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ABSTRACT15

Technological advances have lead to creation of large epigenetic datasets, including information about

DNA binding proteins and DNA spatial structure. Hi-C experiments have revealed that chromosomes are

subdivided into sets of self-interacting domains called Topologically Associating Domains (TADs). TADs

are involved in the regulation of gene expression activity, but the mechanisms of their formation are not

yet fully understood. Here, we focus on machine learning methods to characterize DNA folding patterns

in Drosophila based on chromatin marks across three cell lines. We present linear regression models

with four types of regularization, gradient boosting, and recurrent neural networks (RNN) as tools to study

chromatin folding characteristics associated with TADs given epigenetic chromatin immunoprecipitation

data. The bidirectional long short-term memory RNN architecture produced the best prediction scores

and identified biologically relevant features. Chriz and H3K4me3 were selected as the most informative

features for the prediction of TADs characteristics. This approach may be adapted to any similar biological

dataset of chromatin features across various cell lines and species. The code for the implemented

pipeline, Hi-ChiP-ML, is publicly available: https://github.com/MichalRozenwald/Hi-ChIP-ML
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INTRODUCTION29

Machine learning has proved to be an essential tool for studies in the molecular biology of the eukaryotic30

cell, in particular, the process of gene regulation (Eraslan et al., 2019; Zeng et al., 2020). Gene regulation31

of higher eukaryotes is orchestrated by two primary interconnected mechanisms, the binding of regulatory32

factors to the promoters and enhancers, and the changes in DNA spatial folding. The resulting binding33

patterns and chromatin structure represent the epigenetic state of the cells. They can be assayed by34

high-throughput techniques, such as chromatin immunoprecipitation (Ren et al., 2000; Johnson et al.,35

2007) and Hi-C (Lieberman-Aiden et al., 2009). The epigenetic state is tightly connected with inheritance36

and disease (Lupiáñez et al., 2016; Yuan et al., 2018; Trieu et al., 2020). For instance, disruption of37

chromosomal topology in humans affects gliomagenesis and limb malformations (Krijger and De Laat,38

2016). However, the details of underlying processes are yet to be understood.39

The study of Hi-C maps of genomic interactions revealed the structural and regulatory units of40

eukaryotic genome, topologically associating domains, or TADs. TADs represent self-interacting regions41

of DNA with well-defined boundaries that insulate the TAD from interactions with adjacent regions42

(Lieberman-Aiden et al., 2009; Dixon et al., 2012; Rao et al., 2014). In mammals, the boundaries of TADs43

are defined by the binding of insulator protein CTCF (Rao et al., 2014). However, Drosophila CTCF44

homolog is not essential for the formation of TAD boundaries (Wang et al., 2018). Contribution of CTCF45
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to the boundaries was detected in neuronal cells, but not in embryonic cells of Drosophila (Chathoth and46

Zabet, 2019). At the same time, up to eight different insulator proteins have been proposed to contribute47

to the formation of TADs boundaries (Ram, 2018).48

Ulianov et al. (2016) demonstrated that active transcription plays a key role in the Drosophila49

chromosome partitioning into TADs. Active chromatin marks are preferably found at TAD borders, while50

repressive histone modifications are depleted within inter-TADs. Thus, histone modifications instead of51

insulator binding factors might be the main TAD-forming factors in this organism.52

To determine factors responsible for the TAD boundary formation in Drosophila, Ulianov et al. (2016)53

utilized machine learning techniques. For that, they formulated a classification task and used a logistic54

regression model. The model input was a set of ChIP-chip signals for a genomic region, and the output, a55

binary value indicating whether the region was located at the boundary or within a TAD. Similarly, Ram56

(2018) demonstrated the effectiveness of the lasso regression and gradient boosting for the same task.57

However, this approach has two substantial limitations. First, the prediction of TAD state as a58

categorical output depends on the TAD calling procedure. It requires setting a threshold for the TAD59

boundary definition and it is insensitive to sub-threshold boundaries.60

Alternatively, the TAD status of a region may be derived from a Hi-C map either by calculation of61

local characteristics of TADs such as Insulation Score (Crane et al., 2015), D-score (Stadhouders et al.,62

2018), Directionality Index (Dixon et al., 2012)), or by dynamic programming methods, such as Armatus63

