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ABSTRACT

Spiking neural networks (SNNs) are recognized as third-generation neural networks
and have garnered significant attention due to their biological plausibility and energy
efficiency. To address the resource constraints associated with using field
programmable gate arrays (FPGAs) for numerical recognition in SNNs, we proposed
a lightweight spiking efficient attention neural network (SeaSNN) accelerator. We
designed a simple, four-layer structured network, achieving a recognition accuracy of
93.73% through software testing on the MNIST dataset. To further enhance the
model’s accuracy, we developed a highly spiking efficient channel attention
mechanism (SECA), resulting in a significant performance improvement and an
increase in test accuracy to 94.28%. For higher recognition speed, we optimized
circuit parallelism by applying techniques such as loop unrolling, loop pipelining,
and array partitioning. Finally, SeaSNN was implemented and verified on an FPGA
board, achieving an inference speed of 0.000401 seconds per frame and a power
efficiency of 0.42 TOPS/W at a frequency of 200 MHz. These results demonstrate
that the proposed low-power, high-precision, and fast handwritten digit recognition
system is well-suited for handwritten digit recognition tasks.

Subjects Artificial Intelligence, Distributed and Parallel Computing, Emerging Technologies,
Scientific Computing and Simulation, Neural Networks

Keywords Brain-like computing, Spiking neural networks, Image classification, Attention
mechanism, Field Programmable Gate Arrays (FPGAs)

INTRODUCTION

Spiking neural networks (SNNs) represent the third generation of neural networks that
fundamentally differ from traditional artificial neural networks (ANNs) in their
information processing mechanisms. Unlike ANNs that use continuous activation
functions, SNNs communicate through discrete, binary spike events that more closely
mimic the temporal dynamics of biological neural systems.

SNNs are built upon spiking neuron models that maintain an internal
membrane potential V(t). The most widely adopted model is the
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leaky integrate-and-fire (LIF) neuron, where the membrane potential evolves according
to the differential equation:

A
dt

where 7 represents the membrane time constant and I(¢) denotes the input current. When

—V(1) +1(t) ey

V(t) exceeds a predefined threshold Vi, the neuron generates a spike and resets its
potential to a resting state V.

Information in SNNss is encoded in the precise timing and frequency of spikes rather than
continuous numerical values. This temporal coding scheme naturally leads to sparse,
event-driven computation where processing occurs only when spikes are present, contrasting
sharply with the dense matrix operations characteristic of traditional neural networks.

SNNs inherently process both spatial and temporal information through their
membrane dynamics and spike timing dependencies. This capability enables SNNs to
capture time-dependent patterns and sequential relationships without requiring explicit
recurrent connections, making them particularly advantageous for processing dynamic,
time-varying data streams.

The energy efficiency of SNNs stems from several fundamental characteristics:

(1) sparse, event-driven computation that consumes energy only when spikes occur;
(2) elimination of expensive multiply-accumulate operations in favor of simple
accumulate-and-compare operations; (3) natural compatibility with neuromorphic
hardware architectures that exploit asynchronous processing; and (4) binary spike
communication that reduces data movement and storage requirements.

In recent years, SNNs have gradually become a research hotspot in the field of artificial
intelligence (Yamazaki et al., 2022), regarded as the ‘third-generation neural networks’
(Holmes, Sacchi & Bellazzi, 2004) that can better reflect the information processing
mechanism of the human brain (Frackowiak et al., 2004) by simulating the spikes between
biological neurons. SNNs exhibit unique neurobiological plausibility through their
intrinsic capacity for spatiotemporal integration during both computational processing
and learning phases (Cai et al., 2023). These neuromorphic architectures process discrete
binary spike inputs that demonstrate dynamic spatiotemporal sparsity, a characteristic
enabling self-regulated neuronal activation patterns.

This biological fidelity facilitates the substitution of conventional multiply-accumulate
operations with energy-efficient additive mechanisms, thereby substantially reducing
computational complexity while maintaining temporal pattern recognition capabilities.
The resultant energy-optimized computational paradigms have demonstrated particular
advantages in embedded neural processing applications, especially in low-power scenarios
such as Internet of Things (IoT) devices (Huh, Cho ¢ Kim, 2017), embedded systems
(Kaelbling, 1993), and edge computing environments (77an et al., 2017). The sparsity and
event-driven nature of SNNs reduces memory accesses by decreasing the number of
operations (Stuijt et al., 2021), in contrast to traditional neural networks (Razi ¢
Athappilly, 2005) where a large percentage of energy consumption comes from
algorithm-related memory accesses.
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Field programmable gate arrays (FPGAs) represent an ideal platform for implementing
SNN hardware accelerators (Han et al., 2020) due to their flexible hardware
reconfigurability and parallel computing capabilities (Brown et al., 2012; Kulkarni et al.,
2019; Bhattacharjee et al., 2024). FPGAs offer numerous advantages in neural network
acceleration, including low latency, high efficiency, and effective power consumption
control. However, FPGAs have limited resources, and balancing inference speed, power
consumption, and model accuracy with these constraints remains a key challenge.

