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ABSTRACT
One of the most prominent neurodegenerative diseases globally is Alzheimer’s
disease (AD). The early diagnosis of AD is a challenging task due to complex
pathophysiology caused by the presence and accumulation of neurofibrillary tangles
and amyloid plaques. However, the late enriched understanding of the genetic
underpinnings of AD has been made possible due to recent advancements in data
mining analysis methods, machine learning, and microarray technologies. However,
the “curse of dimensionality” caused by the high-dimensional microarray datasets
impacts the accurate prediction of the disease due to issues of overfitting, bias, and
high computational demands. To alleviate such an effect, this study proposes a gene
selection approach based on the parameter-free and large-scale manta ray foraging
optimization algorithm. Given the dimensional disparities and statistical relationship
distributions of the six investigated datasets, in addition to four evaluated machine
learning classifiers; the proposed Sign Random Mutation and Best Rank
enhancements that substantially improved MRFO’s exploration and exploitation
contributed to efficient identification of relevant genes and to machine learning
improved prediction accuracy.

Subjects Artificial Intelligence, Computer Vision, Data Mining and Machine Learning,
Optimization Theory and Computation
Keywords Alzheimer’s disease, Gene selection, Manta ray foraging optimizer (MRFO), Sign
random mutation, Best rank, Dimensionality reduction

INTRODUCTION
Medical research has identified Alzheimer’s disease (AD), also known as senile dementia,
as the most common type of neurodegenerative disease that significantly impairs patient’s
capacity to perform daily activities. The development of intracellular neurofibrillary
tangles due to tau hyperphosphorylation, the loss of neuronal tissue caused by gliosis
proliferation, and the formation of extracellular amyloid plaques due to aberrant amyloid
beta accumulation are among the pathological characteristic abnormalities of AD
(Hüttenrauch et al., 2018). Reactive astrocyte morphology describes the molecular
alterations that cause the brain cells to exhibit significant morphological changes in
response to stressful conditions (Preman et al., 2021). In a healthy brain, astrocytes play
several roles, such as promoting neuronal metabolism, maintaining the blood-brain
barrier’s integrity, and maintaining the equilibrium of ions in the extracellular space
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(Siracusa, Roberta & Salvatore, 2019; Vasile, Elena & Nathalie, 2017). Despite its high
prevalence, Alzheimer’s disease is still one of most widely researched disease (Holtzman,
John & Alison, 2011; Rocca & Luigi, 2019). In recent years, the field of molecular biology
witnessed significant advancements due to integration of data mining and machine
learning techniques in microarray analysis, and particularly in the diagnosis and treatment
of molecular diseases. These computation approaches—such as rule mining, feature
selection, clustering analysis, machine and deep learning—assist the identification of
complex and intricate patterns in gene expression data. The application of these methods
has not only improved the diagnosis accuracy, prognosis assessment, and patient’s
tailored-treatment but also significantly advanced our knowledge of the diseases at
molecular level (Tanveer et al., 2020; Shakir & Brittany, 2022).

However, processing high-dimensional microarray datasets using machine learning
algorithms is surrounded by several challenges, such as overfitting and computational
complexity. The sparsity of high-dimensional data significantly reduces the prediction
accuracy and other performance metrics of learning models (Berisha et al., 2021).
Additionally, high dimensionality hinders the understanding of features impacts on
models and reduces model interpretability, particularly in complex models like deep
learning. To mitigate these issues, techniques for feature selection and dimensionality
reduction are essential; as they retain the relevant information while reducing noise and
redundancy, thereby enhancing prediction performance (Remeseiro & Veronica, 2019).
Given the obstacles associated with the curse of dimensionality in AD prediction and early
diagnosis, gene selection techniques are of great importance (Osama, Hassan &
Abdelmgeid, 2023).

Despite the growing body of research on gene selection of Alzheimer disease using gene
expression datasets, GSE. Several notable gaps and limitations persist in the reviewed
literature. For instance, the traditional statistical filtering methods (e.g., chi-square, mutual
information, fold-change, and p-value), dimensionality reduction techniques
(e.g., principal component analysis (PCA)), and sequential iterative selection
(e.g., minimum-Redundancy maximum-Relevance (mRMR)) often lack the capacity to
capture nonlinear and interactive gene relationships. The values—such as fold-change,
p-value, and the threshold of cumulative variance sum in PCA—are arbitrarily defined and
not sensitive to dataset-specifics, thereby can potentially exclude individual genes that are
biologically and clinically relevant to the disease. Furthermore, the utilization of
autoencoders transformation of input features into an abstract latent representation
eliminates any connection between output and original features, as such, obscures the
biological significance and analysis of relevant genes to the disease itself. While iterative
sequential selection methods—such as mRmR—can be effective in small datasets, they are
computationally intense and prone to suboptimal feature subsets in high-dimensional
spaces.

Moreover, utilization of single swarm warper-based feature selection method—in this
context, particle swarm optimization (PSO)—is inefficient to explore the huge feature
space of GSE datasets. Traditional single swarm optimization algorithms are ill-suited for
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large-scale optimization tasks, as they tend to prematurely converge, highly prone to local
optima, and their performance is dependent on carefully tuned parameters.

Identifying gene interactions, hidden patterns, and effectively exploring the huge feature
space in GSE Alzheimer datasets necessitate the use of sophisticated gene selection
methods due to the intrinsic complexity arising from the large number of genes in the
datasets. This study introduces a bio-inspired wrapper gene selection method based on the
large-scale and parameter-free manta ray foraging optimization algorithm (MRFO).
Accordingly, the aim is the potential reduction of Alzheimer’s datasets through effective
selection of relevant genes, thereby enhancing the predictive accuracy and aid in the early
focused treatment of AD.

The specific objectives of this study are:

. To evaluate MRFO wrapper-based gene selection method.

. To investigate the appropriate MRFO enhancements with emphasis on efficient
exploration of microarrays complex feature space and the selection of relevant genes
aimed at enhancing prediction of Alzheimer disease.

. To assess the performance of enhanced gene selection method using four machine
learning models.

For a guided reading, the rest of this article is arranged in sections, with “Related Work”
providing a thorough overview and analysis of the current state of the literature on
Alzheimer’s disease gene selection techniques. “Materials and Methods” provides the
background of microarray technology, data mining and machine learning approaches for
Alzheimer’s diagnosis, issues and challenges, and specifics of gene selection methods and
techniques. The wrapper-based gene selection method is then explained, after which the
manta ray foraging optimization algorithm, solution encoding, fitness function, and
proposed enhancements are detailed. In “Enhanced Manta Ray Algorithm”, the proposed
algorithm is evaluated and the achieved results are thoroughly analyzed. “Enhanced Manta
Ray Algorithm” reviews and compares the achieved results with reviewed literature. Last,
conclusion and limitations of this study are summarized in “Conclusion”.

RELATED WORK
Numerous studies investigated gene selection of GSE microarrays to enhance diagnosis of
Alzheimer’s disease. Studies emphasizing feature selection strategies and meta-heuristic
optimization algorithms will be the main focus of this literature review. Further, studies
that utilize datasets other than the GSE datasets employed in this study are excluded from
this review.

In consideration of the significant clinical applications, the identification of numerous
regulatory relationships based on experimental studies is often expensive and sometimes
unfeasible. A high-throughput co-expression network was proposed by Zheng, Changgui &
Huijie (2024) in which genes are chosen according to their average path length and
maximum connection to other genes. Through examination of gene expression data, the
study estimated the cross-correlations between gene pairs and prioritized them to identify
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the crucial value that splits the curve into two segments. As a result, modules are created
inside the resulting network, and the representative biomarker is the gene with the highest
degree and the shortest average path length. Applying this method to gene expression
patterns in AD patients reveals that most of the suggested biomarkers coincide with those
reported in the literature (Zheng, Changgui & Huijie, 2024). Finney et al. (2023) used
various machine learning algorithms to do a meta-analysis of the cerebellum and frontal
cortex of AD patients and healthy controls. Researchers contended that fold change,
p-values, or a combination of the two are typically used in the conventional approach to
identify genes that are differentially expressed. These methods have limits, though, and it is
unclear whether they will provide enough data to make solid inferences regarding
dysregulated genes that may be important for Alzheimer’s disease (Finney et al., 2023).
After applying principal component analysis (PCA) on more than 15,000 genes, the top
1,000 genes that showed the strongest correlation with the principal components were
chosen for additional study. STRING v11 was used to do additional analysis on these genes
to find gene-enrichment pathways and interaction networks. Thereafter, K-means
clustering was applied to further improve the identification of biologically significant gene
candidates by classifying genes into discrete network groups according to their
connections (Finney et al., 2023).

