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ABSTRACT
Conversational recommender systems (CRS) facilitate natural language interactions
for more effective item suggestions. While these systems show promise, they face
challenges in effectively utilizing and integrating informative data with conversation
history through semantic fusion. In this study we present an innovative framework
for extracting social information from conversational datasets by inferring ratings
and constructing user-item interaction and user-user relationship graphs. We
introduce a social information sensitive semantic fusion (SISSF) method that
employs contrastive learning (CL) to bridge the semantic gap between generated
social information and conversation history. We evaluated the framework on two
public datasets (ReDial and INSPIRED) using both automatic and human evaluation
metrics. Our SISSF framework demonstrated significant improvements over baseline
models across all metrics. For the ReDial dataset, SISSF achieved superior
performance in recommendation tasks (R@1: 0.062, R@50: 0.437) and
conversational quality metrics (Distinct-2: 4.223, Distinct-3: 5.595, Distinct-4: 6.155).
Human evaluation showed marked improvement in both fluency (1.81) and
informativeness (1.63). We observed similar performance gains on the INSPIRED
dataset, with notable improvements in recommendation accuracy (R@1: 0.046,
R@10: 0.129, R@50: 0.269) and response diversity (Distinct-2: 2.061, Distinct-3:
4.293, Distinct-4: 6.242). The experimental results consistently validate the
effectiveness of our approach in both recommendation and conversational tasks.
These findings suggest that incorporating social context through CL can significantly
improve the personalization and relevance of recommendations in conversational
systems.
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INTRODUCTION
Conversational Recommender Systems (CRS) enhance item recommendations through
natural language interactions (Jannach et al., 2021). Studies have shown that integrating
external data sources with conversational data through semantic fusion provides
opportunities to improve CRS models (Zhou et al., 2020a, 2022; Pugazhenthi & Liang,
2022). Semantic fusion unifies different types of data representations into a single space,
which combines all the characteristics of the involved data. Incorporating various data
sources enables CRS to capture user preferences more effectively, which leads to better
recommendations (Zhou et al., 2020a; Chen et al., 2019). Additionally, semantic fusion can
expand the model’s vocabulary by providing more of a general insight into natural
language patterns (Pugazhenthi & Liang, 2022). Moreover, it integrates user interactions
for more personalized recommendations (Kannout et al., 2024). However, while previous
studies (Chen et al., 2019; Zhou et al., 2020a, 2022; Pugazhenthi & Liang, 2022) have
provided valuable insights into the effects of semantic fusion in CRS, it seems that the
potential impact of social information that is derived from the relationships amongst users
and the interactions of users and items has not been fully explored.

There are two main challenges with leveraging social information in CRS. Firstly,
popular conversational datasets, such as the ReDial (Li et al., 2018) and the INSPIRED
(Hayati et al., 2020) datasets lack explicit structural representations of social relationships
and user interactions, specifically in the form of user-item interaction and user-user
relationship graphs. This absence limits the system’s ability to utilise valuable social
dynamics. Secondly, a significant semantic gap exists between social information and
conversation history, which makes it challenging to effectively integrate user preferences
expressed in natural language with patterns derived from social relationships. To address
these limitations, we propose SISSF CRS, a novel framework that enhances CRS through
two primary mechanisms. Firstly, it inductively extracts social information from
conversational datasets by constructing user-item interaction and user-user relationship
graphs derived from explicit user interactions and inferred ratings through neural graph
collaborative filtering (NGCF) (Wang et al., 2019). Secondly, it implements an innovative
semantic fusion approach utilising CL to bridge the semantic gap between social
information and conversation history.

To extract social information from conversational datasets, we first utilize NGCF (Wang
et al., 2019) to infer item ratings based on user interactions. These ratings are then used to
construct a user–item interaction graph via relational graph convolution network (R-
GCN) (Schlichtkrull et al., 2018). Inspired by the work of Hayati et al. (2020), which builds
a social CRS using social science research that considers personal opinions and
encouraging communication, we build the social relationship graph using graph
transformer operator (GTO) (Shi et al., 2021). We are further motivated by Fan et al.
(2019), Tran, Snášel & Nguyen (2023) to build a social recommender system that defines
user embeddings by considering user-item interaction and user-user relationship graphs;
therefore, we aggregate the constructed graphs and obtain the embedding for all users who
have interacted with each item in the conversation history from both graphs separately.
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Next, we apply pooling to generate a collective representation of user interactions and
social profiles. This step is followed by concatenating both profiles and performing mean
pooling to obtain enhanced user representations. Finally, by applying self-attention to
these enhanced representations across all items in the conversation, we form a compact
representation of social information. This representation captures the underlying patterns
and relationships among users, which helps us understand user preferences and interests
within the context.

We utilize contrastive learning (CL) (Hu et al., 2023; Si, Jia & Jiang, 2024) to integrate
extracted social information with conversational history. CL has demonstrated strong
capabilities in unifying distinct data representations, particularly those involving textual
data. It has been successfully applied to combine text with images (Zhang et al., 2021),
video segments (Nan et al., 2021), and structured and unstructured data (Zhou et al.,
2020a, 2022, 2020b). CL functions by contrasting positive pairs—composed of a
conversation history embedding and the corresponding social information—with negative
pairs, where the conversation history embedding is matched with social information from
a different sample within the batch. This contrastive mechanism helps align user
preferences expressed in conversations with the influence of social connections and shared
interests inferred from social data. As a result, it produces a richer and more accurate
representation of user preferences.

Figure 1 illustrates the clear advantage of incorporating social information directly from
conversations into CRS. Traditional CRS methods often rely on external sources such as
entity relationship graphs or user reviews to enhance contextual understanding. However,
these sources are frequently sparse and incomplete (Zhang et al., 2023), which can lead to a
trial-and-error approach in refining recommendations. In contrast, the social information
sensitive semantic fusion (SISSF) CRS extracts social dynamics directly from
conversational data by constructing two types of graphs: a user-item interaction graph,
which captures individual preferences and interactions, and a social relationship graph,
which captures user connections. This dual-graph approach enables more precise and
contextually relevant recommendations. For instance, if Alice is searching for a science
fiction movie, SISSF CRS identifies her connection to Bob via the social relationship graph.
It also recognizes Bob’s strong preference for ‘Interstellar (2014)’ through the user-item
interaction graph. Consequently, the system prioritizes ‘Interstellar (2014)’ as the top
recommendation for Alice, whereas a traditional CRS would rely solely on a general entity
relation graph and suggest options based only on genre.

Our work makes several significant contributions to the field:

. Building on previous social science research on mutual engagement and interest, we
propose a novel methodology for extracting implicit social information from
conversational datasets. Although these datasets do not explicitly contain detailed user
interactions or relationships, our approach inducts social information from a
conversations. As far as we know, this is the first attempt to capture such implicit
dynamics in this manner.
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. We introduce a novel semantic fusion approach that leverages CL to align social
information extracted with conversation history. This critical integration step is essential
for generating personalized and contextually relevant recommendations.

. Through extensive experimentation on two well-known public datasets, we demonstrate
that our approach achieves statistically significant improvements compared to existing
baseline models in both recommendation accuracy and response generation quality and
diversity.

. We conducted extensive ablation studies comparing the SISSF CRS model with a variant
that omits the semantic fusion process. The studies demonstrated statistically significant
improvements in personalized recommendations and performance when semantic

Figure 1 Comparison between traditional CRS and SISSF CRS. Full-size DOI: 10.7717/peerj-cs.3067/fig-1
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fusion is employed. This validates our approach and confirms that the performance
improvement is due to the effective integration of social dynamics with conversational
history rather than simply overfitting with additional data.

The rest of this article is organized as follows: “Related Work” reviews related work in
CRS including reinforcement learning (RL) based CRS, deep reinforcement learning
(DRL) based CRS, deep learning (DL) based CRS, and CL. “Preliminaries” presents
preliminary concept, notation, and task definition. “Approach” details our proposed
methodology. “Experiment” presents experimental results and analysis. Finally,
“Conclusion and Future Work” concludes the article and discusses future work and
limitations.

RELATED WORK
Recommender system
Recommender systems are essential in providing personalized suggestions within
commercial platforms, employing a variety of methodologies to cater to user preferences.
However, traditional approaches, such as collaborative filtering (CF) (Elahi, Ricci &
Rubens, 2016), rely on accumulated historical data, while Content-based systems
(Semeraro et al., 2009) depend on item attributes and similarities. However, these
conventional models often struggle to accommodate sudden shifts in user
interests. CRS has emerged to overcome limitations (Jannach et al., 2021). CRS
represents a specialized category that interacts with users through a dialogue interface,
allowing users to specify desired items or attributes and make the model dynamically
capture user interest. The system’s goal is to comprehend and generate appropriate
responses. CRS can be segmented into three groups based on managing interactions
between the recommender and conversational components, as described in the
subsequent sections.