(Filippova et al., 2014). Methods assessing local characteristics of TADs result in assigning a continuous64

score to genomic bins along the chromosome. Dynamic programming methods are typically not anchored65

to a local genomic region and consider Hi-C maps of whole chromosomes. The calculation of transitional66

gamma has the advantages of both approaches (Ulianov et al., 2016). It runs dynamic programming for67

whole-chromosome data for multiple parameters and assesses the score for each genomic region.68

The second limitation is that regression and gradient boosting in Ulianov et al. (2016) and Ram69

(2018) account for the features of a given region of the genome, but ignore the adjacent regions. Such70

contextual information might be crucial for the TAD status in Drosophila.71

For a possible solution, one may look at instructive examples of other chromatin architecture problems,72

such as improvement of Hi-C data resolution (Gong et al., 2018; Schwessinger et al., 2019; Li and Dai,73

2020), inference of chromatin structure (Cristescu et al., 2018; Trieu et al., 2020), prediction of genomic74

regions interactions (Whalen et al., 2016; Zeng et al., 2018; Li et al., 2019; Fudenberg et al., 2019; Singh75

et al., 2019; Jing et al., 2019; Gan et al., 2019a; Belokopytova et al., 2020), and, finally, TAD boundaries76

prediction in mammalian cells (Gan et al., 2019b; Martens et al., 2020).77

The machine learning approaches used in these works include generalized linear models (Ibn-Salem78

and Andrade-Navarro, 2019), random forest (Bkhetan and Plewczynski, 2018; Gan et al., 2019b), other79

ensemble models (Whalen et al., 2016), and neural networks: multi-layer perceptron (Gan et al., 2019b),80

dense neural networks (Zeng et al., 2018; Farré et al., 2018; Li et al., 2019), convolutional neural81

networks (Schreiber et al., 2017), generative adversarial networks (Liu et al., 2019), and recurrent neural82

networks (Cristescu et al., 2018; Singh et al., 2019; Gan et al., 2019a).83

Among these methods, recurrent neural networks (RNNs) provide a comprehensive architecture for84

analyzing sequential data (Graves et al., 2013), due to the temporal modeling capabilities.A popular85

implementation of RNN Long Short-Term Memory (LSTM) models (Hochreiter and Schmidhuber, 1997)86

create informative statistics that provide solutions for complex long-time-lag tasks (Graves, 2012). Thus,87

the application of LTSM RNNs to problems with sequential ordering of a target, such as DNA bins88

characteristics, is a promising approach. Moreover, this feature is particularly relevant for the TAD89

boundary prediction in Drosophila, where the histone modifications of extended genomic regions govern90

the formation of boundaries (Ulianov et al., 2016).91

Here, we analyze the epigenetic factors contributing to the TAD status of the genomic regions of92

Drosophila. As opposed to previous approaches, we incorporate information about the region context on93

two levels. First, we utilize the context-aware TAD characteristic transitional gamma. Second, we use the94

advanced method of recurrent neural network that preserves the information about features of adjacent95

regions.96
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MATERIALS AND METHODS97

Data98

Hi-C datasets for three cultured Drosophila melanogaster cell lines were taken from Ulianov et al. (2016).99

Cell lines Schneider-2 (S2) and Kc167 from late embryos and DmBG3-c2 (BG3) from the central nervous100

system of third-instar larvae were analysed. The Drosophila genome (dm3 assembly) was binned at the101

20-kb resolution resulting in 5950 sequential genomic regions of equal size. Each bin was described102

by the start coordinate on the chromosome and by the signal from a set of ChIP-chip experiments. The103

ChIP-chip data were obtained from the modENCODE database (Celniker et al., 2009) and processed as in104

Ulianov et al. (2016).105

As chromatin architecture is known to be correlated with epigenetic characteristics in Drosophila106

(Ulianov et al., 2016; Hug et al., 2017; Ramı́rez et al., 2018), we selected two sets of epigenetic marks,107

i.e., transcription factors (TF), and insulator protein binding sites, and histone modifications (HM), for108

further analysis. The first set included five features (Chriz, CTCF, Su(Hw), H3K27me3, H3K27ac),109

which had been reported as relevant for TAD formation in previous studies (Ulianov et al., 2016). The110

second set contained eighteen epigenetic marks in total, extending the first set with thirteen potentially111

relevant features chosen based on the literature (RNA polymerase II, BEAF-32, GAF, CP190, H3K4me1,112