Ahmed & Suhad (2023) suggested a wrapper-based Nomadic People Optimizer (NPO)
for gene selection of Alzheimer’s disease microarray datasets. The study shows that, in
comparison to different selection methods, wrapper-based feature selection approaches are
more successful at reducing the dimensionality of the data, preserving just those aspects
that are directly related to the prediction model’s classification accuracy. With an
improved support vector machine (SVM) classification accuracy of 96% among other
metrics, the proposed technique significantly enhanced the model’s prediction of
Alzheimer disease (Ahmed & Suhad, 2023).

The likelihood of developing of Alzheimer’s disease in patients is significantly related to
the activities of glucose metabolism related genes (GMRGs). According to Wang et al.’s
(2023) study, abnormalities in glucose metabolism could act as early warning signs of AD.
Researchers found that eighteen GMRGs—like glycolysis, the tricarboxylic acid cycle, and
oxidative phosphorylation—to be strongly related to AD. The study identified 462
differentially expressed genes (DEGs) between AD and non-AD groups after DEGs
visualization using heat and volcano maps. Next, using biological function and pathway
analysis, weighted gene co-expression network analysis (WGCNA), gene ontology (GO),
and Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to further reduce the
set of selected genes to just 12 genes. The selected genes were evaluated with AUC of 0.94
(Wang et al., 2023).

Zhang et al. (2022) investigated the coregulation of transcription factors, such as TBP
and CDK7, and microRNAs by pathogenic genes linked to Alzheimer’s disease. The study
suggested multistep gene selection strategy that combines survival analysis, protein-to-
protein interaction (PPI) network development, and differential expression analysis
(Zhang et al., 2022). To increase the accuracy and usability of the data, the
K-neighborhood technique was first employed to fill in the missing data. The selected
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genes produced high area under the curve (AUC) values near 90% and revealed a
connection to 15 drugs that specifically target these important genes; these drugs are
mainly prescribed for a range of medical conditions, such as depression and pain
management (Zhang et al., 2022). In another study, a framework that uses gene expression
(GE) data to predict AD effectively was proposed by El-Gawady, BenBella & Mohamed
(2023). First, the study evaluates gene relevance using a variety of measures independently,
including mutual information (MI), chi-squared (v2), and analysis of variance (ANOVA).
Several ML algorithms were selected such as support vector machine (SVM), random
forest (RF), logistic regression (LR), and AdaBoost. Using a subset of 1,058 identified
genes, the SVMmodel performed the best out of all the evaluated models, with an accuracy
of 97.5% (El-Gawady, BenBella & Mohamed, 2023).

The study byMahendran et al. (2021) aimed to use the gene selection hybrid technique
based on gene expression data for efficient identification of relevant genes that frequently
contain thousands of features but a limited number of samples. The main aspect of the
suggested approach is the use of an improved deep belief network (IDBN) to improve the
classification of Alzheimer’s disease. The pipeline combines minimum redundancy and
maximum relevance (mRmR), wrapper-based particle swarm optimization (WPSO), and
autoencoders (AE). The suggested method outperformed conventional feature selection
methods like PCA and correlation-based feature selection (CBFS) with a classification
accuracy of 96.78% (Mahendran et al., 2021). Chihyun, Jihwan & Sanghyun (2020)
investigated use of deep neural networks, gene expression, and DNA methylation profiles
from diverse omics datasets to predict Alzheimer’s disease. First, two-phase gene selection
was applied to the heterogeneous omics datasets, which included differentially expressed
genes (DEG) and differentially methylated positions (DMP) (Chihyun, Jihwan &
Sanghyun, 2020). Chihyun, Jihwan & Sanghyun (2020) argued that conventional
techniques for feature selection, such as least absolute shrinkage and selection operator
(LASSO), Relief-F, and PCA can ensure the reduction of the number of features. However,
biological relevance is not guaranteed by these methods (Chihyun, Jihwan & Sanghyun,
2020).

Biomarkers of Alzheimer’s disease were investigated by Long et al. (2016) using two
novel feature selection techniques based on support vector machines (SVM): support
vector machine top forward selection (SVMTFS) and support vector machine forward
selection (SVMFS). The best-performing proteins were iteratively selected using SVMFS.
The process involved training an SVM model and evaluating its performance using leave-
one-out cross-validation (LOOCV) accuracy, thereby optimizing the set of biomarkers for
classification. On the other hand, SVMTFS chooses the next protein to be included from
this ranking list in a preset order, ranking every protein according to the LOOCV accuracy
of each SVM model. The diagnostic accuracy of both approaches was improved by
ensuring the selection of biomarkers that significantly aid in differentiating Alzheimer’s
patients from healthy individuals (Long et al., 2016).

Yao et al. (2019) work focused on using computational predictions and experimental
validation to identify blood biomarkers for Alzheimer’s disease (AD). The study predicted
possible blood-secretory proteins associated with AD using a classifier based on SVM and
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trained on secretory protein data (Yao et al., 2019). First, two GSE datasets were used based
on brain tissue from AD patients and healthy controls. The researchers employed the
Benjamini and Hochberg approach to further adjust for false discovery rate (FDR), and
considered probes with a p-value < 0.05. Following the mapping of the DEPs to their
corresponding genes, 2,754 differentially expressed genes were identified, 296 of which
were predicted to encode blood-secretory proteins essential for AD with AUC scores of
0.93 (Yao et al., 2019).

MATERIALS AND METHODS
The roadmap of the conducted research is detailed in this section, beginning with an
introduction to microarray technology and the use of machine learning and data mining in
Alzheimer’s disease diagnosis and the issues and challenges facing machine learning in
Alzheimer’s diagnosis and gene selection in biomedical applications. The section then
further details data preprocessing, selection of machine learning algorithms, evaluation
method, encoding techniques, and Manta Ray algorithm along with proposed
enhancements: random sign mutation, best rank, and hybrid boundary function.

Alzheimer disease and microarray technology
The field of genomics and molecular biology has been profoundly transformed because of
the advancements in RNA and DNA microarray technologies. Microarrays, also known as
DNA chips or biochips, are solid and compact platforms that are used to systematically
immobilize DNA sequences. The process starts with hybridization, in which these
immobile DNA sequences are allowed to interact with tagged RNA or DNA probes taken
from a sample of interest; fluorescent dyes often serve as labels. The microarray is scanned
to detect the fluorescent signals after removing any improperly attached probes. The
amount of nucleic acid sequence in the sample is directly reflected in the fluorescence
intensity at each location on the array, and this quantity correlates with expression level of
the corresponding gene (Bumgarner, 2013; Ehrenreich, 2006; Trevino, Francesco & Hugo,
2007). Figure 1 illustrates the process of creating a microarray chip for a normal cell
and another type of cancerous cell. From evaluation of gene expression profiles,
researchers can identify co-expressed genes by comparing expression patterns, then,
patterns are used to categorize biological samples based (Trevino, Francesco & Hugo, 2007;
Chatterjee & Nikhil, 2016). Furthermore, the study of the regulatory processes underlying
co-expression and the inference of genes’ functional relationship can be initiated from
co-expressed gene clusters. Gene expression patterns are then used as biomarkers in the
context of tumor classification to categorize cancers and other subtypes of malignancies
(Van Dam et al., 2018).

Machine learning and data mining techniques in AD diagnosis
Data mining techniques and machine learning algorithms have become one of the most
popular methods in microarray analysis. The integration of these methods has significantly
transformed microarray analysis and advanced the detection and treatment of molecular
diseases (Swanson et al., 2023). In the field of cancer diagnosis, for example, machine
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Figure 1 Steps of creating microarray chips. Full-size DOI: 10.7717/peerj-cs.3064/fig-1
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learning models have the potential to discover oncogenic mutations and predict patient
response to particular medicines, which allows for the development of individualized
treatment programs. Importantly, large volumes of microarray data can be analyzed
effectively using machine learning methods such as supervised learning, clustering
techniques, and regression (Pirooznia et al., 2008). Compared to standard clinical
approaches, machine learning algorithms can quickly and efficiently identify patterns and
discover complex relationships among different gene expression levels, since each
microarray measures the expression levels of hundreds of thousands of genes across
multiple samples and many patients (Pirooznia et al., 2008). In the area of specialized
medicine, this predictive ability is essential as treatment approaches are customized based
on an individual’s genetic profile (Vadapalli et al., 2022).

