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ABSTRACT
In image recognition tasks, subjects with long distances and low resolution remain a
challenge, whereas gait recognition, identifying subjects by walking patterns, is
considered one of the most promising biometric technologies due to its stability and
efficiency. Previous gait recognition methods mostly focused on constructing a
sophisticated model structure for better model performance during evaluation.
Moreover, these methods are primarily based on traditional convolutional neural
networks (CNNs) due to the dominance of CNNs in computer vision. However,
since the alternative form of Transformer, named Vision Transformers (ViTs), has
been introduced into the computer vision field, the ViTs have gained strong attention
for its outstanding performance in various tasks. Thus, unlike previous methods, this
project introduces two Transformer-based methods: a completely ViTs-based
method GaitTriViT, and a Video Vision Transformer (Video ViT) based method
GaitVViT. The GaitTriViT leverages the ViTs to gain more fine-grained spatial
features, while GaitVViT enhances the capacity of temporal extraction. This work
evaluates their performances and the results show the still-existing gaps and several
encouraging outperforms compared with current state-of-the-art (SOTA),
demonstrating the difficulties and challenges these Transformer-based methods will
encounter continuously. However, the future of Vision Transformers in gait
recognition is still promising.

Subjects Artificial Intelligence, Computer Vision, Data Mining and Machine Learning, Emerging
Technologies, Security and Privacy
Keywords Gait recognition, Vision Transformer, Video ViT, Spatial-temporal representation
extraction, Silhouette, Biometrics

INTRODUCTION
Gait is defined as the physical and behavioral biological characteristics exhibited by a
human when walking upright, and it can be used to describe an individual’s walking
pattern. Gait recognition is the technology that identifies individuals based on their distinct
walking patterns. Whilst other biometric features, such as faces, fingerprints and irises, can
be used for identification purposes, the superiority of gait lies in its ability to be easily
captured from a distance and the fact that it can be carried out without any subject
cooperation or contact for data acquisition (Nixon & Carter, 2006). This makes gait
recognition highly promising in real-world applications.

Gait recognition is an attractive method of identification. For instance, many video
surveillance systems are only capable of capturing low-resolution video in suboptimal
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lighting conditions. In the case of identifying bank robbers, they may wear masks to
conceal their faces, gloves to prevent the capture of fingerprints, and hats to conceal hair
and DNA. However, they invariably need to walk or run, which can be easily captured by
gait analysis. In such scenarios, gait recognition emerges as a pivotal method for automatic
identification (Makihara, Nixon & Yagi, 2021).

Research in the field of gait recognition is currently undergoing a transition from the
evaluation stage to the application stage, with the potential for utilization in a variety of
contexts, including forensics, social security, immigration control, and video surveillance.
In several criminal cases, gait recognition has been adopted as evidence for conviction,
underscoring its significance in legal proceedings. A notable example can be found in a
2011 forensic study that utilized gait features to provide evidence for identification
(Bouchrika et al., 2011). Furthermore, there is a prevailing sentiment within the judicial
system that gait analysis holds considerable potential as a valuable investigative tool
(Larsen, Simonsen & Lynnerup, 2008). In Japan, a gait verification system for criminal
investigation has been developed and is currently undergoing a trial phase by the National
Research Institute of Police Science (Iwama et al., 2013). The biometric tunnel proposed by
Seely et al. (2008) led to the first live demonstration of gait as a biometric and may still be
the most promising future route of gait recognition in deployment, such as access control.
The first commercial software for gait recognition ‘Watrix’ was released in Oct. 2018 and
was developed by the Institute of Automation, Chinese Academy of Sciences (CASIA). The
software can accept two videos from users, one of which is used as a gallery and the other as
a probe. The software then produces a report of the match result.

The primary objective of this undertaking is the acquisition of authentic, effective
and distinctive representations from target data, yet the endeavor faces numerous
challenges in practical applications for a multitude of reasons. These include self-occlusion,
viewing angles, walking status and carrying conditions such as the lugging of a
bag (Fan et al., 2023; Sepas-Moghaddam & Etemad, 2022; Wan, Wang & Phoha, 2018).
As a task with extensive application prospects, these challenges urgently need to be
addressed.

A plethora of gait recognition methods have been developed, including Gait Energy
Image (GEI) byHan & Bhanu (2005), GaitSet, GaitPart, and GaitGL (Chao et al., 2018; Fan
et al., 2020; Han & Bhanu, 2005; Lin et al., 2022). These methods have been shown to
enhance the performance of traditional convolutional neural network (CNN) and
recurrent neural network (RNN) architectures (Fan et al., 2023; Sepas-Moghaddam &
Etemad, 2022). They utilize more sophisticated structures and deeper neural network
layers to achieve improved performance in extracting representative features. This
approach is particularly popular given the predominance of CNN-based methods in
the domain of computer vision, where they have achieved notable success in
image and video tasks that were previously unattainable for deep neural networks
(Dosovitskiy et al., 2020).