H3K4me2, H3K4me3, H3K9me2, H3K9me3, H3K27me1, H3K36me1, H3K36me3, H4K16ac). To113

normalize the input data, we mean-centered and scaled each feature to the unit variance, see Supplementary114

Fig. 2. For the full list of chromatin factors and their modENCODE IDs, see Supplementary Table 4.115

Target Value116

TADs are calculated based on Hi-C interactions matrix. As a result of TAD calling algorithm, TADs117

are represented as a segmentation of the genome into discrete regions. However, resulting segmentation118

typically depends on TAD calling parameters. In particular, widely used TAD segmentation software119

Armatus Filippova et al. (2014) annotates TADs for a user-defined scaling parameter gamma. Gamma120

determines the average size and the number of TADs produced by Armatus on a given Hi-C map.121

Following Ulianov et al. (2016), we avoided the problem of selection of single set of parameters122

for TADs annotation and calculated the local characteristic of TAD formation of the genome, namely,123

transitional gamma. The procedure of calculation of transitional gamma includes the TAD calling for124

a wide range of reasonable parameters gamma and selection of characteristic gamma for each genomic125

locus. The procedure is briefly described below.126

When parameter gamma is fixed, Armatus annotates each genomic bin as a part of a TAD, inter-TAD,127

or TAD boundary. The higher the gamma value is used in Armatus, the smaller on average the TADs128

sizes are. We perform the TAD calling with Armatus for a set of parameters and characterize each bin by129

transitional gamma at which this bin switches from being a part of a TAD to being a part of an inter-TAD130

or a TAD boundary. We illustrate the TADs annotation and calculation of transitional gamma in Figure 1A.131

Whole-genome Hi-C maps of Drosophila cells were collected from Ulianov et al. (2016) and processed132

using Armatus with a gamma ranging from 0 to 10 with a step of 0.01. We then calculated the transitional133

gamma for each bin. The resulting distribution of values can be found in Figure 1B. We note that the134

value 10 is corresponding to the bins that form TAD regions that we have never observed as being TAD135

boundary or inter-TAD. These bins might switch from TADs with the further increase of gamma. However,136

they represent a minor fraction of the genome corresponding to strong inner-TAD bins.137

Problem statement138

To avoid ambiguity, we formally state our machine learning problem:139

• objects are genomic bins of 20-kb length that do not intersect,140

• input features are the measurements of chromatin factors binding,141

• target value is the transitional gamma, which characterizes the TAD status of the region and thus142

the DNA folding,143

• objective is to predict the value of transitional gamma and to identify which of the chromatin144

features are most significant in predicting the TAD state.145
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Figure 1. A-C. Example of annotation of chromosome 3R region by gamma transitional. For a given

Hi-C matrix of Schneider-2 cells (A), TAD segmentations (B) are calculated by Armatus for a set of

gamma values (from 0 to 10, a step of 0.01). Each line in B represents a single TAD. Then gamma

transitional (C) is calculated for each genomic region as the minimal value of gamma where the region

becomes inter-TAD or TAD boundary. The line in C represents the transitional gamma value for each

genomic bin. The plots B and C are limited by gamma 2 for better visualization, although they are

continued to the value of 10. Asterisk (*) denotes the region with gamma transitional of 1.64, the minimal

value of gamma, where the corresponding region transitions from TAD to inter-TAD. D. The histogram of

the target value transitional gamma for Schneider-2 cell line. Note the peak at 10.

Selection of Loss Function146

The target, transitional gamma, is a continuous variable ranging from 0 to 10, which yields a regression147

problem (Yan and Su, 2009). The classical optimization function for the regression is Mean Square Error148

(MSE). However, the distribution of the target in our problem is significantly unbalanced (see Figure 1D),149

because the target value of most of the objects is in the interval between 0 and 3. Thus the contribution of150

the error on objects with a high true target value may be also high in the total score when using Mean151