Issues and challenges facing machine learning in AD diagnosis
Although supervised learning and data mining approaches are widely adopted in many
fields, there are still many obstacles to overcome in microarray analysis using supervised
learning and data mining approaches, among which is the “curse of dimensionality”
(Crespo, 2022; Verleysen & Damien, 2005; Bach, 2017; Altman & Martin, 2018). This
phenomenon pertains to a group of issues that emerge in the processing of
high-dimensional datasets in machine learning and takes on particular significance when
dealing with datasets pertaining to microarray genes. In simple terms, high-dimensional
data become sparse with large feature dimensional space. This sparsity renders it difficult
to detect data patterns using machine learning algorithms, thereby leading to inaccurate
decisions. The risk of learning model overfitting is increased when there are more features
or genes compared to small number of data samples. In addition, the computational
complexity associated with processing a high number of dimensions as well as the delay in
making medical decisions causing delays in disease diagnosis and treatment. This can
result in poor classification performance of unseen test data samples due to weak learning
generalization of training samples. In other words, not all genes in the microarray vast
array of genes are relevant to the disease status. The inclusion of irrelevant features during
model training subsequently impacts the classification performance of the disease by the
learning model (Yu, Yue & Michael, 2011). Techniques for feature selection and
dimensionality reduction are crucial to mitigate these challenges (Zebari et al., 2020;
Velliangiri & Alagumuthukrishnan, 2019). On the one hand, feature selection ensures that
only the genes from the vast feature space that are pertinent to the predictive model are
retained. Consequently, increasing the model’s interpretability, decreasing overfitting, and
enhancing predictive accuracy. Furthermore, the computational complexity of microarray
datasets can be exponentially decreased due to reduction of data dimensionality. This
further contribute to less processing time particularly in sophisticated learning techniques
like ensemble and deep learning. On the other hand, selection of relevant genes can help
medical researchers in developing customized treatments that directly target certain genes
and also improve treatment efficiency through personalized medicine by aiding in the
customization of patients’ care based on their unique genetic makeup. Last, the
identification of gene biomarkers for any given disease can lead to a more specific and

Ahmed and Çevik (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3064 8/35

http://dx.doi.org/10.7717/peerj-cs.3064
https://peerj.com/computer-science/


accurate diagnosis of the disease (Van Cauwenberghe, Christine & Kristel, 2016; Loddo,
Buttau & Di Ruberto, 2022).

Challenges of gene selection in biomedical applications
In the realm of machine learning, numerous techniques have been developed for efficient
feature selection. These techniques, illustrated in Fig. 2, can be categorized into three
primary groups: filter, wrapper, and embedded (Chandrashekar & Ferat, 2014; Solorio-
Fernández, Carrasco-Ochoa &Martínez-Trinidad, 2020). The effectiveness of each strategy
differs depending on the dataset and employed classifier. For example, chi-square and
information gain are two filter-based techniques that are well-known for their computing
efficiency and scalability to large datasets. Filter-based methods, on the other hand, handle
features separately and disregard their interactions which leads to weak identification of
intricate necessary genes and biomarkers for prediction or treatment development of the
disease. Conversely, embedded techniques are considered to be more accurate than
filter-based techniques as the feature selection is integrated into the algorithmic training
process, allowing the learning model to internally evaluate different subsets of selected
features iteratively (Chandrashekar & Ferat, 2014; Solorio-Fernández, Carrasco-Ochoa &
Martínez-Trinidad, 2020).

In contrast, wrappers are a more advanced group of feature selection methods that
consist of a strong search strategy to explore the feature space for potential features.

Figure 2 Feature selection techniques. Full-size DOI: 10.7717/peerj-cs.3064/fig-2
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Wrapper-based methods are independent of learning models and the selection of search
strategies and learning models can be selected based on the specific case at hand (Nogales
&Marco, 2023; Dhal & Chandrashekhar, 2022). One significant obstacle of using wrappers
is the computational cost of searching through the vast search space of possible feature
combinations. The iterative and sequential nature of feature elimination—such as
exhaustive search, sequential forward and backward selection, and recursive feature
elimination—are computationally not suitable for large microarray datasets due to their
slow and weak capability to discover the optimal subset of features (Chandrashekar &
Ferat, 2014; Solorio-Fernández, Carrasco-Ochoa & Martínez-Trinidad, 2020; Dhal &
Chandrashekhar, 2022). Addressing this challenge requires the use of optimization
algorithms as search methods for wrappers-based feature selection which also improves
the search process. In contrast to the aforementioned strategies, the search process of large
microarray datasets can be optimized through the exploration and exploitation of
optimization algorithms like genetic algorithms (GAs), particle swarm optimization
(PSO), and ant colony optimization (ACO) which require less time and computational
resources. Additionally, the convergence to an optimal or near-optimal subset of features
with improved generalizability and performance of the employed machine learning model
is ensured by the strong and effective balance between exploration and exploitation of the
optimization algorithm (Dhal & Chandrashekhar, 2022; Kotsiantis, 2011). In summary,
optimization methods can effectively address issues and challenges related to search
strategies in wrapper methods, especially in scenarios involving large microarray datasets
with high-dimensional feature space (Kotsiantis, 2011; Regan et al., 2019; Li et al., 2017).

Data preprocessing
Six of the most frequently used Alzheimer datasets in the literature have been selected to
assess the optimization performance of the proposed gene selection algorithm. The
demographics of the datasets are from 31 to 624 in number of samples and from 16,379 to
54,674 in number of features, detailed in Table 1. All datasets are obtained from the
National Library of Medicine (NCBI) in comma-separated values (CSV) file format
(National Centre for Biotechnology Information, 2024). For each dataset, the patients’
meta-information, sample index and features details are removed, then data is organized in
an n�mmatrix, where n is the number of patients and m is the number of features. Last,

Table 1 Alzheimer GSE datasets.

Dataset name Dimension

Samples Features

GSE1297 31 16,379

GSE5281 161 54,674

GSE33000 624 39,279

GSE44768 329 39,279

GSE44770 388 39,279

GSE132903 195 42,178
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label encoding is applied to generate the target or class label of each sample and the column
is appended to the matrix, then converted and saved in CSV file.

Experiment, machine learning algorithms, and configuration
Alongside the necessary libraries, the experiment was conducted using the PyCharm
Community Edition integrated development environment (IDE) and Python version 3.9.
The evaluation was performed on a computer equipped with 16 GB of system memory and
a 2.4 GHz Intel Core i7 processor. To ensure consistency between the evaluation of the
proposed approach and reviewed literature on Alzheimer’s gene selection, four widely
utilized classifiers—random forest (RF), XGBoost Classifier, naïve Bayes (NB), and
SVM—were selected. A population size of 50 and a maximum of 100 optimization
iterations were used in the assessment of the proposed gene selection method. For each
evaluation, the training and testing are defined as 70% and 30%, respectively.

Manta ray gene selection of Alzheimer’s gene expression datasets
Given the difficulties caused by “curse of dimensionality” in predicting and diagnosing
Alzheimer’s disease, advance gene selection technique is necessary. The identification of
intrinsic gene interactions, hidden patterns, and effective exploration of the large feature
search space requires a sophisticated gene selection strategy due to the inherent complexity

Figure 3 Proposed gene selection model. Full-size DOI: 10.7717/peerj-cs.3064/fig-3
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of the large number of genes in the GSE Alzheimer datasets. While wrapper-based gene
selection methods are generally efficient in mitigating the impact of the “curse of
dimensionality”, their overall performance remains dependent upon the sensitivity of the
underlying machine learning algorithm. MRFO is a parameter-free large-scale
optimization algorithm potentially efficient to reduce the dimensionality of datasets and
mitigate the effect of “curse of dimensionality” in Alzheimer’s gene expression dataset. The
proposed approach in this study has the following key steps illustrated in Fig. 3.