Reinforcement learning based CRS
In the field of CRS, RL has emerged as an esential technique for optimizing dialogue
policies and enhancing user interactions. For instance, Christakopoulou, Radlinski &
Hofmann (2016), Mahmood & Ricci (2009) utilizes RL to refine the dialogue policy,
determining subsequent actions at each dialogue turn. However, this approach relies on
predefined reward functions, which can reduce adaptability to refine recommendations
based on dynamic user needs. In contrast, Chu, Wang & Wang (2023) advocates for
learning rewards intrinsically from user feedback instead of relying on predefined rewards.
Similarly, Zhang et al. (2020), where a contextual bandit algorithm is deployed to learn
policies that select the best action. The data fusion method in Li et al. (2021) integrates
items and attributes into a unified space, treating them as indistinct arms and applying
Thompson Sampling for optimization. However, These techniques introduce challenges in
accurately interpreting user feedback as they use predefined dialog templates to compose
responses.

Mohammed et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3067 5/37

http://dx.doi.org/10.7717/peerj-cs.3067
https://peerj.com/computer-science/


DRL based CRS
In DRL approaches, Lei et al. (2020), Sun & Zhang (2018), Sonie (2022) introduce a deep
neural network to represent the policy function. In Lei et al. (2020), the policy network
inputs the dialogue state and outputs action probabilities, training via the policy gradient
method to maximize expected returns. Concurrently, Sun & Zhang (2018) situate DRL in
the Action stage, formulating a dialogue policy that decides whether to inquire about
attributes or suggest items, informed by the Estimation stage and conversation history.
This article also presents a reward function that accounts for user feedback and dialogue
success, employing policy gradient methods for optimal policy learning. These
methodologies, however, present challenges in natural language understanding (NLU).
The systems’ reliance on optimal policy for interaction enhancement may compromise
their ability to process complex, ambiguous, or diverse user requests or to deliver coherent,
informative, and engaging responses.

DL based CRS
Recent advancements in CRS have seen a shift from RL to DL methodologies for
optimizing dialogue policies. Early DL based systems (Li et al., 2018; Ghazvininejad et al.,
2018; Liao et al., 2019; Patidar et al., 2018; Zhang et al., 2018; Zhou et al., 2020b; Wang
et al., 2022; Zhou et al., 2020a) employed supervised or unsupervised learning to encode
user utterances and items, which the DL model processed to generate responses using
various components and techniques. For instance, the seq2seq model (Li et al., 2018) is
utilized for conversation generation and an autoencoder for recommendation,
supplemented by a sentiment analysis unit to align the sentiments of both models.
However, this approach could yield inaccurate results when entities are mentioned in user
utterances without clear sentiment indicators. To address this, named entity recognition
(NER) (Ghazvininejad et al., 2018), neural latent topic-based components (Liao et al.,
2019), and slot-filling techniques (Patidar et al., 2018) were introduced to extract entities
and construct a hierarchical category for the user’s query. Despite these improvements,
challenges persisted, particularly when entities were mentioned in a negation context or
when capturing user feedback on preferences. A novel approach (Zhang et al., 2018)
involved a search component that interacted with users to narrow down the item space,
enhancing model efficiency. Further, a historical interaction augmented CRS (Zhou et al.,
2020b) proposed to learn from both current and historical dialogues by merging
embeddings. Prompt learning (PL) (Wang et al., 2022) emerged as a new method, using
templates to guide pretrained language models (PLMs) in generating responses and
recommendations. However, these techniques often struggle with the complexity and
ambiguity of human language, such as sarcasm, irony, humor, and slang, which can be
challenging to interpret correctly. To overcome these limitations, a more sophisticated
approach (Zhou et al., 2020a, 2022) is developed, providing user utterances with additional
context by integrating multiple data sources. This method aimed to bridge the semantic
gap between natural context data and structured data like knowledge graph (KG).
Employing mutual information maximization (MIM) and a coarse-to-fine strategy.
However, these approaches utilized spare and incomplete external data, which makes it
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difficult to integrate highly relevant information into the current context. To better utilize
the external data, variational reasoning over incomplete knowledge graphs for
conversational recommendation (VRICR) (Zhang et al., 2023) uses a variational Bayesian
approach that dynamically selects only the parts of the KG most relevant to the current
dialogue. Although this leads to an improvement in performance over the previous
methods, it still depends on a general-purpose graph that may not capture long-term user
preferences as it lacks the fusion of social data, which leads to imprecise recommendations.
Therefore, our innovative approach aims to surpass existing limitations by enriching the
semantic fusion process with additional details that encapsulate user relationships and
behaviors. Consequently, this approach narrows the recommended items space to the most
related items based on the users’ social circle.

Application of CL
CL has emerged as a potent method for maximizing mutual information among data
samples. By contrasting samples, CL acquires features that are both informative and
discriminative, thus enhancing the representation of the data space. Recent studies have
validated CL’s efficacy in diverse data types, especially in NLU (Chen et al., 2020; Zhang
et al., 2021; Nan et al., 2021;Wu et al., 2020; Logeswaran & Lee, 2018; He et al., 2020; Bian
et al., 2021; Hadsell, Chopra & LeCun, 2006; Hu et al., 2023), and underscored its utility in
complex applications like recommender systems (Jing et al., 2023). Specifically, CL has
shown promising results in training disentangled datasets, which aim to improve the
precision of personalized recommendations by considering the different user intents in
interaction with items (Ren et al., 2023). Moreover, it has improved dimming dataset bias
(Zhou et al., 2023) when applied in a causal framework using implicit preference
satisfaction (IPS) and improved recommendation task for cross-domain sequential
recommender (Ye, Li & Yao, 2023). Furthermore, to align separate bipartite graphs, CL
achieves satisfactory outcomes when it is applied to improve the tagging system by making
the representation of different graphs closer to a better understanding of user preferences
(Xu et al., 2023). In CRS, CL applied to fuse the conversational history with external data
sources (Zhou et al., 2022) to generate many rich responses powered by the resources
available with the external data sources. In contrast, CL integrated external resources with
the conversation history without explicitly mentioning entities (Yang et al., 2023). Our
approach leverages CL to gather valuable information from a different data angle
(Hu et al., 2023; Si, Jia & Jiang, 2024), such as social information extracted from the dataset
itself. In doing so, it gains a deeper insight into what users prefer and provides
recommendations that are both personalized and sensitive to the context of the user’s
needs.

PRELIMINARIES
CRS integrates dialogue-based interactions with recommendation capabilities, allowing
the system to infer user preferences dynamically. CRS models rely on conversational and
recommendation components, but our approach extends this framework by incorporating
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social relationship and user-item interaction graphs. This section outlines the key
notations used in our system:

Notation for conversation history. In the domain of CRS, a conversation history
(Zhou et al., 2020a, 2022), denoted as C, represents an ordered collection of utterances

C ¼ fstgnt¼1, where each st corresponds to a turn in the conversation at time t. Each st is

further broken down into a sequence of words st ¼ fwjgmj¼1 selected from a predefined
vocabulary V. As the dialogue progresses, these utterances cumulatively form the
conversation history.

Notation for the user-item interaction bipartite graph. Consider the sets
U ¼ fu1; u2; . . . ; ung and I ¼ fi1; i2; . . . ; img to represent users and items, respectively,
where n is the total count of users and m is the total count of items. We define R as the
user-item rating matrix within Rn�m, also referred to as the user-item graph T. In this
matrix, if user ui assigns a rating to item ij, the rating is denoted by rij. If there is no rating
from ui to ij, it is indicated as rij ¼ 0. The known rating rij represents the opinion of user ui
towards item ij that is a numerical representation of the user’s level of preference regarding
the item. Furthermore, we define BðjÞ as the collection of users who have interacted with
item ij, and denote by Ic the set of items involved in the conversation C.

Notation for the user-user social homogeneous graph. In ReDial (Li et al., 2018) and
INSPIRED (Hayati et al., 2020), users remain the same throughout conversations but take
on different roles depending on the interaction. A seeker requests recommendations, while
a recommender provides them. These roles alternate dynamically based on the
conversations. Let K 2 Rn�n define the matrix of user relationships where kij ¼ 1 if there is
a social relationship between uj and ui, and kij ¼ 0 otherwise, which represents the
user-user social graph H. Following Hayati et al. (2020), we form a connection if two users
share at least one liked item—an item both have explicitly stated as enjoyable during at
least one conversation. Additionally, since the recommender user plays a role in shaping
the seekers’ opinion, we also establish connections among seekers who have engaged with
the same recommender, following the previously defined criteria.

Task definition. At the t-th turn, given the user-item interaction graph T, the user-user
social graph H, and the conversational history C. The task is to (1) generate appropriate
response stþ1 and (2) recommend personalized items Itþ1.

APPROACH
In this section, we systematically outline the development process of our SISSF CRS.
Firstly, we explore the encoding of various data types used by our framework, including
user-user relationship graph, user-item interaction graph, social information, and
conversation history. These encoded representations are then fused through CL to
establish semantic alignment across different sources of data. Finally, we fine-tune these
representations to optimize their performance for recommendation and conversational
tasks. Our novel framework is illustrated in Fig. 2.
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Encoding multi-form data
Encoding transforms data from its original form into another form that deep learning
models can process. This allows the model to interpret and preserve the semantic meaning
while aligning the model’s architecture with the data concerning its nature. Once the data
is encoded, the representations are ready for applying CL to enhance their alignment and
integration.

