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ABSTRACT

Cybersecurity has always been a subject of great concern, and anomaly detection has
gained increasing attention due to its ability to detect novel attacks. However,
network anomaly detection faces significant challenges when dealing with massive
traffic, logs, and other forms of streaming data. This article provides a comprehensive
review and a multi-faceted analysis of recent algorithms for anomaly detection in
network security. It systematically categorizes and elucidates the various types of
datasets, measurement techniques, detection algorithms, and output results of
streaming data. Furthermore, the review critically compares network security
application scenarios and problem-solving capabilities of streaming data anomaly
detection methods. Building on this analysis, the study identifies and delineates
promising future research directions. This article endeavors to achieve rapid and
efficient detection of streaming data, thereby providing better security for network
operations. This research is highly significant in addressing the challenges and
difficulties of analyzing anomalies in streaming data. It also serves as a valuable
reference for further development in the field of network security. It is anticipated
that this comprehensive review will serve as a valuable resource for security
researchers in their future investigations within network security.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Data Mining and Machine
Learning, Data Science, Security and Privacy
Keywords Anomaly detection, Streaming data, Machine learning, Deep learning

INTRODUCTION

In recent years, with the rapid increase in the number of network devices, the generation of
streaming data from these devices has catalyzed considerable interest in real-time
processing. A significant amount of research work has been dedicated to the formulation of
efficient anomaly detection solutions. Currently, anomaly detection for streaming data has
been applied to various scenarios, such as network intrusion detection (Tidjon, Frappier ¢»
Mammar, 2019; Wahab, 2022), fault detection (Bagozi, Bianchini & De Antonellis, 2021;
Bonvini et al., 2014), medical diagnosis (Ren, Ye & Li, 2017; Podder et al., 2023), fraud
detection (Laleh ¢» Abdollahi Azgomi, 2010; Dal Pozzolo et al., 2015), and network flow
analysis (Pramanik et al., 2022; Tang et al., 2020). Streaming data in the field of
cybersecurity primarily originates from system logs, network traffic, intrusion detection
devices, and other sources of high-speed, real-time data. These data contain features
related to network anomaly events, such as IP addresses and protocol types. While
conventional network anomaly detection methods demonstrate commendable
performance on static or offline data. However, when faced with streaming data, the
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inability to perform online learning and real-time model updates poses significant
challenges for network security that requires real-time anomaly detection and feedback. In
response, researchers have introduced various solutions to address these challenges. Some
reviews furnish a broad survey of streaming data anomaly detection algorithms aiming to
help understand related concepts, history, and methods. This article comprehensively
reviews recent articles on streaming data anomaly detection in cybersecurity and
categorizes the scenarios, data types, research methods, and problems addressed. This
research aims to achieve two objectives:

» Systematically categorize existing research to provide network security researchers with a
clear understanding of the current state of the field.

o Summarize several future research directions based on the classification results to help
researchers quickly focus on these directions.

The research structure is as follows: “Research Background” introduces common
concepts in anomaly detection. “Articles Selection for Literature Review” describes a
rigorous systematic review methodology that includes comprehensive multi-database
search strategies, explicit inclusion criteria, and a three-stage filtering process. “Challenges
and Requirements in Streaming Data for Anomaly Detection” discusses the challenges and
requirements faced by streaming data anomaly detection. In “Proposed Classification
Method”, this article categorizes anomaly detection datasets, measurement techniques,
detection algorithms, result types, reviews and compares related algorithms. “Study of
Literature and Discussions” provides a detailed study and discussion of the literature
surveyed. “Future Directions and Open Research Challenges” proposes some new research
ideas. Finally, “Conclusions” presents the conclusions and provides clear guidance for
further work.

RESEARCH BACKGROUND

In order to fully understand the research content of streaming data anomaly detection, it is
imperative to first elucidate several fundamental concepts. These concepts form the
foundational framework for understanding subsequent discussions and furnish the
necessary theoretical background for an in-depth exploration of algorithms for streaming
data anomaly detection. The following is a detailed explanation of these pivotal concepts:

Anomaly detection: It can be traced back to early statistics and refers to situations that do
not match other patterns (Grubbs, 1969). Currently, anomaly detection is generally
understood as the identification of events that are uncertain and do not conform to
expected patterns.

Streaming data: Streaming data refers to a potentially infinite sequence of data items that
arrive continuously at a fast pace. It is defined as {(x¢, y¢)}}"> (x¢, y¢) represents a data item
that arrives at time t. x; € R, is a n-dimensional feature vector, y; € Y = {c1, ¢, ..., ¢k}
and is the class label associated with the data item.
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Concept drift: Concept drift was proposed by Schlimmer ¢ Granger (1986). Formally, the
process generating the streaming data can be considered as a joint distribution over
random variables Y and X = {X;,X;,...,X,}, where y € dom(Y), Y and

X ={X1,X,,...,Xn}, where y € dom(Y) represents the class label and x; € dom(X)
represents the attribute values, with dom(-) denoting the domain of a random variable.
The concept at time ¢ can be represented as P(Y|X;), where X; refers to the input data.
Concept drift occurs when there is a change in the relationship between input data and the
target label data due to changes in the characteristics of the data from different sources at
different time ¢, P(Y|X;1) # P(Y|X;2). The various types of concept drift encompass
sudden concept drift, gradual concept drift, incremental concept drift, and recurring
concept drift (Ramirez-Gallego et al., 2017).

Feature drift: Let F denote feature space at t, where F x t C F represents the highest
discriminative subset of features. Feature drift occurs when there is a change in the feature
subset, F x t; # F x tj, t; # t;. Feature drift can occur both when there is a change in the
data distribution or when there is no change (Barddal et al., 2017).

Concept evolution: Let Y = {cy, ¢z, ..., ck} be a set of classes from the training set used to
train a classifier, representing the known concepts related to the underlying problem. The
classes in Y are referred to as known or existing classes. During the generation of the

streaming data, a new class emerges that does not exist in Y. This class is referred to as an
emerging class, and this phenomenon is known as concept evolution (Kulesza et al., 2014).

Time window: Time window refers to a subsequence between the ith and jth arrivals in a
sequence, denoted as w[i, | = (xi, Xit1, . . ., ¥;j), where i <j. Time windows can be
categorized as Landmark window, Time-dampened window (also known as Fading
window), Sliding window, and Tilted-time window (Nguyen, Woon ¢ Ng, 2015). Figure 1
for a visual representation of these categories.

ARTICLES SELECTION FOR LITERATURE REVIEW

Overview of the review process

This investigation utilized a systematic methodology to select high-quality articles on
streaming data anomaly detection, with pronounced emphasis on network security
applications. It established a structured review framework comprising: (1) comprehensive
search across multiple databases, (2) the application of stringent inclusion criteria, and
(3) the meticulous filtering and critical appraisal of the resultant literature.

Data sources

The systematic review was conducted from September 2023 to October 2024, focusing on
publications from 2015-2024. The present study conducted an exhaustive and detailed
search of relevant literature, including research articles from journals, conferences, books,
and magazines. To guarantee comprehensive coverage, multiple databases were utilized,
including Google Scholar, IEEE Xplore, Springer, ScienceDirect, Scopus, Web of Science,
and ACM Digital Library. Furthermore, a selection of highly reputable conferences such as
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Figure 1 Time window model. (A) Landmark window. (B) Time-dampened window. (C) Sliding

window. (D) Tilted-time window.
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Figure 2 Distribution of literature types.
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USENIX, WWW, SIGKDD, VLDB, SIGMOD, NDSS, S&P, ICDM, and CCS were
considered. Figure 2 visually presents the distribution of research from different resource
types. As depicted, the corpus of literature under review comprises 884 conference articles,
715 journal articles, and 110 books included in the study.
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Search keywords and scope
The study search was confined to computer science and engineering domains, utilizing a
two-phase keyword strategy:

e Initial phase: (Stream™ data OR Stream* OR Real-time data) AND (Anomaly detection
OR Outlier detect® OR Deviation detection OR Novelty detection).

 Refinement phase: Added domain-specific terms (IoT OR ICS OR SDN OR GRID OR
WSN OR Cloud OR Sensor OR Embedded Systems OR Intrusion Detection).

« . »

where “«” indicates wildcard matching to capture variations of the terms.

Selection criteria

To ensure the quality and relevance of the selected literature, the study established specific
inclusion criteria as delineated in Table 1. These criteria guided both initial screening and
detailed evaluation phases.

Filtering process
The study employed a systematic selection process, illustrated in Fig. 3, encompassing
three principal stages:

1. Initial screening: In the initial phase, it used the keywords mentioned in the first strategy
to screen out a total of 2,620 publications. Subsequently, based on the crude detection in
the secondary strategy’s criteria, it screened out 909 publications, leaving 1,711
publications. From 1,711 identified articles, this study removed publications lacking
academic rankings and those irrelevant based on abstract review, yielding 252
publications.

2. Quality assessment: Further evaluation based on methodological rigor, citation impact,
and relevance to streaming anomaly detection reduced the selection to 105 high-quality
articles.

3. Final classification: Detailed examination identified 42 articles specifically focused on
network security applications of streaming anomaly detection, which formed the core of
the analytical review.

CHALLENGES AND REQUIREMENTS IN STREAMING DATA
FOR ANOMALY DETECTION

Streaming data is characterized by real-time, high-speed, infinite, and variable properties.
This study delineates the specific challenges and requirements faced by anomaly detection
in streaming data in the field of network security.

» Single pass scanning: Owing to inherent storage constraints, detection algorithms should
be able to process data in a single pass, strictly adhering to the sequential arrival order of
the streaming data.
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Table 1 Criteria for literature selection and explanation.

Selection criteria Explanation

Journal, conference, book Comprehensively search across various sources to ensure a broad collection of information.

Renowned conference or Prioritize sources from well-regarded platforms to maintain the quality and credibility of the data.
journal

High citation or download  Consider articles with high citation or download counts as these are indicative of the work’s recognition and impact
count within the academic community.

Literature from the past 10 ~ Focus on the most recent studies to track the latest developments and current trends.

years

Articles proposing detection Specifically look for articles that propose new or improved detection methods to understand the principles and

methods

effectiveness of these approaches.

[ Initial ] Exclude Citations Title and Article Network
Search Irrelevant Abstract uaht Securi

Figure 3 Screening process. Full-size K&l DOTI: 10.7717/peerj-cs.3066/fig-3

e Limited memory: Streaming data is continuous and inexhaustible, making it impractical
to retain the entirety of memory. Detection algorithms must use smaller memory space
to detect anomalies, ensuring that other applications of the system are not affected.

e Dynamic adaptation: As streaming data evolves over time, detection algorithms must be
engineered for dynamic adaptation or incremental updates to maintain high accuracy in
a perpetually changing data landscape.

e Result approximation: Traditional anomaly detection algorithms based on static data
yield reasonably accurate results. However, streaming data detection requires processing
data in extremely short timescales, often necessitates the acceptance of approximate
outcomes. Anomaly detection algorithms must therefore strike a delicate balance
between computational performance and detection accuracy in this time-constrained

environment.

PROPOSED CLASSIFICATION METHOD

This section presents a systematic classification of methodologies for streaming data
anomaly detection. Initially, it delves into the dataset typologies employed in the field of
network security anomaly detection, which is pivotal in enhancing the caliber of
investigative results. Subsequently, the discourse transitions to the examination of
measurement techniques tailored for streaming data, which are instrumental for
mitigating storage overhead and accelerating processing throughput. The analysis then
proceeds to scrutinize the diverse spectrum of detection algorithms, with a particular
emphasis on enhancing their efficacy and precision. The advocated classification schema is
presented in Fig. 4.
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[ Overall Classification ]
[ Dataset ] [ Measurement ] [ Detection Algorithm ] [ Anomaly Type ] [ Output Type ]
[F requency Estimation] [ Machine Learning ] [ Deep Learning ] [ Point Anomaly ] [ Label ]
Quantile Estimation [ Statistical Model ] [Reconstruction Model] [ Contextual Anomaly] [ Score ]
[ Change Detection ] [ Distance Model ] Generative Model Collective Anomaly
Spatial Dataset
[Cardjnality Estimation] [ Clustering Model ] Prediction Model
Similarity Calculation Density Model Representation Model
Sampling Isolation Model
Frequent Item Mining
Figure 4 Classification of streaming data anomaly detection algorithms. Full-size K&] DOT: 10.7717/peerj-cs.3066/fig-4

Dataset classification

Given that real-world datasets are not universally designed for streaming data, recent
research has principally adopted two methodologies. The initial approach identifies
anomalies by classifying infrequent occurrences as statistical outliers. The second strategy,
congruent with the real-time characteristics of streaming data, pinpointing anomalies that
conform to the protocol’s real-time criteria. The classification of the datasets is as follows:

o Statistical dataset: It refers to datasets composed of multiple continuous or discrete
features presented in tabular form Moustafa, Turnbull ¢» Choo (2018).