Manta ray foraging optimization
MRFO is a metaheuristic optimization algorithm inspired by the foraging behavior of
manta rays (Zhao, Zhenxing & Liying, 2020). The algorithm is comprised of three main
foraging strategies: chain, cyclone, and somersault. Chain focuses on local search, while
cyclone foraging prioritizes global exploration as shown in Fig. 4. The algorithm is
parameter-free and computationally efficient, making it well-suited for large-scale
optimization tasks (Zhao, Zhenxing & Liying, 2020). In chain foraging, manta rays
establish a feeding chain when they arrange themselves head-to-tail; each one, except for

Figure 4 Manta ray exploration and exploitation foraging techniques. (A) Chain foraging, (B)
Cyclone foraging. Full-size DOI: 10.7717/peerj-cs.3064/fig-4
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the first, moves towards the manta ray in front of it. In other words, each manta ray adjusts
its position in relation to the entity immediately pre-ceding it as well as the current global
optimal solution. This chain foraging model can be expressed mathematically as follow
(Zhao, Zhenxing & Liying, 2020):

xdi t þ 1ð Þ ¼ xdi tð Þ þ r: xdbest tð Þ � xdi tð Þ� �þ a : xdbest tð Þ � xdi tð Þ� �
i ¼ 1

xdi tð Þ þ r: xdi�1 tð Þ � xdi tð Þ� �þ a : xdbest tð Þ � xdi tð Þ� �
i ¼ 2; . . . ; N

�
(1)

a ¼ 2 : r:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log rð Þj j

p
(2)

where xdi tð Þ is the position of the ith individual at time t in the dth dimension. r is a
random vector within the range of [0, 1], and a is a weight coefficient. xdbest tð Þ denotes the
plankton with the highest concentration. Cyclone foraging is the second foraging strategy.
Manta rays congregate when there is a high concentration of plankton, leading to spiral
formations due the alignment of tails and heads (Zhao, Zhenxing & Liying, 2020). This
behavior enhances global exploration by moving in spiral paths toward the best solution
while following the ray ahead. To simplify, cyclone foraging can be expressed
mathematically as:

xid t þ 1ð Þ ¼ xdbest þ r: xdbest tð Þ � xdi tð Þ� �þ b : xdbest tð Þ � xdi tð Þ� �
i ¼ 1

xdbest þ r: xdi�1 tð Þ � xdi tð Þ� �þ b : xdbest tð Þ � xdi tð Þ� �
i ¼ 2; . . . ; N

�
(3)

b ¼ 2er1
T�tþ1

T : sin 2pr1ð Þ (4)

where β is the weight coefficient, T is the maximum number of iterations, and r1 is a
random number within the range of [0, 1]. Last, being a random, regular, local, and cyclical
movement, somersault helps manta rays increase their food intake; the food is considered
as a pivot around point enabling Mantas to flip and attain new positions (Mirjalili &
Andrew, 2016). This behavior can be modeled mathematically as:

xdi t þ 1ð Þ ¼ xdi tð Þ þ S : r2 : x
d
best � r3 : xdi tð Þ� �

; i ¼ 1; . . . ; N (5)

where S is the somersault factor that determines the range of somersaults performed by
manta rays, with S ¼ 2, r2 and r3 are two random numbers within the range of [0, 1].

Solution encoding
Generally, for a given optimization task, the solution vector~p is composed ofN continuous
values, where N is equal to the Dimension of the problem. Each ~p represents a unique
solution within the population of solutions. The fitness function is used to evaluate each
individual solution while the optimization process explores and exploits the search space
and iteratively updates the population of solutions. In gene selection optimization, each
value in the solution vector ~p must indicate the “inclusion” or “exclusion” of the specific
gene from the dataset. Therefore, continuous values are transformed before the evaluation
step. During the transformation process, one of binary encoding functions are used and
continuous input values are transformed to a binary string of 0s and 1s, where 0 indicates
gene/feature exclusion while 1 indicates specific gene/feature inclusion. There are two
types of transformation functions, S-Shaped and V-Shape, each of which consists of a
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family of four functions, as shown in Table 2 and in Fig. 5 (Ghosh et al., 2021; Mirjalili &
Andrew, 2013). The specific details of the optimization problem at hand and the features of
the solution determine the choice of the specific function. When sensitivity to input
changes is required, the S-shaped transformation functions provide a progressive and
seamless transition from status 1 to 0 and vice versa. Whereas V-Shaped provides a very
sharp transformation decision that is required in situations where input changes require a
decisive response.

S-shaped transformation function S1 was selected in this work to encode the solution ~p
values into the binary form. The steps of the solution encoding/evaluation can be
summarized as follow:

1. The continuous values for every solution vector ~p in the population are encoded using
the S1 function before evaluation.

2. Then, the active set of genes is determined using the binary-encoded vector~p based on
the index of the 1s values. New dataset �D is then created with N × �M dimension, where

Figure 5 S-shaped and V-shaped transformation functions. Full-size DOI: 10.7717/peerj-cs.3064/fig-5

Table 2 S-shaped and V-shaped transformation functions.

Type Name Function

S-shaped S1 S xð Þ ¼ ð1= 1þ e�2xð Þ
S2 S xð Þ ¼ 1 = 1þ e�xð Þ
S3

S xð Þ ¼ 1 = ð1þ e

�x
2

� �
S4

S xð Þ ¼ 1 = 1þ e

�x
3

 !

V-shaped V1 V xð Þ ¼ erf
ffiffiffi
x

p
= 2ð Þ � xð Þj j

V2 V xð Þ ¼ tanh xð Þj j
V3 V xð Þ ¼ x =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p�� ��
V4

V xð Þ ¼ 2
p
arc tan

2
p
x

	 
����
����
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N denotes the number of samples and �M is the number of selected features, satisfying
�M � M; M is the original number of features.

3. The process of encoding the continuous values to binary is done using the following:

Encode xið Þ ¼ 1 if rand � S1 xið Þ
0 else

�
(6)

where rand is a random number ranged between [0,1]. When the value of a randomly
generated number is less than or equal to S1 xið Þ, an encoded value of 1 is assigned,
meaning the selection of the gene at ith index. A complete example of solution encoding
in this study is visualized in Fig. 6.

4. Then, five-fold stratified cross-validation is used to divide the newly formed �D into
five-folds of training and testing. Stratified cross-validation ensures the reduction of
variance and bias especially in training and testing of imbalanced datasets.

5. Classification performance is then evaluated.

6. Optimization fitness function is applied to the obtained performance metrics and a
fitness value is assigned to determine the effectiveness of the solution vector ~pi.

Evaluation metrics and fitness function
The nature of the optimization problem determines the set of performance metrics to be
evaluated. In this study, the classification accuracy of the learning algorithm after gene
selection is determined based on the mean accuracy of five-fold stratified cross-validation.
In the context of optimization, objectives or performance metrics are often combined into
a single score via optimization fitness function. Such that, the score is utilized to compare

Figure 6 Solution encoding steps in the proposed algorithm.
Full-size DOI: 10.7717/peerj-cs.3064/fig-6
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two solutions quantitatively based on how “fit” one solution is compared to another. Given
the nature of comparable or contradictory objectives, the weighted sum approach can
successfully navigate the trade-offs among several desirable performance metrics. Weights
are assigned to prioritize metrics in the objective function. Based on several reviewed
feature selection fitness functions (Brezočnik, Iztok & Vili, 2018; Naik, Venkatanareshbabu
& Damodar, 2020; Cinar, 2023), the formulated fitness function used in the proposed gene
selection approach is as follows:

f itness ¼ 1� accuracymeanð Þ þ w � SF
8F (7)

where accuracymean is the mean accuracy of five-fold stratified cross-validation, w is
features weight, SF is the number of selected features, and 8F is the number of features in
the dataset.

