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ABSTRACT
The ‘claim scope’, or the ‘legal boundaries’ defined by patent claims, has been
considered crucial for determining a patent’s value and its associated litigation risk.
However, no direct claim semantics-based indicators currently exist to quantify
patent claim scope, and existing scope measures are primarily indirect, which limits
their ability to capture the semantic nuances of claim text. Additionally, the reliance
on post-grant features restricts the applicability of existing litigation prediction
models to patent drafts. These limitations complicate the patent drafting process,
during which claims are formulated without feedback on scope and litigation risk.
This often leads to suboptimal claim articulation, resulting in inadequate protection,
increased legal vulnerabilities, or reduced patent grant probability. To address this
gap, the hyponym tree score (HTS) is proposed as a novel indicator for quantifying
claim scope by analysing hyponym counts, sentence structure, and dependency
relations within patent claims. Building on this, early-stage litigation risk prediction
has been achieved using a new deep learning model, the Multifeature BERT-Powered
Fusion for Author-level Patent Litigation Risk Analysis (MAPRA). The MAPRA
model restricts its input features to those available at early stages, such as indicators
derived from claim text, inventor information, assignee details, and HTS, ensuring
applicability to both draft-stage and granted patents. Despite excluding all post-grant
or acquired data, MAPRA achieves a superior area under the receiver operating
characteristic curve (AUC) of 0.878, outperforming the most comparable prior study,
which reports an AUC of 0.822 using both early-stage and immediate post-grant
features. By quantifying claim scope and enabling early-stage litigation risk
prediction, this research offers a valuable screening tool for patent drafters,
examiners, attorneys, and innovators. It supports informed decision-making during
drafting and helps mitigate potential litigation risks. Furthermore, it lays a
foundation for future research on claim scope modeling and the development of
predictive tools for intellectual property litigation management.

Subjects Artificial Intelligence, Data Mining and Machine Learning, Data Science, Natural
Language and Speech, Text Mining
Keywords Claim scope indicator, Patent analytics, Patent litigation prediction, Deep learning,
Hyponym analysis, Multifeature fusion model

INTRODUCTION
The scope or coverage of a patent is defined by its claims, which establishes the boundaries
of legal protection and serves as a critical determinant of the patent’s enforceability, value,
and commercial significance. Broader claim scope increases legal coverage and enhances
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the patent’s market value but also raises the risk of conflicts with existing patents, thereby
increasing the likelihood of litigation (Merges & Nelson, 1994; Arinas, 2012;Marco, Sarnoff
& Charles, 2019). Conversely, narrower claim scope minimizes conflicts and improves the
probability of a patent grant, but it may reduce the patent’s legal coverage and economic
potential (Cotropia, 2005; Marco, Sarnoff & Charles, 2019). Therefore, during the drafting
of the patent claims, achieving an optimal balance in claim scope is essential to ensure
robust legal protection, maximize patent value, and minimize litigation risks (Tekic &
Kukolj, 2013).

Despite its importance, drafting patent claims remains complex and challenging, largely
due to the absence of well-established, semantically rooted indicators for quantifying claim
scope. Existing scope indicators often rely on bibliographic or numerical data and fail to
incorporate the semantics of the claim text. This omission leaves patent drafters without
clear guidance, leading to suboptimal claim articulation that may result in inadequate
protection, heightened legal vulnerabilities, or unnecessary litigation risks. Addressing this
challenge necessitates a robust, semantics-based metric that can quantify claim scope and
aid drafters in achieving an optimal balance between legal coverage and litigation risk.

To fill this gap, the study introduces the hyponym tree score (HTS), a novel
semantics-based indicator for quantifying the scope of patent claims. HTS leverages
semantic relationships within the claim text, including hyponyms, sentence structures, and
interdependencies between claims, to provide a meaningful and quantifiable measure of
claim scope. By incorporating text semantics, HTS offers patent drafters actionable
insights to optimize claim articulation, enhance legal protection, and mitigate
litigation risks.

Patent litigation, which involves resolving disputes over patent infringement, validity, or
enforcement, is critical in determining a patent’s enforceability and commercial value.
Litigation significantly influences market competition and potential revenue streams,
underscoring its importance in the intellectual property landscape (Helmers, 2018).
Predicting the likelihood of litigation is a key priority for stakeholders such as portfolio
managers, insurers, patent valuators and patent drafters, as it enables strategic planning
and effective risk management. Moreover, the articulation of claim scope is intricately
linked to litigation risk, as broader claims are more likely to conflict with existing patents.
In contrast, narrower claims may limit legal coverage (Merges & Nelson, 1990; Marco,
Sarnoff & Charles, 2019).

Existing approaches to litigation prediction, however, face notable limitations. Prior
studies have predominantly relied on post-grant event data and externally compiled
features, such as the organisation for economic co-operation and development (OECD)
patent quality indicators (PQI) (Squicciarini, Dernis & Criscuolo, 2013), available only for
granted patents. These models are unsuitable for draft-stage patent documents, where such
features are unavailable. Furthermore, many of these models neglect the semantic content
of patent claims despite their critical importance in understanding the boundaries of
patent protection and accurately predicting litigation risk.

This study proposes a novel multifeature fusion deep learning model for litigation
prediction to overcome these limitations. Unlike existing models, this approach integrates
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HTS with other features available at the drafting stage, making it applicable to both draft
and granted patents. By relying exclusively on pre-grant features, the proposed model
broadens the applicability of litigation prediction to include early-stage patent documents,
empowering stakeholders to assess litigation risks at any stage of the patenting process.

This study significantly contributes to patent scope analysis and litigation prediction.
First, it introduces the HTS, a semantics-based metric for quantifying claim scope,
providing patent drafters with a valuable indicator for optimizing claim articulation.
Second, it develops a self-sufficient multifeature fusion deep learning model for litigation
prediction, designed to work with features available during the draft stage, thus addressing
the limitations of existing litigation prediction models that rely on post-grant data. By
bridging critical gaps in patent drafting and litigation prediction, this work represents a
significant step forward in improving claim drafting, enhancing decision-making,
improving strategic planning, and optimizing outcomes in the intellectual property
domain. This research represents the first effort dedicated to predicting the litigation risk
of the early-stage patent document.

Overview of the article structure
The structure of this article is organized as follows: “Background” gives an overview of the
context of this work. “Literature Review” reviews the relevant literature and identifies gaps
this study aims to address. “Methodology” details the methodology, including data
collection (“Dataset”), the development of the hyponym-based indicator (“Claim Scope
Indicator Development”), and the development of the new deep learning model for
litigation prediction (“Litigation Prediction Model Development”). “Results” presents the
results of this study, including the performance of the new litigation prediction model and
the relevance of the hyponym-based claim scope indicator. “Discussion” discusses the
findings, implications, and potential limitations. Finally, “Conclusion” concludes the
article with a summary of key insights and suggestions for future research.

BACKGROUND
The research originates from an ongoing investigation into developing robust models for
patent valuation. A notable trend was observed during the investigation: high-value
patents are more likely to face legal events and litigation proceedings (Tekic & Kukolj,
2013). This finding raised interest in predicting patent litigation, particularly for
early-stage patent documents, by leveraging machine learning techniques to forecast the
likelihood of legal disputes. Even though claim text semantics play a pivotal role in
defining the scope or coverage of a patent, the absence of a measure to quantify the claim
scope impedes the drafters from optimally regulating the claim scope during the claim
drafting. Additionally, understanding the litigation risk of a patent during the drafting
stage allows professionals to regulate claim scope effectively by choosing appropriate
wording. Developing a litigation prediction model that relies solely on pre-grant patent
features can enable litigation risk prediction for both granted and early-stage patent
documents.
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Literature review
This subsection presents a comprehensive review of the relevant literature, organized into
two main areas: (1) Indicators of patent scope and (2) patent litigation prediction models.
Each group is critically analysed to identify existing limitations and to highlight how this
study fills the identified gaps.

Patent scope indicators
Quantifying the scope of a patent is a longstanding challenge in intellectual property
research. Numerous indicators have been proposed to estimate the breadth of legal
protection and technological applicability offered by patents. These can be categorized into
the following groups:

Citation-based indicators: Citation analysis has been extensively utilized in patent
research, primarily through backward and forward citation metrics. The number of
forward citations, originally proposed by Trajtenberg (1990), is widely used to assess a
patent’s technological impact, with a higher number generally interpreted as reflecting
broader scope. The number of backward citations indicates the extent of prior art
reviewed, suggesting a wide technological foundation (Packalen & Bhattacharya, 2012). In
addition, non-patent literature (NPL) citations indicate a broader research base supporting
the invention, as noted by Narin, Hamilton & Olivastro (1997). However, forward citations
are not available for early-stage or draft patents, limiting their practical utility during the
drafting phase.

Patent classification-based indicators: Classification-based indicators assess
technological breadth based on the number of categories assigned to a patent. Studies by
Lerner (1994) and Harhoff, Scherer & Vopel (2003) have demonstrated that patents with a
greater number of subclasses tend to span a wider array of technological fields, reflecting
broader applications and scope.

Claim-based indicators: Claim-based indicators are among the most direct measures of
patent scope and can be further divided into two subgroups: indicators based on claim
quantity and those based on claim structure.

Claim quantity-related indicators focus on the number and types of claims included in
the patent. The number of claims is widely recognized as a measure of scope, with a greater
quantity generally suggesting broader protection (Lanjouw & Schankerman, 1997, 2001,
2004). Similarly, the number of independent claims is interpreted as reflecting wider
coverage, since each independent claim typically represents a distinct technological aspect
(Marco, Sarnoff & Charles, 2019; Graham&Mowery, 2003). In contrast, dependent claims,
although providing specificity and detail, do not significantly contribute to a broader scope
(Graham & Mowery, 2003).