 Sequential dataset: It refers to datasets where there is implicit time correlation or
dependency between consecutive data points (Karim, Majumdar ¢» Darabi, 2020).

e Spatial dataset: It refers to datasets with specific locations and spatial relationships
(Wang et al., 2020a).

This study presents a compilation of commonly used datasets, with information
including the dataset name, data entries, classified attributes, the number of attacks, and
the statistically derived anomaly thresholds, as shown in Table 2.

Measurement technique

Streaming data measurements in large-scale, high-speed networks is crucial for anomaly
detection. A multitude of algorithms estimate streaming data for anomaly detection using
approximate computation and compression techniques under the stringent constraints of
limited memory and computational resources. This study provides a systematic
summarization of prevalent streaming data measurement techniques as follows:

 Frequency estimation: Frequency estimation estimates the frequency of elements in
streaming data using hash functions and counters. Prominent examples include
space-saving, count-min sketch (CMS). CMS uses multiple hash functions and a 2D
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Table 2 Dataset information.

Dataset Records Attributes Attack records Reference

KDDCUP 99 567,497 4 3,377 The UCI KDD Archive (1999)

CIC 2017 (Thursday-WebAttacks) 1,070,367 4 2,180 Sharafaldin, Lashkari & Ghorbani (2018)
CIC 2017 (Tuesday-Working Hours) 445,909 3 13,835 Sharafaldin, Lashkari & Ghorbani (2018)
CIC 2017 (Friday-Morning) 191,033 2 1,966 Sharafaldin, Lashkari & Ghorbani (2018)
CIC 2017 (Friday-Afternoon-DDos) 225,745 2 128,027 Sharafaldin, Lashkari & Ghorbani (2018)
CIC 2017 (Friday-Afternoon-PortScan) 286,467 2 158,930 Sharafaldin, Lashkari & Ghorbani (2018)
CIC 2017 (Wednesday-working Hours) 692,703 6 252,672 Sharafaldin, Lashkari & Ghorbani (2018)
CTU-13 (48) 114,077 52 63 Garcia et al. (2014)

CTU-13 (52) 107,251 58 8,164 Garcia et al. (2014)

Edge-IToTset 20,952,648 15 9,728,708 Ferrag et al. (2022)

UNSW-NBI15 82,332 9 45,332 Moustafa & Slay (2015)

MQTTset 8,456,823 6 115,822 Vaccari et al. (2020)

CIDDS001 (Weekl) 8,451,520 4 1,440,623 Ring et al. (2017)

CIDDS001 (Week2) 10,310,733 4 1,795,404 Ring et al. (2017)

array to estimate frequencies (Cormode ¢ Muthukrishnan, 2005). Given its exceptional
space efficiency, rapid query performance, and robust fault tolerance, this approach is
widely adopted across diverse applications. Tong ¢ Prasanna (2017) employed CMS and
K-ary sketch for heavy hitter detection and heavy change detection. Bhatia et al. (2022)
used CMS for detecting anomaly micro-clusters in streaming data.

Quantile estimation: Quantile estimation achieves quantile estimation by maintaining
quantile summaries or quantile estimators within error boundaries, such as ¢-digest
(Radke et al., 2018) and the Greenwald-Khanna algorithm (Lall, 2015).

Change detection: Change detection identifies change points or anomalies that deviate
from the normal pattern by analyzing patterns, trends, or statistical features in streaming
data. Among the most commonly employed algorithms are the cumulative sum
(CUSUM) control chart and the Page-Hinkley (PH) test. Martinez-Rego et al. (2015)
adopted Bernoulli CUSUM for change detection. Duarte, Gama ¢ Bifet (2016) availed of
PH to detect changes in the data generation process and respond to them using pruning
rules.

Cardinality estimation: Cardinality estimation makes use of hash functions or bit arrays
to map elements to specific positions and estimate cardinality based on statistical
information. In contrast to frequency estimation, cardinality estimation is exclusively
focused on the total number of distinct elements in streaming data, such as LogLog,
HyperLogLog, and bloom filter. It is worth noting that HyperLogLog estimates
cardinality based on the maximum leading zero count (LZC) in an array, while LogLog
estimates cardinality based on the maximum zero count in an array. Xiao et al. (2023)
proposed three HyperLogLog-based algorithms to estimate streaming distribution and
reduce estimation errors.

Zhou (2025), Peerd Comput. Sci., DOI 10.7717/peerj-cs.3066 8/31


http://dx.doi.org/10.7717/peerj-cs.3066
https://peerj.com/computer-science/

PeerJ Computer Science

o Similarity calculation: Similarity calculation is the relationship between data objects by
comparing their similarities. Locality sensitive hashing (LSH) is a prevalently used
algorithm. LSH functions by selecting a family of hash functions engineered to map
similar data points to the same bucket with a high probability. Notable variants include
MinHash, LSH Forest, and random projection (RP). Zeng et al. (2023b) used double
locality sensitive hashing bloom filter (DLSH) to improve accuracy and efficiency. Yang
et al. (2022) proposed DLSHiForest to address the inherent property of infinite,
correlated, and concept drift in traditional static anomaly detection algorithms. Pham
et al. (2014) applied RP to obtain compressed data and solve the scalability issue. Lai
et al. (2022) replaced the entropy estimation calculation with a simple lookup process
using RP.

» Sampling: Sampling algorithms approximate the analysis of entire streaming data by
selecting a subset of elements from the streaming data. These include sticky sampling
(SS) and reservoir sampling (RS). SS prioritizes sampling based on data priority, while RS
is a random sampling technique. Wang et al. (2023) adopted weighted RS to model the
distribution characteristics of historical reliability streaming data in mobile edge
computing (MEC). Yu et al. (2018) applied RS algorithm to represent the vectors of
vertices in dynamic network computation.

Detection algorithm

Research on streaming data anomaly detection has evolved through multiple scholarly
trajectories. Comprehensive studies have systematically examined diverse detection
methodologies, with each addressing distinct aspects: Wang, Bah ¢ Hammad (2019)
taxonomized approaches into distance-based, clustering-based, density-based, ensemble-
based, and learning-based categories (2000-2019); Boukerche, Zheng & Alfandi (2020)
analyzed algorithmic efficiency parameters and high-dimensional processing challenges
while proffering a novel classification framework; Din et al. (2021) specifically addressed
concept evolution phenomena in streaming classification; Bhaya ¢» Alasadi (2016)
evaluated streaming mining techniques for network traffic anomaly detection and Souiden,
Brahmi & Toumi (2016) furnished comparative assessment frameworks for algorithm
selection across various contexts. Further specialized research has emerged along two
distinct lines. The first focuses on specific application scenarios: Fahy, Yang ¢» Gongora
(2022) addressed the label scarcity problem in dynamic streams with concept drift;
Stahmann & Rieger (2021) investigated anomaly detection requirements in Industry

4.0 manufacturing environments with millisecond-frequency sensor data. The second line
explores specialized methodological frameworks: Krawczyk et al. (2017) examined
ensemble learning approaches for non-stationary stream environment; Faria et al. (2016)
analyzed offline/online phase integration and noise-anomaly differentiation in novelty
detection; Barbariol et al. (2022) evaluated tree-based methods, particularly iForest
variants; Clever et al. (2022) constructed a structured framework for streaming
classification workflows. Additionally, comprehensive reviews have addressed
cross-cutting challenges in streaming data processing: Gurjar ¢ Chhabria (2015) examined
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concept evolution in streaming classification with methods for unknown class detection;
while (Chauhan ¢ Shukla, 2015) explored K-Means applications for clustering-based
anomaly detection in high-volume, concept-drifting streaming data.

Notwithstanding these significant contributions of existing research, the rapid
advancement of big data technologies, machine learning, and deep learning has
precipitated the emergence of numerous innovative methodologies in recent years.
Accordingly, this study proffers a new taxonomic framework that synthesizes both
established classical methods and recently developed approaches into two primary
categories: traditional machine learning and deep learning. Within the traditional machine
learning paradigm, models are further classified according to their algorithmic principles:
statistical models, distance models, clustering models, density models, isolation models,
and frequent item mining models. Analogously, deep learning approaches are categorized
as reconstruction models, generative models, predictive models, and representation
learning models. Employing this structured framework, the present study undertakes a
systematic review and comparative evaluation of these distinct methodological classes.

Traditional machine learning

The methods based on traditional machine learning are as follows:

» Statistical models: These models observe and analyze observable streaming data based on
principles of probability theory and statistics. They infer underlying patterns among data
to detect anomalies. The category includes Fourier Transform, Wavelet Transform,
Power Spectral Density, Gaussian models and Entropy models. Hunt & Willett (2018)
used a dynamic and low-rank Gaussian mixture model for online anomaly detection in
wide-area motion imagery and e-mail databases. Tao ¢» Michailidis (2019) utilized
higher-order statistical information to detect attackers in power systems. Chouliaras &
Sotiriadis (2019) implemented a suite of algorithms including autoregressive integrated
moving average (ARIMA), seasonal ARIMA, and long short-term memory (LSTM) to
detect anomalies in sensor data. Yu, Jibin & Jiang (2016) leveraged ARIMA model to
detect anomalies in WSN.

» Distance models: These models quantify the similarity between two sequences using
explicit distances, such as Euclidean distance, Manhattan distance, Chebyshev distance
and Minkowski distance. When the distance between the sequence being tested and the
normal sequence exceeds the expected similarity measure range, the sequence is flagged
as an anomaly. Zhu et al. (2020) applied min heap to compute upper bound or lower
bound of distances between objects and their kth nearest neighbor for anomaly detection
in IoT streaming. Ma, Aminian ¢ Kirby (2019) employed radial basis function (RBF) to
perform novelty detection and prediction on streaming data of time series. Miao et al.
(2018) used a distributed online one-class support vector machine (OCSVM) for
anomaly detection in WSN.

o Clustering models: These models map sequence data items into a n-dimensional space
and group them into different clusters based on similarity in the latent space. If a new
data item is far from the centroids of clusters or has a low probability of belonging to any
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cluster, it can be considered as an anomaly. Clustering models designed for streaming
data can be classified based on traditional clustering algorithms, including hierarchical-
based, partition-based, density-based, grid-based, and model-based clustering. Maimon
¢» Rokach (2005) provided a formal framework for understanding the key distinctions
between these clustering approaches. Building on this foundation, Mousavi, Bakar ¢
Vakilian (2015) demonstrated in their comprehensive study of data stream clustering
algorithms that streaming data clustering differs significantly from traditional clustering
in several aspects. These differences arise due to the inherent characteristics of streaming
data, such as the need to read data in a specific order, processing in short time intervals,
and receiving the next instance before storing the current entire stream. Recent research
has extended these foundational concepts to develop more sophisticated clustering
approaches for streaming data anomaly detection. Lee ¢» Lee (2022) proposed a
kernel-based clustering method to efficiently solve the online clustering problem of
multivariate streaming data. To enhance detection accuracy in diverse streaming
applications, Degirmenci ¢ Karal (2022) combined local outlier factor (LOF) and
density-based spatial clustering of applications with noise (DBSCAN). To contend with
the challenge of noise in streaming data, Bigdeli et al. (2018) introduced a novel method
called collective probability labeling (CPL), which combines clustering and gaussian
models to gradually update clusters and mitigate the impact of noise on detection results.
For large-scale streaming data processing, Bagozi, Bianchini & De Antonellis (2021)
developed a parallelized framework for incremental clustering that achieves sustainable
processing on distributed architectures. In the IoT domain, Raut et al. (2023) applied
adaptive window and adaptive clustering techniques to infer interesting events from
continuous sensor streaming data. Bezerra et al. (2020) tackled the fundamental problem
of autonomous cluster creation and merging in streaming data using innovative online
recursive clustering techniques. Table 3 synthesizes these insights to provide a
contrastive analysis between clustering in streaming data and traditional clustering.