ENHANCED MANTA RAY ALGORITHM
MRFO algorithm (Algorithm 1) was extensively evaluated using the selected Gene
Expression Omnibus datasets to preliminary assess its gene selection performance. This
preliminary evaluation step is a crucial analysis step for the assessment of MRFO
performance in relation to both small and large feature spaces. The number of
optimization iterations were systematically altered (100, 300, and 500), different encoding
functions were utilized, and the outcomes were thoroughly examined. Despite the
relatively good classification accuracy among four evaluated classifiers, MRFO algorithm
demonstrated significant weaknesses in terms of the number of selected genes and
scalability efficiency. MRFO consistently attained high number of genes, averaging from
30% to—occasionally exceeding—45% of the full dataset feature set. For instance, MRFO
averaged—in ten independent runs—between 7,135 to 7,433 features out of 16,379 for
GSE1297 and nearly half of the total features for large GSE5281 dataset, 24,462 out of
54,674. A similar behavior was also observed for mid-size GSE44768, GSE44770 and
GSE33000 datasets (39,279 features), MRFO averaged feature selection between 17,978 to
18,222, 18,211 to 19,078, and 18,776 to 19,063, respectively. This suggests that MRFO lacks
effective and strong exploration-exploitation required for dimensionality reduction of GSE
datasets. Moreover, the algorithm’s inability to significantly reduce feature sets even when
optimization iterations was increased from 100 to 300 and 500 further highlights MRFO
weak exploration-exploitation of solution search space. Increasing the number of
optimization iterations—particularly in medical applications—is discouraged and often
avoided, as it leads to prolonged decision-making process undesired in time-sensitive
medical scenarios. It should also be noted that experimenting with different encoding
functions (S1 to S4) had negligible to marginal effect on MRFO selection behavior
performance, which further emphasize the irrelevance of explored solutions to the
classification of Alzheimer disease across four evaluated classifiers.

In light of the noted drawbacks and limitations, this study suggests three key
improvements to MRFO with focus on improving convergence and feature space
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exploration to enhance Alzheimer’s disease prediction accuracy. The proposed
improvements to MRFO in this study are highlighted in the following pseudocode
(Algorithm 1) and detailed in the subsequent sections.

Algorithm 1 Manta ray foraging optimizer (MRFO).

1 Input: Population size N , maximum number of iterations T
2 Output: xbest : set of best selected genes
3 Procedure:
4 Define fitness function f xð Þ: Eq. (7)
5 For every individual solution Indi in population POP, i ¼ 1 . . . . . .N , t ¼ 1:

Initialize each manta ray such that: xi ¼ LBþ rand UB� LBð Þ, where
i ¼ 1 . . . . . .Dim,

LB is the lower bound, UB is the upper bound, and Dim is the problem space.
Apply solution encoding: Eq. (6)
Evaluate objective function f xð Þ, such that f iti tð Þ = f Indi tð Þð Þ

6 Obtain the best f itbest solution: xbest .
7 FOR It = 1 to T Do
8 IF rand < 0.5 Then
9 Perform Cyclone Foraging from Section 4.2.1 and generate POPnew
10 Else:

Perform Chain Foraging from Section 4.1.1 and generate POPnew
For every Indi in POPnew, i ¼ 2 . . . . . .N
Apply Sign Random Mutation (SRM)

12 END IF
13 For every individual solution Indi in population POPnew, i ¼ 1 . . . . . .N :

Apply Hybrid Boundary Function (HBF)
Apply solution encoding: Eq. (6)
Evaluate objective function f xð Þ, such that f iti t þ 1ð Þ = f Indi t þ 1ð Þð Þ
IF f iti t þ 1ð Þ < f iti tð Þ; then Ind tð Þ ¼ Ind t þ 1ð Þ

END FOR
14 Perform Somersault Foraging on generated POPnew from Section 4.1.3
15 For every individual solution Indi in population POPnew, i ¼ 1 . . . . . .N :

Apply Hybrid Boundary Function (HBF)
Apply solution encoding: Eq. (6)
Evaluate objective function f xð Þ, such that f iti t þ 1ð Þ = f Indi t þ 1ð Þð Þ
IF f iti t þ 1ð Þ < f iti tð Þ; then Ind tð Þ ¼ Ind t þ 1ð Þ and

f iti tð Þ ¼ f iti t þ 1ð Þ
IF f iti t þ 1ð Þ < f itbest , then xbest ¼ Indi t þ 1ð Þ and f itbest ¼ f iti t þ 1ð Þ

15 END FOR
16 Apply Best Rank (BR) on POPnew
17 END FOR
18 Return xbest
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Enhancing MRFO exploration through best rank
Manta rays engage in a behavior known as chain foraging in which they swim towards
allocates plankton, as shown in Fig. 4A. The concentration of plankton at a given position
determines the attractiveness of that position. Population-based optimization methods are
hierarchical, whereby the population’s top solution vector,~p0, exerts the greatest influence
over the population. Such influence progressively diminishes for the subsequent solutions,
such as the second, third, and so forth. The position of each solution ~p is updated during
each iteration based on the current best solution and the solution ahead of it, such that the
solution of ~pi tð Þ is affected by the solution position ~pi�1 tð Þ.

The Solution Rank approach is a process of ranking solutions based on their estimated
fitness values from best to worst. The first proposed enhancement of MRFO in this work is
to improve exploration. The selection of multiple best solutions or pool of elite solutions
can increase the time complexity of an optimization algorithm which is critical especially
within the context of Alzheimer high-dimensional datasets (Tang et al., 2021). The
computational cost is greatly increased by the expansion of the combinatorial space of gene
subsets, thereby reducing the viability of implementing the solution. Therefore, the
proposed approach suggests only replacing the population’s first solution, or population
Head, with the population’s highest-ranked solution, or localbest , at each optimization
iteration such that Localbest 6¼ Globalbest and f itness of Localbest < PopulationHead . With
Localbest ¼ Globalbest , the second highest ranked solution is then used. Swapping Localbest
guarantees that the remaining population is guided to better search area at every iteration
and improves exploration while ensuring a minimal increase in time complexity.

Enhancing MRFO exploitation through sign random mutation
Pertaining to the MRFO cyclone foraging phase shown in Fig. 4B, a group of manta rays
forms long spiral foraging chain when mantas come across a cluster of planktons such that
every member of the swarm moves closer to the food source in a spiral pattern. This
strategy greatly improves exploitation as well as exploration. From rigorous evaluation of

Figure 7 Sign random mutation (SRM) example. Full-size DOI: 10.7717/peerj-cs.3064/fig-7
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MRFO, varying transformation function from S-Shaped to V-Shaped (refer to Table 2, S1
and V1) considerably decreased the number of selected genes while maintaining low
prediction accuracy measured at less than 60%. This drop in accuracy suggests that rather
than the quality of the selected genes, the selection was driven by the sharp definitive cutoff
transition of V1 V-shaped function. In addition, weak genes correlations and different
patterns in AD GSE datasets further contributed to the poor classification accuracy. Based
on the previous observations, a novel sign randommutation (SRM) is proposed to enhance
MRFO exploitation. The three main steps of the proposed method are as follows:

1. All active (refer to Fig. 7, i.e., has the value of 1) genes indexes from Globalbest solution
are grouped into an array called Activefeatures.

2. For a length of K, a set called Subfeatures of randomly selected indexes are chosen from
Activefeatures. Value of K is calculated as follow:

K ¼ int
length Activef eaturesð Þ

1þ r

	 

(8)

r is a random number generated between [0, 1].

Then, all the values in the solution vector~p are masked and the sign of the values indexed
in Subfeatures are changed by applying the following:

f or each gene index e in Subf eatures list:
~p½e� ¼ ~p½e�� � 1:

Guided by active genes in Globalbest , the values in solution ~p indexed at [5, 16, 1, 6] are
changed from [1.12, 1.71, −2.4, −2.1] to [−1.12, −1.71, 2.4, 2.1] as shown in Fig. 7. This is
translated to an increase or decrease in gene activation probability. For instance, the
probability of generating a random value r between [0, 1] such that r � S �2:4ð Þ is
significantly lower than that when r � S 2:4ð Þ, where S is the S1 transformation function.
Increasing probability raises the likelihood of the second gene being activated in the newly
derived solution. Conversely, the activation probability was much higher for the 6th gene
before applying SRM which implies higher likelihood of this gene being deactivated.

Hybrid boundary function
The values in the solution vector ~p generated by the optimization algorithm must always
be within predefined boundaries; the search space limits are set accordingly to ensure
solution validity. All values v in ~p must satisfy LowerBound � v � UpperBound and
exceeding these limits means that the value is must be either clamped to the nearest bound
or replaced with a new random value (Xu & Yahya, 2007;Huang & Ananda, 2005). In both
cases, the algorithm’s convergence is negatively influenced. First, based on the S-shaped
and V-shaped transformation methods, the new clamped value implies the feature is more
likely to be permanently active or inactive. Referring to Fig. 5, 8values < 4 are always
clamped to 4, and since the probability of Encode S1 4ð Þð Þ (see Eq. (6)) is more likely to be 1,
then, the set of all clamped values will consequently always be active. This assertion is also
valid for 8values < �4, such that, all clamped values will be excluded. It can be argued that
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the impact of the clamped approach decreases as the optimization progresses. However,
the validity of this assumption depends on several factors, such as the position of the
optimal solution in the search space, the current search direction of optimization
algorithm, and the algorithm’s strong balance of exploration and exploitation.