However, the introduction of Vision Transformer (ViT) methods by Dosovitskiy et al.
(2020) has recently resulted in remarkable advancements in a range of tasks, including
object detection, image segmentation, and image classification (Carion et al., 2020;
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Chen et al., 2021;Dosovitskiy et al., 2020;Hong et al., 2022), and researchers are continually
enhancing the performance, proposing many advanced novel architectures, e.g., Swin
Transformer by Liu et al. (2021) and VideoMAE by Tong et al. (2022), to endow ViT with
more capabilities and potential. The multi-head attention mechanism, a distinctive feature
of ViT, enables the acquisition of intricate spatial features at the frame level in video-based
recognition tasks, a capability often compromised by down-sampling operations in
CNN-based methods (Alsehaim & Breckon, 2022).

The integration of patch division and multi-head attention in ViT not only preserves the
capacity to extract features from small regions but also facilitates the capture of long-range
dependencies, a capability that is essential for gait recognition tasks that emphasize the
simultaneous consideration of both local and global features (Hou et al., 2022).
Furthermore, the adoption of a patch-based approach, where frames are regarded as
patches subject to changes in scale, enables the fundamental ViT structure to attain
sequence-level temporal attention. This sequence-level temporal attention, exemplified by
the Video Vision Transformer (VViT), has been shown to be advantageous for gait
recognition tasks (Arnab et al., 2021; Liu et al., 2021;Neimark et al., 2021). This article thus
presents two customized methods that leverage Vision Transformer technology to address
the gait recognition task.

The motivation behind this study stems from the desire to examine the impact of
incorporating ViT into conventional gait recognition tasks and to achieve superior
performance in comparison to state-of-the-art methods. To this end, the following works
were undertaken.

This article introduces two Transformer-based gait recognition models: GaitTriViT and
GaitVViT. GaitTriViT consists of a backbone for frame-level feature extraction, followed
by two parallel Transformer-based branches. The local part spatial branch is designed for
the extraction of fine-grained set-level features in local regions, while the global temporal
branch is built for the extraction and aggregation of global features with temporal attention
(Fu et al., 2019; Rao et al., 2018; Zhang et al., 2020). The final part of the model is multiple
heads for classification, and then a fusion loss function is used to optimize the model. The
technology employed includes the Vision Transformer (Dosovitskiy et al., 2020) and
temporal clip shift and shuffle (TCSS) by Alsehaim & Breckon (2022). GaitVViT adopts the
technology from GaitGL (Lin et al., 2022) to construct the backbone structure, and the
backbone is connected to a Video Vision Transformer Network to build the final structure
(Arnab et al., 2021; Neimark et al., 2021). The Video Vision Transformer then models the
features along the temporal dimension, generating the final features and predicted labels
(Arnab et al., 2021; Neimark et al., 2021). The proposed methods are tested on two popular
benchmarks: CASIA-B and OUMVLP (Takemura et al., 2018; Yu, Tan & Tan, 2006).

Portions of this text were previously published as part of a thesis (https://theses.gla.ac.
uk/84475/1/2023ShengMSc%28R%29.pdf)

Overall, in this work, several contributions are made as shown below:
A customized Transformer-based method GaitTriViT leveraging three ViT blocks

parallelly. The global and local features are both emphasized, along with the combination
of spatio-temporal attention.
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More than position embedding, the camera angle and walking status of subjects from
different frame sequences are also emphasized and embedded, which are intended to
enhance the robustness of gait recognition when facing challenges e.g., cross-view and
multiple walking status.

A customized method GaitVViT uses a Video Vision Transformer as an inherent
aggregator regarding gait data as frames in order not set. Emphasizing the idea of
sequence, the method is dedicated to enhancing the temporal modeling performance over
the common framework.

The evaluation of proposed methods on two popular benchmarks and the comparison
to state-of-the-art indicate the challenges and potential for a Transformer-based model in
gait recognition tasks.

RELATED WORKS
In recent research, gait recognition methods can be broadly categorized into two main
classes: model-based and appearance-based (Fan et al., 2023, 2022; Hou et al., 2022; Santos
et al., 2023). Model-based methods estimate the underlying human body structures from
raw data and use them as input e.g., 2D/3D poses and the SMPL model (Cao et al., 2016;
Liao et al., 2020; Loper et al., 2015; Martinez et al., 2017; Roy, Sural & Mukherjee, 2012).
For example, GaitPT by Catruna, Cosma & Radoi (2024) and GaitFormer by Cosma &
Radoi (2022) leverage pose estimation skeletons to capture unique walking patterns
through transformer architecture, achieving remarkable outcome. In contrast,
appearance-based methods favor directly extracting feature representations of human
walking patterns from gait silhouettes. Due to the challenges of gait recognition tasks,
which often involve long distances and low resolutions (Nixon & Carter, 2006), recent
studies have emphasized the practicality of appearance-based methods for their robustness
(Fan et al., 2022).