Square Error.152

We note that the biological nature of objects with high transitional gamma is different from other153

objects. Transitional gamma equal to 10 means that the bin never transformed from being a part of a TAD154

to an inter-TAD or TAD boundary. To solve this contradiction, we have introduce a custom loss function155

called modified weighted Mean Square Error (wMSE). It might be reformulated as MSE multiplied by the156

weight (penalty) of the error, depending on the true value of the target variable.157

wMSE =
1

N

N

∑
i=1

(ytruei
− ypredi

)2 α − ytruei

α

,

where N is the number of data points, ytruei
is the true value for data point number i, ypredi

is the predicted158

value for data point number i. Here, α is the maximum value of ytrue increased by 1 to avoid multiplying159

the error by 0. The maximum value of the transitional gamma in our dataset is 10, thus in our case, α160

equals 11. With wMSE as a loss function, the model is penalized less for errors on objects with high161

values of transitional gamma.162

Machine learning models163

To explore the relationships between the 3D chromatin structure and epigenetic data, we built linear164

regression (LR) models, gradient boosting (GB) regressors, and recurrent neural networks (RNN). The165

4/16PeerJ reviewing PDF | (2020:08:52245:0:1:NEW 28 Aug 2020)

Manuscript to be reviewed



LR models were additionally applied with either L1 or L2 regularization and with both penalties. For166

benchmarking we used a constant prediction set to the mean value of the training dataset.

Figure 2. Scheme of the implemented bidirectional LSTM recurrent neural networks with one output.

The values of {x1, ..,xt} are the DNA bins with input window size t, {h1, ..,ht} are the hidden states of

the RNN model, yt/2 represents the corresponding target value transitional gamma of the middle bin xt/2.

167

Due to the DNA linear connectivity, our input bins are sequentially ordered in the genome. Neighbor-168

ing DNA regions frequently bear similar epigenetic marks and chromatin properties (Kharchenko et al.,169

2011). Thus the target variable values are expected to be vastly correlated. To use this biological property,170

we applied RNN models. In addition, the information content of the double-stranded DNA molecule is171

equivalent if reading in forward and reverse direction. In order to utilize the DNA linearity together with172

equivalence of both direction on DNA, we selected the bidirectional long short-term memory (biLSTM)173

RNN architecture (Schuster and Paliwal, 1997). The model takes a set of epigenetic properties for bins as174

input and outputs the target value of the middle bin. The middle bin is an object from the input set with an175

index i, where i equals to the floor division of the input set length by 2. Thus the transitional gamma of176

the middle bin is being predicted using the features of the surrounding bins as well. The scheme of this177

model is presented in Figure 2.178

We exploited the following parameters of the biLSTM RNN in our experiments.179

The sequence length of the RNN input objects is a set of consecutive DNA bins with fixed length that180

was varied from 1 to 10 (window size).181

The numbers of LSTM Units that we tested for were 1, 4, 8, 16, 32, 64, 128, 256, 512.182

The weighted Mean Square Error loss function was chosen and models were trained with Adam183

optimizer.184

Early Stopping was used to automatically identify the optimal number of training epochs.185

The dataset was randomly split into three groups: train dataset 70%, test dataset 20%, and 10% data for186

validation.187

To explore the importance of each feature from the input space, we trained the RNNs using only one188

of the epigenetic features as input. Additionally, we built models in which columns from the feature189

matrix were one by one replaced with zeros, and all other features were used for training. Further, we190

calculated the evaluation metrics and checked if they were significantly different from the results obtained191

while using the complete set of data.192

RESULTS193

Chromatin marks are reliable predictors of the TAD state194

First, we assessed whether the TAD state could be predicted from the set of chromatin marks for a single195

cell line (Schneider-2 in this section). The classical machine learning quality metrics on cross-validation196

averaged over ten rounds of training demonstrate strong quality of prediction compared to the constant197

prediction (see Table 1).198

High evaluation scores prove that the selected chromatin marks represent a set of reliable predictors199

for the TAD state of Drosophila genomic region. Thus, the selected set of 18 chromatin marks can be200

used for chromatin folding patterns prediction in Drosophila.201
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The quality metric adapted for our particular machine learning problem, wMSE, demonstrates the202

same level of improvement of predictions for different models (see Table 2). Therefore, we conclude that203

wMSE can be used for downstream assessment of the quality of the predictions of our models.204

These results allow us to perform the parameter selection for linear regression (LR) and gradient205

boosting (GB) and select the optimal values based on the wMSE metric. For LR, we selected alpha of 0.2206

for both L1 and L2 regularizations.207

Gradient boosting outperforms linear regression with different types of regularization on our task.208