* Density models. These models determine which data points are anomalies by calculating
the density around the data points. It is noteworthy that there is an overlap between
density-based and distance-based models, as density-based models often rely on distance
calculations. LOF is the most widely used density-based method, identifies anomalies by
comparing the local neighborhood density of data points. Similarly, DBSCAN identifies
noise points as anomalies through density-based clustering. Kernel density estimation
(KDE) has emerged as a potent non-parametric technique for this purpose. Zhang, Zhao
¢ Li (2019) utilized KDE for density estimation within sliding windows, which
significantly enhanced context anomaly detection performance for streaming data.

Liu et al. (2020) developed a top-n methodology based on KDE that effectively addresses
local anomaly detection challenges in large-scale, high-throughput streaming
environments. To overcome the limitations associated with high-dimensional data
processing, more recently, Ting et al. (2023) demonstrated that adaptive KDE techniques
can dynamically adjust to evolving data distributions, thereby providing more robust
probability density estimates for anomaly assessment in non-stationary streaming
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Table 3 Comparison between streaming data clustering and traditional clustering.

Streaming cluster Traditional cluster References

Online processing Offline processing Mousavi, Bakar & Vakilian (2015)
Approximate results Accurate results Lee & Lee (2022)

Single-pass processing Multi-pass processing Maimon & Rokach (2005)

Retains essential data All data can be stored Bezerra et al. (2020)

environments. To address the dual challenges of high-dimensional data and storage
efficiency, researchers have developed various extensions and hybrid approaches. Yang,
Chen & Fan (2021) introduced the extended LOF, which effectively solved the problems
of large storage space requirements and unsatisfactory detection results for
high-dimensional data. Aggarwal ¢» Yu (2008) proffered a density-based methodology
capable of operating effectively without assumptions regarding the underlying data
distribution, thereby eliminating associated uncertainties. In the context of real-time
processing, several innovative implementations have been proposed. Shylendra et al.
(2020) implemented the KDE kernel via CMOS Gilbert Gaussian unit, providing a
real-time statistical model for the likelihood estimation detection algorithm. Zheng et al.
(2017) demonstrated the effectiveness of KDE for real-time outlier detection in
distributed streaming data environments. The integration of density-based methods
with other techniques has also yielded promising results. Gokcesu et al. (2018) combined
density-based approaches with incremental decision tree (IDT) to construct subspaces of
the observation space, effectively detecting anomalies hidden in sequential observation
streaming data. Vallim et al. (2014) built upon the Denstream framework proposed by
Cao et al. (2006) to develop an unsupervised automatic transformation framework based
on density and entropy indicators.

Isolation models: These models are predicated on the principle of isolating or
partitioning data instances. They separate outliers from normal data points by
calculating distance, similarity, or constructing boundary and hyperplane. Isolation
forest (iForest) was proposed by Liu, Ting ¢~ Zhou (2008), stands out as the most classic
and foundational method. iForest constructed a set of isolation trees by recursively
partitioning the data. Each tree isolates outliers in the shallow layers while normal points
are isolated in deeper layers. Numerous enhancements have been proposed to enhance
iForest for streaming data scenarios. Shao et al. (2020) developed AR-iForest, a
combination of auto-regressive modeling and isolation forest that aims to enhance the
efficacy of anomaly detection in time series data. Heigl et al. (2021) presented PCB-
iForest, a solution to the challenges posed by high-volume, high-speed streaming data in
computer networks. This implementation integrates extended iForest variants with the
capacity to evaluate features based on their contribution to a sample’s anomalousness.

Frequent item mining models: Frequent item mining models mine frequently occurring
patterns or items from streaming data as normal patterns. When the pattern of new data
appearing in streaming data does not match these frequent patterns, it is marked as

anomalous data. Cai ef al. (2020a) proposed a two-phase minimal rare itemset mining

Zhou (2025), Peerd Comput. Sci., DOI 10.7717/peerj-cs.3066 12/31


http://dx.doi.org/10.7717/peerj-cs.3066
https://peerj.com/computer-science/

PeerJ Computer Science

Table 4 Comparison of advantages and disadvantages of traditional machine learning-based streaming data anomaly detection algorithms.

Model Advantage Disadvantage References
Statistical ~ Capable of modeling data, inferring relationships Requires certain a priori assumptions, needs Hunt & Willett (2018), Tao &
Model between variables validation of model reliability, requires the selection ~ Michailidis (2019), Yu, Jibin
of fitting data processing methods & Jiang (2016)
Distance  Can mine data in-depth High requirements for data preprocessing, Zhu et al. (2020), Ma,
model demanding distance measurement methods, Aminian & Kirby (2019),
sensitive to noise Miao et al. (2018)
Clustering Broad applicability, robust interpretability Not suitable for high-dimensional or large-scale Lee & Lee (2022), Raut et al.
model streaming data, sensitive to initial values, high (2023)
requirements for preprocessing
Density Simple to implement, quickly reveals potential Suffers from the curse of dimensionality in Liu et al. (2020), Zhang, Zhao
model structures and robust to noise high-dimensional data, computationally intensive ¢ Li (2019)

for large-scale data
Isolation ~ Capable of modeling data distribution, suitable for Performance may decrease with high-dimensional  Liu, Ting ¢ Zhou (2008)
model complex data distributions data

Frequent  Effective at identifying outliers and anomalies in Potential for false positives due to noise and outliers Cai et al. (2020a), Hao et al.
item low-density areas, no need for labeled data, in dataset (2019), Cai et al. (2020b)
mining supports unsupervised learning

methodology detected anomalies in uncertain streaming data. Cai ef al. (2020b) used
min weighted rare items mining to detect anomalies in uncertain streaming data.
Hao et al. (2019) proposed a method for mining frequent itemsets from uncertain
streaming data through the construction of matrix structures and the application of
upper-bound concepts.

This study organizes and categorizes the search results, revealing that the mainstream
methods for streaming data research primarily include adaptations and variants of seminal
algorithms, including KNN, iForest, ARIMA, and LOF. Furthermore, a significant body of
work is devoted to hybrid approaches that synergistically combine multiple models.
Table 4 below summarizes the respective strengths and limitations of streaming data
anomaly detection algorithms based on traditional machine learning.

Deep learning

Deep learning models are also crucial in streaming data analysis.

» Reconstruction models: They detect anomalies by learning the reconstruction error of
the input data. This process involves encoding the input data into a lower-dimensional
latent space and then decoding this representation back into the original data space.
Anomalies are identified by comparing the differences between the original and the
reconstructed data. Yoo, Kim ¢~ Kim (2019) utilized a recurrent reconstruction network
(RRN) for anomaly detection in temporal data. Zeng et al. (2023a) employed a stacked
autoencoder (AE) to better distinguish between nuanced anomalies and subsequently
enhanced detection accuracy through a joint optimization with KDE.

 Generative models: Within a comprehensive taxonomic framework, generative
paradigms constitute a sophisticated class of detection methodologies that transcend
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conventional pattern recognition. These models operate by cultivating the capacity to
synthesize artificial data instances that mirror authentic distributions, subsequently
facilitating anomaly identification through comparative analysis between authentic and
synthetic data manifestations. Particularly prominent within this classification are
variants of the Boltzmann machine and the generative adversarial network (GAN)
architecture. Xing, Demertzis & Yang (2020) orchestrated a pioneering implementation
of real-time evolving peak-constrained Boltzmann machine for anomaly detection
within IoT, demonstrating how such approaches can be seamlessly integrated into the
framework for real-time streaming analytics. Advancing this trajectory, Talapula et al.
(2023) engineered an intricate fusion of search and rescue brain-storm optimization
(SAR-BSO) with hybrid feature selection (FS) and deep belief network (DBN) classifiers,
establishing a multilayered approach for the identification and localization of anomalous
patterns within streaming log environments. The GAN architectural paradigm has
undergone extensive refinement for anomaly detection, marked by pioneering
contributions. Li et al. (2019) adeptly utilized long short-term memory-recurrent neural
network (LSTM-RNN) frameworks to encapsulate intricate multivariate spatiotemporal
interdependencies in cyber-physical systems. Hallaji, Razavi-Far ¢ Saif (2022)
ingeniously integrated dynamic temporal attributes of streaming data into GAN-based
detection modules, significantly enhancing intrusion detection capabilities in Internet of
Things (IoT) ecosystems. Grekov ¢ Sychugov (2022) proposed sophisticated distributed
processing paradigms, leveraging GAN architectures to synthesize realistic network
traffic, thereby augmenting detection precision while concurrently alleviating
computational demands in the analysis of voluminous network packets.

e Prediction models: They primarily learn the intricate relationships between input data
and target variables, formulating a sophisticated function approximation model.
Anomalies are identified by comparing the differences between predicted and actual
values. RNN and LSTM are frequently adopted as the cornerstone architectures for these
models. Wang et al. (2023) developed an enhanced LSTM-AE to detect runtime
reliability anomalies in MEC services based on distributional discrepancy evaluation.
Liu et al. (2021) employed both standard and enhanced LSTM for the real-time
monitoring and correction of aberrant data in IoT. Cheng et al. (2019) proposed a
semi-supervised hierarchical stacked temporal convolutional network (TCN) to facilitate
anomaly detection in smart home communication.

o Representation models: They employ multi-layer neural networks to learn abstract
feature representations, thereby capturing complex patterns and anomalous behaviors.
Common models in this category utilize convolutional neural network (CNN) or graph
neural network (GNN) as their underlying structures. Munir et al. (2018) used CNN to
detect common periodic and seasonal outlier anomalies in streaming data. Garg et al.
(2019) proposed a hybrid method based on grey wolf optimization (GWO) and CNN for
anomaly detection in network traffic of cloud data centers.

Drawing upon recent investigations, this study systematically organizes and categorizes
prevailing research methodologies for streaming data anomaly detection. These methods
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Table 5 Comparison of advantages and disadvantages of streaming data anomaly detection algorithm based on deep learning model.

Model Advantage

Disadvantage References

Reconstruction No need for labeled anomaly samples, can capture Higher false-positive rate for high-dimensional and Yoo, Kim ¢ Kim (2019),

model local and global features of data
Generative Can model complex, high-dimensional data
model distributions, can learn data distribution to
generate new samples, no need for labeled data
Predictive Can capture dynamic changes and trends in data,
model excellent detection performance for time-series

data

Representation  Suitable for high-dimensional, complex, and
learning large-scale data, better understanding of the
model intrinsic structure and features of data, can

automatically extract useful features

large-scale data, requires a large amount of
training data to learn data distribution and
patterns

Zeng et al. (2023a),
Xu et al. (2023)

Training and inference processes are complex and Xing, Demertzis ¢» Yang
time-consuming for complex data distributions (2020), Talapula et al.
and high-dimensional data, prone to mode (2023), Li et al. (2019)
collapse which can result in a lack of diversity in
generated samples

Issues with gradient vanishing and exploding, need Wang et al. (2023), Liu
to continuously adapt to new data distributions et al. (2021)
for non-stationary data

Requires a large amount of training data and
computational resources to train deep neural
networks, may have poor interpretability in some
cases, prone to overfitting

Munir et al. (2018), Garg
et al. (2019)

include using AE, VAE, GAN, RNN, CNN, and LSTM as the foundational structures, the
integration of diverse model combinations, and advanced deep learning paradigms,
including reinforcement learning (Zhou, Zhang ¢ Hong, 2019), transfer learning (Wang
et al., 2021). Table 5 summarizes the strengths and limitations of deep learning-based
streaming data anomaly detection algorithms.