While GPU architectures demonstrate limitations in harnessing the intrinsic sparsity of
SNNs during training phases (Cong et al., 2018), their fundamental mismatch with
temporal accumulation-dominant computations further restricts efficient implementation.
Recent advances in neuromorphic computing have yielded specialized ASIC solutions
(Isik, 2023), including Intel’s Loihi (Davies et al., 2018), the SpiNNaker system from
Manchester (Manchester ¢» Loeb, 2017), and IBM’s True North (Akopyan et al., 2015).
Despite achieving benchmark performance, these fixed-function designs face dual
challenges of architectural rigidity against evolving SNN topologies and prohibitive
fabrication costs. In contrast, modern FPGA platforms leverage reconfigurable logic fabrics
and adaptive memory hierarchies to dynamically reconcile computational sparsity with
temporal dependencies.

Recent advances in neuromorphic circuit design have yielded systematic improvements
in spatiotemporal signal processing. Researchers have enhanced the biological fidelity of
LIF neurons through adaptive membrane threshold modulation and dynamic encoding
mechanisms (Lu ¢ Xu, 2022). Parallel innovations in hardware-software co-design include
sparsity-driven acceleration architectures (Lien ¢» Chang, 2022) that implement
bitmask-compressed event streams to exploit activation sparsity at synaptic granularity.
Complementary approaches have introduced convolution-pooling co-design paradigms
(Liu et al., 2023) that minimize layer-wise latency through fused spatial-temporal
operations, achieving 23% higher resource utilization efficiency than conventional
pipelined implementations. Scaling these principles, researchers have developed dual-path
spiking convolutional neural network (CNN) frameworks (Parashar et al., 2017) featuring
hierarchical complexity allocation, where compact micro-networks handle basic pattern
recognition while macro-structures process high-dimensional temporal features.
Additionally, channel balanced workload prediction techniques (Chen et al., 2022) have
been proposed to optimize computational resource allocation.

However, significant challenges remain in SNN training methodologies. While spike
timing dependent plasticity (STDP) (Caporale & Dan, 2008) provides biological
plausibility, it suffers from poor accuracy and limited scalability to multi-layer networks
(Putra, Hanif & Shafique, 2022; Datta et al., 2022; Lu & Xu, 2022; Lien ¢ Chang, 2022).
Supervised backpropagation algorithms (LeCun et al., 1988) and stochastic gradient
descent (Bottou, 2012), though achieving high accuracy for large models, face theoretical
limitations when applied to discrete, non-differentiable spike functions in SNNs.

While neuromorphic hardware demonstrates ultra-low power profiles during SNN
inference phases, existing implementations often improve inference speed through
network simplification, parameter reduction, and computational complexity decrease.
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Although this approach can enhance inference speed, it frequently leads to decreased
recognition accuracy and fails to fully exploit SNN potential. Therefore, improving
inference speed while guaranteeing network accuracy and optimizing power consumption
under FPGA resource limitations represents an urgent research direction.

To address these challenges, this article proposes SeaSNN, an FPGA-based spiking
neural network accelerator that introduces a novel spiking efficient channel attention
(SECA) mechanism. This mechanism enhances the network’s ability to capture key
information by weighting spiking signals, thereby improving recognition accuracy while
effectively reducing redundant information propagation and maintaining low power
consumption. In addition, to optimize hardware parallelism and inference speed, this
article implements various hardware architecture optimizations in the FPGA
implementation. Firstly, for loop unrolling techniques are employed to unroll operations
requiring multiple iterations into parallel computations to reduce loop control overhead;
secondly, for loop pipelining is performed to improve throughput and execution efficiency
by executing tasks in different iterations simultaneously (Luo et al., 2023). For further
optimization, this article also employs loop flattening and array partitioning techniques to
spread nested loops and partition data and parameters to enhance parallelism and data
processing efficiency.

The combined use of these optimizations enables SeaSNN to achieve significant
performance improvements on FPGAs. In terms of experimental validation, this article
uses the MNIST handwritten digit recognition dataset, and test results show that SeaSNN
achieves an inference accuracy of 94.28% on FPGA, which is a significant improvement
compared to 93.73% before optimization. The inference speed is also significantly
improved, with a single inference time of only 0.000401 s, while power consumption is
controlled within 0.42 TOPS/W. Compared with traditional SNN-based accelerator
designs, SeaSNN achieves a better balance of accuracy, speed and energy consumption,
indicating that the proposed spiking neural network accelerator has excellent performance
in handwritten digit recognition tasks and demonstrates wide potential in practical
application scenarios.