Person re-identification (Re-ID) tasks work similarly to gait recognition. In Re-ID tasks,
when being presented with a person-of-interest (query), the method tells whether this
person has been observed in another place (time) by another camera. From the perspective
of computer vision, the most challenging problem in Re-ID is how to correctly match two
images of the same person under intensive appearance changes, such as lighting, pose, and
viewpoint (Zheng, Yang & Hauptmann, 2016). In other words, Gait Recognition can be
regarded as a subset of person Re-ID leveraging gait as input. There are many
Transformer-based methods have been proposed, e.g., VID-Trans-ReID by Alsehaim &
Breckon (2022) and TransReID by He et al. (2021). The shuffle operation on the feature
map and the choice of loss functions introduced in these methods also served as
inspiration in this article.

Among the appearance-based gait recognition approaches, the way of feature extraction
can be discussed from three perspectives: Spatial, Temporal, and Transformer.

Spatial feature extraction
In gait recognition research, the introduction of deep convolutional neural networks was
pioneered byWu et al. (2017), they studied an approach to gait-based human identification
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via similarity learning by deep CNNs, aiming to recognize the most discriminative changes
of gait patterns which suggest the change of human identity with a pretty small group of
labeled multi-view human walking videos.

Subsequently, GaitSet, proposed by Chao et al. (2018) adopted the strategy of dividing
feature maps into strips from prior person re-identification research, enhancing the
description of the human body. It has been adopted by many following researchers ever
since; GaitPart introduced by Fan et al. (2020) pushes forward the part-based concept
further, presenting a part-dependent approach, they argued that the part-based schemas
applied in gait recognition should be part-dependent rather than part-independent,
because despite there are significant differences among human body parts in terms of
appearance and moving patterns in the gait cycle, it is highly possible that different parts of
human body share the common attributes, e.g., color and texture. Thus, the parameters are
designed part-dependent in FConv (focal convolution) layers to generate the fine-grained
spatio-temporal representations; GaitGL developed by Lin, Zhang & Yu (2020), Lin et al.
(2022) elaborated the disadvantage of extraction from either global appearances or local
regions of humans only. They argued the representations based on global information
often neglect the details of the gait frame, while local region-based descriptors cannot
capture the relations among neighboring regions, thus reducing their discriminativeness.
Thus, they effectively combined global visual features and local region details,
demonstrating the necessity to address both aspects simultaneously; SMPLGait by Zheng
et al. (2022) aims to explore dense 3D representations for gait recognition in the wild.
Leveraged the human body mesh to acquire three-dimensional geometric information,
they proposed a novel framework to explore the 3D skinned multi-person linear (SMPL)
model of the human body for gait recognition; MetaGait designed by Dou et al. (2023)
argued that there are still conflicts between the limited binary silhouette and numerous
covariates with diverse scales. Their model can learn an omni-sample adaptive
representation by injected meta-knowledge in a calibration network of the attention
mechanism, which could guide the model to perceive sample-specific properties; also (Fan
et al., 2022), in their code repository OpenGait, drew insights from previous state-of-the-
art methods and introduced GaitBase, which achieved excellent results. These studies often
stack deeper convolutional layers or complex architecture to capture fine-grained, more
robust, and discriminative features, to meet the various challenges of gait recognition tasks.

Temporal feature aggregation
The temporal modeling has consistently remained a significant focus in gait recognition
tasks due to the inherent periodicity of walking patterns in the time dimension, i.e., gaits
are repeating loops. Presently, there are three popular directions in existing research: 3D
convolutional neural network (3DCNN)-based, Set-based, and LSTM-based approaches.

Among 3DCNN-based methods, Wolf, Babaee & Rigoll (2016) and Tran et al. (2015)
directly employ 3DCNN to extract spatio-temporal features from sequential data. They
indicated that 3D Convolutional Networks are more suitable compared to 2D and a
homogeneous architecture with small [3, 3, 3] convolution kernels in all layers is among
the best performing architectures for 3D Convolutional Networks. However, this approach
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often encounters training difficulties and yields suboptimal performance; set-based
methods view frames within a cycle as an unordered set since humans can easily identify a
subject from a shuffled gait sequence. Furthermore, due to the short duration of each gait
cycle, long-range dependencies and duplicate gait cycles are considered redundant. Take
GaitSet, for example Chao et al. (2018). In contrast to prior gait recognition methods which
utilize the frames of either a gait template or a gait sequence, they argued that the temporal
information is hard to preserve in the template, while the sequence keeps extra
unnecessary sequential constraints and thus has low flexibility. So, they present a novel
perspective regarding gait as a set consisting of independent frames. Their method is
immune to permutations of frames and can naturally integrate frames from different
videos under different scenarios. These set-based methods typically study spatial features
frame by frame and then perform temporal aggregation at the set level. On the other hand,
LSTM-based methods like GaitNet by Zhang et al. (2019) argue that for each video frame,
the current feature only contains the walking pose of the person in a specific instance,
which can share similarity with another specific instance of a very different person.
Therefore, modeling its change is critical. That is where temporal modeling architectures
like the recurrent neural network or long short-term memory (LSTM) work best. They use
a three-layer LSTM network to extract ordered sequence features. These LSTM-based
methods are capable of capturing features between consecutive frames, often yielding
slightly better performance. However, they lack efficiency and robustness to noise;
therefore, many researchers still prefer set-based approaches.