Figure 2 Our approach to the sensitive information semantic fusion method involves leveraging CL to align the social information es with the
conversation history representation ec. This process incorporates the social context by considering enhanced user representation set E of all items
during the semantic fusion. Initially, the user-item interaction graph T and social relationship graphH are aggregated, followed by extracting the user
interaction profile Pi and the user social profile Si, respectively, for each item ij in C by applying MP to combine the user embeddings for each ij.
Then, we stack the representations for each ij separately and apply MP to obtain enhanced user representation Ei. Then, SA layer is used on E to
generate social information representation es. Finally, these representations are fused with the encoded representation of C through CL.

Full-size DOI: 10.7717/peerj-cs.3067/fig-2
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Encoding of conversation history
Encoding the conversation history C involves concatenating the utterances that
constitute C in the same order in which they appear, following the approach used in
previous works (Zhou et al., 2020a, 2022). Specifically, we merge the sequence of utterances

fstgnt¼1 into a single paragraph P. Next, we encode P with the help of a standard

transformer encoder (Vaswani et al., 2017) as defined in Eq. (1) to obtain hc that is the
contextual embedding of C.
hc ¼ EncoderðPÞ; (1)

To weigh each word in hc according to its contribution, we apply self-attention (SA)
given by Eq. (2) to get conversation history representation ec.

ec ¼ hc � softmax b> � tanhðWsa � hcÞ
� �

; (2)

where Wsa and b are the learnable parameters.

Encoding of user-user relationship graph
In the social relationship graphH, nodes correspond to users in the setU, and relationships
between users are represented as edges in the form of hui; uji, where ui; uj 2 U . To
accurately capture and encode the significance of these relationships, we employ the GTO
introduced in Shi et al. (2021) (see the ablation study section for further details).
Specifically, we calculate a distinct vector for each user u at layer (l þ 1) as identified by
Eqs. (3) and (4).

nðlþ1Þ
u ¼ WðlÞ

1 nðlÞu þ
X

u02NðuÞ
aðlÞu;u0 W

ðlÞ
2 nðlÞu0 ; (3)

aðlÞu;u0 ¼ softmax
WðlÞ

3 nðlÞu
� �>

WðlÞ
4 nðlÞu0

� �
ffiffiffi
d

p

0
B@

1
CA; (4)

where aðlÞu;u0 denotes the attention coefficient. softmax is an activation function, d represents
the dimension of the feature vectors, NðuÞ represents all neighbor nodes connected to the
node u, the termsWðlÞ

1 ,WðlÞ
2 ,WðlÞ

3 , andWðlÞ
4 represent learnable parameters, and nðlÞu0 is the

node u0 representation from the preceding layer l.

Encoding of user-item interaction graph
In the user-item graph T, ratings provide important information about the strength of
interaction between users and items. These interactions are denoted by triplets in the form
hui; rk; iji, where ui 2 U , ij 2 I, and r 2 R, and r represents a specific type of relationship

drawn from the set R ¼ f0; 1; 2; 3; 4; 5g that connects the nodes ui and ij. To effectively
represent the data in T, we utilize R-GCN (Schlichtkrull et al., 2018) (see the ablation study
section for further details). Formally, the node i within the graph at layer (l þ 1) is
represented as defined in Eq. (5).

nðlþ1Þ
i ¼ r

X
r2R

X
j2Nr

1
Zi; r

WðlÞ
r nðlÞj þWðlÞnðlÞi

 !
; (5)
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where r denotes the activation function that introduces non-linearity into the model, Nr

represents all neighbor nodes connected via relation r, the normalization factor 1
Zi;r

adjusts
the contributions from different nodes to ensure a balanced integration of information, the
termsWðlÞ andWðlÞ

r represent learnable parameters, and nðlÞj is the representation of node j
at layer l.

Encoding of social information
To obtain the encoded representation of social information es, we aggregate the user-item
interaction graph T and the user-user relationship graph H; the embeddings for all nodes
are extracted from the topmost layers of these graphs. From graph T, we define X as the set
of all node embeddings, whereM 2 X represents the embeddings of user nodes. Similarly,
let O be the set of all node embeddings in H.

To analyze the influence of social information on user preferences, we focus on each
item ij in C. For each item, we identify the embeddings of all associated users in BðjÞ asMj

u

for T, where Mj
u 2 M, and Oj

u for H, where Oj
u 2 O.

Formally, the user interaction profile Pj for each ij is defined as shown in Eq. (6).

Pj ¼ MPðMj
uÞ; (6)

where MP refers to mean pooling. This operation ensures equal contribution from all users
to capture the overall characteristics the involved embeddings.

Let the user social profile Sj for each ij be defined as given by Eq. (7).

Sj ¼ MPðOj
uÞ (7)

To obtain the enhanced user representation Ej for each ij we apply Eq. (8) to stack Pj and
Sj.

Ej ¼ Pj � Sj (8)

For all items Ic in C, to obtain the set E we aggregate the enhanced user representations
as expressed in Eq. (9).

E ¼ fEj j ij 2 Icg; (9)

Subsequently, we perform SA as described in Eq. (2), on the set E to ensure that each
enhanced user representation within E is accurately weighted. By adopting this technique,
we generate the social information encoded representation es.

Applying CL to the encoded representations
After we have successfully represented multiform data through encoding, the next step is
to seamlessly fuse these encoded representations to enhance the alignment and integration
of information from different sources. Additionally, to build a socially sensitive fusion
technique, we consider the social information es while conducting the semantic fusion.
Specifically, we incorporate es to be fused with conversation history representation ec.
Thus, we perform CL for each conversation as follows: (ec, es). In this context, positive
examples involve data representations directly related to the same conversation, while
negative examples represent other data representations in batch. By fusing social
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information, we create a richer context, allowing the model to better understand user
preferences. The contrastive loss L is calculated with Eq. (10). The process of applying
semantic fusion using CL is illustrated in Fig. 3.

L ¼ LCLðec; esÞ; (10)

where LCL is the contrastive loss function introduced by Chen et al. (2020) which form
positive and negative samples in each batch by vertically stacking the two view embeddings

Figure 3 Flowchart of the process of applying semantic fusion via CL to the encoded representations.
Full-size DOI: 10.7717/peerj-cs.3067/fig-3
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ec, es for all the batch into a single feature matrix that its size twice the batch size because
we have two views. This combined matrix is then multiplied by its transpose to yield a
symmetric similarity matrix, where each entry represents the cosine similarity between a
pair of embeddings. By discarding the diagonal—thereby removing comparisons of an
embedding with itself—we obtain pairwise similarity scores solely among different view
embeddings. In this structure, those pairs where the embeddings from the two views
correspond to the same conversation instance are positive examples, while all other
unrelated pairs within the batches are negative examples,LCL is defined as shown in Eqs.
(11) and (12).

LCLðec; esÞ ¼ log
exp simðec;esÞ

s

� �
P

e�s;i2NðesÞ exp
simðec;e�s;iÞ

s

� � (11)

simðec; esÞ ¼ e>c es
jjecjj � jjesjj (12)

Algorithm 1 SISSF method using CL.

Data: user-item interaction graph T , user-user relationship graph H , and
conversations N
Result: Align encoded representations for pre-trained model

1 Initialize encoder and model parameters
2 foreach conversation C in N do
3 Extract P by accumulating the conversation history.
4 Encode hc from P using Eq. (1).
5 Compute ec by applying self-attention in Eq. (2) to hc.
6 Acquire O by aggregating the user-user relationship graph H as defined Eq. (3).
7 Acquire X by aggregating the user-item interaction graph T as defined Eq. (5).
8 Acquire M considering all user embeddings in X.
9 foreach item ij in Ic do

10 Extract Mj
u and Oj

u from M and O, respectively.
11 Compute user interaction profile Pj by applying MP as expressed in Eq. (6) to

Mj
u.

12 Compute user social profile Sj by applying MP as expressed in Eq. (7) to Oj
u.

13 Compute enhanced user representation Ej by stacking Pj and Sj as shown in
Eq. (8).

14 end foreach
15 Acquire E by aggregating all the enhanced user representations in C as expressed

in Eq. (9).
16 Compute es by applying self-attention in Eq. (2) to E.
17 Compute L as shown in Eq. (10).
18 Backpropagate L.
19 end foreach
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where NðesÞ represents the set of negative social information embeddings, s represents a
temperature hyperparameter, and simðec; esÞ denotes the cosine similarity between the two
representations. Algorithm 1 presents the pseudocode for applying CL to perform
semantic fusion.

Fine tuning the rich representation to CRS’s tasks
After applying CL, we obtained comprehensive representations of all components
involved. These representations, stored as the weights of the pre-trained model created
during semantic fusion, are fine-tuned to enhance recommendation and conversation
tasks in the CRS. The process begins with selecting the relevant components for each task,
followed by integrating them effectively. The following sections detail the fine-tuning
process for these tasks.