In summary, this work provides an efficient implementation scheme for SNN hardware
accelerator design with the following main contributions:

e The accuracy of the model and hardware execution efficiency are successfully improved
by introducing the spiking efficient channel attention mechanism (SECA).

e Various optimizations are performed on the FPGA hardware architecture. Firstly, for
loop unrolling techniques are adopted to unroll operations requiring multiple iterations
into parallel computation to reduce loop control overhead; secondly, for loop pipelining
is performed to improve hardware throughput and execution efficiency by executing
tasks in different iterations simultaneously. For further optimization, this article also
employs loop flattening and array partitioning techniques, which spread nested loops
and split data and parameters to enhance parallelism and data processing efficiency.

 Experimental results show that the FPGA-based SNN accelerator proposed in this article
can achieve high-precision inference tasks with low power consumption, which is
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especially suitable for applications in resource-limited embedded systems and edge
computing scenarios.

The manuscript’s organizational framework proceeds systematically through three
principal components. We commence our technical exposition in “Methods” with
comprehensive analysis of the accelerator’s architectural paradigm, including its
operational data pipeline, core component implementations, and neural network
infrastructure design. “Results and Discussion” subsequently validates these architectural
decisions through empirical verification, demonstrating measurement outcomes and
performance benchmarks obtained from our FPGA-based SNN implementation. The
culminating “Conclusion” synthesizes key findings while projecting potential trajectories
for neuromorphic computing development.

RELATED WORK

With the development of deep learning (Schmidhuber, 2015), SNNs have received much
attention in many fields due to their bio-inspired and low-power characteristics, especially
in applications such as the Internet of Things (IoT) (Huh, Cho ¢ Kim, 2017), embedded
systems (Kaelbling, 1993), and edge computing (Shi et al., 2016). SNNs achieve more
energy-efficient information processing mechanisms by mimicking the impulsive
communication of biological neurons, and thus have an advantage over traditional CNNs
(O’Shea, 2015). However, hardware implementations of SNNs face a number of challenges,
particularly how to optimize accelerator performance while balancing inference speed,
accuracy and hardware power consumption (Maguire et al., 2007). This section reviews
important recent work on FPGA-based SNN accelerators, attention mechanisms in SNNG,
and hardware optimization strategies, specifically analyzing their limitations and how our
work addresses these challenges.

Several research teams have made significant progress in implementing SNN hardware
accelerators on FPGAs, but existing approaches face critical limitations that our work
specifically addresses. Khodamoradi, Denolf & Kastner (2021) proposed an FPGA-based
accelerator design for SNNs, which employs a spiking accumulation mechanism to
reduce redundant transmission of spiking data and optimizes inference speed
through resource reuse and hardware pipelining techniques. While this approach
achieves high inference speed in low-power environments, it suffers from limited
network accuracy improvement and lacks sophisticated feature selection
mechanisms. Our SeaSNN addresses this limitation by introducing the SECA
mechanism, which enhances accuracy while maintaining the energy efficiency advantages
of spike accumulation.

Similarly, Liu, Yenamachintala ¢ Li (2019) designed a sparsified storage and
transmission mechanism based on spiking data characteristics, significantly improving
inference speed and energy efficiency through efficient storage architectures and parallel
computation models in FPGAs. However, this work primarily focuses on data movement
optimization without addressing the challenge of intelligent feature selection within the
sparse spike patterns. Building upon their sparsification insights, our SECA mechanism
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adds a crucial layer of intelligent channel weighting that selectively processes the most
informative sparse spike patterns, thereby achieving both computational efficiency and
enhanced recognition capability.

The resource-constrained problem represents a critical challenge when implementing
SNNs in FPGAs, particularly in optimizing network structure and parameters for efficient
inference with limited hardware resources. Existing optimization strategies have made
valuable contributions but leave important gaps that our approach fills.

To address resource constraints, Hoefler et al. (2021) proposed pruning and
sparsification methods for deep neural networks, removing redundant connections and
neurons to reduce hardware resource consumption and accelerate inference. While
effective for general network compression, this approach does not specifically exploit the
unique temporal sparsity characteristics of SNNs. Our work leverages this pruning
foundation but extends it through SECA’s dynamic channel attention, which adaptively
identifies and emphasizes the most informative spike channels rather than applying static
pruning criteria.

In quantization research, Wu et al. (2023) proposed low-bit quantization techniques to
represent pulse signals and weights in SNNs as low-bit integers, significantly reducing
storage requirements and computational complexity. This quantization approach
successfully reduces hardware resource consumption but does not address the challenge of
maintaining high accuracy under severe resource constraints. Our SeaSNN incorporates
these quantization benefits while introducing SECA to compensate for potential accuracy
loss through intelligent feature selection, achieving better accuracy-efficiency trade-offs
than quantization alone.