Claim structure-related indicators evaluate the linguistic, syntactic, and logical
organization of individual claims. Commonly used metrics include words per claim
(Lerner, 1994; Osenga, 2011; Harhoff, 2016), independent claim length (Malackowski &
Barney, 2008; Marco, Sarnoff & Charles, 2019), and first claim length (Harhoff, 2016;
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Wittfoth, 2019). These studies have suggested that shorter claims are generally broader in
scope due to fewer embedded limitations. Okada, Naito & Nagaoka (2016) introduced
character count as an alternative metric, particularly useful in languages without word
spacing, arguing that longer character sequences correlate with narrower, more detailed
claims. Additionally, claim dependency structure, as explored by Wittfoth (2019), plays a
role in defining the hierarchical and interpretive relationship between independent and
dependent claims, impacting how broadly a claim set may be interpreted.

Semantics-based indicators: In response to limitations of numeric and bibliographic
features, recent studies have introduced semantics-driven approaches. Tanaka, Nakashio
& Kajikawa (2018) proposed the use of semantic range of words to measure vocabulary
diversity, enabling scope visualization through semantic hierarchies. Ragot (2023)
introduced a novel textual metric called self-information, which quantifies the
informativeness of individual claims. Their findings suggest that higher self-information
scores correlate with broader conceptual scope.

The number of inventors has also been interpreted as an indirect scope metric. Chan,
Mihm & Sosa (2021), highlighted that a higher number of inventors reflects greater
collaboration and the non-decomposability of the invention. The scope tends to decrease
with the number of inventors.

Table 1 summarizes existing scope indicators, outlining their theoretical bases and
known limitations. While these metrics span a range of approaches, they predominantly
rely on bibliographic data, numeric heuristics, or surface-level linguistic cues. Notably
absent are robust, semantically informed indicators capable of evaluating the breadth of a
patent claim based on its underlying meaning and hierarchical structure. Currently, no
widely adopted method allows authors to quantify whether a claim is semantically broad or
narrow. This gap hinders precise calibration of claim scope and increases the risk of either
under-protecting the invention or inviting legal challenges due to overly broad claims.

Patent litigation prediction models

The prediction of patent litigation has evolved substantially, transitioning from traditional
statistical models to sophisticated machine learning (ML) and deep learning (DL)
frameworks. The existing literature can be organized into the following categories:

Classical machine learning approaches: Early work in this area focused on
regression-based and tree-based models. Chien (2011) employed logistic regression (LR) to
analyze how specific intrinsic and acquired patent traits influence the likelihood of
litigation. Juranek & Otneim (2021) used the XGBoost algorithm with features drawn from
united states patent and trademark office (USPTO) datasets, OECD patent quality
indicators (PQI), and USPTO patent litigation docket reports, achieving high predictive
performance (AUC up to 0.818). They identified that indicators related to patent value,
internationality, and patent owner characteristics hold higher predictive power. However,
their model’s reliance on post-grant information limits its applicability during the drafting
phase. Similarly, Follesø & Kaminski (2020) utilized random forest (RF) classifiers trained
on PQI-derived features to assess litigation risk.
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Semantic and similarity-based approaches: Several researchers have explored textual
content to infer litigation potential. Park, Yoon & Kim (2012) applied semantic similarity
analysis based on Subject-Action-Object (SAO) patterns and clustering to identify
potential infringement scenarios. Lee, Song & Park (2013) evaluated claim text similarity
using keyword vector models and analysed inter-claim dependencies. While these methods
incorporate both linguistic and structural elements, they often face limitations in scalability
and generalizability, particularly across large or heterogeneous patent datasets. Although
effective in identifying potential overlaps between pairs of patents, extending such analysis
to all patent pairs for litigation prediction poses significant computational challenges.

Unsupervised and ensemble techniques: Several studies have integrated unsupervised
learning and ensemble methods to enhance prediction accuracy.Wongchaisuwat, Klabjan
& McGinnis (2017) combined K-means clustering with ensemble classification models to
estimate the likelihood and timing of litigation jointly. Kim et al. (2022) applied principal
component analysis (PCA) for dimensionality reduction and used Autoencoders in
combination with K-nearest neighbors (K-NN) for classification, improving predictive
performance by emphasizing the most informative features. Chen & Lai (2023)
implemented an ensemble machine learning classifier leveraging USPTO examination and
assignment data, achieving 79% accuracy and demonstrating the viability of ensemble
methods for litigation risk assessment.

Table 1 Summary of the patent scope indicators.

Scope indicator Literature Remarks

Number of forward citations Trajtenberg (1990) More forward citations reflect greater impact and scope.

Number of claims Lanjouw & Schankerman (1997, 2001, 2004) More claims suggest broader scope.

Number of NPL citations Narin, Hamilton & Olivastro (1997) More citations to non-patent literature imply a broader
research base.

Words per claim Lerner (1994), Osenga (2011), Harhoff (2016) Shorter claims indicate broader coverage.

Number of sub classes Lerner (1994), Harhoff, Scherer & Vopel
(2003)

More subclasses indicate technological diversity.

Number of independent claims Marco, Sarnoff & Charles, 2019, Graham &
Mowery (2003)

More independent claims mean broader scope.

Number of dependent claims Graham & Mowery (2003) More dependent claims provide detailed extensions of
the main invention.

Independent claim length Malackowski & Barney (2008), Marco,
Sarnoff & Charles (2019)

Shorter independent claims indicate broader coverage.

Number of backward citations Packalen & Bhattacharya (2012) More backward citations reflect wider prior art.

First claim length Harhoff (2016), Wittfoth (2019) Shorter first claims are broader.

Claim’s character count Okada, Naito & Nagaoka (2016) More characters suggest a narrower scope.

Semantic range of words Tanaka, Nakashio & Kajikawa (2018) Reciprocal of the number of hierarchies is considered

Based on dependencies of independent and
dependent claims

Wittfoth (2019) Dependency structure affects the scope of the claims.

Number of inventors Chan, Mihm & Sosa (2021) More inventors indicate higher collaboration and
non-decomposible invention.

Self-information Ragot (2023) Quantifies unique information each claim provides.
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Deep learning models: Recent advances in deep learning have enabled the modeling of
complex, multi-dimensional relationships present in patent litigation data. Liu et al. (2018)
proposed a convolutional tensor factorization framework to identify high-risk patents
based on textual and collaboration features. Wu et al. (2024) introduced the multi-aspect
neural tensor factorization (MANTF) model to predict plaintiffs, defendants, and target
patents jointly. Convolutional neural networks (CNNs) have also been utilized for one-to-
many infringement detection (Liu & Pei, 2023), while Kim et al. (2021) employed random
survival forests to model litigation risk over time.

The most recent and closely related work to the objectives of this study is by Juranek &
Otneim (2024), who refined their XGBoost model to handle newly granted patents by
minimizing reliance on post-grant features that are not available at the time of grant. In
their study, the XGBoost algorithm was used for litigation prediction and achieved an
AUC score of up to 0.822. However, this approach remains inapplicable to draft-stage
documents due to its dependence on post-grant data.

Table 2 summarizes the prominent litigation prediction models and related studies,
outlining their methodological foundations and known limitations. While these
approaches span a range of machine learning and deep learning techniques, the majority
rely on post-grant features such as forward citations, patent family size, assignment
records, and other patent quality indicators. Models that assess litigation risk using only
information available at the drafting stage are notably absent from the existing literature.
In particular, semantic features embedded within patent claims, despite being central to
legal interpretation and enforceability, remain largely underutilized in current predictive
frameworks. Although some studies have applied semantic similarity analysis to identify
potential overlaps or infringement between individual patent pairs, scaling such analyses
across large patent datasets introduces significant computational challenges. Furthermore,
no existing model provides a structured framework for predicting litigation risk at the draft
stage using claim-level semantic features. This gap restricts the ability to conduct
early-stage risk assessment and reduces the practical value of these models for inventors,
legal professionals, and innovation strategists. The literature survey indicates that the
proposed work is a pioneering effort for litigation prediction in patent drafts, and no
comparable work for a one-to-one comparison is available.

Research gaps
Current scope indicators for patents can be broadly categorized into pre-grant and
post-grant indicators based on their availability. For instance, indicators like the ‘number
of claims’ and ‘backward citations’ are accessible during the pre-grant stage. In contrast,
indicators such as ‘forward citations’ and ‘grant lag’ become available only after a patent is
granted. Relying on indicators available at the pre-grant stage is crucial for assessing the
scope of early-stage patent documents. As depicted in Table 1, established scope indicators
do not focus on the semantics of the claim text when determining the patent scope. The
lack of well-established claim scope indicators rooted in claim text semantics complicates
the drafting process, frequently leading to suboptimal articulation of claim scope. This
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deficiency may lead to future financial losses due to insufficient protection or excessive
legal costs associated with overly broad claims.

The current research on patent litigation prediction predominantly relies on externally
compiled or post-grant features, such as international patent classification (IPC) details,
forward citations, etc., which are only available for granted patents. Such feature
requirements make them unsuitable for performing the litigation prediction on draft stage
documents for which such features are unavailable. Another notable observation is that
current works predominantly neglect claim semantics, which define the legal boundaries.
To expand the applicability of litigation prediction models to a broader range of patent
documents, including those in the pre-grant stage, it is imperative to develop methods that
use only the features available at the early stage.

Research objectives
This study seeks to address the aforementioned gaps and advance the field of patent
litigation prediction through the following objectives:

1. To develop the HTS, a novel metric to quantify the scope of patent claims by analyzing
semantic relationships in claim text, leveraging hyponyms, sentence structures, and
interdependencies among claims.

Table 2 Summary of the litigation prediction works.

Authors Recommended method Remarks

Chien (2011) Logistic regression Analyses the impact of intrinsic and acquired traits of patents in litigation

Park, Yoon & Kim
(2012)

SAO-based semantic similarity
measurement and clustering

SOA-based semantic technological similarity are computed between each patent,
and clustering is applied to identify the clusters of patents with possible
infringements.

Lee, Song & Park (2013) Statistical methods (t-statistics,
critical mean value) and hit ratios.

Similarity between all the patents are calculated based on keyword vectors and claim
interdependence

Wongchaisuwat, Klabjan
& McGinnis (2017)

K-means clustering and ensemble
classification.