Anomaly and output type
To facilitate systematic analysis and treatment of anomalies, it is essential to establish a
comprehensive classification method that encompasses both anomaly types and output

types.

» Classification of anomaly types: Anomaly values are typically classified into three types:
point anomaly, contextual anomaly, and collective anomaly (Gorunescu, 2011). Point
anomaly refers to isolated data points that are markedly different from other data points.
Contextual anomaly are data points that deviate from normal behavior or patterns
within a specific context compared to other data points in given context. Collective
anomaly refers to anomalies relative to the entire dataset.

» Classification of output types: Output result types are generally divided into label and
score (Chandola, Banerjee ¢ Kumar, 2009). Anomaly labels allow for direct
determination of whether each point is an anomaly based on the model’s output.
Anomaly scores provide further insight into which points exhibit a higher degree of
anomaly.

STUDY OF LITERATURE AND DISCUSSIONS

In the above discussions, this investigation delineated the datasets utilized for detection
purposes, the algorithms for measurement methodologies, the detection algorithms, and
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the types of anomaly. Subsequently, this study will concentrate on the methodologies for
measuring streaming data. This study will conduct a theoretical appraisal of literature,
guided by a suite of formulated evaluative criteria, culminating in an extensive discourse.

Evaluation criteria

This research proposes a comprehensive set of evaluation criteria for assessing existing
research. As shown in Table 6, these criteria encompass a broad spectrum of research
outcomes. Specifically, the evaluation criteria mainly include efficiency metrics, evaluation
metrics, task metrics, and anomaly interpretability.

» Efficiency metrics: Efficiency metrics serve to quantify the efficiency of algorithm,
particularly with respect to their algorithmic complexity.

o Evaluation metrics: Evaluation metrics are utilized to evaluate the efficacy of algorithm.
They primarily encompass the following: false alarm rate (FAR), recall, detection rate
(DR), true positive rate (TPR), true negative rate (TNR), receiver operating characteristic
curve (ROC), and area under curve (AUC). In addition to the above evaluation metrics,
additional indices, such as the Youden’s index (Harush, Meidan ¢ Shabtai, 2021) and
the Kappa coefficient (Xing, Demertzis ¢~ Yang, 2020; Jain, Kaur ¢» Saxena, 2022) are also
used as reference standards.

o Task metrics: Task metrics assess algorithm’s capability in managing concept drift and
feature drift, as well as its aptitude for handling high-dimensional or large-scale
streaming datasets.

e Anomaly explanation: Anomaly explanation indicates whether algorithm can provide
explanations.

Detection algorithm discussion

The vast majority of traditional machine learning models are lightweight, meaning they
have compact model size and low memory requirements. Therefore, these algorithms are
widely used in resource-constrained environments.

Statistical models, valued for their parsimony and straightforward implementation,
have demonstrated considerable utility across a multitude of applications. Hunt ¢» Willett
(2018) adapted gaussian mixture model for online anomaly detection in wide-area motion
imagery and email databases. Tao & Michailidis (2019) used higher-order statistical
techniques to detect false data injection (FDI) attacks in power systems. Ma, Aminian ¢
Kirby (2019) applied ARIMA to detect anomalous traffic in WSN. Nevertheless, a principal
constraint of such statistical methodologies is their inherent reliance on specific
distributional assumptions. This prerequisite can substantially limit their effectiveness
when confronted with the complexity of real-world data, where such assumptions may not
be valid.

Distance models facilitate localization and identification of anomalies by leveraging
distance or similarity measures. Zhu et al. (2020) employed min heap to compute upper
bounds or lower bounds of distances between objects and their k-th nearest neighbors for
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Table 6 Literature evaluation of streaming data detection in the field of network security.

Ref. AD CD EC DP Explain Effectiveness Output Type
Bhatia et al. (2022) Statistical Model *  AUC, ROC, Acc, Recall Batch X Scalable Score Point
Tong & Prasanna (2017) FIM * Precision, Recall Stream X Adaptive Score Point
Hao et al. (2019) Cluster, LSTM, +  Deland, FPR, ROC-AUC, Recall Stream X Robust Cluster Contextual
AE label
Hoeltgebaum, Adams & Statistical Model v~ FD, FP, FN, MSE, MAE Stream X Adaptive Label Point
Fernandes (2021)
Nadler, Aminov & Shabtai iForest * DR, FPR Batch Vv Robust Score Collective
(2019)
Wambura, Huang & Li RNN * MAE, ROC-AUC Stream v Scalable, robust  Score *
(2022)
Xiaolan et al. (2022) Cluster v DR, FAR, Acc Stream X Robust No Collective
Yin, Li & Yin (2020) Statistical Model * EDR, EFP, END, ENF, EFR * X Robust Score Point
Zeng et al. (2023b) Bloom Filter * DR, FAR Stream X Robust Label Point
Wahab (2022) DNN v Precision, Recall, F1, TP, FP, FN, * X Robust Label Collective
TN, Acc
Cai et al. (2022) K-Means, v  Acc Stream X Robust Label All
Cluster
Cheng et al. (2020) TCN * Acc, Precision, Recall, F1 Batch * Robust Label Collective
Jain, Kaur & Saxena (2022) K-Means, v Acc, FAR, Precision, Recall, F1,  Stream * Adaptive, robust Label Collective
Cluster, SVM Kappa Statistic
Mirsky et al. (2017) Cluster v ROC, AUC, TPR, FPR Stream * Robust Score All
Scaranti et al. (2022) DBSCAN, v Acg, Precision, Recall, F-measure, Stream X Adaptive Label All
Entropy FAR
Shao et al. (2023) Bloom filter v Acc Stream * Robust Label All
Xing, Demertzis & Yang e-SNN, REBOM ¢ K-Stats, K-Temp-Stats Stream * Robust, scalable Label Point
(2020)
Xu et al. (2023) AE, SVM v AUC Stream X Robust Score Point
Yang et al. (2021) XGboost v AUC Stream X Score Point
Zeng et al. (2023a) KDE, AE v Recall, Precision, F-score, ROC, Stream X Scalable, Score Point
TPR, FPR, AUC adaptive,
robust
Zhou et al. (2020) Variational *  Precision, Recall, F1, FAR, AUC Batch X Scalable Label Point
LSTM
Saheed, Abdulganiyu & GWO, ELM, * Precision, Recall, DR, Acc Batch * Scalable, robust  Label Point
Tchakoucht (2023) PCA
Yoon et al. (2022) AE v AUC Batch X Scalable, Score Point
adaptive,
robust
Yu et al. (2018) Cluster * AUC, Acc Stream X Scalable, Score Point
adaptive,
robust

Note:
AD, anomaly detection; CD, concept drift; EC, evaluation criteria, DP, data processing mode; FIM, frequency itemset mining; FD, false detection; MAS, mean average
score; EDR, event detection rate; EFP, event false positive rate; END, error node detection rate; ENF, error node false positive rate; EFR, error node false recognition rate;
*, unknown; X, not support; v/, support.
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anomaly detection in IoT. Miao et al. (2018) implemented online OCSVM in distributed
WSN. However, distance-based models often face the curse of dimensionality and high
computational costs when dealing with high dimensional or large-scale data. It is essential
to adopt suitable dimensionality reduction methods and optimize distance metrics to ease
these challenges.

Cluster models adeptly adapt to intrinsic structural dynamics, rendering them
well-suited for addressing distributional shifts in streaming data. Jain, Kaur ¢ Saxena
(2022), ZareMoodi, Kamali Siahroudi ¢ Beigy (2019) used cluster-based models to address
concept drift. Wang et al. (2022) analyzed the influence of collective anomalies based on
cluster. Zou et al. (2023) combined grid cluster with gaussian model to improve the ability
to distinguish noise from anomalies. Harush, Meidan ¢ Shabtai (2021) integrated
cluster-based methods with deep learning to classify contextual information in real time.
Bah et al. (2019) employed micro-clusters to refine the search space for outlier detection.
Wang et al. (2020b) utilized the centers of micro-cluster within each class as inputs for
detecting unknown classes by projecting micro-cluster centers onto fixed positions on
orthogonal axes in the feature space, forming clear classification boundaries.

Density models effectively address local anomaly detection in high-dimensional or
large-scale streaming data with with reduced memory requirements. Liu et al. (2020)
introduced a KDE-based outlier detection method that substantially accelerates processing
speed through an upper-bound pruning strategy. Chen, Wang ¢» Yang (2021) employed
entropy-weighted index calculation and reachable distance factor discrimination methods,
achieving a 15% improvement in accuracy while requiring only 1% of the runtime
compared to the traditional LOF. Density-based models can adapt to the evolution of
streaming data, but they have high computational complexity and are challenging to apply
to high-dimensional sparse or large-scale streaming data.

Isolation models exhibit robust real-time capability (Shao et al., 2020). However, they
are characterized by high computational complexity and sensitive to model parameters.
Consequently, the development of more efficient isolation frameworks is imperative to
improve detection speed.

Frequency item mining algorithms can uncover common patterns in streaming data,
thereby enhancing the recognition and pinpointing of anomalous samples. Cai ef al.
(2020a, 2020b), Hao et al. (2019) stored uncertain streaming data information in matrices
to detect outliers. Compared to conventional static data frequent item mining algorithms,
these approaches are more suitable for processing large-scale uncertain streaming data.
Owing to its ability to handle complex and large-scale data, automatically learn relevant
features from streaming data, and provide automatic feature extraction, scalability,
adaptability and handling of complex relationships in streaming data, deep learning-based
algorithms are becoming increasingly popular.

Reconstruction models effectively learn high-level feature representations of data
without the need for manual feature design. These models provide reconstruction errors or
losses for anomalous data, making the models and results easier to understand and
interpret. Yoo, Kim & Kim (2019), Zeng et al. (2023a) used AE to detect anomalies by
analyzing the reconstruction errors between the reconstructed and original sequences.
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Nevertheless, reconstruction models have high complexity and require enough normal
data samples as training sets to establish the distribution model for normal data.

Generative models not only capture complex streaming data distributions but also
generate new samples based on the learned distributions. The GAN architecture stands as a
paradigmatic exemplar in this domain, demonstrating remarkable efficacy in anomaly
detection. Li et al. (2019) advanced the conventional GAN framework by integrating
LSTM-RNN as its foundational architecture, thereby exploiting the intricate
spatiotemporal correlations and multivariate dependencies inherent in sequential data
streams. Extending this trajectory of innovation, Hallaji, Razavi-Far ¢ Saif (2022)
engineered an advanced approach that incorporates the dynamic temporal characteristics
of streaming data directly into the GAN detector framework, yielding substantial
improvements in intrusion detection precision within IoT ecosystems. In conjunction with
GAN-based methodologies, restricted Boltzmann machines (RBMs) represent an equally
viable analytical tool within the proposed classification paradigm. Xing, Demertzis ¢» Yang
(2020) pioneered enhancements in anomaly detection fidelity through the introduction of
real-time evolving spiking RBM architectures, which demonstrate particular aptitude for
processing high-velocity data streams. Further advancing this architectural lineage,
Talapula et al. (2023) orchestrated a sophisticated fusion of RBMs with deep belief criteria
and metaheuristic algorithms, specifically calibrated for generative streaming log data
analysis, thereby substantially augmenting the model’s discriminative capabilities for
anomaly identification.

Prediction models with their powerful expressive capabilities and adaptability can
capture temporal dependencies and patterns. Wang et al. (2023) combined LSTM
prediction models with AE to compress time series data into low-dimensional feature
models. Compared to employing a single prediction-based model, combining with other
types of deep learning models improves the efficiency and effectiveness of real-time
streaming data detection. Liu ef al. (2021) used LSTM+ for real-time monitoring and
correction of streaming data in IoT. Similarly, Cheng et al. (2019) stacked distance-based
models such as KNN and SVM, with probabilistic models, includeing decision trees and
Bayesian classifiers and combined them with TCN for sequence problems.

Representation models can capture the underlying features and intrinsic structures of
streaming data. Munir et al. (2018) used a CNN-based representation learning model,
termed DeepAnT, to address periodic and seasonal anomalies that cannot be solved by
distance-based and density-based anomaly detection techniques in traditional machine
learning. Garg et al. (2019) improved the standard CNN employing a uniform distribution
method for anomaly detection in heterogeneous streaming data.