Fine tuning for recommendation task
To enhance the recommendation, we leverage the pre-trained model’s user-item
interaction graph T, user-user relationship graph H, and the conversation history encoder.
Additionally, to ensure that the recommendations are highly relevant to the users’ interests
involved in the conversation, we have considered the representation of the users, and the
conversation history up to the conversation turn. This approach allows us to achieve a
more personalized recommendation and ensure social contextual awareness. Let Y include
all the item embeddings for T, where Y 2 X. Let YR and YI include the items embeddings
interacted with by the recommender and the seeker users, respectively, where YR;YI 2 Y .
Let uR and uI be the embeddings of the recommender and seeker users from H,
respectively. The representation of the recommender user erecommender, is formally defined
as shown in Eq. (13).

erecommender ¼ MPðMPðYRÞ � uRÞ; (13)

Similarly, the seeker user representation eseeker defined as shown in Eq. (14)

eseeker ¼ MPðMPðYIÞ � uIÞ (14)

The erecommender is fed into an encoder with Multi-Head Attention (MHA)
cross-attention (CA) sub-layers. These sub-layers incorporate eseeker and ec to the encoded
representation through CA as described in Hammad, Moretti & Nojiri (2024). A similarly
structured decoder is used, with an additional CA sub-layer to integrate the original
erecommender and other data representations into each decoder layer during the decoding.
Following Zhou et al. (2022), MHA is formally defined as shown in Eq. (15).

MHAðQ;K;VÞ ¼ Concatðhead1; . . . ; headhÞWO; (15)

where each head is defined as expressed in Eq. (16).

headi ¼ AttentionðQWQ
i ;KW

K
i ;VW

V
i Þ; (16)

where Q, K and V are the query, key and value respectively, and WQ
i ,W

K
i ,andWV

i are the
learnable weights.
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The erecommender is processed by the encoder, as shown in Eqs. (17)–(21):

An
0 ¼ MHAðEn�1;En�1; En�1Þ; (17)

An
1 ¼ MHAðAn

0 ; eseeker; eseekerÞ; (18)

An
2 ¼ MHAðAn

1 ; ec; ecÞ; (19)

En ¼ FFNðAn
2Þ; (20)

FFNðxÞ ¼ maxð0; xW1 þ b1ÞW2 þ b2; (21)

where En�1 is the encoded representation of erecommender at the (n� 1)-th layer, An
0 is the

representation after applying SA with En�1, An
1 is the representation after applying CA with

eseeker, An
2 is the representation after applying CA with FFN is a feedforward neural

network for dimension mapping, and En is the output of the encoder at the topmost layer.
Subsequently, the output of the encoder is processed by the decoder as shown in

Eqs. (22)–(26):

Bn
0 ¼ MHAðRn�1;Rn�1;Rn�1Þ; (22)

Bn
1 ¼ MHAðBn

0 ; erecommender; erecommenderÞ; (23)

Bn
2 ¼ MHAðBn

1 ; eseeker; eseekerÞ; (24)

Bn
3 ¼ MHAðBn

2 ; ec; ecÞ; (25)

Rn ¼ FFNðBn
3Þ; (26)

where Rn�1 is the decoded representation of the encoder output En at the previous layer

n� 1, Bn
0 is the representation after applying SA with Rn�1, Bn

1 is the representation after

applying CA with erecommender, Bn
2 is the representation after applying CA with eseeker, Bn

3 is
the representation after applying CA with ec, and Rn is the output of the decoder at the final
layer n, which represents the probabilities of the recommended items after applying
softmax.

Let PrecðiÞ be the probability distribution for the recommended item at the index i as
defined in Eqs. (27) and (28).

PrecðiÞ ¼ softmaxðRnÞ½i�; (27)X
PrecðiÞ ¼ 1; (28)

Lastly, to fine-tune the rich representations for the recommendation task, following
Zhou et al. (2020a, 2022), we apply cross-entropy loss to the probabilities of the
recommended items. In our case, we consider one recommended item per conversation as
given by Eq. (29).

Lrec ¼ �
XN
n¼1

XIR
i¼1

yni � logðPn
recðiÞÞ; (29)

where N is the number of conversations, IR represents the items being recommended, and
yni is the ground truth.

Fine tuning for conversational task
For the conversation task, all models within the pre-trained framework are utilized. The
approach aligns with the methodology detailed in the previous section, with adjustments
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inspired by Zhou et al. (2020a, 2022) to fine-tune the pre-trained model for response
generation. Specifically, an encoder, as described in Eq. (1) of a standard transformer
(Vaswani et al., 2017), is used to encode the responses in training and inference.
Additionally, in the decoder, different additional MHA sub-layers with CA sub-layers are
used to incorporate the social information es, conversation history representation ec, and
the contextual embeddings hc from the pre-trained model during the decoding process as
defined in Eqs. (30)–(34).

Cn
0 ¼ MHAðRn�1;Rn�1;Rn�1Þ; (30)

Cn
1 ¼ MHAðCn

0 ; es; esÞ; (31)

Cn
2 ¼ MHAðCn

1 ; ec; ecÞ; (32)

Cn
3 ¼ MHAðCn

2 ; hc; hcÞ; (33)

Rn ¼ FFNðCn
3Þ; (34)

where Cn
0 is the representation after applying self-attention with the decoder output at the

previous layer Rn�1, Cn
1 is the representation after applying cross-attention with es, Cn

2 is
the representation after applying cross-attention with ec, Cn

3 is the representation after
applying cross-attention with hc, and Rn is the representation of the decoder output at the
n-th layer.

The copying mechanism used in both Zhou et al. (2020a, 2022) is also adopted to copy
useful information from user information through integrating enhanced user
representation set E while generating responses to enhance performance and
personalization. Formally, the probability of generating token wj given tokens w1,…, wj�1

is defined in Eq. (35).

Pðwjjw1; . . . ;wj�1Þ ¼ PgenðwjjRnÞ þ PcopyðwjjRn;EÞ; (35)

where Pgen is the generation probability over all the vocabulary given the decoder output at
the final layer Rn, and Pcopy is the copy probability given Rn and E.

The loss function used for fine-tuning is the same as the one used in Zhou et al. (2022),
where a weighted cross-entropy loss is used to improve the response generation as defined
in Eqs. (36) and (37).

Lgen ¼ � 1
m

Xm
j¼1

logðawjPðwjjw1; . . . ;wj�1ÞÞ; (36)

awj ¼ max c; b
fwj

� �
; if fwj � b

1; otherwise

8<
: ; (37)

where m is the total number of tokens in the generated response, awj is the weight of the
token depending on its frequency, fwj 2 f1; 2; 3; . . .g is the word frequency, c is a random
number in the range ½0; 1� that balances the impact of word frequency during response
generation, and b 2 f1; 2; 3; . . .g is the threshold of the word frequency.

Furthermore, we have used two decoding techniques. Greedy Search (Radford et al.,
2019) is adopted to generate wj during training as defined in Eq. (38), while in the inference
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stage, we use Nucleus Sampling (Holtzman et al., 2020) to select wj as defined in
Eqs. (39)–(42).

wj ¼ argmax
wj

awjPðwjjw1; . . . ;wj�1ÞÞ; (38)

where argmaxwj is the argument of the maximum function.
wj � P0ðwj j w1; . . . ;wj�1Þ; (39)

P0ðwj j w1; . . . ;wj�1Þ ¼
awjPðwj j w1;...;wj�1Þ

p0 if wj 2 VðpÞ
0 otherwise

(
; (40)

p0 ¼
X

wj2VðpÞ
awjPðwj j w1; . . . ;wj�1Þ; (41)

VðpÞ ¼ wj j
X
wj2V

awjPðwj j w1; . . . ;wj�1Þ � p

8<
:

9=
;; (42)

where p is a random number in the range ½0; 1� that represents the cumulative probability
threshold, V is the total vocabulary, VðpÞ is the smallest set of tokens in which their
cumulative probability is greater than or equal to p, p0 is a rescaling factor that is the total
probability of all tokens in VðpÞ used to normalize the selected tokens’ probabilities, and
P0ðwj j w1; . . . ;wj�1Þ is the rescaled probability distribution used to sample wj.

EXPERIMENT
In this section, we discuss the experiment in detail, starting with the experiment setup,
followed by the evaluation of the experiment on all tasks on all datasets. Next, we perform a
statistical analysis to check the validity of our findings. Then, we conduct hyperparameter
analysis on the ReDial dataset (Li et al., 2018) to find the optimal configuration and
conclude with an ablation study to prove the effectiveness of the proposed framework on
the ReDial dataset (Li et al., 2018).

Experiment setup
This section presents the experiment setup, including the datasets, annotation process,
defining baselines, choosing evaluation metrics, and stating the implementation details.