Predicts the litigation likelihood and the expected time to litigation

Liu et al. (2018) Convolutional Tensor Factorization Helps to identify the risky patents using their content and collaborative information

Follesø & Kaminski
(2020)

Random forest Litigation Prediction using OECD PQI features

Kim et al. (2021) Clustering and random survival
forest

Predicts patent litigation risk over time and considers the censored data

Juranek & Otneim
(2021)

XGBoost Features from different data sets provided by the USPTO, Patent Litigation Docket
Reports Data & OECD PQI are used. 0.818 AUC reported with XGBoost.

Kim et al. (2022) K-NN and autoencoder PCA based feature extraction on quantitative features

Wu et al. (2024) Multi-aspect neural tensor
factorization

Can predict potential plaintiffs, defendants and patents

Chen & Lai (2023) Ensemble machine learning classifier Uses examination and assignment data and reported 79% accuracy

Liu & Pei (2023) CNN One to many infringement detection

Juranek & Otneim
(2024)

XGBoost Restricted to the features available at the time of grant. Indicators related to value,
inter-nationality and patent-owners have higher predictive power. 0.822 AUC
Reported with XGBoost.
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2. To design a multifeature fusion deep learning litigation prediction model that relies on
claim text semantics and uses only early-stage features, ensuring applicability to both
granted and draft-stage patent documents.

Research questions
This study aims to address the following research questions:

RQ1 How can a semantics-based indicator be developed to quantify the scope of patent
claim text?

RQ2 What is the impact of incorporating the new claim scope indicator on patent
litigation prediction tasks?

RQ3 How can a high-performance litigation prediction model be developed to predict the
litigation risk of draft-stage patent documents?

METHODOLOGY
The development of a new indicator to quantify the patent claim scope and its evaluation
using a litigation prediction task is presented in the first part of this work. The HTS is the
proposed indicator. A litigation prediction model for draft-stage patent documents is
developed in the second part. The proposed litigation prediction model is named
Multifeature BERT-Powered Fusion for Author-level Patent Litigation Risk Analysis
(MAPRA).

Dataset
This study is based on four primary datasets, each contributing essential information for
patent scope analysis and litigation prediction. The USPTO PatentsView dataset (U.S.
Patent and Trademark Office, 2024a; Toole, Jones & Madhavan, 2021) serves as the
primary source of patent data, offering information on classification codes, inventors,
assignees, and claim text. The 2024 update of this dataset is utilized in the present work.
Complementing this, the OECD PQI database, January 2024 version (Organisation for
Economic Co-operation and Development (OECD), 2024; Squicciarini, Dernis & Criscuolo,
2013), provides quantitative indicators capturing various dimensions of patent quality,
such as technological relevance and potential economic value. Although only pre-grant
features are incorporated into the prediction models, select PQI indicators are employed to
evaluate the HTS.

Litigation data are obtained from the USPTO Patent Litigation Dataset (U.S. Patent and
Trademark Office, 2024b; Toole, Miller & Sichelman, 2024), which records U.S. district
court cases involving patent disputes filed between 1963 and 2020. This dataset includes
56,488 unique litigated patents. After applying a series of preprocessing operations,
including merging and filtering, the final set comprises 40,897 unique litigated patents,
each linked to its claim text, IPC classifications, and other relevant features. Patents not
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listed in the litigation dataset are treated as non-litigated as of 2020. However, to mitigate
potential mislabeling due to delayed litigation, the sampling of non-litigated patents is
restricted to those filed on or before 2010. This criterion ensures that most patents would
have been granted by 2015, allowing for at least five years of post-grant observation within
the litigation data collection window. Following established methodologies in the literature
(Juranek & Otneim, 2024; Liu, Li & Liu, 2024), a total of 40,897 non-litigated patents are
sampled to serve as the negative class. Patent litigation is a relatively rare event and affects
fewer than 2% of all granted patents (Chien, 2011; Wongchaisuwat, Klabjan & McGinnis,
2017; Juranek & Otneim, 2021). Including all non-litigated patents would reflect real-world
distributions but would also introduce substantial computational burdens, particularly for
transformer-based models such as bidirectional encoder representations from
transformers (BERT). To address this challenge, a 1:1 matched sampling strategy is
employed.

As shown in Fig. 1, each litigated patent is paired with a non-litigated patent, resulting
in a balanced dataset for training and evaluation. This approach aligns with the
methodology adopted by Park, Bhardwaj & Hsu (2023), who implemented matched
sampling based on filing year and cooperative patent classification (CPC) subclass code in
the context of robustly optimized BERT pretraining approach (RoBERTa) based litigation
prediction (Park, Bhardwaj & Hsu, 2023). In the present work, non-litigated patents filed
on or before 2010 are sampled to mirror the distribution of IPC sections found in the
litigated patent set. The final dataset consists of 81,794 records, with an equal number of
litigated and non-litigated patents. A detailed description of all variables, their sources, and
their intended roles in the analysis is provided in Table 3.

Figure 1 Number of IPC sections in the sampled dataset. Full-size DOI: 10.7717/peerj-cs.3069/fig-1

Sakthivel and Jose (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3069 10/44

http://dx.doi.org/10.7717/peerj-cs.3069/fig-1
http://dx.doi.org/10.7717/peerj-cs.3069
https://peerj.com/computer-science/


Part 1: claim scope indicator development
This part of the study aims to derive a new indicator to quantify the claim scope based on
the claim text semantics. Figure 2 represents the high-level view of the work. Before
determining an appropriate methodology for claim scope quantification, understanding
the nature of the patent claim text is essential.

Table 3 Details of the features used in this study.

Feature Data source Description

bwd_cits OECD PQI Number of backward citations

npl_cits OECD PQI Number of non-patent literature backward citations

claims_x OECD PQI Number of claims

filing OECD PQI Year of filing

dependent_claims PatentsView Number of dependent claims, calculated from claim text

independent_claims PatentsView Number of independent claims, calculated from claim text

claim_text PatentsView Text containing all the patent claims

assignee_pcount PatentsView Number of patents owned by the assignee, calculated from Assignee data

num_inventors PatentsView Number of inventors

avg_claim_length PatentsView Average claim length, calculated value

fc_word_count PatentsView Number of words in the first claim, calculated from claim text

hts_spacy Generated Generated feature, not used in the final modal

hts_spacy_wtd Generated Generated feature, used in the final modal

hts_stanza Generated Generated feature, not used in the final modal

hts_stanza_wtd Generated Generated feature, not used in the final modal

hts_avg Generated Generated feature, not used in the final modal

hts_avg_wtd Generated Generated feature, not used in the final modal

litigation_label Litigation Docket Binary litigation status calculated using USPTO Litigation Docket Data

Figure 2 Overview of the HTS feature generation and evaluation.
Full-size DOI: 10.7717/peerj-cs.3069/fig-2
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The claim text is a semi-structured text corpus with numbered claims, where each claim
may explicitly reference other claim numbers to represent interconnections. Patent claims
are broadly categorized into two types based on interdependency: independent and
dependent claims. Independent claims are self-contained and provide a broad,
comprehensive description of the invention, outlining its essential features without relying
on other claims. These claims establish the widest boundaries of the patent’s protection.
Conversely, dependent claims refer back to independent claims and add specific features or
details, resulting in a narrower scope of protection. Dependent claims serve as fallback
positions if the independent claim is deemed invalid, ensuring that specific embodiments
or variations of the invention remain safeguarded. A typical claim consists of three main
components: the preamble, the transitional phrase, and the body. The preamble establishes
the context of the claim by identifying the invention’s category, such as a device, method,
composition, or apparatus. The preamble aligns with the title of the invention and may
include its objective or purpose. The transitional phrase links the preamble to the body,
defining the claim’s scope. Transitional phrases are categorized into open-ended, such as
“comprising”, which allows additional elements not explicitly mentioned in the claim,
thereby broadening its scope, and closed-ended, such as “consisting of”, which limits the
claim strictly to the listed elements. The body of the claim is the most critical part, detailing
the elements and limitations of the invention and describing their meaningful
interconnections. The body provides an in-depth explanation of how the components
interact to realize the invention, ensuring clarity and precision in defining the scope of
protection.

Hyponym tree score calculation
In natural language processing (NLP), hyponyms and hypernyms represent hierarchical
relationships between words, which are crucial for understanding semantics and building
structured knowledge. A hypernym refers to a broader, more general term, while a
hyponym refers to a narrower, more specific term that falls under the hypernym. For
example, in a taxonomy, ‘vehicle’ represents a hypernym of ‘car’, and ‘car’ serves as a
hyponym of ‘vehicle’. Similarly, the hypernym ‘fruit’ encompasses hyponyms such as
‘berry’, ‘banana’, and ‘mango’. These relationships are often modelled in NLP using
resources like WordNet (Fellbaum, 1998), where hypernym-hyponym hierarchies are
explicitly defined. Understanding such relationships enables NLP systems to infer broader
or narrower meanings, which is essential for analyzing the scope of patent claim texts.
Words with more hyponyms in a patent claim indicate the potential to create multiple
restrictive versions of claims, which can lead to overlaps in scope representing potential
infringement cases and litigation risks. Consequently, studying hyponyms within patent
claim text is pivotal in devising a new scope indicator for patents.

Patent claims often employ varying levels of specificity, where claims with broader scope
support a larger interchangeability of terms to protect a more extensive set of derived ideas
(Cohen & Lemley, 2001). However, when a claim employs overly generic language, the
claim scope increases drastically, potentially clashing with more specific claims in other
patents, leading to increased litigation risks and legal uncertainties. Conversely, highly
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specific claims may reduce infringement risks but face challenges in enforcing their rights
against variations and derivative innovations. Analyzing hypernym and hyponym
characteristics within patent claim texts (Andersson et al., 2014) can potentially play a
crucial role in claim scope quantification. In this context, a new HTS indicator is developed
to represent the patent scope. The HTS indicator is derived by considering the hyponym
count in claim sentences and their structural composition. When words in a patent claim
text have more hyponyms, the possibility of interchangeability increases, broadening the
claim scope. The new scope indicator will be validated by assessing its effectiveness in
predicting patent litigation likelihood.

