransXNet-L. Figure 7
presents a comparison of ROC curves for several models, while Fig. 8 shows the accuracy
of each model in binary classification on the PCC5000 dataset, with the size of the bubbles
representing the number of parameters (Params) for each model.

Since patients in the CIN1 stage are likely to recover naturally, while those in the CIN2
and CINS3 stages are at a high risk of progressing to cancer, we often categorize CIN into
low-grade (CIN1) and high-grade (CIN2/3). Given that other networks perform poorly in
binary classification for cervical cancer detection, we only compare the networks that
achieve an accuracy of over 92% in binary classification for the three-class classification
(no precancerous lesion, CIN1, CIN2/3). Since each class is critically important, we choose
macro-averaged metrics as the evaluation criteria.

From the analysis of Table 3, it is clear that our proposed HMCFormer network
continues to exhibit superior performance in the three-class classification task.
ConvNeXt_small is the best-performing CNN model; however, the model proposed in this
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Model Performance Comparison: Accuracy vs FLOPs (Bubble Size = Params(M))
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Table 3 Comparison of ternary classification performance.

Network model Params (M) FLOPs (G) Type Accuracy Sensitivity Precision F1 Kappa
ConvNeXt_small 12.4 2.13 CNN 0.912 0.877 0.878 0.878 0.817
SwiftFormer-L1 12.05 1.604 Transformer 0.881 0.819 0.854 0.834 0.789
PoolFormer-S12 11.9 1.813 0.919 0.873 0.901 0.884 0.859
FastVit-SA12 10.9 1.92 0.908 0.897 0.905 0.899 0.845
Agent-Swin-tx0.75 155 2.46 0918 0.879 0.899 0.887 0.845
EfficientFormer-S 13.6 2.03 0.921 0.888 0.886 0.887 0.864
TransXNet-L 12.8 1.83 Hybrid 0.931 0.903 0.904 0.903 0.880
Vmanba-Tx0.5 15.1 2.84 0.928 0.891 0.904 0.897 0.875
WLAMFormer-L 13.5 2.847 0.931 0.890 0.910 0.899 0.879
MLLA-tx0.75 13.5 2.68 0.927 0.896 0.900 0.898 0.871
Conformerx0.5 18.1 2.88 0.914 0.889 0.857 0.870 0.821
HMCFormer (Ours) 12.5 1.78 0.948 0.928 0.919 0.923 0.898

Note:
The bold entries in the comparison table indicate the results of the model proposed in this article.

article surpasses it by 3.6% in accuracy, 5.1% in sensitivity, and 4.5% in F1-score, while
maintaining similar parameter count and reducing FLOPs by 1.83G. EfficientFormer-S is
the best-performing Transformer model, but our proposed model exceeds it by 2.7% in
accuracy, 4.0% in sensitivity, and 3.6% in F1-score, with 1.1 million fewer parameters and a

Feng et al. (2025), PeerdJ Comput. Sci., DOl 10.7717/peerj-cs.3088

22/32


http://dx.doi.org/10.7717/peerj-cs.3088/fig-8
http://dx.doi.org/10.7717/peerj-cs.3088
https://peerj.com/computer-science/

PeerJ Computer Science

Model Performance Comparison: Accuracy vs FLOPs (Bubble Size = Params(M))

0.96

0.95

0.94

0.93

Accuracy
o
(o]
N

o
©
et

0.90

0.89

0.88

Model Parameters (M)
O 10.9M Params
p 13.5M Params
J Hl\:(%'iﬂrs';'e \5 18.1M Params
WLAMForm
TransXNe gr-L
tL
o vmanba-T
75 -
PoolForm
er-512[5 | Efficien Q
J- 1 |tFormer
S Agent-Sw
in-tx0.7 Conforme
. 5 rx0.5
- @
FastVit-
SA12
ConvNeXt
_small
SwiftFor
“ConvNeXt
meréLIIA “Small
! V2
1.50 175 2.00 2.25 2.50 2.75 3.00 3.25

FLOPs (G)

Figure 9 Comparison of tri-class classification accuracy among different models, with bubble size representing the size of params.
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reduction of 0.25G in FLOPs. TransXNet-L is the best-performing CNN+Transformer
hybrid network aside from the network proposed in this article; however, our model
surpasses it by 1.7% in accuracy, 2.5% in sensitivity, and 2.0% in F1-score, while reducing
parameters by 0.3 million and decreasing FLOPs by 0.95G. The results in the table further
highlight the efficiency of HMCFormer, which achieves the highest accuracy (0.948) while
maintaining a relatively low number of parameters (12.5M) and FLOPs (1.78G). This
demonstrates that HMCFormer excels in not only accuracy but also computational
efficiency compared to its counterparts. Figure 9 displays the accuracy of each model in
multi-class classification (three classes) on the PCC5000 dataset, where the size of the
bubbles represents the number of parameters (params) for each model.