Based on these insights, our work implements efficient parallel computation on FPGA
through hardware optimization strategies such as loop flattening and array partitioning,
extending beyond existing approaches by combining these techniques with
attention-driven computation scheduling.

The attention mechanism has become crucial for improving neural network
performance (Niu, Zhong ¢» Yu, 2021) by dynamically weighting different network
components to focus on key feature information. However, the integration of attention
mechanisms with SNNs remains significantly underdeveloped compared to their
widespread adoption in traditional CNNs, presenting both challenges and opportunities
that our work addresses.

Recent pioneering efforts have begun exploring attention in SNNs. Zhu et al. (2024)
proposed temporal attention-based SNNs that introduce weighting mechanisms in the
temporal domain, enabling dynamic adjustment of network connection weights according
to time-dimensional spiking information. While this approach demonstrates performance
improvements in temporal data processing, it suffers from high implementation
complexity and substantial hardware resource demands, making it impractical for
resource-constrained FPGA implementations. Our SECA mechanism addresses this
limitation by focusing on channel-wise attention rather than complex temporal
dependencies, achieving comparable performance benefits with significantly lower
computational overhead.
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Building on this foundation, Cai ef al. (2023) proposed a lightweight channel attention
mechanism specifically for weighting spiking data in SNNs, demonstrating improved
computational efficiency and accuracy through optimized channel distribution of spiking
data. However, this work lacks comprehensive hardware implementation validation and
does not provide detailed analysis of the attention mechanism’s integration with
FPGA-specific optimizations. Our SECA design extends their channel attention concept by
providing a complete hardware-software co-design solution, demonstrating concrete
FPGA implementation results and achieving measurable accuracy improvements (from
93.73% to 94.28% on MNIST).

The reviewed literature reveals three critical gaps that our SeaSNN architecture
specifically addresses: (1) existing FPGA-based SNN accelerators achieve speed and
efficiency but lack sophisticated accuracy enhancement mechanisms; (2) current resource
optimization strategies do not fully exploit SNN-specific sparsity characteristics for
intelligent feature selection; and (3) attention mechanisms for SNNs remain either too
complex for practical hardware implementation or lack comprehensive validation in
resource-constrained environments.

Our work synthesizes the strengths of existing approaches while addressing their
limitations through: leveraging proven sparsification and quantization techniques from
Liu, Yenamachintala & Li (2019), Wu et al. (2023) while adding SECA’s intelligent channel
selection; building upon the hardware optimization foundations of Khodamoradi, Denolf
¢ Kastner (2021), Hoefler et al. (2021) while introducing attention-driven computation
scheduling; and extending the channel attention concepts from Cai et al. (2023) with
complete FPGA implementation and validation.

This comprehensive approach enables SeaSNN to achieve superior accuracy-efficiency
trade-offs compared to existing solutions, demonstrating the practical viability of
attention-enhanced SNNs in resource-constrained hardware environments.

METHODS

The system architecture for handwritten digit recognition is shown in Fig. 1. It consists of
two main components: a programmable logic module (PL) and a processing system (PS),
based on the ZYNQ architecture. The PL includes the SECA module, multi-layer fully
connected (FC) layers, and spiking neuron layers (LIF) for feature extraction and spiking
signal processing. The FC and LIF layers are alternately arranged and communicate with
the PS via the AXI interconnection interface (AXI Master).

The PS integrates dual ARM Cortex-A9 CPUs for loading model parameters, displaying
results, and controlling system processes. DDR DRAM stores large datasets and model
parameters, while high-speed data transmission between the PS and PL is achieved via the
AXI bus, ensuring efficient computation and data management.

Figure 2 shows the workflow of the handwritten digit recognition system. After
initialization, weight parameters are stored on an SD card, read through an interface
function, and cached in DDR memory on the PS side. Image data is defined in a RAM
array on the PS side. The PL performs computations, transferring image data to DRAM via
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Figure 1 Overall system architecture. Full-size K&] DOT: 10.7717/peerj-cs.3077/fig-1

DMA. The ARM processor then sends parameters and image data to the FPGA-based
accelerator on the PL for inference, with results returned to the PS.

Dataset encoding

Encoding the input dataset with spikes offers several advantages: voltage bursts are
reduced to discrete single-bit events (1 or 0), simplifying hardware implementation
compared to high-precision processing. Sparse activations multiplied by synaptic
weights eliminate the need to read most network parameters from memory when values
are multiplied by 0, enabling highly efficient hardware computation. This design employs
rate coding, where each MNIST sample is repeated over num_steps. Pixel values are
mapped to spike frequencies: black (input = 0) generates no spikes, gray (input = 0.5)
generates one spike every two time steps, and white (input = 1) generates a spike at every
time step.