Mathematically, let the patent claim text be represented as a hyponym dependency tree,
T ¼ ðV; EÞ, where V ¼ fv1; v2; . . . ; vng is the set of nodes corresponding to the words in
the claim, and E is the set of directed edges that denote the syntactic or semantic
dependency relations between these words. Each node vi 2 V is associated with a degree
degðviÞ, representing the number of hyponyms (i.e., more specific terms) that can replace
the corresponding word. The degree degðviÞ reflects the flexibility of the word within the
claim text, where higher values represent greater possibilities for creating restrictive
variations of the claim.

Given the tree structure, a cumulative score C for the entire set of claims as follows:

CðTÞ ¼
Y
vi2V
ðdegðviÞ þ 1Þ;

where degðviÞ is the degree of node vi, representing the number of hyponyms for the word
corresponding to node vi and the term ðdegðviÞ þ 1Þ accounts for the word itself (original
term) and its associated hyponyms.

This cumulative score reflects the maximum number of specific or restrictive versions of
the claims that could be generated from the given claim text. Each restricted version is a
modified claim with a smaller scope, offering different legal interpretations and
enforcement potentials. The cumulative score CðTÞ indicates the scope of the original
patent claims. A larger claim scope increases the likelihood of overlapping with other
patents, a primary cause of litigation. Patents with higher cumulative scores are more
prone to infringement due to the more significant number of possible interpretations and
restrictive variations that could overlap with existing claims. Thus, CðTÞ can quantify the
scope or coverage of the patent claim and provide a theoretical foundation for predicting
patent litigation risk based on hyponym analysis. Multiplicative CðTÞ, which calculates the
number of sub-trees possible from the original tree, has a problem with the lengthy claims
producing very large values, and the effect of smaller claims goes unnoticed, hence
discarded.

Three tasks were carried out to calculate the HTS of claim text: claim dependency tree
generation, dependency tree generation for each sentence in the claim, and hyponym
extraction of the words in each sentence. Algorithm 1, the Text2Scope, was developed to
compute the HTS value from the patent claim text. Claims are represented as a graph with
individual claims as the nodes and the dependency among them as the edges. A claims text
corpus is processed using Algorithm 1 (Text2Scope), and a tree structure of the claims is
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Algorithm 1 Text2Scope: calculate the scope score for an entire patent claim tree.

1: Input: Text of multiple claims
2: Output:
3: Cumulative scores for the entire claim tree:
4: hts spacy, hts spacy wtd
5: Parse the text to extract individual claims, each with a claim number and text.
6: Initialize a directed graph G where:
7: Nodes represent claims, and edges represent references between claims.
8: Initialize variables:
9: hts spacy 0, hts spacy wtd  0, connected components 0.
10: for each claim do
11: Identify references to other claims.
12: Add the claim as a node in G.
13: Add edges from the claim to referenced claims.
14: end for
15: Find connected components in G.
16: for each connected component C in G do
17: Initialize component hts spacy 0, component hts spacy wtd  0,

group size 0.
18: for each claim in C do
19: Apply Claim2Scope on the claim text to compute individual scores:
20: Obtain claim hts spacy and claim hts spacy wtd.
21: Update component hts spacy component hts spacy þ claim hts spacy.
22: Update component hts spacy wtd  component hts spacy wtdþ

claim hts spacy wtd.
23: Increment group size group sizeþ 1.
24: end for
25: Update hts spacy hts spacy þ component hts spacy

maxð1;group sizeÞ .

26: Update hts spacy wtd  hts spacy wtd þ component hts spacy wtd
maxð1;group sizeÞ .

27: end for
28: return hts spacy, hts spacy wtd.

Algorithm 2 Claim2Scope: calculate the scope score for a claim.

1: Input: Claim text p
2: Output:
3: Claim score components:
4: hts spacy, hts spacy wtd, avg tree height,
5: total h count, total h sum, total node count, number of sentences
6: Split p into individual sentences.
7: Initialize variables to accumulate scores and counts across sentences:
8: hts spacy 0, hts spacy wtd  0, total h count  0,
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Algorithm 2 (continued)

9: total h sum 0, total node count  0,
10: total tree height  0, number of sentences 0.
11: for each sentence s in p do
12: Apply Sentence2Scope on s to obtain:
13: hts spacy, hts spacy wtd, tree height, c node, h count, h sum, wtd h sum.
14: Update hts spacy hts spacy þ hts spacy.
15: Update hts spacy wtd  hts spacy wtd þ hts spacy wtd.
16: Update total h count  total h count þ h count.
17: Update total h sum total h sumþ h sum.
18: Update total node count  total node count þ c node.
19: Update total tree height  total tree height þ tree height.
20: Increment number of sentences number of sentencesþ 1.
21: end for
22: Calculate avg tree height ¼ total tree height

maxð1;number of sentencesÞ.
23: return hts spacy, hts spacy wtd, avg tree height,
24: return total h count, total h sum, total node count, number of sentences.

Algorithm 3 Sentence2Scope: calculate the hyponym tree score for a sentence.

1: Input: Sentence s
2: Output: Hyponym Tree Score hts spacy, Weighted Hyponym Tree Score

hts spacy wtd, Tree Height tree height, Node Count c node, Hyponym Count
h count, Hyponym Sum h sum, Weighted Hyponym Sum wtd h sum

3: Initialize directed graph G, root node root_word as None, and other variables.
4: Process the sentence s to extract tokens using spaCy.
5: for each word w in s do
6: if w is not a stop word then
7: Compute hyponym count hyponyms count for w.
8: Update h count and h sum.
9: Add w as a node in G with attributes (label, hyponyms_count).
10: end if
11: Add dependency relationships between tokens in G.
12: if w is the root of the dependency parse tree then
13: Set root_word  w.
14: end if
15: end for
16: if root word is None then
17: return default values.
18: end if
19: Assign levels and weights to nodes in G using a BFS traversal starting from

root_word.
(Continued)
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generated initially. In the tree, each node contains the text corresponding to a numbered
claim. Algorithm 2 (Claim2Scope) is invoked from Text2Scope to calculate the score of a
given patent claim. Claim2Scope invokes Algorithm 3 (Sentence2Scope) to calculate the
score of each sentence of the given claim. Sentence2Scope algorithm involves dependency
tree generation to extract the sentence structure and node weight assignment using the
hyponym counts of each node(word). Then it computes the cumulative score calculation
for that sentence. These algorithms return hyponym tree scores and weighted hyponym
tree scores. Equation (1) represents the sentence level non-weighted score calculation.
Equation (2) is used for weighted score calculation.

Hyponym Tree Score ¼
Pc node

i¼1 HyponymCountðwiÞ
c node� tree height

(1)

where:

. HyponymCountðwiÞ: The number of hyponyms for the i-th word in the dependency
tree.

. c node: The total number of nodes in the dependency tree.

. tree height: The maximum depth of the dependency tree.

Hyponym Tree Scoreweighted ¼
Pcnode

i¼1 HyponymCountðwiÞ � NodeHeightðwiÞ
c node� tree height

(2)

where:

. HyponymCountðwiÞ: The number of hyponyms for the i-th word.

. NodeHeightðwiÞ: The height of the i-th word in the dependency tree.

. c node: The total number of nodes in the dependency tree.

. tree height: The maximum depth of the dependency tree.

When considering the implementation options, the dependency tree of a sentence can
be created using two popular NLP libraries, namely, Stanza (Qi et al., 2020) and SpaCy
(Honnibal et al., 2020). It has been observed that the dependency tree representation for
the same sentence differs between SpaCy and Stanza. Figures 3 and 4 shows the
dependency trees created for a sample sentence using Stanza and SpaCy, respectively. The

Algorithm 3 (continued)

20: Compute wtd h sum as the weighted sum of hyponym counts based on node levels.
21: Compute tree height as the maximum depth of G.
22: Compute c node as the total number of nodes in G.
23: Compute normalizer ¼ ðc node� tree heightÞ.
24: Compute hts spacy ¼ h sum

normalizer.
25: Compute hts spacy wtd ¼ wtd h sum

normalizer .
26: return hts spacy, hts spacy wtd, tree height, c node, h count, h sum, wtd h sum.
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hyponym tree score is dependent upon the dependency tree structure. For this reason, the
score calculation was evaluated using both libraries, and a third option was created by
averaging the sentence-level scores generated by both libraries. Thus, six candidate
hyponym tree scores were generated for further evaluation: three based on SpaCy, Stanza,
and averaging, and the weighted versions of all three. Table 4 summarises the HTS
candidates generated for evaluation. The difference between the options is primarily based

Figure 3 Hyponym tagged dependency tree with Stanza. Full-size DOI: 10.7717/peerj-cs.3069/fig-3

Figure 4 Hyponym-tagged dependency tree with SpaCy. Full-size DOI: 10.7717/peerj-cs.3069/fig-4
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on two factors: the NLP library used to generate the dependency structure of a sentence
and whether the node-level score (hyponym count of that word) is multiplied by a weight.
The weight corresponds to the height-based level value, where the leaf node is assigned to
level 1, and the root node is assigned level N for a tree with N levels.

Hyponym tree score validation
Length-based indicators like ‘first claim length’ blindly treat lengthy claims as specific and
short claims as broader, irrespective of the semantics. Ragot (2023) presented a set of
fixed-length representative claims with varying scopes in section C1 of their work to study
the claim scope. The same set of claims is used in this work to study the ability of the newly
calculated HTS candidate values. The HTS candidate values are calculated with all the
sample claims and presented in Table 5. The sentences are arranged in the descending
order of their scope. Figure 5 is a normalized plot of the scope values generated for sample
sentences using all the six HTS candidates under evaluation. As per the results, HTS
candidates can show scope reduction, whereas the word count fails to represent any scope
change. However, due to the close similarity between the results from all the HTS
candidates under evaluation, a decision is made to generate all six HTS candidate scores for
the entire dataset and to make the final HTS candidate selection only after a complete
evaluation with the entire dataset.