Second, the reinitialization of value vi in ~p to a completely new value may lead to an
interruption in search continuity caused by a change in the search direction towards the
optimal solution. And to greater extent, reducing exploration efficiency by revisiting the
previously explored solutions. As a result, a hybrid boundary function (HBF)
(Algorithm 2) is proposed in this work based on clamped and improved reinitializations
using genetic crossover between vi in ~p and vi in Globalbest to mitigate the effect of search
interruption. At early iterations of the optimization process, the first method is primarily
utilized given that coefficient < r, where r is a random number between [0, 1]. When the
value of optimization coefficient then increases in proportion to the optimization iteration
number iT , the improved reinitialization is more likely to be utilized. This selection was
necessary due to the dependency of the proposed improved reinitialization approach on
Globalbest . The optimization coefficient is calculated as follows:

Coef f icient ¼ Current Iteration
Max Iteration

: (9)

It should be emphasized that several variations of HBF were tested. For example, testing
Sign Clamping did not increase MRFO exploration and exploitation efficiency. The
performance declined as the optimization progresses and the observed changes in the
number of active genes were chaotic. Similarly, sign inverse reinitialization between vi in~p
and vi in Globalbest achieved marginal improvements during the early stages of
optimization. Further still, the algorithm didn’t efficiently reduce the number of genes as
well as failed to improve classification accuracy. This behavior was the result of the
contradictory behavior of proposed boundary function and sign random mutation, which

Algorithm 2 Hybrid boundary function.

1 Input: solution vector ~p
2 Procedure:
3 If coefficient < random r: # Clamping
4 For each value vi in ~p:
5 if vi is out of boundary: vi = nearest bound,

such that if vi � LowerBound, then vi = LowerBound.
and if vi � UpperBound, vi = UpperBound.

6 End For
7 Else: # Crossover
8 For each value vi in ~p:
9 if vi is out of boundary: vi = vGlobalbesti

10 End For
11 Return ~pnew
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caused chaotic search interruptions and subsequently decreased the efficiency of the
generated solutions. The pseudocode for the HBF function is shown below.

RESULTS
GSE1297
The performance metrics of four machine learning models—RF, SVM, eXtreme Gradient
Boosting (XGBoost), NB—before and after applying EMRFOGS gene selection are
depicted in Table 3. NB shows uniform performance across all performance metrics.
Comparing RF and SVM classifiers to NB and XGBoost classifiers, both performed
identically and had lower precision scores which suggests poor categorization with a high
rate of false positives. With the highest F1-score of 0.67 and highest scores in accuracy,
recall, and precision, the XGBoost classifier showed the best performance as it maintained
strong classification with an efficient balance between recall and precision.

After applying enhanced manta ray foraging optimizer gene selection (EMRFOGS), NB,
and XGBoost both attained perfect scores of 1.00 for each performance metric, including
AUC. Such behavior can be interpreted as either potential of highly effective gene selection
or possible overfitting of the classifier. Effective gene selection in this instance means that
the selected subset of genes offered thorough representation of the underlying
relationships of data that were essential for classifier prediction. EMRFOGS-RF and
EMRFOGS-SVM showed significant gain across all metrics, with increases of ~14%, 33%,
14%, and 75% in classifier accuracy, F1, recall, and precision, respectively, as detailed in
Table 3.

With efficient and balanced exploration and exploitation, EMRFOGS-RF reduced false
positives and negatives and enhanced the selection of relevant features throughout
optimization iterations and attained the second-highest AUC scores of 0.90. This can be
seen in Fig. 8 where the minimum number of selected features begins to converge from
early iterations, around iteration 20. The initial variability in the maximum number of
features indicates that EMRFOGS-RF actively exploring different solution dimension
(number of genes) then progressed gradually to exploitation. The improvement in
performance metrics across four distinct machine learning models generally shows the
effect of the suggested EMRFOGS gene selection on GSE1297; it illustrates the efficiency of
the suggested gene selection strategy in AD prediction. The models responded differently
in terms of improvements in performance measures. Therefore, it is not feasible to assess

Table 3 EMRFOGS performance and metrics measurements on the GSE1297 dataset with 16,379 features. The bold and underlined entries in
this table indicate the best value.

Model Measurements Before/After AUC scores (after) Selected features Globalbest convergence iteration

Accuracy F1 Recall Precision

NB 0.60/1.0 0.60/1.0 0.60/1.0 0.60/1.0 1.00 24 95

RF 0.70/0.80 0.57/0.76 0.70/0.80 0.48/0.84 0.90 4 95

SVM 0.70/0.80 0.57/0.76 0.70/0.80 0.48/0.84 0.52 5 83

XGBoost 0.70/1.0 0.67/1.0 0.70/1.0 0.67/1.0 1.00 6 91
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the generalized performance due to the possibility of overfitting in the NB and XGBoost
classifiers. However, RF can be considered the best classifier with only four selected genes.

GSE5281
From the obtained results depicted in Table 4, XGBoost and naïve Bayes performed equally
in all of classification metrics—similar to GSE1297 dataset—with NB achieving higher
precision scores of 0.88 compared to 0.87. With respect to classification accuracy, SVM
achieved superior performance attaining the highest accuracy, F1, and recall scores of 0.93,
and 0.94 in precision which further highlights its prediction competence of AD GSE
datasets. In contrast to GSE1297, RF outperformed both NB and XGBoost classifiers in all
metrics. SVM remained the top performing classifier with the highest scores among all
evaluated metrics after EMRFOGS gene selection—see Table 4—scoring 0.95 for all
performance metrics and 0.96 in precision. The classification results of RF and XGBoost
classifiers were similar, with RF attaining the highest AUC scores of 0.99. In addition,
EMRFODS gene selection significantly enhanced XGBoost prediction accuracy by ~7% in
comparison to RF. This indicates an improved classification sensitivity following gene
reduction. Although, NB was the least-performing classifier, it attained the lowest number
of genes—only 162 out of 54,674—in comparison to the other three evaluated classifier.

Table 4 EMRFOGS performance and metrics measurements on the GSE5281 dataset with 54,674 features. The bold and underlined entries in
this table indicate the best value.

Model Measurements before/after AUC scores (after) Selected features Globalbest convergence iteration

Accuracy F1 Recall Precision

NB 0.85/0.87 0.85/0.87 0.85/0.87 0.88/0.88 0.92 162 70

RF 0.89/0.91 0.89/0.91 0.89/0.91 0.90/0.91 0.99 238 72

SVM 0.93/0.95 0.93/0.95 0.93/0.95 0.94/0.96 0.98 165 89

XGBoost 0.85/0.91 0.85/0.91 0.85/0.91 0.87/0.91 0.98 220 89

Figure 8 Minimum and maximum number of features selected by EMRFOGS from GSE1297 using
RF classifier. Full-size DOI: 10.7717/peerj-cs.3064/fig-8
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This suggests that NB was not sensitive enough and converged near iteration 70 with no
further improvement in prediction accuracy, as shown in Fig. 9A. In comparison to SVM,
the classifier efficiently converged at iteration ~89 with 165 relevant genes to AD
prediction, see Fig. 9B. Overall, EMRFOGS performance in GSE5281 shows a strong
balance between exploration and exploitation, the algorithm effectively navigated the
complex feature-rich search space regardless of the utilized classifier.