LIF neurons
The leaky integrate-and-fire (LIF) neuron model bridges the gap between the
Hodgkin-Huxley and artificial neuron models. Similar to an artificial neuron, it computes
a weighted sum of inputs but integrates the input over time with a leakage mechanism,
resembling an RC circuit. When the integrated value surpasses a threshold, the LIF neuron
generates a voltage spike.

LIF neurons simplify output spikes by treating them as discrete events, encoding
information in spike timing or frequency rather than shape. This abstraction makes them
suitable for studying neural codes, memory, network dynamics, and deep learning. LIF
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neurons balance biological plausibility and computational efficiency, providing both
realism and practicality, as shown in Fig. 3. A neuron fires and resets its membrane
potential when V exceeds V;hr, unless in the refractory period T, where it stays inactive
despite surpassing V7. Due to leakage, the membrane potential also decreases without
input spikes.

At time step a, the variables U (i) and S!(i) denote the membrane potential and spike of
neuron i in layer b, respectively. The temporal dynamics are determined by the membrane
potential and spike from the previous time step, along with the leakage constant «. The
spatial dynamics, on the other hand, are shaped by the weighted spikes received from the
preceding layer. The firing function, as defined in Eq. (2), is triggered when the membrane
potential exceeds the threshold thy, causing the neuron to fire a spike and reset its potential

to zero.
UL(i) = 208, () (1 = S, () + > S w1,
temporal s p;:i al (2)
$8(6) = fire(UL(0) — thy).
. , >0
et = {3 24 ®

Equation (3) illustrates the output sparsity of a neuron during the backward pass. When
the membrane potential lies within the threshold range th, — thy, the value of ~ Sb(i)
equals 1. Conversely, if the membrane potential falls outside this range, ~ S2(i) is set to 0.
When ~ 88(i) is 0, the term AS’(i) is excluded from the update of AUY(i).
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~ SS(I) ~ { l: th) < ui[i} < thy, (4)

v

AS}(0) = AU, () (<ol () + ) 0 AUZ ()W (i),
M (5)

temporal spatial

AU (i) = AUz, (D2(1=S(1)) + AS (i) ~ S3(0)-

The computation of ASY(i), as described in Eq. (4), involves two components. The
temporal component is influenced by the gradient of the potential at the subsequent time
step, the membrane potential at that step, and the leakage constant o. The spatial
component is determined by the weighted sum of the potential gradients from the next
layer at that time step. The weight update, given by Eq. (5), is obtained by accumulating the
product of the potential gradient from the previous layer and the input spike over time.

AwP (i) =) " AULT(j)S(0). (6)

SeaSNN model for digital recognition
The network model is implemented using snnTorch (Eshraghian et al., 2023), a Python
library for gradient-based learning of SNNs, and realized with digital circuits. To achieve
high recognition accuracy and inference speed, a seven-layer spiking neural network was
designed, as shown in Fig. 4. Training combines spike-timing-dependent plasticity (STDP)
with gradient-based learning for handwritten digit recognition on the MNIST dataset.
To deploy SNNs on mobile devices for handwritten digit recognition, two key criteria
are essential: high recognition accuracy and low complexity, ensuring compatibility with
general FPGA implementations. Based on these criteria, we designed a lightweight
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network, “SeaSNN,” as shown in Fig. 4. The network comprises seven layers, including a
SECA layer, three fully connected layers, and LIF neural layers.

SECA attention mechanism model
The SECA mechanism captures inter-channel dependencies through local interactions,
eliminating the need for additional parameters or complex global pooling operations. A
central innovation of SECA is the adoption of a parameter-free one-dimensional local
convolution, which facilitates efficient channel-wise interaction while reducing
computational overhead and enhancing salient feature identification. The design of the
SECA module incorporates insights derived from the analysis of channel dimensionality
reduction and cross-channel interactions, as depicted in Fig. 5.

An aggregated feature y € RC, where C denotes the channel dimension, carries channel
information through the network.

o = a(Wy) (7)
Here, W is a C x C parameter matrix. A band matrix, Wy, is used to model channel
attention and capture local cross-channel interactions.

whl .. bk 0 0 0
0 w2 ... 219 e o0
. . . . . . . . (8)
0 . 0 0 ... wCOkHL . 0C

The matrix contains k x C parameters, as shown in Eq. (7), and is generally small.
Equation (8) ensures some interaction between groups, while Eq. (6) captures local
dependencies by focusing on interactions between y; and its k neighbors. This method
strikes a balance between preserving local context and computational efficiency.
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Here, ¥ denotes the set of k neighboring channels of y;, capturing nearby channels that
contribute to local cross-channel interactions.