Attempts with transformer
Multiple works have tried to tackle the gait recognition task by introducing the Vision
Transformers (ViTs) (Dosovitskiy et al., 2020). Since the ViTs are more compact in
contrast to a multi-layer CNNs when they need to achieve similar performance, and ViTs
are full of potential in the computer vision field. For example, Gait-ViT by Mogan et al.
(2022) emphasized the lack of attention mechanism in Convolutional Neural Networks
despite their good performance in image recognition tasks. The attention mechanism
encodes information in the image patches, which facilitates the model to learn the
substantial features in the specific regions. Thus, this work employs the Vision
Transformer (ViT) integrated attention mechanism naturally. However, they used the
gait energy image (GEI) to model the time dimension by averaging the images over the
gait cycle; Pinić, Suanj & Lenac (2022) proposed a self-supervised learning (SSL)
approach to pre-train the feature extractor, which is a Vision transformer architecture
using the DINOmodel to automatically learn useful gait features (Caron et al., 2021; Cui &
Kang, 2022) proposed GaitTransformer. They used a multiple-temporal-scale transformer
(MTST), which consists of multiple transformer encoders with multi-scale position
embedding, to model various long-term temporal information of the sequence.
Furthermore, e.g., Yang et al. (2023) and Zhu et al. (2023) also explore the vision
transformer in gait recognition. However, the transformer-based methods have not
outperformed CNN-based methods on the popular testing benchmarks and other
challenging in-the-wild gait datasets (Fan et al., 2023).
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PROPOSED METHODS
Introduction
Having studied the previous works, two transformer-based Gait Recognition methods are
proposed: GaitTriViT and GaitVViT. GaitTriViT integrates the strengths of ViT and
incorporates excellent ideas from previous works and recent advancements in related
fields. It places emphasis on both global and local regions, considering both temporally and
spatially. Furthermore, several modifications are also made in this work, which differs
from the common gait recognition frameworks. GaitVViT enhances the temporal
modeling ability of a common framework leveraging a Video Vision Transformer (VViT),
which works as a novel temporal pooling (TP) module.

Common framework
Recent studies indicate a common framework in various gait recognition tasks (Fan et al.,
2023), as shown in Fig. 1. This framework abstracts complex structures into multiple
modules, omitting internal details. The backbone maps the input gait sequence to features,
typically used to extract frame-level spatial information. The TP module then aggregates
feature maps along the time dimension, with operations e.g. max pooling, RNNs (Fan
et al., 2020; Iwama et al., 2013; Tran et al., 2021).

Subsequently, the horizontal pooling (HP) module divides the feature map into several
different parts in the horizontal direction, in line with the part-dependent concept
introduced by Fan et al. (2020) and processes them independently. The Head may include
several fully connected layers to obtain predicted labels, and it may also have a batch
normalization neck (BNNeck) to map the features to different spaces before calculating the
loss (Luo et al., 2020). Finally, both triplet loss and cross-entropy loss are used to optimize
the model simultaneously (De Boer et al., 2005; Hermans, Beyer & Leibe, 2017; Hoffer &
Ailon, 2015; Rubinstein & Kroese, 2004).

GaitTriViT
Pipeline
The common framework of gait recognition often apply the temporal pooling (TP) module
and horizontal pooling (HP) module serially in model, which leads to the TP module may
inevitably lose some low-rank features affecting the model performance, our method treats
the original serial TP and HP modules as two separate and parallel branches, providing
more potential to preserve refined patterns in different dimensions, as shown in Fig. 2. The
overall structure can be divided into several modules, including the backbone, local part
spatial branch, global temporal branch, BNNeck head, and optimizer (Luo et al., 2020).
Aligned silhouettes are fed into the Transformer-based backbone first, after the feature
extraction, the feature maps go separately into two parallel branches. The local part spatial
branch works to extract the spatial features focused on different local parts, and the global
temporal branch works to model the high-level spatio-temporal features. Those local and
global features are delivered to classification heads with BNNeck to generate the
discriminative final feature representations and predicted labels (Luo et al., 2020), which
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will be used to calculate the losses for model optimization. Equations (1), (2), (3), (4) below
briefly describe the workflow of model GaitTriViT in Fig. 2.

Fi
bone ¼ ViTbone

Pn
j¼0

embjpos; embjcase; Embj Fið Þ
h i !

(1)

Fit
local ¼ Headlocal ViTlocal Segt Fi

bone

� �� �� �
(2)

Fi
global ¼ Headglobal Attention ViTgobal Fi

bone

� �� �� �
(3)

OutputF
i

GaitTriViT ¼ L Fi
global;

Pparts
t¼1

Fit
local

� �
(4)

where Embj is the j-th embedding after patch cutting and flatten, along with position and
case embeddings, ViTbone is the Backbone ViT block, Segt is the t-th part of Patch Shuffle
and Part Segment, ViTlocal represents the ViT block in local branch, Headlocal is
Classification Head for local branch, similarly, ViTglobal and Headglobal are counter parts in
global branch, here Attention is the Temporal Global Attention layer, finally features pass
through function L to get final loss.