Network visualization

We use the Grad-CAM method to generate heatmaps that highlight the areas of focus
within the network. To verify the accuracy of the model’s recognition, we compare the
heatmaps generated at each stage with those produced by ConvNeXt, Swin_T, and PVT-
V2-b2 at the corresponding stages. Additionally, we provide lesion annotations from
expert doctors, as shown in Fig. 10. The proposed HMCFormer demonstrates a significant
advantage by accurately focusing on the lesion areas at each stage, compared to ConvNeXt,
Swin_T, and PVT-V2-b2.
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Table 4 Comparison of fusion methods.

Fusion methods Params (M)

FLOPs (G) I(X,Y) H(X) H(Y) H(X)Y) Binary classification Acc Three-class classification Acc

1 12.1 1.74 17.97 1046 10.24 2.73 93.4% 90.9%
2 12.1 1.75 8.92 8.30 13.78 13.17 95.4% 93.7%
3 12.1 1.74 10.50 10.80 12.84 13.14 94.7% 92.2%
4 13.2 2.08 9.82 9.03 12.68 11.89 93.8% 88.7%
5 12.7 1.93 2.69 6.54 10.02 13.87 91.6% 89.1%
6 12.2 1.77 9.40 1032 12.61 13.53 96.8% 94.1%
7 (Ours) 12.5 1.78 9.12 10.72 12,99 14.59 97.4% 94.8%
Note:

The bold entries in the comparison table indicate the results of the model proposed in this article.

Ablation study

Comparison of fusion methods

In parallel CNN+Transformer networks, different fusion methods can directly affect the
overall network performance. We will compare six fusion methods to identify the optimal
fusion strategy for parallel CNN+Transformer networks:

1.

Element-wise addition: Based on the current model in this article, modify the existing
fusion method by removing all unnecessary structures, and perform fusion using
element-wise addition at the end of each stage.

. Concatenation fusion: Modify the current model by removing all unnecessary structures

and concatenate the feature vectors from the CNN and Transformer branches at the end
of each stage. After concatenation, use shuffle to mix the features thoroughly, then split
the mixed features into two parts—one for the Transformer branch and one for the
CNN branch.

. Fusion method from Chen et al. (2024): Based on the current model, modify the existing

fusion method by removing all unnecessary structures and apply the fusion method
from Chen et al. (2024). In this method, the Transformer branch receives information
from the CNN branch, but the CNN branch does not receive information from the
Transformer branch.

. Fusion method from Yoo et al. (2023): Modify the current model by removing all

unnecessary structures and apply the fusion method from Yoo et al. (2023). At the end
of each stage, first fuse the feature vectors from the CNN and Transformer branches,
then add them to the feature vectors of both branches.

. Fusion method from Xu et al. (2024): Based on the current model, modify the existing

fusion method by removing all unnecessary structures and apply the fusion method
from Xu et al. (2024). No fusion is performed at stages 0, 1, and 2; fusion occurs only at
stage 3.

. Fusion method without adaptive preprocessing: Apply the fusion method proposed in

this article without the adaptive preprocessing step.

. The fusion method proposed in this article.
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Table 5 Binary classification image enhancement ablation analysis.

Network model Accuracy Sensitivity Specificity Error rate Precision F1

HMCFormer_O 0.954 0.945 0.961 0.045 0.948 0.946
HMCFormer_E 0.969 0.966 0.973 0.030 0.981 0.974
HMCFormer 0.974 0.981 0.968 0.025 0.958 0.970

Table 6 Ternary classification image enhancement ablation analysis.

Network model Accuracy Sensitivity Precision F1

HMCFormer_O 0.939 0.919 0.906 0.912
HMCFormer_E 0.926 0.893 0.901 0.897
HMCFormer 0.948 0.928 0.919 0.923

In this article, the feature vectors output at the end of stage 3 will be used to calculate
H(X), H(Y), and I(X;Y). The feature vectors from the Transformer branch are denoted as
X, and those from the CNN branch are denoted as Y. Table 3 presents the values of I(X,Y),
H(X), and H(Y) for these seven methods at Epochs = 500.

From Table 4, Methods 1, 2, and 4 exhibit [(X;Y) > H(X) + H(Y) — Max(H(X), H(Y)),
indicating significant redundancy in the network’s feature vectors, with the highest
redundancy observed in Method 1. In Methods 2, 4, and 5, the relatively low H(X) values
suggest that the Transformer branch has limited feature diversity, with many similar
features. Compared to all methods, the proposed method (Method 7) demonstrates the
best performance across various metrics, achieving the highest H(X) value and the
second-highest H(Y) value, indicating good feature diversity in both the Transformer and
CNN branches. The I(X;Y) value is slightly less than H(X) + H(Y) — Max(H(X), H(Y)),
suggesting strong synergy between the Transformer and CNN branches with low
redundancy. In summary, the proposed method outperforms the other five fusion
methods. Comparing Method 6 and Method 7, adaptive preprocessing effectively enhances
feature fusion, leading to a notable increase in both H(X) and H(Y).