Connecting HTS with litigation risk and claim scope
The preliminary validation of the relationship between HTS and claim scope (CS) is
demonstrated in “Hyponym Tree Score Validation”. The results indicate that higher HTS
values correspond to broader CS. Previous studies (Merges & Nelson, 1994; Arinas, 2012;
Marco, Sarnoff & Charles, 2019) have established that broader claim scope increases the
likelihood of litigation and legal events. By transitive reasoning, the relationship between
HTS and patent litigation probability (Plit) can be considered valid. However, not all
patents with broad claim scope result in litigation, as litigation requires legal action to be
pursued. This observation may weaken the relationship between HTS and litigation
probability.

The evaluation model to study the connection between the HTS and CS is summarized
as follows:

. Patents with high HTS are likely to have a broader CS.

. Broader CS increases the probability of litigation (Plit).

Table 4 HTS candidates evaluated.

HTS Description

hts_spacy Dependency tree generated using Spacy and nodes are not weighted

hts_spacy_wtd Dependency tree generated using Spacy and nodes are weighted

hts_stanza Dependency tree generated using Stanza and nodes are not weighted

hts_stanza_wtd Dependency tree generated using Stanza and nodes are weighted

hts_avg Sentence level average of hts_spacy and hts_stanza

hts_avg_wtd Sentence level average of hts_spacy_wtd and hts_stanza_wtd
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. Patents with high HTS and high Plit are indicative of broader CS.

. Observation: Not all patents with broad Claim Scope (CS) will result in litigation (Plit).

Objective: A high HTS strongly predicts Plit, which indicates a broader CS. This provides a
scientific basis for using HTS as a quantification method for claim scope and offers a robust
framework for patent strategy formulation and risk assessment.

Predicate logic:

Let HTS(x): Patent x has a high Hyponym Tree Score.

Let CS(x): Patent x has a broad Claim Scope.

Let Plit(x): Patent x has a high probability of litigation.

Table 5 HTS candidate values generated for fixed-length sample claims.

Sentence Ref. hts_spacy hts_spacy_wtd hts_stanza hts_stanza_wtd hts_avg hts_avg_wtd word_count

C1.1 304.94 1,369.15 406.89 1,566.00 355.92 1,467.58 25

C1.2 279.93 1,256.26 378.24 1,454.97 329.09 1,355.62 25

C1.3 144.73 976.87 260.65 1,373.70 202.69 1,175.29 25

C1.4 145.38 883.62 252.33 1,240.00 198.86 1,061.81 25

C1.5 117.92 828.69 218.33 1,172.00 168.13 1,000.35 25

C1.6 87.80 664.80 187.14 1,190.57 137.47 927.69 25

C1.7 99.00 694.80 168.69 973.80 133.84 834.30 25

C1.8 103.99 695.88 170.92 964.77 137.46 830.33 25

Figure 5 Claim scope representation using word count and HTS candidates.
Full-size DOI: 10.7717/peerj-cs.3069/fig-5
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Statements:

1. 8x ðHTSðxÞ ! CSðxÞÞ: High HTS implies broad CS.

2. 8x ðCSðxÞ ! PlitðxÞÞ: Broad CS implies a high probability of litigation.

3. 8x ððPlitðxÞ ^HTSðxÞÞ ! CSðxÞÞ: High Plit and HTS imply broad CS.

Observation 9x ðCSðxÞ ^ :PlitðxÞÞ: Not all patents with broad CS result in litigation.

Proof: Hypothesis: 8xðHTSðxÞ ! CSðxÞÞ
Proof. 1. Assume HTSðxÞ for an arbitrary patent x.

2. From statement 1, HTSðxÞ ! CSðxÞ, so CSðxÞ holds.
3. From statement 2, CSðxÞ ! PlitðxÞ, thus PlitðxÞ holds.
4. From statement 3, ðPlitðxÞ ^HTSðxÞÞ ! CSðxÞ.
5. Given PlitðxÞ and HTSðxÞ, concludes CSðxÞ.

Therefore, high HTS implies broad CS.

Selecting the HTS best candidate
The values of all the HTS candidates are calculated for the entire dataset. Table 6
documents the statistics of the different HTS candidates under evaluation. The distribution
of the IPC sections in the dataset is shown in Fig. 1. Section G has the most samples in the
dataset. Figure 6 shows the average HTS values for non-litigated and litigated patents
belonging to each section. This justifies the Proof “Connecting HTS with Litigation Risk
and Claim Scope”, on the IPC section level, litigated patents have a higher HTS value than
the non-litigated patents and supports the connection between the Litigation probability
and HTS value.

The most suitable candidate to represent the CS has to be selected from the six HTS
candidates. This section presents seven experiments designed to assess the relative merit of
the HTS candidate in litigation prediction. The difference between the experiments is only
in the features used for the classification. Set of standard pre-grant features, termed as the
baseline features, include ‘bwd_cits’, ‘npl_cits’, ‘claims_x’, ‘num_dependent_claims’,
‘num_independent_claims’, ‘assignee_pcount’, fc_word_count, avg_claim_length and
‘num_inventors’. Details of these features are documented in Table 3. Each experiment
used random forest, XGBoost, support vector classifier (SVC) and balanced random forest
(BRF) models to perform litigation prediction to assess the impact of including the HTS
candidate feature with the baseline features.

Figure 7 presents the changes in the accuracy of the litigation prediction during each
experiment with different prediction models. Experiment A (Exp-A) performs the
prediction by using only the baseline features. Experiments B to G added each HTS
candidate along with the baseline features. In all the experiments, XGBoost resulted in the
best prediction results. Table 7 presented the features used in each experiment and the best
prediction performance achieved with XGBoost. Table 8 shows the correlation between the
HTS candidates and other existing patent scope or value indicators. A larger value of HTS
indicated a higher litigation probability.
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Figure 6 Average HTS for each IPC section. Full-size DOI: 10.7717/peerj-cs.3069/fig-6

Table 6 Statistics of all the features.

Feature Count Mean Std Dev Min 25% 50% 75% Max

bwd_cits 81,794 26.202 70.963 0.000 5.000 11.000 24.000 6,732.000

npl_cits 81,794 8.950 35.334 0.000 0.000 0.000 4.000 2,128.000

claims_x 81,794 18.313 18.481 1.000 8.000 15.000 22.000 887.000

avg_claim_length 81,794 41.688 33.095 1.000 23.762 33.714 49.000 3,198.000

num_dependent_claims 81,794 15.043 16.933 0.000 6.000 12.000 19.000 886.000

num_independent_claims 81,794 3.326 3.365 0.000 2.000 3.000 4.000 155.000

assignee_pcount 81,794 7,246.173 21,565.206 1.000 15.000 176.000 2,656.000 156,703.000

num_inventors 81,794 2.378 1.749 1.000 1.000 2.000 3.000 31.000

fc_word_count 81,794 167.448 114.100 2.000 100.250 147.000 209.000 7,711.000

hts_spacy 81,794 1,356.222 1,621.952 1.000 470.201 923.674 1,683.081 62,917.851

hts_spacy_wtd 81,794 10,839.710 14,770.509 1.500 3,320.736 6,830.528 13,207.373 663,865.829

hts_stanza 81,794 1,418.662 1,824.045 0.000 486.020 951.797 1,735.294 73,828.074

hts_stanza_wtd 81,794 10,250.467 13,744.568 0.000 3,191.651 6,489.478 12,493.479 650,009.383

hts_avg 81,794 1,387.442 1,668.136 0.700 485.400 943.672 1,715.445 68,372.963

hts_avg_wtd 81,794 10,545.088 14,217.464 1.500 3,267.236 6,674.460 12,860.270 656,937.606
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Figure 8 shows the variation of the metric from the experiment A results during each
experiment. Accordingly, prediction accuracy improved marginally with the introduction
of the HTS candidate features. Whenever the positive correlation between the HTS and
Litigation probability is valid, the positive correlation between the HTS and Claim Scope is
also valid as per the proof “Connecting HTS with Litigation Risk and Claim Scope”. Thus,
the relationship between the HTS and Patent Scope is reconfirmed.

From the evaluation results, hts_stanza and hts_stanza_wtd are unambiguously ruled
out. The hts_avg_wtd produced slightly better prediction results compared to hts_spacy

Figure 7 Litigation prediction accuracy for all ML models during each experiment.
Full-size DOI: 10.7717/peerj-cs.3069/fig-7

Table 7 Performance metrics for experiments using XGBoost.

Experiment Features Accuracy Precision Recall F1-score AUC

Exp-A Baseline features 0.770 0.788 0.738 0.762 0.770

Exp-B Baseline features + hts_spacy 0.770 0.785 0.743 0.764 0.770

Exp-C Baseline features + hts_spacy_wtd 0.772 0.789 0.743 0.765 0.772

Exp-D Baseline features + hts_stanza 0.771 0.787 0.742 0.764 0.771

Exp-E Baseline features + hts_stanza_wtd 0.770 0.786 0.743 0.764 0.770

Exp-F Baseline features + hts_avg 0.772 0.787 0.746 0.766 0.772

Exp-G Baseline features + hts_avg_wtd 0.772 0.789 0.744 0.766 0.772
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and hts_spacy_wtd. During the experiments, it was observed that the creation of a
stanza-based dependency graph failed for several sentences. Calculating the average scores
requires both stanza and spacy-based dependency tree creation. The average scores were
also discarded to avoid the dependency tree creation issues observed with Stanza. The
remaining candidates are hts_spacy and hts_spacy_wtd, and experiments B and C evaluate
the prediction with these features. When comparing the results between experiments B and
C, hts_spacy_wtd produces slightly better results. Figure 9 represents the information gain
of the candidate HTS features. As per the information gain of the candidates, hts_spacy
shall be the candidate.

To overcome the ambiguity, a feature-based extremes evaluation was conducted to
investigate the relationship between the candidate features and the litigation label and the
results are presented in Fig. 10. Specifically, the top 100 and bottom 100 records based on
the candidate feature’s values were identified, and their litigation labels were analyzed. The
objective was to determine whether the top 100 records predominantly correspond to the

Table 8 Correlation between the HTS candidates and other indicators.