Thus, the TAD state of the cell is likely to be more complicated than a linear combination of chromatin209

marks bound in the genomic locus. We used a wide range of variable parameters such as the number of210

estimators, learning rate, maximum depth of the individual regression estimators. The best results were211

observed while setting the ’n estimators’: 100, ’max depth’: 3 and n estimators’: 250, ’max depth’: 4,212

both with ’learning rate’: 0.01. The scores are presented in Tables 1 and 2.213

The context-aware prediction of TAD state is the most reliable214

The alternative model that we studied was biLSTM neural network, which provides explicit accounting215

for linearly ordered bins in the DNA molecule.216

We have investigated the hyperparameters set for biLSTM and assessed the wMSE on various input217

window sizes and numbers of LSTM Units. As we demonstrate in Figure 3, the optimal sequence length is218

equal to the input window size 6 and 64 LSTM Units. This result has a potential biological interpretation219

as the typical size of TADs in Drosophila, being around 120 kb at 20-kb resolution Hi-C maps which220

equals to 6 bins.221

The incorporation of sequential dependency improved the prediction significantly, as demonstrated222

by the best quality scores achieved by the biLSTM (Table 2). The selected biLSTM with the best223

hyperparameters set performed two times better than the constant prediction and outscored all trained LR224

and GB models, see Tables 1 and 2. We note that the proposed biLSTM model does not take into account225

the target value of the neighboring regions, both while training and predicting. Our model uses the input226

values (chromatin marks) solely for the whole window and target values for the central bin in the window227

for training and assessment of validation results. Thus, we conclude that biLSTM was able to capture and228

utilize the sequential relationship of the input objects in terms of the physical distance in the DNA.229

Figure 3. Selection of the biLSTM parameters. Weighted MSE scores for the train and test datasets are

presented. The left panel shows the results of RNN with 64 units for different sizes of sequence length.

The right panel shows wMSE for RNN with an input sequence of 6 bins with different number of LSTM

units. The green box highlights the best scores. The biLSTM with 6 input bins and 64 LSTM units was

used throughout this study if not specified otherwise.

Reduced set of chromatin marks is sufficient for a reliable prediction of the TAD state in Drosophila230

Next, we used an opportunity to analyse feature importance and select the set of factors most relevant for231

chromatin folding. For an initial analysis, we selected a subset of five chromatin marks that we considered232
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important based on the literature (two histone marks and three potential insulator proteins, 5-features233

model).234

The 5-features model performed slightly worse than the initial 18-features model (see Tables 1235

and 2). The difference in quality scores is rather small, supporting the selection of these five features as236

biologically relevant for TAD state prediction.237

We note that the small impact of shrinking of the number of predictors might indicate the high238

correlation between chromatin features. This is in line with the concept of chromatin states when several239

histone modifications and other chromatin factors are responsible for a single function of DNA region,240

such as gene expression (Filion et al., 2010; Kharchenko et al., 2011).241

Table 1. Evaluation of classical machine learning scores for all models, based on 5-features and

18-features inputs

5 features

Model type MSE MSE MAE MAE R2

Train Test Train Test

Const 3.71 3.72 1.36 1.31 0

LR + L1 2.91 2.91 1.11 1.11 0.21

LR + L2 2.92 2.93 1.12 1.12 0.21

LR + L1 + L2 2.86 2.87 1.11 1.11 0.23

GB-250 2.45 2.67 1.10 1.11 0.28

biLSTM RNN 2.36 2.90 0.92 1.01 0.33

18 features

LR + L1 2.77 2.77 1.09 1.09 0.25

LR + L2 2.69 2.69 1.08 1.08 0.27

LR + L1 + L2 2.67 2.68 1.07 1.07 0.28

GB-250 2.22 2.53 1.06 1.07 0.32

biLSTM RNN 2.03 2.45 0.85 0.90 0.43

Table 2. Weighted MSE of all models, based on 5-features and 18-features inputs

5 features 18 features

Train Test Train Test

Constant prediction 1.61 1.62 1.61 1.62

Linear Regression 1.20 1.20 1.13 1.14

Linear regression + L1 1.17 1.17 1.12 1.12

Linear regression + L2 1.18 1.19 1.11 1.12

Linear regression + L1 + L2 1.17 1.16 1.11 1.11

Grad boosting 100 estimators 1.11 1.13 1.08 1.10

Grad boosting 250 estimators 1.06 1.11 0.95 1.07

biLSTM 64 units & 6 bins 0.83 0.88 0.79 0.84

Feature importance analysis reveals factors relevant for chromatin folding into TADs in Drosophila242