Datasets
The ReDial dataset (Li et al., 2018) and the INSPIRED dataset (Hayati et al., 2020). The
ReDial dataset (Li et al., 2018) was created by AmazonMechanical Turk (AMT) and serves
as a conversational dataset for movie recommendations. It consists of 10,000 conversations
with 182,150 utterances associated with 51,699 movies in the English language. The
INSPIRED dataset (Hayati et al., 2020) is much smaller, consisting of 1,001 conversations
with 35,811 utterances associated with 1,783 items. Both datasets are English CRS datasets.
Each conversation involves a dialogue between two users, where one user acts as the
recommender and the other acts as the seeker. The users might fluctuate their roles across
conversations within the dataset, so mutual recommendations of movies take place.
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Table 1 shows the statistics of users for all datasets. Following the baselines, no sampling
techniques are used for balancing user roles.

Our experiments require a user-item interaction graph and a user-user relationship
graph for the datasets. However, the ReDial (Li et al., 2018) and the INSPIRED (Hayati
et al., 2020) datasets only include conversational data. We leverage the available metadata
in the ReDial dataset (Li et al., 2018) to infer reasonable interaction information. However,
the INSPIRED dataset (Hayati et al., 2020) does not contain this metadata about each
user’s mentioned movies and the details of each movie interaction, whether liked,
suggested, or watched. To address this, we manually annotate each movie mentioned in
conversations to add users’ movie interaction information to the INSPIRED dataset
(Hayati et al., 2020). The metadata from both datasets are then used to generate ratings for
both datasets separately. The process of annotating the dataset is described in detail in the
next subsection.

We initiate the process by extracting an interaction matrix that records positive and
negative interactions, specified by the liking or disliking of items mentioned by each user in
the conversations. We form a social relationships matrix conditioned upon the criterion
that conversing users demonstrate at least one shared interest, according to Hayati et al.
(2020). In addition, as the recommender user influences the seekers who converse with
them, we also establish friend relationships among the seekers who interacted with the
same recommender under the same condition mentioned earlier. Therefore, we ensure
that the connections formed are based on engagement and shared interests. Lastly, we
utilize NGCF (Wang et al., 2019) to generate ratings for all items. The NGCF relies on the
interaction information to predict ratings. These ratings contribute to creating the
user-item interaction graph T.

We construct the social relationship graph H using GTO (Shi et al., 2021), where nodes
represent users in the social relationships matrix. Similarly, we construct T using R-GCN
(Schlichtkrull et al., 2018) by replacing the positive and negative interactions with the
inferred ratings we obtained in the previous step, where nodes represent users and items,
with directed edges from user nodes to item nodes.

Annotation process
Each dialogue in the ReDial dataset (Li et al., 2018) contains additional fields, such as a
dictionary to map movie IDs to their names and dictionaries that associate movie IDs with
labels indicating whether a movie is seen, liked, or suggested by the initiator or respondent.
These labels include suggested (distinguishing who suggested the movie), seen (indicating
whether the movie was watched), and liked (denoting if the user liked the movie). These
labels are essential for the construction of the required graphs for SISSF. As the INSPIRED

Table 1 Statistics of users and their roles for all datasets.

Dataset Seeker Recommender Both Total

ReDial 764 856 508 1,112

INSPIRED 777 721 109 1,389
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dataset (Hayati et al., 2020) initially does not contain these labels, we manually conduct the
annotation process. Figure 4 shows the user interface we created, which is designed to
display conversations with highlighted movie IDs coupled with a dynamic form that

Figure 4 Each sub-form allows the annotators to assign movies to the corresponding user by
selecting the specific movie from a drop-down menu. Once a movie is selected, it is labeled accord-
ing to the context of the conversation, with seen, liked, and suggested labels for each user.

Full-size DOI: 10.7717/peerj-cs.3067/fig-4
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contains two dynamic sub-forms, where the annotators can add movies for the
corresponding users.

Baselines
We evaluate our CRS based on recommendation and conversational tasks, using
benchmark CRSs and stand-alone models as baselines.

. Popularity: The items in the corpus are ranked based on the frequency of
recommendations they receive in the training set. This ranking is based on popularity.

. TextCNN (Kim, 2014): CCN extracts user preferences from text to recommend items.

. Transformer (Vaswani et al., 2017): Generates conversational responses using a
transformer-based encoder-decoder model.

. KBRD (Chen et al., 2019): It uses the seq2seq model based on the transformer (Vaswani
et al., 2017) and a general KG from DBpedia to improve the recommendation
integration and the response generation components.

. KGSF (Zhou et al., 2020a): Enhances the CRS by adapting a way to enhance the semantic
fusion between the external KGs and conversation history through mutual information
maximization.

. ReDial (Li et al., 2018): Uses the seq2seq model based on HRED (Serban et al., 2016) for
conversation generalization with a switch decoder (Gülçehre et al., 2016) to decide when
to recommend or generate a token. The recommender is an autoencoder (Sedhain et al.,
2015), and a sentiment analysis unit is used to check the user’s feedback. The model is
proposed with the ReDial dataset (Li et al., 2018).

. INSPIRED (Hayati et al., 2020): Proposes the INSPIRED dataset (Hayati et al., 2020) for
CRS encoded with sociable strategies to create a CRS that leverages social relationships.

. INSPIRED2 (Ahtsham&Dietmar, 2022): Proposes the INSPIRED2 dataset (Ahtsham&
Dietmar, 2022) for CRS, which is an improved version of the INSPIRED dataset (Hayati
et al., 2020).

. UniCRS (Wang et al., 2022): Utilize PL to guide PLMs for recommendation and
conversation generations.

. C2-CRS (Zhou et al., 2022): Improves the semantic fusion by prompting a novel way to
fuse many external data with the conversation history through CL (Jing et al., 2023).

. VRICR (Zhang et al., 2023): Uses variational Bayesian technique to infer the missing
links among entities related to the subgraphs that are specific to a given conversation.

Popularity and TextCNN (Kim, 2014) serve as benchmarks exclusively for the
recommendation task, while the Transformer (Vaswani et al., 2017) is only evaluated for
the conversational task. The CRS models KBRD (Chen et al., 2019), KGSF (Zhou et al.,
2020a), C2-CRS (Zhou et al., 2022), VRICR (Zhang et al., 2023), INSPIRED (Hayati et al.,
2020), INSPIRED2 (Ahtsham & Dietmar, 2022), UniCRS (Wang et al., 2022), and ReDial
(Li et al., 2018) are used to evaluate both recommendation and conversational tasks.

Since not all baselines are tested on every dataset, we grouped them by dataset for the
SISSF evaluation. On the ReDial dataset (Li et al., 2018), we consider the following
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baselines: Popularity, TextCNN (Kim, 2014), Transformer (Vaswani et al., 2017), KBRD
(Chen et al., 2019), KGSF (Zhou et al., 2020a), C2-CRS (Zhou et al., 2022), VRICR (Zhang
et al., 2023), UniCRS (Wang et al., 2022), and ReDial (Li et al., 2018), while on the
INSPIRED dataset (Hayati et al., 2020), the baselines include KBRD (Chen et al., 2019),
KGSF (Zhou et al., 2020a), INSPIRED (Hayati et al., 2020), INSPIRED2
(Ahtsham & Dietmar, 2022), UniCRS (Wang et al., 2022), and ReDial (Li et al., 2018).
Table 2 summarizes the details of various CRS models.

Evaluation metrics
We adopt different evaluation metrics tailored to the distinct nature of each task. For the
recommendation task, according to the baseline methods chosen for this work, most of
them primarily focus on Recall as the evaluation metric. To ensure consistency with these
baselines, we opted to use Recall@K (k ¼ 1; 10; 50). Similarly, for the conversational task,
we apply human evaluation for the ReDial dataset (Li et al., 2018) and automatic
evaluation for both datasets (Hayati et al., 2020; Li et al., 2018). During the automatic
evaluation, we measure the diversity of generated utterances using Distinct n-gram
(n ¼ 2; 3; 4), while during the human evaluation, we used three annotators on a scale from
0 to 2 to score the generated responses in two aspects, namely Fluency and Informativeness.
The average score is computed for all the annotators to get the final performance score.

Implementation details
We follow Algorithm 1 with PyTorch (https://pytorch.org) and WSDM2022-C2CRS
(Zhou et al., 2022) (https://github.com/RUCAIBox/WSDM2022-C2CRS) to implement
our approach. The embedding dimensionalities are set to 300 for token embeddings and
768 for the user dimensions. For the user-item interaction graph T and user-user
relationship graphH, we set the layer number and the normalization constant to 1. We use
the Adam optimizer (Kingma & Ba, 2015) with beta values of (0:9; 0:999), and batch size of
300. The learning rates for our model are carefully chosen for each model to ensure

Table 2 Overview of CRS models and their key features.