Backbone
In this work, a Vision Transformer block is used to build the backbone to extract
frame-level spatial features (Dosovitskiy et al., 2020). The original gait silhouette is in the
form of a frame sequence Vi ¼ F0; F1; . . . ; Ftf g, where each frame, after data
rearrangement and pre-processing, is in the form of Fj 2 RH�W�C , with H, W, and C
representing the height, width, and channels of the frame image, respectively. Each frame
is divided into multiple patches of the same size as the original article does, i.e.,
Fj ¼ P0;P1; . . . ; Pnf g (Dosovitskiy et al., 2020). However, drawing inspiration from works

by He et al. (2021) and Wang et al. (2022), this work also adopts their patch embedding
strategy of allowing patches to overlap with each other. This approach helps the model to
focus on local information while strengthening the connections between adjacent patches
and reducing feature loss at the patch edges, which meets the need of this task to focus on
body parts while not ignoring the constraints among each body part.

When cutting images into patches, different from the traditional method, the
overlapping strategy is adopted for a more robust performance as Fig. 3 shows.

Figure 1 The common framework of gait recognition model including backbone, TP, HP, head and
loss. From left to right: Inputs are silhouette sequence; backbone network maps inputs to feature
embeddings; TP stands for temporal pooling to aggregate temporal dimension; HP stands for horizontal
pooling to treat feature maps as divided parts; the last part is classification head and loss function.

Full-size DOI: 10.7717/peerj-cs.3061/fig-1

Sheng (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3061 8/35

http://dx.doi.org/10.7717/peerj-cs.3061/fig-1
http://dx.doi.org/10.7717/peerj-cs.3061
https://peerj.com/computer-science/


N ¼ H þ d � s
s

�W þ d � s
s

: (5)

In Eq. (5), N is the number of divided patches, d is the patch size, and s is the stride
length. After the patches are generated, we need to flatten them into tensors of 1-D
dimensions using linear projection ‘. Moreover, a learnable class token Pj

cls is inserted at
the head position to represent the overall features of this frame.

Fj ¼ Pj
cls; ‘ Pj

0

� �
; ‘ Pj

1

� �
; . . . ; ‘ Pj

N

� �h i
: (6)

Ej ¼ Fj þ k1Epos þ k2Eangle þ k3Ecase: (7)

Following the Vision Transformer original article (Dosovitskiy et al., 2020), A learnable
position embedding Epos 2 RNþ1�D is added to represent the spatial position of each patch.
Furthermore, due to the challenges posed by cross-view and different walking statuses in
appearance-based gait recognition tasks, we manually incorporate information that
represents different subject appearances and various camera angles into the patch
embedding. Many studies have demonstrated the effectiveness of this operation, e.g.,
research by He et al. (2021) and Alsehaim & Breckon (2022), indicating that these
lightweight learnable embeddings perform well tackling cross-view and cross-status tasks.
For example, the current frame sequence is selected from a video where a subject is
captured by a camera at the front while carrying a bag, which means the camera angle is 0
and the walking status is bag carrying. Similar to position embedding, we introduce case
embedding Ecase 2 R c�Df g and angle embedding Eangle 2 Ra�D, c is the total number of
existing walking situations, a stands for the total number of different camera angles. Then,

Figure 2 The pipeline of GaitTriViT including ViT-based backbone, local-part-spatial branch, global-temporal-branch, heads and loss. From
left to right: Inputs are cut into patches and fed into ViT-based Backbone; the features then treated by two parallel branches, the upper one is Local-
Part-Spatial Branch for detailed local feature extraction; the lower one is global-temporal-branch to obtain feature in frame-bundle-level; then
multiple Heads will map them and send to Loss. Full-size DOI: 10.7717/peerj-cs.3061/fig-2
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we add these four altogether in proportions denoted by k1, k2, and k3, where we generate
the final patch embedding Ej.

Local part spatial branch
For each frame sequence representing a unique subject ID with a unique camera angle and
walking status, only several frames are selected in one batch, which is regarded as a frame
bundle. For each frame bundle B that has undergone processing by the backbone, it now
exists as follows:

B ¼ F0 P0
cls;P

0
0; . . . ; P

0
N

� 	
; . . . ; FT PT

cls; P
T
0 ; . . . ; P

T
N

� 	
 �
: (8)

The bundle is sent to two branches, one of which is the local part spatial branch that will
be discussed in this section. It corresponds to the HP module in the gait recognition

Figure 3 The illustration of patches overlapping strategy in backbone of GaitTriViT. The bold black
bounding box indicates the full image; each dashed-line square represents a single patch, while the
darker-colored areas correspond to overlapping patch edges.