GSE33000
The XGBoost classifier outperformed the rest of the classifiers in the initial evaluation
before gene selection, with an accuracy, F1, recall, and precision of 0.92 (see Table 5). RF
performed well as the second-best classifier with roughly 2.22% lower scores in all metrics
in comparison to XGBoost. SVM performance is approximately 7.19% worse than that of
RF (see Table 5) while NB was the worst-performing classifier. Further still, NB scores are
~29.57% worse than best-performing classifier in comparison to only ~9.41% when tested
on the GSE5281 dataset. The inefficient performance can be attributed to classification bias

Figure 9 Convergence of fitness minimum and maximum values of MERFOGS for GSE5281 dataset.
(A) Naive Bayes classifier, (B) SVM classifier. Full-size DOI: 10.7717/peerj-cs.3064/fig-9
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due to an increase in imbalanced data samples from 161 to 624 of GSE5281 and GSE33000,
respectively. Moreover, it is conceivable that a high number of samples added noise and
increased variability in complex relationships among data features, increasing the
complexity for NB to capture the underlying representation of the data. Performance
metrics for NB and SVM notably improved after EMRFOGS gene selection. Starting with
NB, the results in Table 5 show a considerable 18.30% increase across all metrics, with an
AUC of 0.93. The notable improvements highlight the EMRFOGS efficient gene selection
of AD GSE33000. The SVM classifier performs the highest across all metrics with an
improvement of approximately ~8.43% and ~15.47% in AUC scores. However, the
performance of both RF and XGBoost classifiers declined by more than 3% following
EMRFOGS gene selection. Given that RF primarily relies on features randomness to build
multiple decision trees, and XGBoost gradient boosting model construct trees in a stepwise
manner while attempting to reduce errors of previous step. Then, it possible to
hypothesized that EMRFOGS removed certain features that had influenced both classifiers’
superior performance before gene selection. With no further refinements of the Globalbest ,
RF and XGBoost converged earlier to local minima at approximately iteration number 64
and 70, respectively (shown Figs. 10A and 10B). This impact of performance can be
minimized through model’s hyper-parameters tuning or hybrid feature selection strategy
such as feature importance.

GSE44768
The classification performance of SVM on the GSE447768 dataset, as shown in Table 6,
outperformed all classifiers across all metrics. SVM’s generalized performance across all
the evaluated GSE datasets was the highest thus far. XGBoost efficient classification
signifies a close correlation to the number of samples of GSE datasets, as the number of
samples in GSE44768 is roughly half of GSE33000 dataset. Conversely, and as evident from
previously evaluated GSE datasets, NB remained the worst-performing classifier before
gene selection underperforming SVM by ~19.73%. This implies that the NB theoretical
model’s basic assumption—that every feature is statistically independent of every other
feature—could be the reason behind its poor performance. However, NB classifier
exhibited contrasting behavior as it significantly outperformed RF and SVM classifiers in
all parameters with scores of 0.97% and 0.98% of AUC, see Table 6. This improvement was
observed only on GSE44768 dataset which cloud imply that the selected set of genes by

Table 5 EMRFOGS performance and metrics measurements on the GSE33000 dataset with 39,279 features. The bold and underlined entries in
this table indicate the best value.

Model Measurements before/after AUC scores (after) Selected features Globalbest convergence iteration

Accuracy F1 Recall Precision

NB 0.71/0.84 0.72/0.84 0.71/0.84 0.74/0.84 0.93 70 41

RF 0.90/0.87 0.90/0.87 0.90/0.87 0.90/0.88 0.96 64 64

SVM 0.83/0.90 0.83/0.90 0.83/0.91 0.84/0.97 0.97 225 79

XGBoost 0.92/0.89 0.92/0.89 0.92/0.89 0.92/0.90 0.98 431 74
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EMRFOGS aligned with NB statistical model. Convergence behavior of EMRFOGS-NB
illustrated in Fig. 11 is consistent—in comparison to Figs. 9 and 10—which further
substantiates the previous analysis. The performance of SVM was marginally improved

Figure 10 Convergence of fitness minimum and maximum values of EMRFOGS for GSE33000
dataset. (A) Random forest classifier, (B) XGBoost classifier.

Full-size DOI: 10.7717/peerj-cs.3064/fig-10

Table 6 EMRFOGS performance and metrics measurements on the GSE44768 dataset with 39,279 features. The bold and underlined entries in
this table indicate the best value.

Model Measurements before/after AUC scores (after) Selected features Globalbest convergence iteration

Accuracy F1 Recall Precision

NB 0.76/0.97 0.76/0.97 0.76/0.97 0.77/0.97 0.98 119 23

RF 0.84/0.84 0.84/0.84 0.84/0.84 0.84/0.84 0.90 134 38

SVM 0.91/0.92 0.91/0.92 0.91/0.92 0.91/0.92 0.98 168 65

XGBoost 0.88/1.00 0.88/1.00 0.88/1.00 0.88/1.00 1.00 59 83
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marginally by 1%, in contrast to XGBoost perfect scores, which suggests overfitting
behavior similar to GSE1297 dataset.

GSE44770
SVM classifier performed the highest on GSE44770 dataset—388 samples and 39,279
genes—achieving accuracy scores of 0.89. The SVM classifier demonstrated consistency in
class separation and error minimization in high-dimensional AD GSE datasets. In
comparison to all previously tested GSE datasets, the classification performance and
generalization of four learning models on GSE44770 is relatively similar. As shown in
Table 7, a difference in efficiency of between the best and worst performing classifiers
(SVM and NB) is measured at ~5.95%. Applying EMRFOGS gene selection significantly
improved the performance of SVM by approximately 5.61% in accuracy, F1, and recall
metrics, and by ~4.44% in precision. The decline in RF performance shows similar
behavior to previously evaluated GSE33000 dataset. XGBoost, on the other hand, exhibited
a significant improvement of ~5.81% with no potential of overfitting in contrast to
GSE44768 and GSE1297.

Although, EMRFOGS gene selection improved NB performance by approximately
1.1%, NB remained the least effective classifier in all previously evaluated ADGSE datasets.
The decline in performance of RF classifier on the GSE44770 dataset was similar to its
performance on the GSE33000 despite retaining the lowest number of genes in both tests.
This behavior can be attributed to its classification insensitivity, the effect of other
objectives included in the optimization fitness function is diminished by the low number of
selected genes. Thereby, forcing convergence to local minima in early stages of
optimization and preventing the discovery of a new optimal solution with higher accuracy.
This is evident in comparing the fitness convergence curves of EMRFOGS-SVM and
EMRFOGS-RF in Figs. 12A and 12B, and to a greater extent, the evaluated datasets

Figure 11 Convergence of minimum and maximum fitness values of EMRFOGS for GSE44768 using
NB classifier. Full-size DOI: 10.7717/peerj-cs.3064/fig-11

Ahmed and Çevik (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3064 26/35

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE1297
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE44770
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE44770
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE33000
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE44768
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE1297
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE44770
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE33000
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE44768
http://dx.doi.org/10.7717/peerj-cs.3064/fig-11
http://dx.doi.org/10.7717/peerj-cs.3064
https://peerj.com/computer-science/


GSE3300, GSE44770, and GSE44768 have the same number of genes. This further
substantiates the RF insensitivity failed to guide EMRFOGS exploration-exploitation to the
optimal solution and slowed convergence to the Globalbest solution. Further exploration of
different fitness functions and/or RF parameter tuning is recommended.

Table 7 EMRFOGS performance and metrics measurements on GSE44770 dataset with 39,279 features. The bold and underlined entries in this
table indicate the best value.

Model Measurements before/after AUC scores (after) Selected features Globalbest convergence iteration

Accuracy F1 Recall Precision

NB 0.84/0.85 0.84/0.85 0.84/0.85 0.84/0.87 0.93 314 97

RF 0.86/0.84 0.86/0.84 0.86/0.84 0.86/0.84 0.93 73 95

SVM 0.89/0.94 0.89/0.94 0.89/0.94 0.90/0.94 0.98 212 82

XGBoost 0.86/0.91 0.86/0.91 0.86/0.91 0.86/0.91 0.97 383 60

Figure 12 Convergence of fitness minimum and maximum values of EMRFOGS for GSE44770
dataset. (A) SVM classifier, (B) random forest classifier. Full-size DOI: 10.7717/peerj-cs.3064/fig-12
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GSE1392903
The analysis of the GSE132903 dataset test results in Table 8 shows that RF attained the
highest performance. The reduced number of samples seems to have influenced the
performance of the RF classifier—despite the increase in number of genes from 39,279 in
the three previously evaluated GSE datasets to 42,178. The low number of samples in
GSE132903 contributed to RF classification efficiency. RF outperformed SVM by
approximately 12.5%. In contrast, NB scored 0.86 across all performance metrics as the
second-best classifier. SVM performed the worst with an accuracy of 0.77, while XGBoost
classifier remained competitive with a score of 0.84 across the performance metrics.