Feature fwd_cits5 PQI6 family_size grant_lag fc_word_count litigation_label

hts_spacy 0.092 0.328 0.007 0.116 0.119 0.205

hts_spacy_wtd 0.071 0.241 −0.033 0.103 0.192 0.152

hts_stanza 0.085 0.300 0.020 0.105 0.125 0.185

hts_stanza_wtd 0.068 0.240 −0.025 0.099 0.201 0.148

hts_avg 0.091 0.323 0.014 0.114 0.126 0.201

hts_avg_wtd 0.070 0.241 −0.029 0.101 0.197 0.150

Figure 8 Percentage variation of XGBoost prediction performance compared to Exp-A.
Full-size DOI: 10.7717/peerj-cs.3069/fig-8
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positive class (litigated) and the bottom 100 records to the negative class (non-litigated).
This analysis provided insights into the HTS candidate feature’s discriminative power,
thereby offering a supplementary validation of the feature’s relevance in the litigation
prediction task. Extremes analysis and correlation analysis resulted in favour of hts_spacy
against hts_spacy_wtd. In these circumstances, hts_spacy was selected as the final
candidate for the HTS. All further references to HTS will indicate the usage of hts_spacy as
the indicator for the claim scope representation.

Part 2: litigation prediction model development
The primary objective of this phase was to develop a litigation prediction model that
incorporates claim scope understanding while remaining independent of post-grant
features, thereby ensuring its applicability to patent drafts. Transformer-based, pre-trained

Figure 9 Information gain of the features used in litigation prediction.
Full-size DOI: 10.7717/peerj-cs.3069/fig-9
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models have garnered considerable attention for text-based analyses, owing to their
exceptional ability to capture contextual nuances (Gasparetto et al., 2022). Among these,
BERT models are widely recognized for their effectiveness in language comprehension
tasks, making them a suitable choice for litigation prediction using claim text. Initial
experiments employing BERT demonstrated superior predictive performance compared to
traditional machine learning models, validating the effectiveness of transformer-based
approaches in this domain.

The results obtained using the BERT (bert-base-uncased) model were based on
processing only the claim text, limited to the first 512 words, which may result in
incomplete comprehension of lengthy patent claims. In this context, instead of the usual
chunking approach, a multifeature fusion approach was devised, integrating both claim
text and numerical features to enhance prediction accuracy. “Part 1: Claim Scope Indicator
Development” identified HTS as a potential indicator of claim scope, with the hts_spacy
variant chosen as the optimal feature. To augment the scope-awareness of the model, HTS
was incorporated alongside the baseline numerical features described in “Selecting the
HTS Best Candidate”. As a result, a Multifeature Fusion Deep Learning Model was
proposed and evaluated, leveraging both textual and numerical modalities to predict
litigation risks effectively.

Proposed litigation prediction model

The proposed model, referred to as MAPRA (Multifeature BERT-Powered Fusion for
Author-level Patent Litigation Risk Analysis), is specifically designed to assess litigation
risks in patent drafts. The model’s architecture aims to capture both the semantic

Figure 10 Extremes analysis for predictive label validation.
Full-size DOI: 10.7717/peerj-cs.3069/fig-10
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intricacies of claim text and the scope awareness conveyed by numerical features. The
textual component is processed through a BERT-based encoder, which extracts semantic
information essential for identifying litigation-prone claims. Concurrently, the numerical
features provide supplementary insights, such as claim scope and other litigation-relevant
factors, resulting in a holistic view of the data. Additionally, author and assignee details,
often absent in the claim text, are incorporated as numerical features to enhance prediction
accuracy. The ten numeric features used in this analysis are bwd_cits, npl_cits, claims_x,
avg_claim_length, num_dependent_claims, num_independent_claims, assignee_pcount,
num_inventors, hts_spacy, and fc_word_count.

Data preprocessing plays a pivotal role in ensuring the robustness of the model. Textual
claims are tokenized and encoded using the BERT tokenizer, which standardizes the input
by padding sequences to a fixed length. This ensures compatibility with the BERT encoder
while preserving consistency in input dimensions. Simultaneously, numerical features are
imputed, trimmed, normalized, and scaled to maintain uniformity across the dataset.
Despite the 2% real-world prevalence of the positive class, coverage of positive samples is
ensured through a 10% oversampling scheme, thereby guaranteeing that positive examples
are included in each training epoch. The processed data are stratified into training (80%),
validation (10%), and test (10%) sets, with both balanced (1:1) and realistic imbalanced
(� 2% positives) splits created for evaluation. This separation is critical to mitigating
overfitting and validating the model’s generalizability to unseen data.

Model architecture and workflow
The proposed MAPRAmodel integrates textual and numerical data modalities to predict a
binary litigation outcome (litigated/not litigated). The MAPRA architecture is specifically
designed to assess litigation risks, combining semantic intricacies from claim text with
numeric indicators representing claim scope, inventor, and assignee attributes. Figure 11
illustrates the complete workflow of the model.

1. Input representation

Let x represent tokenized patent claim text and n ¼ ðn1; n2; . . . ; n10Þ represent the vector
of associated numeric features.

2. Tokenization and embedding

○ Tokenization: Claim texts are tokenized and padded to length 512 offline using
BERT tokenizer, yielding cached input ids and attention mask.

○ BERT embedding: Text embeddings are generated by fine-tuning layers 8–11 of
BERT while keeping layers 0–7 frozen. The output embeddings are:

E ¼ ðe1; . . . ; eTÞ; ei 2 Rd; d ¼ 768:

3. CLS token representation

The embedding of the [CLS] token is extracted as a semantic representation of the claim:

eCLS ¼ ECLS 2 R768:
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4. Combining text and numeric features

○ Numeric features are subjected to median imputation, trimming, and Min-Max
normalization to the range ½0; 1�.

○ Numeric embeddings (eNum 2 R48) are generated through a multilayer perceptron
(MLP):

Linearð10! 64Þ ! ReLU! Dropoutð0:4Þ ! Linearð64! 48Þ ! ReLU:

○ A learnable modality weighting vector p 2 R2, clamped and normalized via softmax,
yields weights w0;w1, resulting in:

f ¼ ½w0eCLS; w1eNum� 2 R816:

5. Classification layer

○ The combined feature vector f is passed through a feedforward neural network.

○ Dropout with probability 0.33 is used.

○ Fully connected layer, batch normalization (BN), and ReLU activation:

h1 ¼ ReLUðBNðW1f þ b1ÞÞ; W1 2 R256�816:

○ The logits for binary classification are computed as:

z ¼W2h1 þ b2; W2 2 R2�256:

Figure 11 Litigation prediction using MAPRA model. Full-size DOI: 10.7717/peerj-cs.3069/fig-11
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○ The softmax function is applied to obtain the predicted probabilities:

by ¼ softmaxðzÞ 2 R2:

where by 2 R2 represents the probabilities for the two classes.

6. Loss function

To effectively handle class imbalance during training, the MAPRA model employs a
cost-sensitive variant of the binary cross-entropy loss known as the focal loss. The standard
binary cross-entropy (CE) loss for binary classification, with true label y 2 f0; 1g and
predicted probability p̂, is given by:

LCE ¼ �½y logðp̂Þ þ ð1� yÞ logð1� p̂Þ�:
The focal loss extends this by emphasizing difficult-to-classify examples, and is defined as:

LFL ¼ að1� ptÞcLCE;

where pt is the model’s predicted probability for the true class, c is the focusing parameter
(set to 2), and a balances the class weights (set to 1). To further account for severe class
imbalance, class-specific weights are employed as follows:

wþ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� pþ
pþ

r
; w� ¼ 1; pþ ¼ 0:02:

Thus, the final weighted focal loss for the dataset of size N is expressed as:

L ¼ � 1
N

XN

i¼1 wyi ½ að1� pt;iÞcðyi logðp̂iÞ þ ð1� yiÞ logð1� p̂iÞÞ�:
This combined loss function enhances the model’s sensitivity toward the minority class,
significantly improving recall performance on rare litigated patents.

7. Training objective

○ The model parameters� are optimized by minimizing the focal loss (LFL) across the
training dataset using the AdamW optimizer (learning rate 1:2� 10�5, weight decay
0:01), cosine scheduler with a 5% warmup phase, gradient clipping (maximum norm
of 1:0), and early stopping based on validation area under the precision-recall curve
(AUPRC):

min
�

1
N

XN
i¼1

LFLðyi;byiÞ;
where N denotes the total number of training samples, yi is the true label, and byi is the
predicted probability vector for the i-th training example.

8. Evaluation under true class imbalance
Given the true positive prevalence

pþ ¼ Nþ
N
¼ 0:02;
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where Nþ is the number of litigated patents in a test set of size N, the classifier produces
scores p̂i ¼ Pðyi ¼ 1 j xiÞ. Instead of relying solely on the default threshold 0:5, the
decision threshold is calibrated using multiple criteria on a 2%-positive validation set:

○ F1-optimal threshold:

tF1 ¼ argmax
t

F1ðtÞ; F1ðtÞ ¼ 2PðtÞRðtÞ
PðtÞ þ RðtÞ ;

where precision (P) and recall (R) at threshold t are defined as:

PðtÞ ¼
PN

i¼1I½p̂i � t� yiPN
i¼1I½p̂i � t� ; RðtÞ ¼

XN

i¼1I½p̂i � t� yiPN
i¼1 yi

:

○ Accuracy-optimal threshold:

tacc ¼ argmax
t

AccðtÞ:

○ Fixed 2% flag-rate threshold (98th percentile):

t2% such that P½p̂i � t2%� ¼ 0:02:

Ranking quality under extreme class imbalance is further evaluated using
Precision@K and Recall@K:

P@K ¼ 1
K

XK

i¼1 yðiÞ; R@K ¼ 1P
i yi

XK

i¼1 yðiÞ;

where yðiÞ denotes the ground-truth label of the i-th highest-scoring example.
Additionally, the Area Under the Precision–Recall Curve (AUPRC),

AUPRC ¼
Z 1

0
PðRÞ dR;

is monitored and optimized, given its superior informativeness over area under the
receiver operating characteristic curve (ROC-AUC) in highly imbalanced contexts
(pþ � 0:5).
The model training explicitly uses a class-weighted focal loss:

LFL ¼ � 1
N

XN

i¼1 wyiað1� pt;iÞc½yi log p̂i þ ð1� yiÞ logð1� p̂iÞ�;

with class weights

wþ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� pþ
pþ

r
� 7; w� ¼ 1; a ¼ 1; c ¼ 2:

These class weights imply that false negatives incur significantly higher penalties due
to the extreme class imbalance (pþ ¼ 0:02), effectively enhancing recall for rare
litigation-positive cases. Combined with offline positive-class oversampling (10%),
comprehensive numeric preprocessing (imputation, trimming, scaling),
multi-threshold calibration, and rigorous ranking metrics, this approach effectively
maximizes recall for rare litigation events while controlling false-positive predictions.
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9. Model inference

○ During inference, the class label is predicted by selecting the class with the highest
probability:

ŷ ¼ argmax
c

byc:
Optionally, calibrated thresholds (e.g., F1-optimal, accuracy-optimal, or fixed
flag-rate thresholds) may be applied to enhance inference quality under class
imbalance.