Model Year Core technology Main innovation Reference

ReDial 2018 Seq2seq based on HEAD,
Autoencoder

Switch mechanism between generation and recommendation Li et al. (2018)

KBRD 2019 Seq2seq based on Transformer, KG Knowledge-enhanced dialogue policy Chen et al. (2019)

KGSF 2020 Seq2seq, KG, MIM Semantic fusion with external KG Zhou et al. (2020a)

INSPIRED 2020 Social Strategies Sociable recommendation dialogue Hayati et al. (2020)

INSPIRED2 2022 Social Strategies, Improved Entity
Annotation

Sociable recommendation dialogue with improvement of entity
annotation

Ahtsham &
Dietmar (2022)

UniCRS 2022 PL, PLMs Leverages knowledge-enhanced prompt learning to combine the
recommendation and conversation

Wang et al. (2022)

C2-CRS 2022 Seq2seq, KG, CL Coarse-to-fine semantic fusion Zhou et al. (2022)

VRICR 2023 Seq2seq, A Bayesian method, KG Adapting reasoning process based on the dialogue Context Zhang et al. (2023)

SISSF
(Ours)

2024 Seq2seq, Social information, CL Social information sensitive fusion Current work
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optimal performance. During the semantic fusion and fine-tuning of the recommendation
task, we use a learning rate of 0.00001. For the conversational task, we start with 0.0001 and
then resume learning with 0.00001 for the ReDial dataset (Li et al., 2018) and maintain a
learning rate of 0.0001 for the INSPIRED dataset (Hayati et al., 2020). Regarding the CL,
we set a temperature of 0.09 during semantic fusion and 0.13 during fine-tuning. For the
transformer model, we set the number of layers and heads to 4 for both transformers used
by both tasks. For the calculation of Lgen, we set c to 0.3 and b to 100. We set the
cumulative probability threshold p to 0:95 during the inference process. Following the
section Applying CL to the Encoded Representations, the stage of aligning the data
representation to minimize the loss is conducted during CL. In addition, during the
fine-tuning stage, the section Fine Tuning the Rich Representation to CRS’s Tasks is
considered to optimize the loss for each specific task. The project code and data are
available at https://doi.org/10.5281/zenodo.15368530.

Evaluation on recommendation task
This section demonstrates the effectiveness of the proposed framework on the
recommendation task. We conducted a series of experiments to measure the performance
on both datasets. Table 3 presents the performance metrics against different benchmarks

Table 3 The recommendation task results on the ReDial dataset. Results marked with an asterisk (*)
are statistically significant according to the Wilcoxon rank sum test (p-value < 0:05).

Dataset ReDial

Model R@1 R@10 R@50

Popularity 0.012 0.061 0.179

TextCNN 0.013 0.068 0.191

ReDial 0.024 0.140 0.320

KBRD 0.031 0.150 0.336

KGSF 0.039 0.183 0.378

UniCRS 0.051 0.224 0.428

C2-CRS 0.053 0.233 0.407

VRICR 0.057 0.251 0.416

SISSF 0.062* 0.245 0.437*

Table 4 The recommendation task results on the INSPIRED dataset. Results marked with an asterisk
(*) are statistically significant according to the Wilcoxon rank sum test (p-value < 0:05).

Dataset INSPIRED

Model R@1 R@10 R@50

KGSF 0.002 0.021 0.074

INSPIRED 0.015 0.055 0.153

INSPIRED2 0.019 0.073 0.185

UniCRS 0.029 0.095 0.240

SISSF 0.046* 0.129* 0.269*
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for the ReDial dataset (Li et al., 2018), while Table 4 presents the performance metrics
against different benchmarks related to the INSPIRED dataset (Hayati et al., 2020).

For the ReDial dataset (Li et al., 2018), overall, CRSs demonstrate superior performance
compared to traditional recommender systems because CRSs combine both the
recommender component and the conversation component to update user preferences
dynamically based on the conversation history. In contrast, traditional recommendation
models lack the adaptability to capture user preferences in real time. TextCNN (Kim, 2014)
performs slightly better than Popularity as it recommends items based on contextual
information, whereas Popularity lacks personalization as it treats all users the same, relying
solely on item popularity. KBRD (Chen et al., 2019), KGSF (Zhou et al., 2020a), UniCRS
(Wang et al., 2022), C2-CRS (Zhou et al., 2022), and VRICR (Zhang et al., 2023)
outperform ReDial (Li et al., 2018) by integrating external datasets using different
techniques. VRICR (Zhang et al., 2023) demonstrates the highest performance due to its
effective integration of external datasets, followed by C2-CRS (Zhou et al., 2022), UniCRS
(Wang et al., 2022), KGSF (Zhou et al., 2020a), and then KBRD (Chen et al., 2019), each
showing a gradual performance improvement based on the nature of the external datasets
and the techniques. Our model shows a performance increase compared to all
benchmarks, particularly excelling on R@1 and R@50 compared to VRICR
(Zhang et al., 2023).

For the INSPIRED dataset (Hayati et al., 2020), INSPIRED (Hayati et al., 2020) shows
better performance compared to KGSF (Zhou et al., 2020a) by considering the social
strategies. In contrast, INSPIRED2 (Ahtsham & Dietmar, 2022) outperforms the
INSPIRED (Hayati et al., 2020) as it improves the quality of entity annotation. While
UniCRS (Wang et al., 2022) achieves the highest performance among the baselines, SISSF
outperforms all models across all metrics. This is achieved by integrating the social
relationship inferred by combining the interactions and user relationships with the
conversation history, which improves the model’s capability to deduce user preferences,
leading to accurate recommendations.

Evaluation on conversational task
In this section, we acknowledge the improvement of the proposed framework in
the automatic and human evaluation of the conversational task compared to the best
baselines.

Automatic evaluation
Tables 5 and 6 present the results of the automatic evaluation of the conversational task on
the ReDial (Li et al., 2018) and the INSPIRED (Hayati et al., 2020) datasets, respectively.
For the ReDial (Li et al., 2018) dataset, the Transformer (Vaswani et al., 2017) performs
poorly due to its slow dependency on the conversation history to generate results. ReDial
(Li et al., 2018) performs better than the Transformer (Vaswani et al., 2017), which benefits
from integrating the recommender component during response generation with the help
of a switch mechanism. KBRD (Chen et al., 2019) outperforms ReDial (Li et al., 2018) on
ReDial (Li et al., 2018) and INSPIRED (Hayati et al., 2020) datasets as it utilizes the KG to
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enrich the contextual information. KGSF (Zhou et al., 2020a) performs better than KBRD
(Chen et al., 2019) due to semantic fusion to bridge the semantic gap between the KGs and
conversational history, leading to richer contextual representation. UniCRS (Wang et al.,
2022) surpasses KGSF (Zhou et al., 2020a) by incorporating fused information to prompt
the PLMs. Zhou et al. (2020a) C2-CRS (Zhou et al., 2022) outperforms UniCRS
(Wang et al., 2022) by adopting a new method of semantic fusion and involving more
external data. VRICR (Zhang et al., 2023) achieves the highest results on all metrics among
the baselines due to the more effective utilization of external data. Furthermore, our model
outperforms all the baselines on all metrics on all datasets, primarily due to implementing
an intuitive semantic fusion technique that integrates social information, providing
additional context about user preferences and interests for more relevant responses.
Additionally, utilizing the top-p sampling (Holtzman et al., 2020) technique enhances the
diversity of response generation.

Human evaluation
The human evaluation results on conversational task on the ReDial dataset (Li et al., 2018)
are presented in Table 7. First, VRICR (Zhang et al., 2023) and C2-CRS (Zhou et al., 2022)

Table 5 Results of the Automatic evaluation on the conversational task on the ReDial dataset. Results
marked with asterisk (*) are statistically significant according to the Wilcoxon rank sum test (p-value
< 0:05).

Dataset ReDial

Model Distinct-2 Distinct-3 Distinct-4

Transformer 0.067 0.139 0.227

ReDial 0.082 0.143 0.245

KBRD 0.086 0.153 0.265

KGSF 0.114 0.204 0.282

UniCRS 0.142 0.255 0.302

C2-CRS 0.163 0.291 0.417

VRICR 0.165 0.292 0.482

SISSF 4.223* 5.595* 6.155*

Table 6 Results of Automatic evaluation on the conversational task on the INSPIRED dataset.
Results marked with asterisk (*) are statistically significant according to the Wilcoxon rank sum test
(p-value < 0:05).

Dataset INSPIRED

Model Distinct-2 Distinct-3 Distinct-4

ReDial 0.153 0.255 0.397

KBRD 0.223 0.415 0.616

UniCRS 1.424 2.790 3.628

SISSF 2.061* 4.293* 6.242*
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achieve the best results compared to all baselines. This is followed by UniCRS (Wang et al.,
2022) that utilizes PL to integrate the fused KG with PLMs. Next, KGSF (Zhou et al.,
2020a), where a KG-enhanced Transformer decoder injects the data from the rich
representations generated by fusing conversational text and items via a knowledge graph.
KBRD (Chen et al., 2019) achieved slightly better metrics results than ReDial (Li et al.,
2018) by promoting low-frequency tokens by leveraging the knowledge graph. In contrast,
ReDial (Li et al., 2018) used a pre-trained encoder, which exceeded the results of the
Transformer (Vaswani et al., 2017). Finally, SISSF outperforms all the benchmarks on all
metrics by leveraging CL to bridge the gap between conversational history and social
information. Additionally, a Transformer decoder integrates the generated compact
representation with a weighting mechanism to improve the informativeness of responses.
This is enhanced by the top-p sampling technique (Holtzman et al., 2020), which has been
proven to generate fluent, human-like responses, reflecting the significant improvement of
our model’s fluency.