We have evaluated the weight coefficients of the linear regression because the large weights strongly243

influence the model prediction. Chromatin marks prioritization of 5-features LR model demonstrated244

that the most valuable feature was Chriz, while the weights of Su(Hw) and CTCF were the smallest. As245

expected, Chriz factor was the top in the prioritization of the 18-features LR model. However, the next246

important features were histone marks H3K4me1 and H3K27me1, supporting the hypothesis of histone247

modifications as drivers of TAD folding in Drosophila.248

7/16PeerJ reviewing PDF | (2020:08:52245:0:1:NEW 28 Aug 2020)

Manuscript to be reviewed



Figure 4. Weighted MSE using one feature for each input bin in the biLSTM RNN. The first mark

(’all’) corresponds to scores of NNs using the first dataset of chromatin marks features together, the last

mark (’const’) represents wMSE using constant prediction. Note that the lower the wMSE value the

better the quality of prediction.

Figure 5. Weighted MSE using four out of five chromatin marks features together as the biLSTM RNN

input. Each colour correspond to the feature that was excluded from the input. Note that the model is

affected the most when Chriz factor is dropped from features.

We used two approaches for the feature selection of RNN: use-one feature and drop-one feature.249

When each single chromatin mark was used as the only feature of each bin of the RNN input sequence250

for training, the best scores were obtained for Chriz and H3K4me2 (Figure 4, 5 and 6), similarly to the251

LR models results. When we dropped out one of the five features, we got scores that are almost equal252

to the wMSE using the full dataset together. This does not hold for experiment with excluded Chriz,253

where wMSE increases. These results align with the outcome of use-one approach and while applying LR254

models.255

Similar results were obtained while using the broader dataset. The results of applying the same256

approach of omitting each feature one by one using the second dataset of features allowed the evaluation257

of the biological impact of the features. The corresponding wMSE scores are presented in Figure 6 as258

well as the result of training the model on all features together.259

The results of omitting each feature one but one while using the second dataset of features are almost260

identical as we accepted. It could be explained by the fact that most of the features are strongly correlated.261
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Figure 6. Weighted MSE on the test dataset while using each chromatin mark either as a single feature

(blue line) or ejecting it from the biLSTM RNN input (yellow line).

TAD state prediction models are transferable between cell lines of Drosophila262

In order to explore the transferability of the results between various Drosophila cell lines, we have263

applied the full pipeline for Schneider-2 and Kc167 from late embryos and DmBG3-c2 (BG3) from the264

central nervous system of third-instar larvae. Across all cell lines, the biLSTM model has gained the best265

evaluation scores (Table 3). On average, the smallest errors were produced on the test set of the BG3 cell266

line.267

Notably, the selected top features are robust between cell lines. The results of the usage of each268

feature separately for each of the cell lines can be found in Supplementary Fig. 1. Chriz was identified269

as the most influencing feature for Schneider-2 and BG3 while being in the top four features for Kc167.270

Histone modifications H3K4me2 and H3K4me3 gain very high scores on each dataset. However, CTCF271

was found in the top of the influencing chromatin marks only on the Kc167. While insulator Su(Hw)272

constantly scores almost the worst wMSE across all cell lines.273

The all-cell-lines model improves prediction for most cell lines274

Finally, we tested the improvement of the prediction models that can be achieved by merging the275

information about all cell lines. For that, we merged all three cell lines as the input dataset and used the276

all-cell-lines model for the prediction on each cell line.277

The gain of scores was the highest for Schneider-2 and Kc167, while BG3 demonstrated a slight278

decline in the prediction quality. We also note that biLSTM was less affected by the addition of cross-cell-279

line data among all models.280

In general, the quality of the prediction has mostly improved, suggesting the universality of the281

biological mechanisms of the TAD formation between three cell lines (two embryonic and one neuronal)282

of Drosophila.283

DISCUSSION284

Here, we developed the Hi-ChIP-ML framework for the prediction of chromatin folding patterns for a285

set of input epigenetic characteristics of the genome. Using this framework, we provide the proof of286

concept that incorporation of information about the context of genomic regions is important for the TAD287

status and spatial folding of genomic regions. Our approach allows for diverse biological insights into the288

process of TAD formation in Drosophila, identified using the features importance analysis.289