A more efficient strategy involves having all channels utilize the same learning
parameters, i.e.:

k
wi:(;(Zmﬂ‘;{),;{em (10)
j=1

This strategy can be efficiently implemented using a fast 1D convolution with kernel
size k, i.e.:

® = a(C1Dk(y)) (11)

Here, C1D denotes a 1D convolution operation. The method in Eq. (5) is implemented
via the SECA module, using only k parameters. With k = 3, it balances model complexity
and local cross-channel interaction capture (Kulkarni et al., 2019), enhancing efficiency
and effectiveness.

Group convolutions have advanced CNN architectures by applying convolutions to
channels of varying dimensions, depending on the number of groups. Inspired by this, we
propose a correlation between the interaction extent, represented by the kernel size k in 1D
convolution, and the channel dimension C. This relationship is formalized as a functional
mapping, ¢, linking k and C:

C = ¢(k). (12)
The function ¢ defines how the optimal kernel size k adapts to changing channel
dimensions, offering a framework to tailor interaction ranges across architectures. This
reduces reliance on manual tuning and resource-intensive cross-validation.
The simplest mapping, ¢(k) = yk — b, is inherently limited. Since channel dimensions
C are often powers of two, introducing nonlinearity to ¢ (k) improves flexibility and better
exploits these characteristics.

C = ¢(k) =200, (13)
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Then, given the channel dimension C, the suitable kernel size k can be dynamically
determined through an adaptive process by:

log>(C) Lk

v v

Here, |t|,,;; denotes the nearest odd number to t. In all experiments, y and b are set to 2

k=y(C) = (14)

odd

and 1, respectively. This mapping ensures that high-dimensional channels interact over
larger distances, while low-dimensional channels interact over shorter ones. The nonlinear
mapping dynamically adjusts the kernel size according to channel dimensions, improving
cross-channel interaction efficiency.

Circuit optimization method

SeaSNN'’s acceleration circuitry is implemented using high-level synthesis (HLS), allowing
developers to focus on algorithm design rather than circuit implementation, thus
improving development efficiency. The modular design maps each module to a SeaSNN
layer, storing intermediate feature data in DDR3 DRAM instead of the FPGA. This reduces
FPGA storage demands and enhances network scalability and adaptability. Each layer’s
circuit code is encapsulated as an IP core, which is interconnected in Vivado to build the
SeaSNN circuit. The ZYNQ?7 processing system connects these IP cores via four AXI
high-performance (HP) buses, ensuring high-throughput data exchange between the
processing system (PS) and programmable logic (PL).

Circuits synthesized with HLS generally require more FPGA resources and longer
execution times than those using hardware description languages (HDLs). However, with
proper optimizations, HLS-synthesized circuits can achieve comparable performance. To
minimize delays in the SeaSNN circuit and enable handwritten digit recognition,
techniques like loop unrolling, loop pipelining, and array partitioning are employed.

Unrolling the for_loop

The schematic of unrolling the for loop (Fig. 6) illustrates a loop with three iterations, each
performing a multiplication followed by an addition. Without unrolling, the loop uses a
single circuit, executing iterations sequentially. With the UNROLL optimization, three
circuits are synthesized to execute iterations in parallel, tripling FPGA resource usage but
reducing execution time by 66%. This trade-off significantly accelerates convolution
calculations, enhancing inference efficiency.

Pipelining the for_loop

When a for loop transfers data between the PS and PL, pipelined optimization
(PIPELINE) improves execution efficiency. As shown in Fig. 7, the operation “input
[i] /= pix;” involves four sequential steps: address calculation, data read, division, and
result write-back (Fig. 7B). PIPELINE optimization converts these steps into a 4-stage
pipeline, enabling parallel execution (Fig. 7C) and reducing execution time by
approximately 75%.
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Figure 6 Unrolling the for_loop.

Full-size K&l DOT: 10.7717/peerj-cs.3077/fig-6

Array partitioning

Low data access bandwidth is the primary bottleneck in SeaSNN’s parallel computing.
Limited RAM access ports in FPGA’s on-chip RAM lead to conflicts when multiple circuits
access the same RAM, restricting parallelism. ARRAY_PARTITION optimization
addresses this by splitting data into smaller RAMs, reducing conflicts and enhancing
efficiency and throughput. As shown in Fig. 8, methods include block, round-robin, and
complete partitioning. Complete partitioning, when resources permit, maximizes
throughput and circuit efficiency.