Full-size DOI: 10.7717/peerj-cs.3061/fig-3
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common framework and is used to extract spatial features at the frameset level within the
bundle. Chao et al. (2018) and their proposed method GaitSet suggest that gait recognition
does not require long-term dependencies and that treating gait frames as a set can improve
model robustness. As our method has two separate branches to process the same feature
representations in parallel, each branch can go further on its own specialized work and has
no worries about affecting another branch. In the local part branch, the work is all about
spatial local features. Therefore, we merge patches belonging to different frames but at the
same position within the bundle as group Gn, where n 2 1; 2; . . . ; Nf g, these groups
form a new bundle bB as follows:

bB ¼ Gcls PF0
cls; . . . ; P

FT
cls

� 	
;G0 PF0

0 ; . . . ; PFT
0

� 	
; . . . ;GN PF0

1 ; . . . ;PFT
N

� 	
 �
: (9)

Then, we shift and shuffle these patch groups (excluding class token group Gcls as it will
always appear in the head position) using TCSS proposed by Alsehaim & Breckon (2022) to
make the model more robust to appearance noise (see left part of Fig. 4), which has been
indicated by Zhang et al. (2018) and Huang et al. (2021). Briefly, the first few patch groups
(in the order of position, in this work the number is 2) are cut off and shifted to the end of
patch groups, then, these patch groups are shuffled, the patches in latter half are inserted
into the gaps between each patch in former half, as shown in the middle part of Fig. 4.

In the local part branch, as the left part of the figure shows, each feature map needs to
undergo shift operation by a given amount, followed by a shuffle operation shown in the
middle of the figure, then each feature map will be divided into four strips from top to
bottom for separate treatment.

Subsequently, the frame bundle that has undergone shuffling is sent to part-dependent
feature extraction (Fan et al., 2020). We divide image patches within each frame into
multiple horizontal strips independently based on morphological characteristics (from top
to bottom) as shown in the right part of Fig. 4. In this work, the number of strips is set to 4
due to the balance between performance and computing complexity. The features of these
strips are then sent to a shared Vision Transformer Block, different from the Vision
Transformer in Backbone which extracts at frame level; the block here sees the frame
bundle in a unique way, like parts of aggregated frames stack. Then the shared Vision
Transformer Block generates the corresponding local part features of strips, named local1,
local2, local3, and local4.

Global temporal branch
The other branch after the backbone is the global temporal branch. This branch is built
specifically for the spatio-temporal feature extraction at the global level. It plays a similar
role as the TP module in the common framework. Initially, at the frame level, global
features Global ¼ global0; . . . ; globalT½ � are obtained using a Vision Transformer Block
which works similarly to the Vision Transformer in Backbone. Then, a spatio-temporal
attention which contains two convolutional layers and a final SoftMax function is applied
to map the embedding dimension to 1 and generate the scores along the time dimension,
i.e., different gait frame (Rao et al., 2018), it looks like this, Score ¼ score0; . . . ; scoreT½ �.
The final global-temporal feature dGlobal is generated as follows:
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Score ¼ attention Globalð Þ (10)

dGlobal ¼PT
i¼1

scorei � globali: (11)

BNNeck and classification head
After the extraction of global features and local part features from strips, since
cross-entropy loss and triplet loss are simultaneously implemented, the model needs
BNNeck proposed by Luo et al. (2020) to separate the features in embedding space.
BNNeck adds a batch normalization layer after the generated features and before the
classifier’s full connection layers. They argued that many state-of-the-art methods
combined ID loss and triplet loss to constrain the same feature which leads to better
performance. However, better performance lets researchers ignore the inconsistency
between the targets of these two losses in the embedding space. Thus, one global and four
local bottlenecks, along with their linear classifiers are employed to generate IDglobal, ID1,
ID2, ID3 and ID4. These predicted ID labels are then sent to the optimizer along with the
final features dGlobal, local1, local2, local3, and local4.

Loss
Inspired by Alsehaim & Breckon (2022), we jointly use label smoothing cross-entropy loss
Lce, triplet loss Ltriple, attention loss Latt , and center loss Lcenter altogether.

L ¼ Lce IDglobal
� �þ Ltriple

dGlobal� �
þ b� Lcenter IDglobal

� �
þ Latt þ 1

parts

Xparts
i¼1

Lce IDið Þ þ Ltriple localið Þ þ Lcenter IDið Þ� � (12)

where parts are the number of strips we split within the local part spatial branch in Fig. 2
and b ¼ 5:0� 10�5. Within the loss formulation Eq. (12), not only the popular gait

Figure 4 Illustration of TCSS and part segmentation implemented in the local part branch. From left
to right: (A) The shifting operation extracts the first several patches from the cut images and appends
them to the end of the patch sequence. (B) The patch sequence is reshaped into two rows; the second row
is then inserted within the first row before reshaping back to the original form. (C) Red boxes indicate
how the four strips are defined according to body parts. Full-size DOI: 10.7717/peerj-cs.3061/fig-4
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recognition losses already in the common framework are used, e.g., label smoothing cross
entropy loss and triplet loss (Hermans, Beyer & Leibe, 2017; Szegedy et al., 2016), moreover,
an alternative attention loss by Pathak, Eshratifar & Gormish (2020) is also added for
cropping out noisy frames. We also include center loss introduced by Wen et al. (2016) to
learn more robust discriminative features with the two key objectives, inter-class
dispersion and intra-class compactness as much as possible.