Statistical analysis and comparison
To demonstrate the efficiency of the proposed model, statistical analysis was conducted on
the recommendation tasks using the ReDial (Li et al., 2018) and INSPIRED (Hayati et al.,
2020) datasets. The population size is 30 with 500 iterations and 10 independent runs.
Tables 8 and 9 report statistical summaries of model performance on the ReDial (Li et al.,
2018) and INSPIRED (Hayati et al., 2020) datasets, respectively. The performance of SSISF
was compared to other baselines using Wilcoxon rank sum test. The p-values are recorded
in Tables 10 and 11 for the ReDial (Li et al., 2018) and INSPIRED (Hayati et al., 2020)
datasets, respectively. Table 10 shows p-values are less than 0.05 for R@1 and R@50, while
Table 11 shows all p-values are less than 0.05 for all metrics. This clearly shows that SISSF
outperforms other baselines in the recommendation task. In cases where no significant
difference was found, “N/A” is recorded.

Table 7 Results of human evaluation on the conversational task on the ReDial dataset. Results
marked with asterisk (*) are statistically significant according to the Wilcoxon rank sum test (p-value
< 0:05).

Dataset ReDial

Model Fluency Informativeness

Transformer 0.97 0.92

ReDial 1.35 1.04

KBRD 1.28 1.15

KGSF 1.48 1.37

UniCRS 1.50 1.41

C2-CRS 1.52 1.47

VRICR 1.57 1.53

SISSF 1.81* 1.63*
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Table 8 Statistical summary of evaluation results on the ReDial dataset.

Dataset ReDial

Model Stat R@1 R@10 R@50

Popularity Mean 9:95E�3 6:17E�2 1:74E�1

Median 9:47E�3 6:26E�2 1:67E�1

STD 4:27E�3 1:23E�2 3:02E�2

TextCNN Mean 1:08E�2 6:87E�2 1:86E�1

Median 1:03E�2 6:97E�2 1:79E�1

STD 4:63E�3 1:38E�2 3:22E�2

ReDial Mean 1:99E�2 1:42E�1 3:12E�1

Median 1:90E�2 1:44E�1 2:99E�1

STD 8:54E�3 2:83E�2 5:39E�2

KBRD Mean 2:57E�2 1:52E�1 3:27E�1

Median 2:45E�2 1:54E�1 3:14E�1

STD 1:10E�2 3:03E�2 5:66E�2

KGSF Mean 2:90E�2 1:85E�1 3:52E�1

Median 2:76E�2 1:88E�1 3:38E�1

STD 1:25E�2 3:70E�2 6:08E�2

UniCRS Mean 3:04E�2 1:89E�1 3:69E�1

Median 2:90E�2 1:91E�1 3:54E�1

STD 1:31E�2 3:78E�2 6:38E�2

C2-CRS Mean 3:16E�2 1:99E�1 3:51E�1

Median 3:01E�2 2:03E�1 3:37E�1

STD 1:36E�2 3:99E�2 6:07E�2

VRICR Mean 3:17E�2 2:03E�1 3:69E�1

Median 3:02E�2 2:06E�1 3:54E�1

STD 1:36E�2 4:06E�2 6:37E�2

SISSF Mean 5:14E�2 2:48E�1 4:26E�1

Median 4:89E�2 2:51E�1 4:09E�1

STD 2:21E�2 4:96E�2 7:36E�2

Table 9 Statistical summary of evaluation results on the INSPIRED dataset.

Dataset INSPIRED

Model Stat R@1 R@10 R@50

KGSF Mean 1:49E�3 1:93E�2 6:19E�2

Median 1:26E�3 1:87E�2 6:10E�2

STD 9:90E�4 6:52E�3 9:90E�3

INSPIRED Mean 1:12E�2 5:05E�2 1:28E�1

Median 9:45E�3 4:90E�2 1:26E�1

STD 7:39E�3 1:71E�2 2:05E�2

INSPIRED2 Mean 1:42E�2 6:71E�2 1:55E�1

Median 1:20E�2 6:50E�2 1:52E�1

STD 9:36E�3 2:27E�2 2:48E�2
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Table 9 (continued)

Dataset INSPIRED

Model Stat R@1 R@10 R@50

UniCRS Mean 1:55E�2 7:27E�2 1:55E�1

Median 1:31E�2 7:05E�2 1:52E�1

STD 1:02E�2 2:46E�2 2:47E�2

SISSF Mean 3:43E�2 1:18E�1 2:25E�1

Median 2:90E�2 1:15E�1 2:22E�1

STD 2:27E�2 4:00E�2 3:60E�2

Table 10 p-values of the Wilcoxon rank sum test with 0.05 Significance for SISSF against other
baselines on the recommendation task on the ReDial dataset.

Dataset ReDial

Comparison R@1 R@10 R@50

SISSF vs. Popularity 1:57� 10�4 1:57� 10�4 1:57� 10�4

SISSF vs. TextCNN 1:57� 10�4 1:57� 10�4 1:57� 10�4

SISSF vs. ReDial 8:81� 10�4 3:81� 10�4 1:15� 10�3

SISSF vs. KBRD 5:16� 10�3 3:81� 10�4 5:16� 10�3

SISSF vs. KGSF 1:56� 10�2 2:24� 10�2 1:91� 10�2

SISSF vs. UniCRS 2:83� 10�2 3:15� 10�2 4:94� 10�2

SISSF vs. C2-CRS 4:13� 10�2 3:43� 10�2 1:91� 10�2

SISSF vs. VRICR 4:13� 10�2 N/A 4:94� 10�2

Table 11 p-values of the Wilcoxon rank sum test with 0.05 Significance for SISSF against other
baselines on the recommendation task on the INSPIRED dataset.

Dataset INSPIRED

Comparison R@1 R@10 R@50

SISSF vs. KGSF 1:12� 10�4 1:12� 10�4 1:12� 10�4

SISSF vs. INSPIRED 5:16� 10�3 2:85� 10�4 1:12� 10�4

SISSF vs. INSPIRED2 2:33� 10�2 6:50� 10�3 6:70� 10�4

SISSF vs. UniCRS 2:83� 10�2 1:02� 10�2 6:70� 10�4

Table 12 Hyperparameter space for the hyperparameter anaylsis on the ReDial dataset.

Learning rate Temperature

0.001 0.13

0.0001 0.11

0.00001 0.09
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Hyperparameter analysis
During the experiment, we observed that the performance of our model demonstrated
sensitivity to adjustments of specific hyperparameters. Consequently, we conducted a
comprehensive hyperparameter analysis on the ReDial dataset (Li et al., 2018) to study the
impact of the most influential hyperparameters on the performance of CRS’s tasks and to
find the optimal configuration for our model. Therefore, we chose two hyperparameters:
the learning rate and the temperature of CL. Table 12 specifies the range of values for each
hyperparameter. Following the grid search analysis (Petro & Pavlo, 2019), we have
conducted exhaustive experiments on all combinations of the set of specified
hyperparameters. This section presents a detailed report on the findings of our
hyperparameter analysis.

Hyperparameter analysis on recommendation task
The evaluation results of the hyperparameter analysis for all metrics of the
recommendation task on the ReDial dataset (Li et al., 2018) are presented in Table 13.

Figure 5 Heatmaps of Recall (R@1, R@10, R@50) with different learning rate and temperature
configurations on the ReDial dataset. Lower learning rates combined with a temperature of 0.13
generally produce the highest recall values. Full-size DOI: 10.7717/peerj-cs.3067/fig-5

Table 13 The results of hyperparameter analysis on the recommendation task on the ReDial dataset
under different settings on Recall (R@1, R@10, R@50).

Dataset ReDial

Learning rate Temperature R@1 R@10 R@50

0.00001 0.13 0.0628 0.2455 0.4379

0.0001 0.13 0.0531 0.2080 0.3957

0.001 0.13 0.0330 0.1510 0.3415

0.00001 0.11 0.0581 0.2231 0.4188

0.0001 0.11 0.0525 0.2021 0.3903

0.001 0.11 0.0302 0.1437 0.3355

0.00001 0.09 0.0564 0.2201 0.4060

0.0001 0.09 0.0510 0.1997 0.3856

0.001 0.09 0.0294 0.1408 0.3127
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Generally, lower learning rates produce better results on all metrics for higher temperature
settings. Specifically, a temperature of (0.13) gives the best recall, especially for lower
learning rates. The performance decreases slightly for high learning rates (0.0001), with a
more significant drop for even higher learning rates (0.001). In summary, lower learning
rates combined with the highest temperature yield the best recall performance, while
higher learning rates across all temperate configurations significantly decrease
performance. Figure 5 contains heatmaps for each recall metric, which provides a
comprehensive visual representation of the data in Table 13.