Summary of the workflow

1. Offline tokenize and pad claim texts (length 512) using the BERT tokenizer.

2. Extract the [CLS] token embedding from fine-tuned BERT as the textual representation.

3. Preprocess numeric features (imputation, trimming, scaling) and encode them using a
dedicated numeric MLP.

4. Combine textual and numeric embeddings using learnable modality clamped-weighting
and concatenation.

5. Pass the weighted combined embedding through a feedforward neural network with
dropout and batch normalization.

6. Compute class probabilities using softmax and minimize the focal loss during training.

7. Calibrate optimal decision thresholds on a validation set.

8. Predict class labels based on calibrated probabilities during inference.

Training and evaluation
Training involves minimizing the focal loss using the AdamW optimizer, gradient

clipping, dropout regularization, and early stopping based on validation performance
(AUPRC). Final evaluation on balanced and realistic imbalanced splits involves
comprehensive metric computation and visualization of receiver operating characteristic
curves, precision-recall curves, and confusion matrices. This architecture, which combines
NLP techniques with numeric feature integration, provides a robust framework for
predicting litigation risk in legal analytics.

RESULTS
The first part of the work developed an indicator named ‘Hyponym Tree Score’ for patent
claim text scope quantification. To generate the proposed score from the patent claim text
input, algorithms were designed and implemented using two popular NLP libraries, Spacy
and Stanza. Thus, six candidate hyponym scores were generated for further evaluation.
The validity of the HTS candidates was initially evaluated using the sample claims to verify
their ability to distinguish the scope variation from a set of fixed-length claims. Based on
the positive results from that experiment, seven experiments were conducted to perform
the litigation prediction; the results were consolidated in Table 7. In addition to the
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prediction results, extremes analysis, correlation and information gain results are also
considered to identify the final candidate for HTS. Based on observations, the
non-weighted HTS generated using the Spacy library was selected as the final candidate for
the proposed HTS to quantify the patent claim scope.

The second part of this work aimed to develop a litigation prediction model that relies
solely on early-stage features, ensuring its applicability to both patent drafts and granted
patents. The key direction adopted in the development of the proposed ‘MAPRA’ model
was utilising the BERT Model for claim text understanding and augmenting the text
information with additional numerical features by designing a Multifeature Fusion
approach. Among the BERT options, the BERT base (bert-base-uncased) model was used
for text understanding purposes. As a preliminary step, a baseline BERT model using only
claim text was implemented to validate its capability in litigation prediction. The results
were comparable to those achieved in the first part of the study. Building on this validation,
the MAPRA model was developed and tested using both the claim text and the ten
numerical features from Part 1, Experiment B. Table 9 presents the prediction metrics for
the BERT-based experiments. Figure 12 shows the accuracy improvement in litigation
prediction with different models.

To enhance model interpretability and build confidence in its predictive behavior,
SHAP (SHapley Additive exPlanations) values were employed to quantify the contribution
of individual input features to the model’s output. Figure 13 presents a SHAP summary

Figure 12 Comparison of the performance metrics with different experiments.
Full-size DOI: 10.7717/peerj-cs.3069/fig-12

Table 9 Performance metrics for BERT-based models.

Experiment Features Accuracy Precision Recall F1-score AUC

BERT Only claim text 0.8099 0.8099 0.8099 0.8099 0.8099

MAPRA Claim text + Features from Exp-B 0.8005 0.7779 0.8411 0.8083 0.8776
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plot ranking features based on their impact on model predictions. The most influential
inputs were num_inventors, hts_spacy, and num_independent_claims. Notably,
num_inventors, despite its high ranking, represents external metadata unrelated to the
content of patent claims. In contrast, hts_spacy, the proposed semantic scope indicator
derived from claim text, was the most impactful claim-related feature. Its high SHAP
values indicate that the semantic structure of claims plays a substantial role in predicting
litigation risk. These results validate the relevance of traditional bibliometric indicators
while empirically demonstrating the added value of incorporating HTS, the proposed
claim scope indicator. Overall, the findings reinforce the interpretability of the MAPRA
model and underscore the potential of hts_spacy as a meaningful early-stage indicator of
litigation risk.

The primary objective of the proposed model is to serve as an early-stage risk
assessment tool during the patent drafting process. In this context, the model functions as
a screening mechanism, where false negatives (i.e., failing to identify potentially litigated
patents) pose greater strategic risk than false positives. As such, achieving high recall is
essential. The MAPRAmodel demonstrates superior recall and ROC-AUC compared to all
baseline configurations when evaluated using the F1-optimal threshold, which yields its
best overall performance and underscores its effectiveness in minimizing missed high-risk
cases. These results support its viability as a decision-support tool capable of providing
meaningful, actionable insights to patent authors at the draft stage. These early-stage
insights enable authors to manage the legal scope of their claims and assess the potential
litigation risk of their patents. Figure 14 illustrates improvements in key prediction metrics
across different experiments. Compared to the results from Experiment A, the MAPRA
model achieved a 4% improvement in prediction accuracy and a 14% improvement in
recall. As a pioneering effort in predicting litigation risk for patent drafts, MAPRA cannot

Figure 13 SHAP summary plot showing feature importance based on average impact on model
output. Full-size DOI: 10.7717/peerj-cs.3069/fig-13
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be directly compared to prior models, as no published work to date has addressed this
problem at the draft stage. The most comparable existing study (Juranek & Otneim, 2024)
focuses on litigation prediction using features available immediately after patent grant and
reports an AUC of 0.822. In contrast, the MAPRA model achieves a higher AUC of 0.878
while relying exclusively on early-stage features. A key advantage of MAPRA is that it does
not depend on post-grant or acquired information, yet it demonstrates superior predictive
performance. These results highlight MAPRA’s capability to assess litigation risk
effectively at both the draft and post-grant stages. To the best of the authors’ knowledge,
this represents the first published approach explicitly designed for litigation risk prediction
during the patent drafting stage.

Although the model was trained on a balanced dataset, its evaluation on a realistically
imbalanced test set, comprising approximately 2% litigated and 98% non-litigated patents,
demonstrates its effectiveness in identifying high-risk cases. The test set contains 4,173
samples, including only 83 litigated instances. The model achieves a recall of 85.54%,
successfully capturing the majority of truly litigated patents. Despite the expected trade-off
in such imbalanced settings, it attains a precision of 6.74% and an F1-score of 0.1250.
Notably, its Precision@200 is 16%, representing an eightfold improvement over random
selection. Additional performance metrics include an accuracy of 76.18%, a ROC-AUC of
0.8786, and an Average Precision (AP) of 0.1909, highlighting the model’s strong ranking
performance. These results suggest that the model is well suited for prioritization tasks in
large-scale patent portfolios (Saito & Rehmsmeier, 2015). Moreover, its performance is
expected to improve further when trained on a larger dataset that reflects the true class
distribution (Buda, Maki & Mazurowski, 2018).

Figure 14 Percentage improvement in key prediction metrics relative to Exp-A.
Full-size DOI: 10.7717/peerj-cs.3069/fig-14
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DISCUSSION
The importance of the patent claim scope and its significance to different stakeholders
triggered the study. Prominent indicators used to represent the patent scope are studied in
this work. The first part of this work addresses the identified research gap regarding the
underutilization of patent claim text semantics in assessing patent scope by proposing
HTS, a new claim scope indicator. The impact of including HTS in litigation prediction
using different machine learning models was evaluated to identify the most suitable
candidate for HTS.

As depicted in Fig. 8, the relative performance improvement of each experiment
compared to the baseline experiment is smaller. This is not an unexpected situation
because scope capturing is based on identifying the hyponyms for each word. The quality
of HTS depends on two factors: how the dependency graph for the sentence is generated
and how the hyponym counts for the words in the claim sentences are identified. To
generate the dependency tree, the Stanza and Spacy libraries were evaluated, and it was
observed that Spacy produces overall better results. The hyponym count is calculated using
WordNet, but upon analysis, it was observed that WordNet cannot provide the hyponyms
of techno-legal terms, which are key constituents of the patent claim text. It cannot resolve
the context-related ambiguity; for example, the word ‘tree’ in computer science refers to a
data structure, whereas in the context of environmental science, it refers to a natural tree.
Figure 15 presents the fact that the ability of the HTS to predict the litigation risk
potentially varies with the patent’s IPC section, which internally refers to the linguistic
diversity supported by the hyponym counting mechanism. For WordNet, only the
presence or absence of the word is checked, ignoring its context. Another observation is

Figure 15 Litigation label counts for top and bottom 100 hts_spacy records.
Full-size DOI: 10.7717/peerj-cs.3069/fig-15
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that for certain words, WordNet provides hundreds of hyponyms. This can potentially
nullify the significance of all other words in the sentence. To avoid such outliers, in this
work, the maximum value of any word’s hyponym count is limited to 259, which
corresponds to the hyponym count for the top 98.5 percentile. When a word is not a
stopword, and there is no hyponym for that word, the original word is considered, and a
minimum hyponym count of one is assigned. Figure 16 shows the hyponym count plotted
against the percentage of unique words or tokens present in the patent claim text corpus of
the dataset used in this work. As indicated by this, it is clear that no hyponyms exist in
WordNet for most of the words extracted from the patent claims. Although WordNet is
the most popular hyponym corpus, HTS calculation requires a new corpus that includes all
scientific, legal, and technical terms to yield better results. Currently, there is no WordNet
replacement with context awareness and inclusion of domain-specific terms available in
the public domain. To achieve the full potential of the HTS, the development of a new
hyponym corpus and the re-computation of HTS values using this new corpus are
recommended. This pioneering study aims to trigger researchers’ interest in quantifying
the claim text scope based on hyponym count and sentence structure.