RESULTS AND DISCUSSION

In this section, we evaluate the proposed SeaSNN model on the MNIST benchmark
dataset. All experiments were conducted on a computer equipped with a 3.6 GHz Intel (R)
CoreTM i7-12700KF processor and an NVIDIA GeForce GTX 3090 graphics card (24G
RAM). The deep learning framework used is PyTorch, and the optimizer is Adam, with a
learning rate of 2e-3.

Effect of neuron number on SeaSNN

The parameter adjustment results of the SeaSNN model are summarized in Table 1. A
large number of hidden-layer neurons increases model size and hardware resource
consumption, while too few neurons reduce accuracy. To balance accuracy and model size,
the final configuration includes 20, 10, and 10 LIF neurons across three hidden layers.
After five training epochs, the model achieved 94.28% accuracy with a compact 600 KB
size, making it ideal for FPGA implementation.
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Table 1 The effect of different numbers of neurons on the network.

Epoch Num_hidl Num_hid2 Num_hid3 Model size (MB) Accuracy (%)
5 300 100 10 1.32 96.94
5 150 50 10 0.64 96.33
5 75 25 10 0.29 95.30
5 20 10 20 0.09 93.00
5 10 10 10 0.031 82.78
5 20 10 10 0.06 94.28

Table 2 The effect of different data types on the circuit.

Type of data BRAM DSP FF LUT Accuracy (%)
Float (32 bits) 6.5 223 54,195 57,873 94.28
Half (16 bits) 4.6 192 48,838 56,903 93.69

Data type of SeaSNN acceleration circuit

High-precision data enhances SeaSNN’s feature extraction and regression performance
but increases FPGA storage demands. If resource requirements exceed FPGA capacity,
implementation becomes infeasible. In Table 2, during the training of the 16-bit
precision model, we modelled the effect of 16-bit quantisation on the weights and
activation values in forward propagation. This was achieved by inserting
pseudo-quantisation nodes/operations to quantise values to 16-bit precision and then
inverse quantising them back to 32-bit for subsequent operations, whilst calculating the
gradient using a pass-through estimator in the backpropagation. This approach allows the
model to learn parameters that are robust to reduced precision, thus minimising the
accuracy degradation compared to post-training quantisation. To evaluate data type
impacts, 32-bit single-precision (float-type) and 16-bit half-precision (half-type) formats
were tested. Half-type reduces DSP, FF, and LUT usage but compromises accuracy and
increases complexity. Float-type, achieving 94.28% accuracy compared to 93.69% for
half-type, ensures superior precision, stability, and robustness, critical for deep learning. It
avoids feature blurring, performs better in complex scenarios, and supports numerical
stability and convergence. Despite higher resource demands, the float-type’s platform
compatibility and precision make it optimal for current and future applications.

The impact of SECA attention module

The SECA attention mechanism efficiently models channel dependencies using 1D
convolution (1D Conv) with minimal parameters and computational overhead. In the
SeaSNN accelerator, SECA enhances feature extraction in the first layer by emphasizing
critical channel information and suppressing irrelevant data, improving feature quality
and network efficiency. It accelerates network convergence by stabilizing gradient
propagation and reducing redundant computations, enabling faster learning of effective
features. SECA also improves generalization by filtering out noise during early feature
extraction, enhancing robustness and performance, especially in noisy or complex tasks. In
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response to the generalizability of our proposed SECA module, we argue that it has the
potential to be applied beyond the MNIST dataset and to a wider range of SNN tasks. The
core mechanism of the SECA module lies in explicitly modeling inter-channel
dependencies through impulse-based manipulations to dynamically recalibrate the
channel-level pulse feature responses. This principle of adaptively enhancing or
suppressing feature channels based on information importance is not specific to a simple
task, but rather a generalized means for SNN to enhance feature representation
capabilities, similar to the channel attention mechanism in traditional ANNs (which has
demonstrated broad effectiveness in a wide range of visual tasks). Therefore, we expect the
SECA module to be beneficial for more complex SNN applications, such as enhancing
model performance by augmenting saliency impulse feature channels in image
classification tasks such as CIFAR-10/100, event-based visual data processing (N-MNIST,
DVS-CIFAR10), and even when impulse neural networks are applied to tasks such as
target detection or segmentation. The SECA module is a lightweight and easy-to-use
module. Moreover, the lightweight and plug-and-play design features of the SECA module
facilitate its integration into different SNN architectures. While full empirical validation on
a wider range of tasks and datasets is an important direction for our future work, the
underlying design principles of the SECA module suggest its potential as a general-purpose
component for improving SNN performance.

Optimization results of acceleration circuit

To fully utilize FPGA on-chip resources and accelerate handwritten digit recognition, the
SeaSNN circuit was optimized using techniques such as UNROLL, PIPELINE, and
ARRAY_PARTITION.