Hyperparameter analysis on conversational task
Table 14 shows the results of the hyperparameter analysis on the conversational task on the
ReDial dataset (Li et al., 2018). Overall, higher learning rates tend to produce lower
performance, which is improved gradually by decreasing the learning rate until the model
reaches its best performance at (0.00001) for the range of values of temperature
parameters. The lower temperatures also produce lower results than the highest value of

Figure 6 Heatmaps to visualize the results of hyperparameter analysis on the conversational task on
the ReDial dataset for Distinct-2,3,4 metrics under different settings. The gradual decrease in the
learning rate improves the results, with the best performance at a learning rate of 0.00001 and a
temperature of 0.13. Full-size DOI: 10.7717/peerj-cs.3067/fig-6

Table 14 Hyperparameter analysis for Distinct-2,3,4 on conversational task on the ReDial dataset
with different learning rate and temperature values.

Dataset ReDial

Learning rate Temperature Distinct-2 Distinct-3 Distinct-4

0.00001 0.13 4.2239 5.5958 6.1557

0.0001 0.13 4.1145 5.5467 6.0147

0.001 0.13 2.9422 4.3277 4.9514

0.00001 0.11 4.1735 5.5614 6.1075

0.0001 0.11 3.8852 5.0548 5.7975

0.001 0.11 2.8974 4.1784 4.7458

0.00001 0.09 4.0031 5.5312 5.9857

0.0001 0.09 3.5234 4.1248 5.3625

0.001 0.09 2.7895 3.7536 4.0143
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(0.13). However, the values of all metrics are still comparatively high due to the usage of
top-p sampling (Holtzman et al., 2020). Figure 6 provides heatmaps for each Distinct
metric to visualize the data presented in Table 14.

Ablation study
Based on the previous section, we conducted an ablation study on the ReDial dataset (Li
et al., 2018) to measure the effectiveness of our method using the best hyperparameter
configuration. Therefore, for ablation analysis, we incorporate a variant of our model:
SISSF w/o Semantic Fusion, which removes semantic fusion between the conversational
history and social information for recommendation and conversational tasks. Figure 7
visualized the result of the ablation study on both recommendation and conversational
tasks on the ReDial dataset (Li et al., 2018). Next, we conducted an ablation study with the
same variant to examine the impact of semantic fusion between social information and
conversational history on personalized recommendations.

Furthermore, we performed an ablation study to compare the performance on the
recommendation task using different graph methodologies. This analysis aimed to identify
the best combination methods to represent the social relationship graph H and the
user-item interaction graph T and assess the impact of the infer rating process on the
recommendation task.

Figure 7 Ablation study results on recommendation and conversational tasks on the ReDial dataset.
Full-size DOI: 10.7717/peerj-cs.3067/fig-7

Table 15 Results on ablation analysis for recommendation task on the ReDial dataset. Comparison
between SISSF and its variant SISSF w/o Semantic Fusion on all recall metrics at epoch 50.

Dataset ReDial

Model R@1 R@10 R@50

SISSF 0.0628* 0.2455* 0.4379*

SISSF w/o Semantic fusion 0.0365 0.1685 0.3331

Note:
Results marked with asterisk (*) are statistically significant according to the Wilcoxon rank sum test (p-value < 0.05).
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Ablation study on recommendation task
The ablation study results on the recommendation task on the ReDial dataset (Li et al.,
2018) are summarized in Table 15. The results show that the operation of semantic fusion
by applying CL between conversational history and social information is essential to
improve the model’s performance. Overall, the SISSF model outperforms SISSF w/o
Semantic Fusion by a significant margin, which indicates the incorporation of semantic
fusion leads to more accurate recommendations.

Ablation study on conversational task

The ablation study results on the recommendation task on the ReDial dataset (Li et al.,
2018) are shown in Table 16, which proves that semantic fusion contributes to the diversity
of the response generation and its informativeness. SISSF performs superior in both
automatic and human evaluations compared to its variant. The automatic evaluation
shows comparatively close results due to the use of top-p sampling (Holtzman et al., 2020).
We also conducted a human evaluation to better demonstrate the performance differences
between the model and its variant. Furthermore, Fig. 8 shows examples of the responses
generated by both models; SISSF demonstrates its ability to recommend contextually
relevant items compared to SISSF w/o Semantic Fusion. For example, SISSF recommends a
scary movie, It (2017), which is relevant to the user’s query and a personalized
recommendation, as this movie falls within the social circle of the seeker user. Conversely,
SISSF without Semantic Fusion recommends a fiction movie that lacks personalization and
contextual relevance.

Figure 8 Comparison of responses between SISSF and SISSF w/o Semantic Fusion on the ReDial
dataset. Full-size DOI: 10.7717/peerj-cs.3067/fig-8

Table 16 The results of the ablation analysis for the conversational task on the ReDial dataset, based
on automatic and human evaluation metrics for SISSF with its variant at epoch 80.

Dataset ReDial

Model Distinct-2 Distinct-3 Distinct-4 Fluency Informativeness

SISSF 4.2239* 5.5958* 6.1557* 1.81* 1.63*

SISSF w/o Semantic fusion 3.8017 4.9015 5.8557 1.56 1.12

Note:
Results marked with asterisk (*) are statistically significant according to the Wilcoxon rank sum test (p-value < 0.05).
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Ablation study on the impact of semantic fusion on personalized
recommendations

The primary purpose of this ablation study is to highlight the reliability of extracting social
information from conversational history for personalized recommendations. To achieve
this, first, we obtain the items that the users have not yet interacted with but are present
within their social circle’s interests. Next, the recommendation task was evaluated on the
ReDial dataset (Li et al., 2018) by testing whether the first item recommended by the model
belongs to the set of those items for the seeker users. Table 17 indicates SISSF outperforms
SISSF w/o Semantic Fusion, achieving a performance score of 0.1132 compared to 0.0154
in R@1. These findings demonstrate that extracting social information and applying
semantic fusion to integrate it with conversational history is not merely a method of
overfitting the dataset.

Ablation study on the impact of graph architectures and infer rating process
on recommendation performance

In this ablation study, we investigated the use of different graph types to identify the best
models for the user-user social graph H and the user-item interaction graph T on the
ReDial dataset (Li et al., 2018). Table 18 shows that employing GTO (Shi et al., 2021) for H
and R-GCN (Schlichtkrull et al., 2018) for T yields the best results. Moreover, using graph
methodologies such as GTO (Shi et al., 2021), GCN (Kipf & Welling, 2017), or GAT
(Veličković et al., 2018) for T did not contribute significantly to improving the outcome.

Table 17 Ablation study results on the impact of semantic fusion on personalized recommendations
on the ReDial dataset. The table compares the performance of the SISSF model to its variant SISSF w/o
Semantic Fusion based on the R@1 metric at epoch 50.

Dataset ReDial
Model R@1

SISSF 0.1132*

SISSF w/o Semantic Fusion 0.0154

Note:
Results marked with asterisk (*) are statistically significant according to the Wilcoxon rank sum test (p-value < 0.05).

Table 18 Ablation study on the recommendation task showing Recall@1, Recall@10, and Recall@50
for different combinations of graph technologies.

Dataset ReDial

Social relationship graph User-item interaction graph R@1 R@10 R@50

GCN GCN 0.0440 0.1942 0.3801

GTA GTA 0.0493 0.2010 0.3918

R-GCN GTO 0.0503 0.2021 0.4014

GTO GTO 0.0511 0.2101 0.4065

R-GCN R-GCN 0.0541 0.2133 0.4200

GTO R-GCN 0.0628* 0.2455* 0.4379*

Note:
Results marked with asterisk (*) are statistically significant according to the Wilcoxon rank sum test (p-value < 0.05).
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This indicates leveraging NGCF (Wang et al., 2019) to infer ratings, which is used to weigh
the relationships among nodes within R-GCN (Schlichtkrull et al., 2018), enhances the
performance. These findings underscore the importance of incorporating inferred ratings
with NGCF (Wang et al., 2019) to optimize the model’s performance. The reason behind
the improvement of H with GTO (Shi et al., 2021) over other models is due to its ability to
effectively weight relationships between nodes (Brody, Alon & Yahav, 2022).

CONCLUSION AND FUTURE WORK
In conclusion, SISSF addresses the fundamental challenge of incorporating social
dynamics into conversational recommendations. Our approach demonstrates a principled
method for extracting and utilizing social information from conversational datasets, even
when explicit social structures are unavailable. Extensive evaluation of two widely
recognized public datasets has yielded several significant findings. The results consistently
demonstrate the superiority of SISSF over existing baseline approaches across multiple
performance metrics in both recommendation and conversational tasks. The implications
of this work extend beyond immediate performance improvements. Our framework
establishes a new paradigm for understanding and utilizing social dynamics in CRS. The
success of our approach in extracting and utilizing implicit social information highlights its
potential for applications in domains where explicit social structures are either absent or
incomplete.

Despite its strong performance, SISSF faces certain limitations. One major challenge is
the cold start problem, where generating recommendations for new users or items is
difficult due to a lack of prior interactions. Additionally, deploying SISSF in real-world
applications presents challenges, particularly maintaining an operational online
environment where interactions and relationships must be continuously updated. These
limitations open avenues for future work, particularly in developing cross-domain
approaches that leverage social information from one domain to enrich recommendations
in another, effectively mitigating data sparsity and enhancing system robustness.
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