Firstly, we found that chromodomain protein Chriz, or Chromator (Eggert et al., 2004), might be290

an important player of the TAD formation mechanism. Recurrent neural networks that used only Chriz291

as the input produced the highest scores among all RNNs using single epigenetic marks (Figure 5, 7).292

Moreover, the removal of Chriz, strongly influenced the prediction scores when four out of five selected293

ChIP features were together (Figure 6). All linear models assigned the highest regression weight to the294
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Table 3. Weighted MSE on cross-validation of all methods for each cell line and while using them

together. Lower wMSE signifies better quality of prediction.

METHOD SCHNEIDER-2 KC167 DMBG3-C2 ALL

CONSTANT PREDICTION 1.62 ± 0.09 1.53 ± 0.06 1.36 ± 0.05 1.51 ± 0.04

LINEAR REGRESSION 1.14 ± 0.08 1.01 ± 0.06 0.91 ± 0.08 1.04 ± 0.04

LINEAR REGRESSION + L1 1.12 ± 0.07 1.04 ± 0.06 0.95 ± 0.07 1.05 ± 0.04

LINEAR REGRESSION + L2 1.12 ± 0.07 1.01 ± 0.06 0.9 ± 0.08 1.03 ± 0.04

LINEAR REGRESSION + L1 + L2 1.11 ± 0.07 1.02 ± 0.06 0.91 ± 0.07 1.03 ± 0.04

GRADIENT BOOSTING 1.07 ± 0.06 0.98 ± 0.07 0.86 ± 0.08 0.96 ± 0.04

BILSTM 64 UNITS & 6 BINS 0.86 ± 0.04 0.83 ± 0.04 0.73 ± 0.01 0.78 ± 0.01

Chriz input signal. Further, with the L1 regularization Chriz was the only feature that the model selected295

for prediction. This chromodomain protein is known to be specific for the inter-bands of Drosophila296

melanogaster chromosomes (Chepelev et al., 2012), TAD boundaries and the inter-TAD regions (Ulianov297

et al., 2016), while profiles of proteins that are typically over-represented in inter-bands (including Chriz)298

correspond to TAD boundaries in embryonic nuclei (Zhimulev et al., 2014). The binding sites of insulator299

proteins Chriz and BEAF-32 are enriched at TAD boundaries (Hou et al., 2012; Hug et al., 2017; Ramı́rez300

et al., 2018; Sexton et al., 2012). Wang et al. (2018) reported the predictor of the boundaries based on301

the combination of BEAF-32 and Chriz. This might explain BEAF-32 achieving the third rank of the302

predictability score.303

Secondly, the application of the recurrent neural network using each of the selected chromatin marks304

features separately (Figure 7) has revealed a strong predictive power of active histone modifications such305

as H3K4me2. This result aligns with the fact that H3K4me2 defines the transcription factor binding306

regions in different cells, about 90% of transcription factor binding regions (TFBRs) on average overlap307

with H3K4me2 regions, and use H3K4me2 together with H3K27ac regions to improve the prediction of308

TFBRs (Wang et al., 2014). Histone modifications H3K4me3, H3K27ac, H3K4me1, H3K4me3, H4K16ac,309

and other active chromatin marks are also enriched in inter-TADs and TAD boundaries (Ulianov et al.,310

2016). In addition, H3K27ac and H3K4me1 distinguish poised and active enchancers (Barski et al., 2007;311

Creyghton et al., 2010; Rada-Iglesias et al., 2011) .312

Thirdly, models using Su(Hw) and CTCF perform as expected given that, the prediction of TAD313

boundaries, the binding of insulator proteins Su(Hw) and CTCF have performed worse than other314

chromatin marks (Ulianov et al., 2016). In Drosophila, the absence of strong enrichment of CTCF at TAD315

boundaries and preferential location of Su(Hw) inside TADs implies that CTCF- and Su(Hw)-dependent316

insulation is not a major determinant of TAD boundaries. Our results also demonstrate that the impact of317