Ablation analysis of image enhancement

The dual-color space enhancement fusion algorithm is a significant innovation in this
study. To demonstrate its importance in intelligent cervical cancer identification, we
proposed two validation networks: HMCFormer_O and HMCFormer_E. In
HMCFormer_O, we replaced the input, which was initially the enhanced image, with the
grayscale version of the original image, thereby eliminating all enhanced image inputs. In
HMCFormer_E, we changed the input from the original image to the enhanced image,
removing all inputs of the original image.

From Tables 5 and 6, it can be observed that in HMCFormer_O, which excludes all
image augmentations, the metrics for both binary and three-class classification tasks are
significantly lower than those of HMCFormer. In the binary classification task, the
accuracy of HMCFormer_O is only 0.07% higher than that of the second-best TransXNet
in Table 2, its sensitivity is 3.2% higher, and its F1-score is 2.7% higher than those of
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TransXNet. In the three-class classification task, HMCFormer_O’s accuracy is just 0.08%
higher than that of the second-best TransXNet in Table 3, with its sensitivity being 1.6%
higher and its F1-score 0.09% higher. These results indicate that the HMCFormer network
architecture has certain advantages over existing general-purpose networks, and also
confirm that the image augmentation algorithm indeed plays a crucial role.

In HMCFormer_E, where only augmented images are used without the original images,
we found that its binary classification performance is excellent, achieving an accuracy of
96.9%, but still not surpassing the 97.4% accuracy of HMCFormer. In the three-class
classification, the accuracy of HMCFormer_E is only 92.9%. This indicates that the image
augmentation algorithm does indeed affect the grading of CIN, further validating the
rationale of using original images as input for the Transformer branch and augmented
images as input for the CNN branch, as well as the approach discussed in “Dual Color
Space-Based Image Enhancement Technology” of converting augmented images to
grayscale to remove color information.

CONCLUSIONS

Cervical cancer is the fourth leading cause of cancer-related deaths among women
worldwide. Early detection of cervical intraepithelial neoplasia can significantly increase
the survival rates of patients with cervical lesions. Regular cervical cancer screening is the
most effective method to reduce cervical cancer mortality. However, the current
mainstream screening method, which combines TCT and HPV testing, is expensive and
time-consuming. In developing countries, this cost and time burden means that most low-
and middle-income women seldom choose to undergo cervical cancer screening. Although
AT assistance has begun to be utilized in TCT+HPV screening—bringing certain cost
savings and efficiency improvements to medical institutions—the collection,
transportation, storage, and analysis of cervical cells still require professional personnel
and specialized, expensive equipment. These requirements constitute the majority of the
costs associated with TCT+HPV screening. Therefore, the cost savings achieved through
AT assistance are almost impossible to translate into benefits for patients. Al-assisted VIA
screening will, at an incredibly low cost, once again become the mainstream method for
cervical cancer screening in the future. It will be widely promoted in community hospitals,
rural clinics, and small- to medium-sized health examination institutions, truly becoming
as routine and inexpensive a test as measuring blood pressure or blood glucose.

This article proposes a more rational CNN+Transformer fusion method that maximizes
the collaborative potential between the CNN and Transformer branches. Utilizing mutual
information from information theory, we demonstrate that our method effectively
harnesses this collaborative potential. We introduce the HMSPE module, which enables
the CNN branch to integrate multi-scale and multi-level feature extraction capabilities
with minimal additional computational overhead. In our approach, the Transformer
branch processes the original, unenhanced images, while the CNN branch processes
images enhanced by our proposed dual color space image enhancement algorithm. This
method significantly improves recognition accuracy. We have compiled and organized
publicly available datasets provided by companies such as Intel and Google, obtaining
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5,000 samples suitable for the VIA screening method, thereby forming the PCC5000
dataset. On this dataset, our algorithm achieves a screening accuracy of 97.4% and a
grading accuracy of 94.8%.

At present, the dataset we use relies entirely on publicly available datasets from the
internet. In the future, we will collaborate with multiple hospitals to continue refining our
dataset. Based on the algorithm presented in this article, we will develop auxiliary
diagnostic software for cervical cancer and invite gynecologists to join our platform.
Suspected cases identified by our software will receive prompt secondary confirmation
from professional gynecologists. Furthermore, we plan to develop an inexpensive
colposcope equipped with acetic acid spraying and network transmission functions.
Ultimately, cervical cancer screening will become as simple and affordable as measuring
blood glucose.
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