After gene selection, EMRFOGS-SVM retained the best-performing classifier across all
metrics with a performance improvement of ~18.18% and AUC score of 0.94. With no
evident increase in performance, XGBoost performed the same, maintaining similar
metrics even after gene selection. The number of data samples seems to significantly
impact the performance of XGBoost, overfitting was observed in smaller datasets while
larger GSE datasets necessitate a higher number of optimization iterations given that
Globalbest converges at higher optimization iteration in comparison to other classifiers. NB
classifier showed performance improvement of ~3.48% in addition to the solution fast
convergence to only 155 genes at iteration 60, as opposed to RF with 151 selected genes and
convergence iteration of 78.

SVM demonstrated a significant reduction in feature space, from 42,178 to just 46
(~99.8%). While NB, RF, and XGBoost maintained good balance between the convergence
rate and the number of selected genes, the latter performed slightly better in terms of
exploration as shown in Figs. 13A, 13B, and 13C, respectively. EMRFOGS-XGBoost was
more active in exploring different regions of the complex search space during the first ~40
optimization iteration.

Experiment results comparison with reviewed literatures
To further evaluate the gene selection performance of the proposed EMRFOGS method,
Table 9 presents a comprehensive comparison of obtained results and those reported in the
reviewed literature. This analysis seeks to contextualize our findings with the broader body
of AD gene selection research. In Table 9, the letter ‘M’ in the dataset column indicates that
the utilized GSE datasets in the study are merged together, while the column ‘SG’
represents the number of selected genes and term ‘HR’ indicates that only the highest

Table 8 EMRFOGS performance andmetrics measurements on the GSE132903 dataset with 42,178 features. The bold and underlined entries in
this table indicate the best value.

Model Measurements before/after AUC scores (after) Selected features Globalbest convergence iteration

Accuracy F1 Recall Precision

NB 0.86/0.89 0.86/0.89 0.86/0.89 0.86/0.90 0.93 155 60

RF 0.88/0.84 0.88/0.84 0.88/0.84 0.88/0.85 0.92 151 78

SVM 0.77/0.91 0.77/0.91 0.77/0.91 0.77/0.91 0.94 46 99

XGBoost 0.84/0.84 0.84/0.84 0.84/0.84 0.85/0.84 0.93 154 88
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ranked genes are considered after applying the gene selection method. Merging/integrating
multi-omics datasets holds several key advantages such as increasing the prediction
accuracy and improving the identification of molecular factors through techniques such as
clustering, gene ontology, and protein-to-protein interaction.

Figure 13 Minimum and maximum number of features selected by EMRFOGS from GSE132903
dataset. (A) Naive Bayes classifier, (B) Random Forest classifier, (C) XGBoost classifier.

Full-size DOI: 10.7717/peerj-cs.3064/fig-13
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CONCLUSION
Early diagnosis and treatment of Alzheimer’s disease are regarded as critical steps in
slowing its progression and improving patients’ outcome. However, it remains a significant
challenge primarily due to disease complex pathophysiological mechanism. The
applications of data mining and machine learning algorithms in Alzheimer’s microarray
analysis had significantly improved the disease diagnosis accuracy, prognosis assessment,
patient’s tailored-treatment, and advanced our knowledge of the diseases at molecular
level. However, processing high-dimensional microarray datasets using machine learning
is surrounded by several challenges, such as overfitting and computational complexity. The
curse of dimensionality, caused by the high-dimensional microarray datasets, is a major
cause of several challenges facing the applications of machine learning in disease diagnosis.
Hence, gene selection methods have been earmarked as a way of addressing such issue to
increase AD prediction.

Table 9 Comparative analysis of EMRFOGS with reviewed methods. The bold and underlined entries in this table indicate the best value.

Ref./Year Reviewed methods and their results Proposed
EMRFOGS

Dataset SG Scores Alg. SG Scores

Zheng, Changgui &
Huijie (2024)/2024

(Gene expression variance), Self-organizing map. GSE1297 16 ACC:
68

RF 4 ACC:
90

Finney et al. (2023)/
2023

Hybrid (PCA, STRING), decision tree CRAT M (GSE44770,
GSE33000)

HR 1000 – RF 73 ACC:
93

RF 64 ACC:
96

Ahmed & Suhad
(2023)/2023

Hybrid wrapper-based (Nomadic people
optimizer (NPO), Information gain), SVM

GSE5281 1,115 ACC:
96

NB 162 ACC:
92

GSE132903 1,100 ACC:
92

SVM 46 ACC:
94

GSE33000 322 ACC:
92

RF 64 ACC:
96

Wang et al. (2023)/
2023

Hybrid (WGCNA, GO, and KEEG), LASSO GSE132903 462 ACC:
94

SVM 46 ACC:
94

Zhang et al. (2022)/
2022

Hybrid (WGCNA, PPI, STRING), LASSO-COX regression GSE5281 959 ACC:
90

NB 162 ACC:
92

El-Gawady, BenBella
& Mohamed (2023)/
2022

Hybrid filter-based (Chi square, ANOVA, Mutual
information), SVM

M (GSE33000,
GSE44770,
GSE44768)

HR 1058 ACC:
97

RF 64 ACC:
96

RF 73 ACC:
93

XGB 59 ACC:
1.0

Mahendran et al.
(2021)/2021

Hybrid filter-wrapper (mRmR, Particle swarm algorithm
(PSO), Autoencoder (AE)), Improved deep belief network
(IDBN)

GSE5281 11 ACC:
96

NB 162 ACC:
87

Chihyun, Jihwan &
Sanghyun (2020)/
2020

Hybrid (Differential gene expression, differential methylated
position), deep neural network (DNN)

M (GSE33000,
GSE44770)

35 ACC:
70

RF 64 ACC:
87
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In this study, a wrapper-based method known as enhanced manta ray foraging
optimization gene selection (EMRFOGS) algorithm was introduced to efficiently explore,
identify gene relationships patterns, and reduce dimensional space of Alzheimer’s gene
expression datasets. Evaluations showed that the enhanced MRFO algorithm with sign
random mutation, best rank, and hybrid boundary function significantly reduced the
number of genes and improved prediction accuracy. Among the four evaluated
classifiers, SVM consistently demonstrated high classification sensitivity and attained the
highest classification metrics after the application of EMRFOGS gene selection method.
This shows SVM strong adaptability to different complex and high-dimensional gene
expression datasets. In contrast, the XGBoost classifier showed signs of overfitting in two
datasets and marginal improvements observed in two others. Moreover, the number of
selected genes was higher in comparison to other classifiers, despite achieving nearly
similar iteration of convergence. This variability suggests that EMRFOGS-XGBoost
requires extended optimization iterations (more than 100 iteration) and careful
XGBoost hyperparameters tuning. Further still, naïve Bayes performance was also highly
unstable and strongly dataset-dependent with signs of overfitting in one instance, which
can be attributed to model’s inherent assumption that features are statistically
independent. Lastly, the overall performance of random forest appeared to be
influenced by the number of samples in the dataset at hand. Nevertheless, RF remained
competitive—performing comparably to or even better—to SVM and XGBoost in several
instances, with two scenarios where the classifier attained the lowest number of selected
genes.

Despite the efficient gene selection performance of the proposed EMRFOGS algorithm,
three main limitations require further investigation. First, the study examined only a single
transformation function (S1). In general, transformation functions can either restrict or
enhance algorithm’s ability to capture diverse feature relationships and patterns. Hence,
exploring transformation strategies is essential to thoroughly assess the proposed
algorithm’s performance. Second, gene expression profiles vary significantly from one
disease to another; therefore, it is challenging to determine whether the obtained efficiency
and improvements in classification metrics are maintained for diseases beyond the context
of Alzheimer disease. Therefore, evaluation of EMRFOGS on other diseases such breast or
colon cancer is essential. Last, the evaluation in this study is limited to the dimensions of
the evaluated gene expression datasets without scalability performance evaluation.
Therefore, the proposed EMRFOGS algorithm may encounter significant performance
degradation in real-world big data biomedical applications.

Last, several improvements are encouraged in future research, such as the integration of
genes’ biomedical knowledge and protein-to-protein interaction data as a preprocessing
step or in the evaluation of the fitness function. Additionally, adaptive penalty function to
eliminate weak solutions and hyperparameters tuning of classification models may aid in
improving convergence speed and reduce the risk of overfitting.
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