Su(Hw) and CTCF is low for both proteins.318

Thus, our framework not only accurately predicts positions of TADs in the genome but also highlights319

epigenetic features relevant for the TAD formation. Importantly, the use of adjacent DNA bins created a320

meaningful biological context and enabled the training of a comprehensive ML model, strongly improving321

the evaluation scores of the best RNN model.322

There are also a few limitations to our approach. In particular, the resolution of our analysis is 20 kb,323

while TAD properties and TAD-forming factors can be different at finer resolutions (Wang et al., 2018;324

Rowley et al., 2017, 2019). On the other hand, the use of coarse models allowed us to test the approach325

and select the best parameters while training the models multiple times efficiently.326

We also note that transitional gamma is just one of multiple measures of the TAD state for a genomic327

region. We motivate the use of transitional gamma by the fact that it is a parameter-independent way328

of assessing TAD prominence calculated for the entire map. This guarantees the incorporation of the329

information about the interactions of the whole chromosome at all genomic ranges, which is not the case330

for other approaches such as the Insulation Score (Crane et al., 2015), D-score (Stadhouders et al., 2018),331

and Directionality Index (Dixon et al., 2012). On the other hand, the presented pipeline may be easily332

transferred for the prediction of these scores as target values.333

Here we selected features that had been reported to be associated with the chromatin structure. We334

note there might be other factors contributing to the TAD formation that were not included in our analysis.335

The exploration of a broader set of cell types might be a promising direction for this research, as well as336
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the integration of various biological features, such as raw DNA sequence, to the presented models.337

Our approach can be extended to studies of chromatin folding in various species.338

The code is open-source and can be easily adapted to various related tasks.339

CONCLUSIONS340

To sum up, we developed an approach for analysis of a set of chromatin marks as predictors of the341

TAD state for a genomic locus. We demonstrate a strong empirical performance of linear regression,342

gradient boosting, and recurrent neural network prediction models for several cell lines and a number of343

chromatin marks. The selected set of chromatin marks can reliably predict the chromatin folding patterns344

in Drosophila.345

Recurrent neural networks incorporate the information about epigenetic surroundings. The highest346

prediction scores were obtained by the models with the biologically interpretable input size of 120 kb that347

aligns with the average TAD size for the 20 kb binning in Drosophila. Thus, we propose that the explicit348

accounting for linearly ordered bins is important for chromatin structure prediction.349

The top-influencing TAD-forming factors of Drosophila are Chriz and histone modification H3K4me2.350

The chromatin factors that influence the prediction most are stable across the cell lines, which suggests351

the universality of the biological mechanisms of TAD formation for two embryonic and one neuronal352

Drosophila cell line. On the other hand, the training of models on all cell lines simultaneously generally353

improves the prediction.354

The implemented pipeline called Hi-ChIP-ML is open-source. The methods can be used to explore355

the 3D chromatin structure of various species and may be adapted to any similar biological problem and356

dataset. The code is freely available at: https://github.com/MichalRozenwald/Hi-ChIP-ML357
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SUPPLEMENTARY504

Figure 1. Weighted MSE for each dataset while using each chromatin separately as the input single on

train, test and validation datasets. Results of biLSTM RNN using (A) Schneider-2, (B) Kc167, (C)

DmBG3-c2 and (D) all three cell lines together.
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Figure 2. Histograms of (A) the original and (B) the normalized data ChIP-chip features for the

Schneider-2 cell line.

Table 4. modENCODE IDs of the used chromatin factors for three selected Drosophila cell lines.

MODENCODE IDS

NAME SCHNEIDER-2 KC167 DMBG3-C2

CHRIZ 279 277 275

CTCF 3749 3749 3671

SU(HW) 5147 3801 3717

BEAF-32 922 3745 3663

CP190 925 3748 3666

GAF 3753 3753 2651

H3K4ME1 3760 5138 2653

H3K4ME2 965 4935 2654

H3K4ME3 3761 5141 967

H3K9ME2 311 938 310

H3K9ME3 4183 3013 312

H3K27AC 3757 3757 295

H3K27ME1 3943 3942 3941

H3K27ME3 298 5136 297

H3K36ME1 3170 3003 299

H3K36ME3 303 302 301

H4K16AC 320 318 316

RNA-POLYMERASE-II 329 328 950
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