Measurement algorithm discussion

Frequency estimation can estimate the occurrence frequency of various elements in
streaming data. Consistent hashing and counters can efficiently estimate element
frequencies in a single pass, characterized by minimal time and space complexity. These
approaches yield error bounds for frequency approximation, meeting the real-time
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detection requirements. However, there is a certain estimation error compared to exact
calculations due to the use of approximate counters.

Quantile estimation elucidates the global distribution of streaming data by calculating
the approximate quantiles in real time. However, in cases where the data distribution in
streaming is extremely uneven, the estimation of tail quantiles may be less accurate
(Liu et al., 2018).

Change detection employs chi-square tests or the KL divergence to detect the statistical
distribution and aggregate metrics of streaming data. However, this approach is sensitive
to parameter settings (Kuncheva, 2011).

Cardinality estimation leverages probabilistic data structures to efficiently estimate the
cardinality of streaming data in a single pass. However, compared to frequency estimation,
real-time performance may be inferior (Jie et al., 2022).

Similarity calculation utilizes LSH or other algorithms to rapidly retrieve neighbors and
compute approximate similarities in sublinear time in streaming data. However, similarity
calculations for high-dimensional and large-scale streaming data may be time-consuming,
requiring appropriate similarity measurement methodologies and thresholds (Wu ef al.,
2024).

Sampling techniques represent a critical dimension in the study taxonomy of streaming
data anomaly detection methods, as they extract representative subsets from streaming
data, significantly reducing storage and processing requirements. While effective sampling
demands meticulously designed random or stratified strategies, sketch algorithms have
emerged as particularly promising within this category due to their sublinear complexity
and efficiency advantages over traditional item-by-item processing approaches. Recent
advancements in sketch algorithms demonstrate their increasing relevance to the
framework of streaming anomaly detection. Liu et al. (2016) developed a universal
monitoring framework that exemplifies how sketching can provide system-wide visibility
while preserving computational efficiency. Building on this foundation, Yang et al. (2018)
addressed the challenge of varying traffic conditions through adaptive sketching methods,
a critical capability for detecting anomalies in dynamically evolving streams. To address
the need for scalable detection in high-throughput network scenarios, Huang et al. (2017)
proposed a robust measurement framework. The evolution of sketch-based algorithms has
focused primarily on two aspects central to effective anomaly detection: accuracy and
performance. Liu et al. (2015) tackled the fundamental challenge of hash collisions by
reconstructing and estimating infected host cardinality using overlapping techniques of
hash bit strings based on vectorized Bloom Filter. This approach significantly enhances
detection accuracy, addressing one of the key challenges identified in the study framework.
More recently, Zeng et al. (2023b) advanced this concept by establishing a multi-layer
dLSHBF model using Bloom Filter, which effectively avoids element conflicts by reducing
data hash encoding length. Similarly, Xiao et al. (2023) employed a multi-level design
methodology combined with TailCut’s register compression technique (Xiao et al., 2020)
to alleviate hash collisions between streams, demonstrating how hash function selection
critically impacts detection algorithm performance. Within this study comprehensive
framework of streaming data anomaly detection methodologies, these sketch-based
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approaches represent a particularly valuable direction for network security applications,
offering an optimal balance between computational efficiency and detection accuracy.

FUTURE DIRECTIONS AND OPEN RESEARCH
CHALLENGES

Although many anomaly detection algorithms for streaming data have been proposed,
there are still some challenges and limitations that make it impractical to use these
algorithms in the real world. Therefore, in this section, the study will describe the
limitations of existing research literature and propose research questions and suggestions
in the context of network security.

Limitations of current research

This study surveys the latest literature on anomaly detection in streaming data and
discusses some issues in the research direction of streaming data in the field of network
security. During the research process, this study verified that the existing literature in this
field has not adequately addressed the relevant problems, thus requiring more attention.
Based on the previous statements and research, the following general limitations of existing
research literature can be identified:

1. The field of cybersecurity has not adequately addressed the issue of high-dimensional
streaming data.

2. The interpretability of detected anomalies in streaming data is poor.

3. There is still significant room for improvement in the efficiency of these models or
methods.

4. There is a lack of methods for handling anomalies in multi-type data.

5. There is a scarcity of datasets appropriate for streaming data in the field of network
security.

Future research directions

Anomaly detection in high-dimensional streaming data: Anomaly detection in
high-dimensional streaming data typically requires a significant amount of feature
engineering. Deep learning can automatically learn relevant features, with its multi-layer
structure, proficiently manage high-dimensional streaming data enhance its effectiveness
by learning more abstract representations through the hierarchical extraction and
combination of features. However, the application of deep learning algorithms in the field
of cybersecurity, especially in high-dimensional streaming data, has not been extensively
studied. Therefore, applying deep learning to anomaly detection in streaming data is a
direction worth exploring. It is worth noting that high-dimensional streaming data
requires more hidden layers for learning input features, resulting in a linear increase in
model computational complexity with the increase of hidden layers.

Detection of anomalies in multi-type data: Different applications generate diverse
streaming data, such as text streaming, image streaming, video streaming, efc. Detecting
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anomalies in these heterogeneous streaming data can be cumbersome. Therefore, there is a
need to research new algorithms or techniques to handle these complex data formats to
better understand streaming data in the real world.

Interpretability of anomaly: Recent studies have underscored the significance of anomaly
interpretation, particularly in the context of streaming data. The aim is to unearth plausible
explanations for detected abnormal patterns. This will help in understanding and
evaluating relevant detection results and enhance the reliability of anomaly evaluation. So
far, the existing literature has focused on interpreting anomalies in low-dimensional
streaming data, thus requiring further investigation in this area.

Improvement of detection algorithm efficiency: The characteristics of streaming data
require anomaly detection algorithms to produce results at a lower computational cost,
making the efficiency of algorithms crucial. Due to limitations in time and storage space, it
is worth considering compressing the streaming data first and then combining traditional
machine learning algorithms or deep learning models for anomaly detection. This
approach can improve efficiency while ensuring detection accuracy.

Application of large language models: Large language models (LLMs) offer a
transformative approach to anomaly detection in network security streams by enabling the
analysis of textual and semi-structured data at a deep semantic level. By processing diverse
data sources, such as network logs, system alerts, or command-line sequences, LLMs can
harness their sophisticated contextual comprehension to detect subtle and intricate
anomalies that often elude conventional detection methodologies. For example, they are
capable of identifying emerging phishing campaigns or multi-stage insider threats by
analyzing the narrative flow and contextual coherence of communication streams. Despite
this immense potential, their practical application remains an underexplored research
area, primarily due to significant challenges. The high computational requirements and
inference latency of LLMs pose a barrier to real-time analysis, while the need for curated,
domain-specific datasets for effective fine-tuning presents another obstacle. Therefore,
future research should be strategically directed towards enhancing the viability of LLMs for
this task. Investigating lightweight architectures, such as distilled or pruned models, and
exploring sophisticated transfer learning methodologies represent promising pathways to
harness the power of LLMs for real-time, adaptive anomaly detection in cybersecurity.

CONCLUSIONS

This survey provides a comprehensive overview of streaming data anomaly detection in
network security, systematically categorizing existing research based on datasets,
measurement techniques, detection algorithms, anomaly types, and output types. Through
this categorization, evaluation criteria have been derived to assess the characteristics,
advantages, and limitations of various research approaches. It has been established that
streaming data anomaly detection is critical in addressing the challenges posed by the
increasing volume and complexity of data in cybersecurity applications. Several key
challenges have been identified, including the need for efficient algorithms to handle
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high-dimensional and multi-type data, improved interpretability of anomalies, and the
exploration of emerging techniques such as LLMs. It is anticipated that this survey will
enhance understanding of this vital research area and provide valuable guidance for future
investigations. Future research is expected to focus on two primary directions. First, a more
in-depth analysis of mainstream literature is planned to offer scholars and practitioners a
thorough understanding of current research developments. Second, it is proposed to
develop a novel anomaly detection method to address the limitations observed in existing
approaches, leveraging the unique characteristics of streaming data to improve efficiency.
Specifically, an efficient anomaly detection algorithm will be designed and its performance
and accuracy validated through rigorous experiments.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

The author received no funding for this work.

Competing Interests
The author declares that they have no competing interests.

Author Contributions

e Pengju Zhou conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:
This is a literature review.

REFERENCES

Aggarwal CC, Yu PS. 2008. Outlier detection with uncertain data. In: Proceedings of the 2008 SIAM
International Conference on Data Mining. Philadelphia: SIAM, 483-493.

Bagozi A, Bianchini D, De Antonellis V. 2021. Multi-level and relevance-based parallel clustering
of massive data streams in smart manufacturing. Information Sciences 577(9):805-823
DOI 10.1016/j.ins.2021.08.039.

Bah MJ, Wang H, Hammad M, Zeshan F, Aljuaid H. 2019. An effective minimal probing
approach with micro-cluster for distance-based outlier detection in data streams. IEEE Access
7:154922-154934 DOI 10.1109/ACCESS.2019.2946966.

Barbariol T, Chiara FD, Marcato D, Susto GA. 2022. A review of tree-based approaches for
anomaly detection. In: Control Charts and Machine Learning for Anomaly Detection in
Manufacturing. Cham: Springer, 149-185.

Barddal JP, Gomes HM, Enembreck F, Pfahringer B. 2017. A survey on feature drift adaptation:
definition, benchmark, challenges and future directions. Journal of Systems and Software
127(1):278-294 DOI 10.1016/j.jss.2016.07.005.

Zhou (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3066 23/31


http://dx.doi.org/10.1016/j.ins.2021.08.039
http://dx.doi.org/10.1109/ACCESS.2019.2946966
http://dx.doi.org/10.1016/j.jss.2016.07.005
http://dx.doi.org/10.7717/peerj-cs.3066
https://peerj.com/computer-science/

PeerJ Computer Science

Bezerra CG, Costa BSJ, Guedes LA, Angelov PP. 2020. An evolving approach to data streams
clustering based on typicality and eccentricity data analytics. Information Sciences 518(2):13-28
DOI 10.1016/.ins.2019.12.022.

Bhatia S, Liu R, Hooi B, Yoon M, Shin K, Faloutsos C. 2022. Real-time anomaly detection in edge
streams. ACM Transactions on Knowledge Discovery from Data (TKDD) 16(4):1-22
DOI 10.1145/3494564.

Bhaya WS, Alasadi SA. 2016. Anomaly detection in network traffic using stream data mining.
Research Journal of Applied Sciences 11(10):1076-1082.

Bigdeli E, Mohammadi M, Raahemi B, Matwin S. 2018. Incremental anomaly detection using
two-layer cluster-based structure. Information Sciences 429:315-331
DOI 10.1016/.ins.2017.11.023.

Bonvini M, Sohn MD, Granderson J, Wetter M, Piette MA. 2014. Robust on-line fault detection
diagnosis for HVAC components based on nonlinear state estimation techniques. Applied
Energy 124(3):156-166 DOI 10.1016/j.apenergy.2014.03.009.

Boukerche A, Zheng L, Alfandi O. 2020. Outlier detection: methods, models, and classification.
ACM Computing Surveys (CSUR) 53(3):1-37 DOI 10.1145/3381028.

Cai S, ChenJ, Yin B, Sun R, Zhang C, Chen H, Chen J, Lin M. 2022. An efficient outlier detection
approach for streaming sensor data based on neighbor difference and clustering. Security and
Communication Networks 2022(1):3062541 DOI 10.1155/2022/3062541.

Cai§, Li S, Yuan G, Hao S, Sun R. 2020a. MiFI-Outlier: minimal infrequent itemset-based outlier
detection approach on uncertain data stream. Knowledge-Based Systems 191(3):105268
DOI 10.1016/j.knosys.2019.105268.

Cai S, Sun R, Hao S, Li S, Yuan G. 2020b. Minimal weighted infrequent itemset mining-based
outlier detection approach on uncertain data stream. Neural Computing and Applications
32(11):6619-6639 DOI 10.1007/s00521-018-3876-4.