This study acknowledges that the connection between patent scope, value, and litigation
probability has been reconfirmed. Prior studies have documented the correlation between
patent scope and its value and the connection between scope and litigation tendency. No

Figure 16 Log-scale distribution of hyponym counts and word percentages. Full-size DOI: 10.7717/peerj-cs.3069/fig-16
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attempts were made in this study to promote or encourage patents with a very broad scope
due to the well-known conflicting views on such patents (Kitch, 1977; Klemperer, 1990;
Gilbert & Shapiro, 1990;Merges & Nelson, 1994; Chang, 1995). Such patents are often used
as tools to suppress competition. The focus is solely on quantifying patent scope and
enabling patent drafters to determine whether the articulated claim scope is higher or
lower.

The proposed MAPRA model is specifically designed for litigation prediction at the
patent drafting stage. Unlike the prior work focused on granted patents, such as (Juranek &
Otneim, 2024), which reported an AUC of 0.822, the MAPRA model achieves a higher
AUC of 0.8776 while using only pre-grant features. This result demonstrates that strong
predictive performance can be achieved without relying on post-grant event data. The use
of exclusively draft-stage information makes MAPRA well-suited for early-stage litigation
risk assessment. To demonstrate the significance of post-grant features in litigation
prediction, Fig. 17 shows the information gain of popular post-grant features such as PQI6,
forward citation, grant lag, and family size. In this combination, the contribution of
post-grant features is very high. Additionally, it is important to note that HTS candidate
features outperform two well-known post-grant features: family size and grant lag. This
reconfirms the significance of HTS in litigation prediction for early-stage documents for
which the post-grant features are unavailable. Considering that the performance difference
between the closest litigation prediction work is just 0.3%, the MAPRA model can also be
effectively used for granted patents. By using HTS for claim scope identification and
MAPRA model for litigation prediction, patent authors can iteratively modify the patent
claim text to obtain an optimal claim scope that balances higher value and improved grant
probability.

Figure 17 Information gain of post-grant features and HTS candidates.
Full-size DOI: 10.7717/peerj-cs.3069/fig-17
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To assess the model’s real-world applicability, further analysis was conducted on an
imbalanced test set reflecting the true distribution of litigated patents (approximately 2%
positive cases). While the baseline results, reported earlier, indicate strong performance in
terms of recall and ROC-AUC, precision and F1-score were comparatively lower. This
behavior is expected in rare-event settings, where even a small number of false positives
can significantly affect threshold-sensitive metrics like precision and F1. To better
understand the impact of training class distribution on model generalization under
deployment-like conditions, additional experiments were conducted using three training
configurations, each incorporating 10,000 litigated (positive class) patents. The models
were trained with positive-to-negative sampling ratios of 1:1, 1:2, and 1:3, respectively.
Each model was evaluated on the 2:98 imbalanced test set. The results, presented in
Table 10, show that as the training distribution progressively approximates the true class
imbalance, the model exhibits notable gains in several key metrics, including precision, F1-
score, and average precision (AP). Precision@200 improves from 0.080 (1:1) to 0.135 (1:2
and 1:3), suggesting enhanced ability to prioritize truly litigated patents in ranked outputs.

These empirical trends shown in Fig. 18 are consistent with theoretical expectations
from probability calibration and statistical learning theory. When a model is trained on a

Figure 18 Impact of training sampling ratios on precision and F1-score with an Imbalanced (2:98) test set.
Full-size DOI: 10.7717/peerj-cs.3069/fig-18

Table 10 Performance on imbalanced test data with varying training ratios.

Training ratio Precision Recall F1-score AP P@200

1:1 0.0533 0.8500 0.1003 0.2116 0.080

1:2 0.0701 0.8250 0.1292 0.2348 0.135

1:3 0.0817 0.7049 0.1465 0.1842 0.135
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balanced dataset, it implicitly assumes a uniform class prior (i.e., Pðy ¼ 1Þ ¼ 0:5), which
deviates significantly from the true prior observed in deployment scenarios. As a result, the
model’s estimates of the posterior probability Pðy ¼ 1 j xÞ may become miscalibrated.
According to Bayes’ theorem, the true posterior is given by:

Pðy ¼ 1 j xÞ ¼ Pðx j y ¼ 1Þ � Pðy ¼ 1Þ
PðxÞ

where Pðy ¼ 1Þ is the prior probability of litigation, Pðx j y ¼ 1Þ is the likelihood
of observing features x given a litigated patent, and PðxÞ is the marginal
probability of observing x. When the model is trained using the correct class prior
(e.g., Pðy ¼ 1Þ � 0:02), the posterior probability estimation becomes more accurate,
improving probability calibration and reducing the number of false positives.

From a risk minimization perspective, the goal is to minimize the expected loss over the
true data distribution. The population risk is defined as:

Rðf Þ ¼ Eðx;yÞ	Pðx;yÞ Lðf ðxÞ; yÞ½ �
where f ðxÞ is the model’s prediction for input x, y 2 f0; 1g is the true class label, and
Lðf ðxÞ; yÞ is a loss function that penalizes incorrect predictions. When training on
artificially balanced datasets, the empirical risk diverges from the population risk, resulting
in a biased optimization objective. As the training distribution aligns more closely with the
true class distribution, the empirical risk becomes a better approximation of the true risk,
yielding more generalizable models.

Improvements in threshold-independent metrics such as AP and Precision@200 further
support the model’s improved ranking capability. These metrics are particularly relevant in
practical scenarios such as triaging or screening large patent portfolios, where ranking
high-risk cases is more actionable than producing binary predictions.

Taken together, these findings underscore the value of aligning training data
distributions with real-world class priors. Empirical results and theoretical insights
demonstrate that aligning the training distribution with the true class priors leads to more
accurate, calibrated, and useful predictions for downstream litigation risk assessment.
These findings motivate future work on cost-sensitive training and dynamic
class-weighting to further improve model robustness under deployment conditions.

CONCLUSION
The scarcity of patent scope indicators based on the semantics of patent claim text is
addressed in the first part of this study through the development of a new claim scope
indicator, hyponym tree score (HTS). HTS utilizes the number of hyponyms of the words
in a patent claim sentence, the sentence structure, and the inter-dependency among the
patent claims in its calculation, as depicted in Algorithm 1. The final candidate for the HTS
is selected from six computational options following a series of experiments that evaluate
the performance improvements resulting from the inclusion of each HTS candidate in the
litigation prediction task, as well as the results of the extremes study, information gain, and
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feature correlation. A higher HTS value indicates a broader claim scope, hinting at higher
legal coverage, increased value, increased litigation probability, and decreased patent grant
probability. The second part of this study focuses on the development of a
high-performing litigation prediction model suitable for predicting the litigation risk of
patent drafts. A multifeature fusion approach is adopted to design the proposed MAPRA
model, ensuring claim text understanding through a pre-trained model and augmenting it
with additional numerical features. In the MAPRAmodel design, a BERTmodel is used for
capturing claim text semantics, while numerical features such as HTS and other early-stage
indicators are concatenated with the BERT output to improve litigation prediction. The
MAPRA model achieves an AUC score of 0.878, surpassing the closest existing litigation
prediction model, which is designed for granted patents and reports an AUC of 0.822.
Given that MAPRA relies solely on pre-grant features available at the draft stage, this
superior performance highlights its effectiveness and suitability for predicting litigation
risk in both patent drafts and granted patents. It is suggested that patent authors can
strategically manage the scope of claims during the drafting stage by leveraging HTS and
MAPRA. The utilization of HTS and MAPRA enables authors to define claim boundaries
precisely, thereby assisting patent examiners in efficiently identifying overly broad
applications. For patent portfolio managers, HTS and MAPRA provide valuable insights
for accurately assessing portfolio value and potential litigation risks. Furthermore, this
model supports insurance companies in evaluating the litigation risks associated with
newly granted patents, contributing to a more efficient, transparent, and well-regulated
patent ecosystem.

In this study, hyponym counting of words relies on WordNet, which does not cover
most scientific or domain-specific terms. Developing a context-aware hyponym corpus
that includes technical and domain-specific terminology remains an important direction
for future research. Recent work on LLM-based hyponym generation (Yun et al., 2023)
provides promising insights for advancing such corpus development.

Patents are granted across a wide range of domains, each falling under different
sections. The linguistic diversity inherent in documenting innovations from these varied
fields necessitates a claim scope evaluation that is specific to each patent section. Such
section-specific analysis could improve the quality of HTS and enhance litigation
prediction performance for particular domains. This study refrains from recommending
or defining specific HTS value ranges that may indicate claim scope boundaries.
Establishing such recommendations would require section-specific analyses based on
significantly larger datasets that reflect the true class distribution. Increasing dataset size
with realistic class distribution and conducting patent section-specific evaluations
represent key areas for future work. Additionally, this study does not account for temporal
changes in patent litigation risk, which is another area for improvement (Kim et al., 2021).
As there are currently no definitive or final litigation prediction models, there remains
substantial scope for developing improved models, particularly those that incorporate
enhanced hyponym corpora.
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