GaitVViT
Pipeline
For the proposed method GaitVViT, the model structure is shown in Fig. 5. The
development of this model stems from the demand to enhance the capability of temporal
information extraction within a common framework. As current research indicate, gait
recognition methods emphasize temporal aspects typically by employing complex
attention mechanisms or RNNs (Dou et al., 2023; Zhang et al., 2019). In the current SOTA
methods, their TP modules often consist of a single layer of max pooling on the temporal
dimension (Fan et al., 2023). These TP modules can be improved. Video ViTs treat images
in sequence as frames in video, which differ from the ideas seeing them as a set and can be
well-suited for this task. Thus, GaitVViT is introduced.

GaitVViT adopts the local temporal aggregation (LTA) module and global-local
convolution (GLConv) module from GaitGL as the backbone (Lin, Zhang & Yu, 2020). So,
in contrast to GaitTriViT, GaitVViT utilizes a traditional CNN as the backbone, GaitVViT
takes a sequence of gait silhouette frames Sils 2 RB�C�S�H�W as inputs, where B is the
batch size, C is the channel size, S is the number of frames, and H �W are the height and
width of the pre-processed gait frames. After the extraction of the CNN-based backbone,
the inputs Sils are mapped to a group of features F 2 RB�C0�S0�H0�W 0

where C0 is the
channel size after convolution, S0 is length after LTA, H0 �W 0 is the shape of each feature
map. Similar to GaitTriViT, strips and part-dependent ideas are adopted, GaitVViT
segments the feature maps generated by the backbone into multiple horizontal parts,
shown as F ¼ P1; P2; . . . ; Pnf g, where n equals the number of strips. For each

Pi 2 RB�C0�S0�H0
n �W 0

, feature map height becomes
H0

n
by partition. These part features are

then processed by a modified Video Vision Transformer, generating the n part features

FVViT ¼ PVViT
1 ; PVViT

1 ; . . . ; PVViT
n

� 	
. For each PVViT

i 2 RB�C0�H0
n �W 0

, the time dimension is

reduced by aggregation. Subsequently, Horizontal Pooling pools each PVViT
i to

PHP
i 2 RB�C0�1, then model concatenates these n part of PHP

i together at the last

dimension. The final feature is shown as PHP
f inal 2 RB�C0�n. After passing through the

classification head, each part will calculate its loss individually. The Eqs. (13), (14), (15)
below demonstrate the brief workflow of frame Fi in model GaitVViT in Fig. 5.

Fit
conv ¼ Partt Conv Fið Þð Þ (13)
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Fi
VViT ¼ Pparts

t¼1
VViT embitposition; embitcase; Emb Fit

conv

� �h i� �
(14)

LossF
i

GaitVViT ¼ L Head Pool Fi
VViT

� �� �� �
: (15)

where Conv is the convolutional backbone, Partt means the t-th part of horizontal strips
partition, Emb is patch embedding, along with position and case embeddings, VViT is the
Video Vision Transformer block, Pool represents horizontal pooling, Head is the
classification head and finally a function L is used to calculate the loss.

Backbone
In GaitVViT, a traditional CNN is implemented as the backbone, the LTA and GLConv
layer proposed by Lin et al. (2022) are also adopted. The overview of the backbone
structure is shown in Fig. 6. The CNN-based backbone consists of multiple convolutional
layers. At first, each input will be extracted by a 3DCNN layer with a kernel size of
3� 3� 3½ � to obtain shallow features. Next, the LTA operation is employed to aggregate
the temporal information and preserve more spatial information for trade-off. After that,
Global and local feature extractor layers are implemented which consist of the GLConvA0
layer, Max Pooling layer, GLConvA1 layer, and GLConvB0 layer. The max pooling
operation is implemented to down-sample the feature size at the last two dimensions for
computing complexity trade-off. After the extractor, the combined feature assembling
both global and local information is generated.

Figure 5 The pipeline of GaitVViT including a conv backbone, a video vision transformer as
temporal pooling. Horizontal pooling, classification head and loss. From left to right: Inputs are first
fed into Conv Backbone; features are cut into horizontal parts treating by Video Vision Transformer
separately; the aggregated features are pooled by horizontal pooling to obtain the final features; classi-
fication head conduct batch normalization and predict the labels; losses are calculated using both triplet
and cross-entropy loss. Full-size DOI: 10.7717/peerj-cs.3061/fig-5
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The details of the global and local convolutional layer (GLConv) are shown in Fig. 7. It
basically consists of two parallel paths: one for local feature extraction and one for global
feature extraction, which can take advantage of both global and local information.

The feature map will go through two branches. The upper branch is for local extraction
where feature maps need partition before 3D convolution, the branch below is global
extraction takes the whole feature map as input. And there are two combination methods:
element-wise addition and concatenation.

The global branch implements a basic 3DCNN layer. It extracts the whole gait
information and pays attention to the relations among local regions. The local branch is
basically a 3D version of the Focal Convolutional layer proposed by Fan et al. (2020). It
implements a 3DCNN layer with a shared kernel, the feature map will be split into several
parts before the 3DCNN layer. They extract the local features and then combine them,
which contain more detailed information than the global gait features. GLConv has two
different structures due to different combinations between global and local features,
GLConvA uses element-wise addition and GLConvB uses concatenation.