Cao F, Estert M, Qian W, Zhou A. 2006. Density-based clustering over an evolving data stream
with noise. In: Proceedings of the 2006 SIAM International Conference on Data Mining.
Philadelphia: SIAM, 328-339.

Chandola V, Banerjee A, Kumar V. 2009. Anomaly detection: a survey. ACM Computing Surveys
(CSUR) 41(3):1-58 DOI 10.1145/1541880.1541882.

Chauhan P, Shukla M. 2015. A review on outlier detection techniques on data stream by using
different approaches of K-means algorithm. In: 2015 International Conference on Advances in
Computer Engineering and Applications. Piscataway: IEEE, 580-585.

Chen L, Wang W, Yang Y. 2021. CELOF: effective and fast memory efficient local outlier detection
in high-dimensional data streams. Applied Soft Computing 102(12):107079
DOI 10.1016/j.as0¢.2021.107079.

Cheng Y, Xu Y, Zhong H, Liu Y. 2019. HS-TCN: a semi-supervised hierarchical stacking temporal
convolutional network for anomaly detection in IoT. In: 2019 IEEE 38th International
Performance Computing and Communications Conference (IPCCC). Piscataway: IEEE.

Cheng Y, Xu Y, Zhong H, Liu Y. 2020. Leveraging semisupervised hierarchical stacking temporal
convolutional network for anomaly detection in IoT communication. IEEE Internet of Things
Journal 8(1):144-155 DOI 10.1109/J10T.2020.3000771.

Chouliaras S, Sotiriadis S. 2019. Real-time anomaly detection of NoSQL systems based on

resource usage monitoring. IEEE Transactions on Industrial Informatics 16(9):6042-6049
DOI 10.1109/T11.2019.2958606.

Zhou (2025), Peerd Comput. Sci., DOI 10.7717/peerj-cs.3066 24/31


http://dx.doi.org/10.1016/j.ins.2019.12.022
http://dx.doi.org/10.1145/3494564
http://dx.doi.org/10.1016/j.ins.2017.11.023
http://dx.doi.org/10.1016/j.apenergy.2014.03.009
http://dx.doi.org/10.1145/3381028
http://dx.doi.org/10.1155/2022/3062541
http://dx.doi.org/10.1016/j.knosys.2019.105268
http://dx.doi.org/10.1007/s00521-018-3876-4
http://dx.doi.org/10.1145/1541880.1541882
http://dx.doi.org/10.1016/j.asoc.2021.107079
http://dx.doi.org/10.1109/JIOT.2020.3000771
http://dx.doi.org/10.1109/TII.2019.2958606
http://dx.doi.org/10.7717/peerj-cs.3066
https://peerj.com/computer-science/

PeerJ Computer Science

Clever L, Pohl JS, Bossek J, Kerschke P, Trautmann H. 2022. Process-oriented stream
classification pipeline: a literature review. Applied Sciences 12(18):9094
DOI 10.3390/app12189094.

Cormode G, Muthukrishnan S. 2005. An improved data stream summary: the count-min sketch
and its applications. Journal of Algorithms 55(1):58-75 DOI 10.1016/j.jalgor.2003.12.001.

Dal Pozzolo A, Boracchi G, Caelen O, Alippi C, Bontempi G. 2015. Credit card fraud detection
and concept-drift adaptation with delayed supervised information. In: 2015 International Joint
Conference on Neural Networks (IJCNN). Piscataway: IEEE.

Degirmenci A, Karal O. 2022. Efficient density and cluster based incremental outlier detection in
data streams. Information Sciences 607:901-920 DOI 10.1016/j.ins.2022.06.013.

Din SU, Shao J, Kumar J, Mawuli CB, Mahmud SH, Zhang W, Yang Q. 2021. Data stream
classification with novel class detection: a review, comparison and challenges. Knowledge and
Information Systems 63(9):2231-2276 DOI 10.1007/s10115-021-01582-4.

Duarte J, Gama J, Bifet A. 2016. Adaptive model rules from high-speed data streams. ACM
Transactions on Knowledge Discovery from Data (TKDD) 10(3):1-22 DOI 10.1145/2829955.

Fahy C, Yang S, Gongora M. 2022. Scarcity of labels in non-stationary data streams: a survey.
ACM Computing Surveys (CSUR) 55(2):1-39 DOI 10.1145/3494832.

Faria ER, Gongalves IJ, de Carvalho AC, Gama J. 2016. Novelty detection in data streams.
Artificial Intelligence Review 45(2):235-269 DOI 10.1007/s10462-015-9444-8.

Ferrag MA, Friha O, Hamouda D, Maglaras L, Janicke H. 2022. Edge-IIoTset: a new
comprehensive realistic cyber security dataset of IoT and IIoT applications for centralized and
federated learning. IEEE Access 10:40281-40306 DOI 10.1109/ACCESS.2022.3165809.

Garcia S, Grill M, Stiborek J, Zunino A. 2014. An empirical comparison of botnet detection
methods. Computers & Security 45:100-123 DOI 10.1016/j.cose.2014.05.011.

Garg S, Kaur K, Kumar N, Kaddoum G, Zomaya AY, Ranjan R. 2019. A hybrid deep
learning-based model for anomaly detection in cloud datacenter networks. IEEE Transactions on
Network and Service Management 16(3):924-935 DOI 10.1109/TNSM.2019.2927886.

Gokcesu K, Neyshabouri MM, Gokcesu H, Kozat SS. 2018. Sequential outlier detection based on
incremental decision trees. IEEE Transactions on Signal Processing 67(4):993-1005
DOI 10.1109/TSP.2018.2887406.

Gorunescu F. 2011. Data mining: concepts, models and techniques. Berlin, Heidelberg: Springer.

Grekov M, Sychugov A. 2022. Distributed detection of anomalies in the network flow using
generative adversarial networks. In: 2022 International Russian Automation Conference
(RusAutoCon). Piscataway: IEEE, 332-336.

Grubbs FE. 1969. Procedures for detecting outlying observations in samples. Technometrics
11(1):1-21 DOI 10.1080/00401706.1969.10490657.

Gurjar GS, Chhabria S. 2015. A review on concept evolution technique on data stream. In: 2015
International Conference on Pervasive Computing (ICPC). Piscataway: IEEE.

Hallaji E, Razavi-Far R, Saif M. 2022. Embedding time-series features into generative adversarial
networks for intrusion detection in internet of things networks. In: Generative Adversarial
Learning: Architectures and Applications. Cham: Springer, 169-183.

Hao S, Cai S, Sun R, Li S. 2019. An efficient outlier detection approach over uncertain data stream

based on frequent itemset mining. Information Technology and Control 48:34-46
DOI 10.1016/j.eswa.2020.113646.

Zhou (2025), Peerd Comput. Sci., DOI 10.7717/peerj-cs.3066 25/31


http://dx.doi.org/10.3390/app12189094
http://dx.doi.org/10.1016/j.jalgor.2003.12.001
http://dx.doi.org/10.1016/j.ins.2022.06.013
http://dx.doi.org/10.1007/s10115-021-01582-4
http://dx.doi.org/10.1145/2829955
http://dx.doi.org/10.1145/3494832
http://dx.doi.org/10.1007/s10462-015-9444-8
http://dx.doi.org/10.1109/ACCESS.2022.3165809
http://dx.doi.org/10.1016/j.cose.2014.05.011
http://dx.doi.org/10.1109/TNSM.2019.2927886
http://dx.doi.org/10.1109/TSP.2018.2887406
http://dx.doi.org/10.1080/00401706.1969.10490657
http://dx.doi.org/10.1016/j.eswa.2020.113646
http://dx.doi.org/10.7717/peerj-cs.3066
https://peerj.com/computer-science/

PeerJ Computer Science

Harush S, Meidan Y, Shabtai A. 2021. DeepStream: autoencoder-based stream temporal
clustering and anomaly detection. Computers ¢ Security 106(3):102276
DOI 10.1016/j.cose.2021.102276.

Heigl M, Anand KA, Urmann A, Fiala D, Schramm M, Hable R. 2021. On the improvement of
the isolation forest algorithm for outlier detection with streaming data. Electronics 10(13):1534
DOI 10.3390/electronics10131534.

Hoeltgebaum H, Adams N, Fernandes C. 2021. Estimation, forecasting, and anomaly detection
for nonstationary streams using adaptive estimation. IEEE Transactions on Cybernetics
52(8):7956-7967 DOI 10.1109/TCYB.2021.3054161.

Huang Q, Jin X, Lee PP, Li R, Tang L, Chen YC, Zhang G. 2017. Sketchvisor: robust network
measurement for software packet processing. In: Proceedings of the Conference of the ACM
Special Interest Group on Data Communication. New York: ACM, 113-126.

Hunt XJ, Willett R. 2018. Online data thinning via multi-subspace tracking. IEEE Transactions on
Pattern Analysis and Machine Intelligence 41(5):1173-1187
DOI 10.1109/TPAMI.2018.2829189.

Jain M, Kaur G, Saxena V. 2022. A K-Means clustering and SVM based hybrid concept drift
detection technique for network anomaly detection. Expert Systems with Applications
193(11):116510 DOI 10.1016/j.eswa.2022.116510.

Jie X, Haoliang L, Wei D, Ao J. 2022. Network host cardinality estimation based on artificial
neural network. Security and Communication Networks 2022(1):1258482
DOI 10.1155/2022/1258482.

Karim F, Majumdar S, Darabi H. 2020. Adversarial attacks on time series. IEEE Transactions on
Pattern Analysis and Machine Intelligence 43(10):3309-3320
DOI 10.1109/TPAMI.2020.2986319.

Krawczyk B, Minku LL, Gama J, Stefanowski J, Wozniak M. 2017. Ensemble learning for data
stream analysis: a survey. Information Fusion 37(2):132-156 DOI 10.1016/j.inffus.2017.02.004.

Kulesza T, Amershi S, Caruana R, Fisher D, Charles D. 2014. Structured labeling for facilitating
concept evolution in machine learning. In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. New York: ACM, 3075-3084.

Kuncheva LI. 2011. Change detection in streaming multivariate data using likelihood detectors.
IEEE Transactions on Knowledge and Data Engineering 25(5):1175-1180
DOI 10.1109/TKDE.2011.226.

Lai YK, Tsai CL, Chuang CH, Ku XW, Chen JH. 2022. Tabular interpolation approach based on
stable random projection for estimating empirical entropy of high-speed network traffic. IEEE
Access 10:104934-104953 DOI 10.1109/ACCESS.2022.3210336.

Laleh N, Abdollahi Azgomi M. 2010. A hybrid fraud scoring and spike detection technique in
streaming data. Intelligent Data Analysis 14(6):773-800 DOI 10.3233/IDA-2010-0451.

Lall A. 2015. Data streaming algorithms for the Kolmogorov-Smirnov test. In: 2015 IEEE
International Conference on Big Data (Big Data). Piscataway: IEEE, 95-104.

Lee G, Lee K. 2022. Online dependence clustering of multivariate streaming data using one-class
SVMs. International Journal of Intelligent Systems 37(6):3682-3708 DOI 10.1002/int.22716.

Li D, Chen D, Jin B, Shi L, Goh J, Ng SK. 2019. MAD-GAN: multivariate anomaly detection for
time series data with generative adversarial networks. ArXiv DOI 10.48550/arXiv.1901.04997.

Liu J, Bai J, Li H, Sun B. 2021. Improved LSTM-based abnormal stream data detection and
correction system for internet of things. IEEE Transactions on Industrial Informatics
18(2):1282-1290 DOI 10.1109/T11.2021.3079504.