Table 3 summarizes the latency and resource utilization of the SeaSNN circuit before
and after optimization. Initially, the circuit has a latency of 1,877,004 cycles and utilizes
37 BRAMs, 128 DSPs, 13,025 FFs, and 17,996 LUTs. After optimization, latency is reduced
to 437,342 cycles—just 23.33% of the original. Resource utilization changes to 37 BRAMs,
120 DSPs, 10,718 FFs, and 15,984 LUTs. Although resource consumption increases slightly
in some areas, the significant latency reduction enhances overall resource efficiency and
accelerates handwritten digit recognition.

Resource utilization

Figure 9 illustrates the FPGA resource utilization of the SeaSNN accelerator. LUT and FF
resources dominate, indicating heavy use of logic units and flip-flops, while BRAM and
DSP usage is comparatively lower, reflecting minimal storage and computational resource
demands.

Evaluation of FPGA and other computing devices

We evaluated the power consumption after place-and-route using Vivado Power Analyzer.
The total on-chip power is estimated to be 4.996 W, and the system reaches a junction
temperature of 36.6 °C. Based on the achieved throughput of 2.11 TOPS, the resulting
inference efficiency is 0.42 TOPS/W, demonstrating a favorable trade-off between
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Table 3 Latency and resource utilisation before and after circuit optimisation.

Optimization BRAM DSP FF LUT Latency (Cycles)
without 37 120 10,178 15,984 1,877,004
with 37 128 13,025 17,996 437,342
3.5% 3.5, 2%
6.7% 4.4%

21.3% 21.6%

46.9% 46.5%

21.6% 22%
LUT B F DSP LUT N FF DSP
I LUTRAM BRAM I LUTRAM BRAM [l BUFG
1% 5%

15%

57%

17%

77%

BRAM [l DSP CLOCKS PL Static [l PS Static
I LoGIC SIGNAL [ PS
Figure 9 FPGA resource utilization. Full-size K&l DOT: 10.7717/peerj-cs.3077/fig-9

Table 4 Comparison of hardware implementations.

TCAD?23 (Ye, Chen & Liu, TCASI22 (Liu et al., BioCAS23 (Wang et al., TCASII24 (Wang et al.,  This work

2023) 2022) 2023) 2024)
Platform Xilinx XC7K325T Xilinx XC7K325T Xilinx XCKU115 Xilinx KC705 Xilinx
XCZU4EF
Frequency 200 MHz 200 MHz 120 MHz 100 MHz 200 MHz
Format 16 bit 16 bit 8 bit 8 bit 32 bit
LUT 170,429 46,371 92,376 92,376 57,853
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Table 4 (continued)
TCAD?23 (Ye, Chen ¢ Liu, TCASI22 (Liu et al., BioCAS23 (Wang et al., TCASII24 (Wang et al.,  This work

2023) 2022) 2023) 2024)
FF 113,138 30,417 24,707 38,243 54,915
DSP 0 65 0 0 223
Inference 3.20 GOPS 14.76 GOPS 2.56 GOPS 3.06 GOPS 2.11 TOPS
throughput
Inference 6.78 GOPS/W 27.85 GOPS/W 1.53 GOPS/W 14.57 GOPS/W 0.42 TOPS/W
efficiency

performance and energy consumption. Table 4 compares several SNN accelerators
proposed in recent years. The results indicate that the proposed SeaSNN accelerator is
highly competitive among FPGA-based accelerators. Notably, the accelerator
demonstrates significant advantages in terms of throughput and power consumption
compared to ASIC-based solutions. Specifically, the proposed design is thousands of times
more efficient in power consumption and performance than other designs. These results
highlight the superiority of the SeaSNN accelerator in both performance and resource
utilization.

CONCLUSION

This article presents a low-power, high-precision FPGA-based system for accelerating
spiking neural networks (SNNs) in handwritten digit recognition tasks. To mitigate
accuracy degradation due to hardware constraints in existing SNN accelerators, a simple
and efficient four-layer network, “SeaSNN,” is proposed, incorporating a pulse channel
attention mechanism (SECA) to boost performance. Experiments on the MNIST dataset
demonstrate that SECA improves accuracy from 93.73% to 94.28%, validating its
effectiveness.

To boost inference speed, FPGA circuit implementation is optimized using loop
unrolling, pipelining, and array partitioning, greatly enhancing parallelism. These
optimizations achieve an inference speed of 0.000401 seconds per frame at 200 MHz with a
power efficiency of 0.42 TOPS/W. The results demonstrate high accuracy and efficiency in
handwritten digit recognition, with low power consumption, making the system ideal for
resource-constrained edge computing.

This work offers a practical solution for deploying SNNs on hardware and provides
insights into network and hardware optimization. Future research will focus on more
complex SNN architectures and advanced hardware techniques to further advance SNN
adoption in real-world applications.
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