Zhou (2025), Peerd Comput. Sci., DOI 10.7717/peerj-cs.3066 26/31


http://dx.doi.org/10.1016/j.cose.2021.102276
http://dx.doi.org/10.3390/electronics10131534
http://dx.doi.org/10.1109/TCYB.2021.3054161
http://dx.doi.org/10.1109/TPAMI.2018.2829189
http://dx.doi.org/10.1016/j.eswa.2022.116510
http://dx.doi.org/10.1155/2022/1258482
http://dx.doi.org/10.1109/TPAMI.2020.2986319
http://dx.doi.org/10.1016/j.inffus.2017.02.004
http://dx.doi.org/10.1109/TKDE.2011.226
http://dx.doi.org/10.1109/ACCESS.2022.3210336
http://dx.doi.org/10.3233/IDA-2010-0451
http://dx.doi.org/10.1002/int.22716
http://dx.doi.org/10.48550/arXiv.1901.04997
http://dx.doi.org/10.1109/TII.2021.3079504
http://dx.doi.org/10.7717/peerj-cs.3066
https://peerj.com/computer-science/

PeerJ Computer Science

Liu Z, Manousis A, Vorsanger G, Sekar V, Braverman V. 2016. One sketch to rule them all:
rethinking network flow monitoring with UnivMon. In: Proceedings of the 2016 ACM
SIGCOMM Conference. New York: ACM, 101-114.

Liu W, Qu W, Gong J, Li K. 2015. Detection of superpoints using a vector bloom filter. IEEE
Transactions on Information Forensics and Security 11(3):514-527
DOI 10.1109/TTFS.2015.2503269.

Liu FT, Ting KM, Zhou ZH. 2008. Isolation forest. In: 2008 Eighth IEEE International Conference
on Data Mining. Piscataway: IEEE, 413-422.

Liu F, Yu Y, Song P, Fan Y, Tong X. 2020. Scalable KDE-based top-n local outlier detection over
large-scale data streams. Knowledge-Based Systems 204(9):106186
DOI IO.l016/j.kn05ys.2020.106186.

Liu J, Zheng W, Lin Z, Lin N. 2018. Accurate quantile estimation for skewed data streams using
nonlinear interpolation. IEEE Access 6:28438-28446 DOI 10.1109/ACCESS.2018.2837906.

Ma X, Aminian M, Kirby M. 2019. Error-adaptive modeling of streaming time-series data using
radial basis functions. Journal of Computational and Applied Mathematics 362(1):295-308
DOI 10.1016/j.cam.2018.10.056.

Maimon O, Rokach L. 2005. Data mining and knowledge discovery handbook. Berlin, Heidelberg:
Springer-Verlag.

Martinez-Rego D, Fernandez Francos D, Fontenla Romero O, Alonso-Betanzos A. 2015. Stream
change detection via passive-aggressive classification and Bernoulli CUSUM. Information
Sciences 305(46):130-145 DOI 10.1016/.ins.2015.01.022.

Miao X, Liu Y, Zhao H, Li C. 2018. Distributed online one-class support vector machine for
anomaly detection over networks. IEEE Transactions on Cybernetics 49(4):1475-1488
DOI 10.1109/TCYB.2018.2804940.

Mirsky Y, Shabtai A, Shapira B, Elovici Y, Rokach L. 2017. Anomaly detection for smartphone
data streams. Pervasive and Mobile Computing 35(2):83-107 DOI 10.1016/j.pmcj.2016.07.006.

Mousavi M, Bakar AA, Vakilian M. 2015. Data stream clustering algorithms: a review. ArXiv
DOI 10.48550/arXiv.2007.10781.

Moustafa N, Slay J. 2015. UNSW-NB15: a comprehensive data set for network intrusion detection
systems (UNSW-NBI15 network data set). In: 2015 Military Communications and Information
Systems Conference (MilCIS). Piscataway: IEEE.

Moustafa N, Turnbull B, Choo KKR. 2018. An ensemble intrusion detection technique based on
proposed statistical flow features for protecting network traffic of internet of things. IEEE
Internet of Things Journal 6(3):4815-4830 DOI 10.1109/JI0T.2018.2871719.

Munir M, Siddiqui SA, Dengel A, Ahmed S. 2018. DeepAnT: a deep learning approach for
unsupervised anomaly detection in time series. IEEE Access 7:1991-2005
DOI 10.1109/ACCESS.2018.2886457.

Nadler A, Aminov A, Shabtai A. 2019. Detection of malicious and low throughput data
exfiltration over the DNS protocol. Computers & Security 80(3):36-53
DOI 10.1016/j.cose.2018.09.006.

Nguyen HL, Woon Y-K, Ng W-K. 2015. A survey on data stream clustering and classification.
Knowledge and Information Systems 45(3):535-569 DOI 10.1007/s10115-014-0808-1.

Pham D-S, Venkatesh S, Lazarescu M, Budhaditya S. 2014. Anomaly detection in large-scale data
stream networks. Data Mining and Knowledge Discovery 28:145-189
DOI 10.1007/s10618-012-0297-3.

Zhou (2025), Peerd Comput. Sci., DOI 10.7717/peerj-cs.3066 27/31


http://dx.doi.org/10.1109/TIFS.2015.2503269
http://dx.doi.org/10.1016/j.knosys.2020.106186
http://dx.doi.org/10.1109/ACCESS.2018.2837906
http://dx.doi.org/10.1016/j.cam.2018.10.056
http://dx.doi.org/10.1016/j.ins.2015.01.022
http://dx.doi.org/10.1109/TCYB.2018.2804940
http://dx.doi.org/10.1016/j.pmcj.2016.07.006
http://dx.doi.org/10.48550/arXiv.2007.10781
http://dx.doi.org/10.1109/JIOT.2018.2871719
http://dx.doi.org/10.1109/ACCESS.2018.2886457
http://dx.doi.org/10.1016/j.cose.2018.09.006
http://dx.doi.org/10.1007/s10115-014-0808-1
http://dx.doi.org/10.1007/s10618-012-0297-3
http://dx.doi.org/10.7717/peerj-cs.3066
https://peerj.com/computer-science/

PeerJ Computer Science

Podder KK, Chowdhury MEH, Almaadeed S, Nisha NN, Mahmud S, Hamadelneil F, Almkhlef
T, Aljofairi H, Mushtak A, Khandakar AA, Zughaier SM. 2023. Deep learning-based middle
cerebral artery blood flow abnormality detection using flow velocity waveform derived from
transcranial doppler ultrasound. Biomedical Signal Processing and Control 85:104882
DOI 10.1016/j.bspc.2023.104882.

Pramanik A, Pal SK, Maiti ], Mitra P. 2022. Traffic anomaly detection and video summarization
using spatio-temporal rough fuzzy granulation with Z-numbers. IEEE Transactions on
Intelligent Transportation Systems 23(12):24116-24125 DOI 10.1109/TITS.2022.3198595.

Radke AJ, Cymrot S, A’Heam K, Wagner A, Angle B. 2018. “Small data” anomaly detection for
unmanned systems. In: 2018 IEEE Autotestcon. Piscataway: IEEE.

Ramirez-Gallego S, Krawczyk B, Garcia S, Wozniak M, Herrera F. 2017. A survey on data
preprocessing for data stream mining: current status and future directions. Neurocomputing
239(1):39-57 DOI 10.1016/j.neucom.2017.01.078.

Raut A, Shivhare A, Chaurasiya VK, Kumar M. 2023. AEDS-IoT: adaptive clustering-based event
detection scheme for IoT data streams. Internet of Things 22(1):100704
DOI 10.1016/j.i0t.2023.100704.

Ren H, Ye Z, Li Z. 2017. Anomaly detection based on a dynamic Markov model. Information
Sciences 411(2):52-65 DOI 10.1016/j.ins.2017.05.021.

Ring M, Wunderlich S, Griidl D, Landes D, Hotho A. 2017. Flow-based benchmark data sets for
intrusion detection. In: Proceedings of the 16th European Conference on Cyber Warfare and
Security. Dublin, Ireland: Academic Conferences Ltd, 361-369.

Saheed YK, Abdulganiyu OH, Tchakoucht TA. 2023. A novel hybrid ensemble learning for
anomaly detection in industrial sensor networks and SCADA systems for smart city
infrastructures. Journal of King Saud University-Computer and Information Sciences
35(5):101532 DOI 10.1016/j.jksuci.2023.03.010.

Scaranti GF, Carvalho LF, Junior SB, Lloret J, Proenca ML Jr. 2022. Unsupervised online
anomaly detection in software defined network environments. Expert Systems with Applications
191(10):116225 DOI 10.1016/j.eswa.2021.116225.

Schlimmer JC, Granger RH. 1986. Incremental learning from noisy data. Machine Learning
1(3):317-354 DOI 10.1007/BF00116895.

Shao W, Wei Y, Rajapaksha P, Li D, Luo Z, Crespi N. 2023. Low-latency dimensional expansion
and anomaly detection empowered secure IoT network. IEEE Transactions on Network and
Service Management 20(3):3865-3879 DOI 10.1109/TNSM.2023.3246798.

Shao P, Ye F, Liu Z, Wang X, Lu M, Mao Y. 2020. Improving iForest for hydrological time series
anomaly detection. In: International Conference on Algorithms and Architectures for Parallel
Processing. Cham: Springer, 170-183.

Sharafaldin I, Lashkari AH, Ghorbani AA. 2018. Toward generating a new intrusion detection
dataset and intrusion traffic characterization. In: International Conference on Information
Systems Security and Privacy. Vol. 1. Setubal, Portugal: SciTePress, 108-116
DOI 10.5220/0006639801080116.

Shylendra A, Shukla P, Mukhopadhyay S, Bhunia S, Trivedi AR. 2020. Low power unsupervised
anomaly detection by nonparametric modeling of sensor statistics. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems 28(8):1833-1843 DOI 10.1109/TVLS1.2020.2984472.

Souiden I, Brahmi Z, Toumi H. 2016. A survey on outlier detection in the context of stream
mining: review of existing approaches and recommadations. In: International Conference on
Intelligent Systems Design and Applications. Cham: Springer, 372-383.

Zhou (2025), Peerd Comput. Sci., DOI 10.7717/peerj-cs.3066 28/31


http://dx.doi.org/10.1016/j.bspc.2023.104882
http://dx.doi.org/10.1109/TITS.2022.3198595
http://dx.doi.org/10.1016/j.neucom.2017.01.078
http://dx.doi.org/10.1016/j.iot.2023.100704
http://dx.doi.org/10.1016/j.ins.2017.05.021
http://dx.doi.org/10.1016/j.jksuci.2023.03.010
http://dx.doi.org/10.1016/j.eswa.2021.116225
http://dx.doi.org/10.1007/BF00116895
http://dx.doi.org/10.1109/TNSM.2023.3246798
http://dx.doi.org/10.5220/0006639801080116
http://dx.doi.org/10.1109/TVLSI.2020.2984472
http://dx.doi.org/10.7717/peerj-cs.3066
https://peerj.com/computer-science/

PeerJ Computer Science

Stahmann P, Rieger B. 2021. Requirements identification for real-time anomaly detection in
Industrie 4.0 machine groups: a structured literature review. In: Proceedings of the 54th Hawaii
International Conference on System Sciences, 5738-5747 DOI 10.24251/HICSS.2021.696.

Talapula DK, Ravulakollu KK, Kumar M, Kumar A. 2023. SAR-BSO meta-heuristic
hybridization for feature selection and classification using DBNover stream data. Artificial
Intelligence Review 56(12):14327-14365 DOI 10.1007/s10462-023-10494-4.

Tang M, Fu X, Wu H, Huang Q, Zhao Q. 2020. Traffic flow anomaly detection based on robust
ridge regression with particle swarm optimization algorithm. Mathematical Problems in
Engineering 2020(1):3673085 DOI 10.1155/2020/3673085.

Tao J, Michailidis G. 2019. A statistical framework for detecting electricity theft activities in smart
grid distribution networks. IEEE Journal on Selected Areas in Communications 38(1):205-216
DOI 10.1109/JSAC.2019.2952181.

The UCI KDD Archive. 1999. KDD Cup 1999 data. Irvine: The University of California. Available
at http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.

Tidjon LN, Frappier M, Mammar A. 2019. Intrusion detection systems: a cross-domain overview.
IEEE Communications Surveys ¢ Tutorials 21(4):3639-3681
DOI 10.1109/COMST.2019.2922584.

Ting KM, Washio T, Wells J, Zhang H, Zhu Y. 2023. Isolation kernel estimators. Knowledge and
Information Systems 65(2):759-787 DOI 10.1007/s10115-022-01765-7.

Tong D, Prasanna VK. 2017. Sketch acceleration on FPGA and its applications in network
anomaly detection. IEEE Transactions on Parallel and Distributed Systems 29(4):929-942
DOI 10.1109/TPDS.2017.2766633.

Vaccari I, Chiola G, Aiello M, Mongelli M, Cambiaso E. 2020. MQTTset, a new dataset for
machine learning techniques on MQTT. Sensors 20(22):6578 DOI 10.3390/s20226578.

Vallim RM, de Mello RF, de Carvalho AC, Gama JG. 2014. Unsupervised density-based behavior
change detection in data streams. Intelligent Data Analysis 18(2):181-201
DOI 10.3233/IDA-140636.

Wahab OA. 2022. Intrusion detection in the IoT under data and concept drifts: online deep
learning approach. IEEE Internet of Things Journal 9(20):19706-19716
DOI 10.1109/J10T.2022.3167005.

Wambura S, Huang J, Li H. 2022. Robust anomaly detection in feature-evolving time series. The
Computer Journal 65(5):1242-1256 DOI 10.48550/arXiv.2202.02721.

Wang H, Bah MJ, Hammad M. 2019. Progress in outlier detection techniques: a survey. IEEE
Access 7:107964-108000 DOI 10.1109/ACCESS.2019.2932769.

Wang L, Chen S, Chen F, He Q, Liu J. 2023. B-Detection: runtime reliability anomaly detection for
MEC services with boosting LSTM autoencoder. IEEE Transactions on Mobile Computing
23(4):2599-2613 DOI 10.1109/TMC.2023.3262233.

Wang X, Liu Q, Pan Z, Pang G. 2020a. APT attack detection algorithm based on spatio-temporal
association analysis in industrial network. Journal of Ambient Intelligence and Humanized
Computing 19(12):1-10 DOI 10.1007/s12652-020-01840-3.

Wang Y, Ding Y, He X, Fan X, Lin C, Li F, Wang T, Luo Z, Luo J. 2020b. Novelty detection and
online learning for chunk data streams. IEEE Transactions on Pattern Analysis and Machine
Intelligence 43(7):2400-2412 DOI 10.1109/TPAMI.2020.2965531.

Wang W, Wang Z, Zhou Z, Deng H, Zhao W, Wang C, Guo Y. 2021. Anomaly detection of
industrial control systems based on transfer learning. Tsinghua Science & Technology
26(6):821-832 DOI 10.26599/TST.2020.9010041.

Zhou (2025), Peerd Comput. Sci., DOI 10.7717/peerj-cs.3066 29/31


http://dx.doi.org/10.24251/HICSS.2021.696
http://dx.doi.org/10.1007/s10462-023-10494-4
http://dx.doi.org/10.1155/2020/3673085
http://dx.doi.org/10.1109/JSAC.2019.2952181
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://dx.doi.org/10.1109/COMST.2019.2922584
http://dx.doi.org/10.1007/s10115-022-01765-7
http://dx.doi.org/10.1109/TPDS.2017.2766633
http://dx.doi.org/10.3390/s20226578
http://dx.doi.org/10.3233/IDA-140636
http://dx.doi.org/10.1109/JIOT.2022.3167005
http://dx.doi.org/10.48550/arXiv.2202.02721
http://dx.doi.org/10.1109/ACCESS.2019.2932769
http://dx.doi.org/10.1109/TMC.2023.3262233
http://dx.doi.org/10.1007/s12652-020-01840-3
http://dx.doi.org/10.1109/TPAMI.2020.2965531
http://dx.doi.org/10.26599/TST.2020.9010041
http://dx.doi.org/10.7717/peerj-cs.3066
https://peerj.com/computer-science/

PeerJ Computer Science

Wang C, Zhou H, Hao Z, Hu S, Li J, Zhang X, Jiang B, Chen X. 2022. Network traffic analysis
over clustering-based collective anomaly detection. Computer Networks 205(3):108760
DOI 10.1016/j.comnet.2022.108760.

Wu ), Wang W, Li Y, Luo H, Hu S, Li Y. 2024. An encrypted network traffic classification strategy:
combining locality-sensitive hashing with transformer encoder and CNN. In: 2024 IEEE 32nd
International Conference on Network Protocols (ICNP). Piscataway: IEEE.

Xiao Q, Cai Y, Cao Y, Chen S. 2023. Accurate and O(1)-time query of per-flow cardinality in
high-speed networks. IEEE/ACM Transactions on Networking 31(6):2994-3009
DOI 10.1109/TNET.2023.3268980.

Xiao Q, Chen S, Zhou Y, Luo J. 2020. Estimating cardinality for arbitrarily large data stream with
improved memory efficiency. IEEE/ACM Transactions on Networking 28(2):433-446
DOI 10.1109/TNET.2020.2970860.

Xiaolan W, Ahmed MM, Husen MN, Qian Z, Belhaouari SB. 2022. Evolving anomaly detection
for network streaming data. Information Sciences 608:757-777 DOI 10.1016/j.ins.2022.06.064.
Xing L, Demertzis K, Yang J. 2020. Identifying data streams anomalies by evolving spiking
restricted Boltzmann machines. Neural Computing and Applications 32(11):6699-6713
DOI 10.1007/s00521-019-04288-5.

Xu L, Ding X, Peng H, Zhao D, Li X. 2023. ADTCD: an adaptive anomaly detection approach
toward concept drift in IoT. IEEE Internet of Things Journal 10(18):15931-15942
DOI 10.1109/JI0T.2023.3265964.

Yang Z, Abbasi IA, Mustafa EE, Ali S, Zhang M. 2021. An anomaly detection algorithm selection
service for IoT stream data based on tsfresh tool and genetic algorithm. Security and
Communication Networks 2021(1):6677027 DOI 10.1155/2021/6677027.

Yang Y, Chen L, Fan C. 2021. ELOF: fast and memory-efficient anomaly detection algorithm in
data streams. Soft Computing 25(6):4283-4294 DOI 10.1007/s00500-020-05442-1.

Yang Y, Ding S, Liu Y, Meng S, Chi X, Ma R, Yan C. 2022. Fast wireless sensor for anomaly
detection based on data stream in an edge-computing-enabled smart greenhouse. Digital
Communications and Networks 8(4):498-507 DOI 10.1016/j.dcan.2021.11.004.

Yang T, Jiang J, Liu P, Huang Q, Gong J, Zhou Y, Miao R, Li X, Uhlig S. 2018. Elastic sketch:
adaptive and fast network-wide measurements. In: Proceedings of the 2018 Conference of the
ACM Special Interest Group on Data Communication. New York: ACM, 561-575.

Yin G, Li B, Yin Z. 2020. A distributed sensing data anomaly detection scheme. Computers &
Security 97(4):101960 DOI 10.1016/j.cose.2020.101960.

Yoo Y-H, Kim U-H, Kim J-H. 2019. Recurrent reconstructive network for sequential anomaly
detection. IEEE Transactions on Cybernetics 51(3):1704-1715
DOI 10.1109/TCYB.2019.2933548.

Yoon S, Lee Y, Lee J-G, Lee BS. 2022. Adaptive model pooling for online deep anomaly detection
from a complex evolving data stream. In: Proceedings of the 28th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining. New York: ACM, 2347-2357.

Yu W, Cheng W, Aggarwal CC, Zhang K, Chen H, Wang W. 2018. NetWalk: a flexible deep
embedding approach for anomaly detection in dynamic networks. In: Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York:
ACM, 2672-2681.

Yu Q, Jibin L, Jiang L. 2016. An improved ARIMA-based traffic anomaly detection algorithm for
wireless sensor networks. International Journal of Distributed Sensor Networks 12(1):9653230
DOI 10.1155/2016/9653230.

Zhou (2025), Peerd Comput. Sci., DOI 10.7717/peerj-cs.3066 30/31


http://dx.doi.org/10.1016/j.comnet.2022.108760
http://dx.doi.org/10.1109/TNET.2023.3268980
http://dx.doi.org/10.1109/TNET.2020.2970860
http://dx.doi.org/10.1016/j.ins.2022.06.064
http://dx.doi.org/10.1007/s00521-019-04288-5
http://dx.doi.org/10.1109/JIOT.2023.3265964
http://dx.doi.org/10.1155/2021/6677027
http://dx.doi.org/10.1007/s00500-020-05442-1
http://dx.doi.org/10.1016/j.dcan.2021.11.004
http://dx.doi.org/10.1016/j.cose.2020.101960
http://dx.doi.org/10.1109/TCYB.2019.2933548
http://dx.doi.org/10.1155/2016/9653230
http://dx.doi.org/10.7717/peerj-cs.3066
https://peerj.com/computer-science/

PeerJ Computer Science

ZareMoodi P, Kamali Siahroudi S, Beigy H. 2019. Concept-evolution detection in non-stationary
data streams: a fuzzy clustering approach. Knowledge and Information Systems 60(3):1329-1352
DOI 10.1007/s10115-018-1266-y.

Zeng Z, Huang R, Xiao R, Lin X, Zhang S. 2023a. Anomaly detection for high-dimensional
dynamic data stream using stacked habituation autoencoder and union kernel density estimator.
Concurrency and Computation: Practice and Experience 35(22):¢7718 DOI 10.1002/cpe.7718.

Zeng Z, Xiao R, Lin X, Luo T, Lin J. 2023b. Double locality sensitive hashing Bloom filter for
high-dimensional streaming anomaly detection. Information Processing & Management
60(3):103306 DOI 10.1016/j.ipm.2023.103306.

Zhang L, Zhao J, Li W. 2019. Online and unsupervised anomaly detection for streaming data using
an array of sliding windows and PDDs. IEEE Transactions on Cybernetics 51(4):2284-2289
DOI 10.1109/TCYB.2019.2935066.

Zheng Z, Jeong H-Y, Huang T, Shu J. 2017. KDE based outlier detection on distributed data
streams in multimedia network. Multimedia Tools and Applications 76(17):18027-18045
DOI 10.1007/s11042-016-3681-y.

Zhou X, Hu Y, Liang W, Ma J, Jin Q. 2020. Variational LSTM enhanced anomaly detection for
industrial big data. IEEE Transactions on Industrial Informatics 17(5):3469-3477
DOI 10.1109/T11.2020.3022432.

Zhou Z, Zhang D, Hong X. 2019. RL-Sketch: scaling reinforcement learning for adaptive and
automate anomaly detection in network data streams. In: 2019 IEEE 44th Conference on Local
Computer Networks (LCN). Piscataway: IEEE, 340-347.

Zhu R, Ji X, Yu D, Tan Z, Zhao L, Li J, Xia X. 2020. KNN-based approximate outlier detection
algorithm over IoT streaming data. IEEE Access 8:42749-42759
DOI 10.1109/ACCESS.2020.2977114.

Zou B, Yang K, Kui X, Liu J, Liao S, Zhao W. 2023. Anomaly detection for streaming data based
on grid-clustering and Gaussian distribution. Information Sciences 638:118989
DOI 10.1016/j.ins.2023.118989.

Zhou (2025), Peerd Comput. Sci., DOI 10.7717/peerj-cs.3066 31/31


http://dx.doi.org/10.1007/s10115-018-1266-y
http://dx.doi.org/10.1002/cpe.7718
http://dx.doi.org/10.1016/j.ipm.2023.103306
http://dx.doi.org/10.1109/TCYB.2019.2935066
http://dx.doi.org/10.1007/s11042-016-3681-y
http://dx.doi.org/10.1109/TII.2020.3022432
http://dx.doi.org/10.1109/ACCESS.2020.2977114
http://dx.doi.org/10.1016/j.ins.2023.118989
http://dx.doi.org/10.7717/peerj-cs.3066
https://peerj.com/computer-science/

	A survey of streaming data anomaly detection in network security
	Introduction
	Research background
	Articles selection for literature review
	Challenges and requirements in streaming data for anomaly detection
	Proposed classification method
	Study of literature and discussions
	Future directions and open research challenges
	Conclusions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