Video vision transformer encoder
After the extraction of the backbone. Feature maps exist in the form of

F ¼ P1;P2; . . . ; Pnf g, where n equals the number of strips. For each Pi 2 RB�C0�S0�H0
n �W 0

GaitVViT conducts the temporal aggregation individually.
Original Vision Transformer (ViT) regards an image as a grid of non-overlapping

patches (Dosovitskiy et al., 2020), thus, the transformer extracts the features of each patch
and constrains the spatial connection inter-patch. The modified Video Vision Transformer
(VViT) regards each frame in a sequence as an independent patch, and the multi-head
self-attention among spatial patches in the original ViT can be smoothly transferred to a
temporal attention learning the connection among each frame. Researchers have
implemented VViT-based methods in many video-based recognition tasks, e.g., ViViT by
Arnab et al. (2021), Video Transformer Network by Neimark et al. (2021) and Video Swin
Transformer by Liu et al. (2021).

GaitVViT adopted a modified LongFormer as the specific Video Vision Transformer
Encoder (Beltagy, Peters & Cohan, 2020). The LongFormer in the encoder leverages sliding
window to preserve the edge information between adjacent frames and strengthen the
inter-frame connections. Before the Video Vision Transformer Encoder, part feature Pi

will rearrange to Ppre
i 2 RB�S0� H0

n �W 0�C0ð Þ, then, all part features will be concatenated at the

Figure 6 The structure of convolutional backbone in GaitVViT with multiple convolutional layers.
From left to right: 3DCNN layer, local temporal aggregation (LTA), Global and local extractor consists of
GLConvA0, max pooling layer, GLConvA1 and GLConvB0.Full-size DOI: 10.7717/peerj-cs.3061/fig-6
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first dimension to form the Fpre 2 R B�nð Þ�S0� H0
n �W 0�C0ð Þ. After the temporal extraction of

encoder, the second dimension of Fpre is reduced, the aggregated feature

Fpost 2 R B�nð Þ� H0
n �W 0�C0ð Þ will be rearranged back to FVViT ¼ PVViT

1 ;PVViT
2 ; . . . ;PVViT

n

� 	
,

where PVViT
i 2 RB�C0�H0

n �W 0
.

Classification head and loss
Like GaitTriViT, the final feature will be fed into a Batch Normalization layer followed by a
fully connected layer to generate the predicted labels. Both triplet loss and cross-entropy
loss are employed to optimize the model. The triplet losses are calculated between feature
anchors, and the cross-entropy losses are calculated on the predicted label matrix.

Summary
In this section, two Transformer-based architectures are proposed for gait recognition,
GaitTriViT and GaitVViT. For GaitTriViT, the Vision Transformer is used as the
frame-level backbone while incorporating case embedding and angle embedding to
enhance frame-level feature extraction performance. Taking into account the similarity
between gait recognition tasks and person re-identification tasks, this work draws
inspiration from several articles on ReID tasks and introduces TCSS by Alsehaim &
Breckon (2022), as well as the combination of part-dependent strategy (Fan et al., 2020),
dividing frame-level features into different strips before another Vision Transformer block.
These components above collectively build the local part spatial branch after the backbone,
dedicated to extracting local spatial features. Another branch after the backbone employs
another Vision Transformer block to extract global features, where temporal attention is
used to jointly learn global temporal features (Fu et al., 2019; Rao et al., 2018; Zhang et al.,
2020). The features from both branches are combined to generate the final features, and the
predicted labels are generated by classification heads. For the optimizer, multiple loss
functions are introduced to optimize the model together.

Figure 7 The structure of GLConv layer as a two branches path for the feature map. An example
module in the backbone, where ‘conv3d’ denotes 3D CNN layers. During local feature extraction, the
‘conv3d’ layers for different strips share weights. Global and local features can be combined through
addition or concatenation. Full-size DOI: 10.7717/peerj-cs.3061/fig-7
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For GaitVViT, given the gait recognition common framework (Fan et al., 2023), where
the wildly implemented TP module often consists of a single max pooling layer, which will
waste the sequence information and need more attention for a complete improvement.
The Video ViT is a variant of the original Vision Transformer (Dosovitskiy et al., 2020).
Video ViT is created from the idea that regarding every frame in video as a patch. In the
traditional transformer structure, every patch is a non-overlapping square region of an
image, so when we change the scale and arrangement, the transformer can conduct the
extraction on a whole sequence and run the self-attention on the time dimension.
Adopting the LTA and GLConv layers from GaitGL proposed by Lin et al. (2022), this
work connects the extracted feature representations to a Video ViT Encoder. The encoder
implemented by LongFormer will conduct temporal extraction and aggregate the inputs to
obtain the final features (Beltagy, Peters & Cohan, 2020).

IMPLEMENTATION
Introduction
In this section, the datasets and implementation details are discussed, including two
popular benchmarks, CASIA-B and OUMVLP (Takemura et al., 2018; Yu, Tan & Tan,
2006). Moreover, several details during the training and evaluation phase are explained.

Datasets
CASIA-B is provided by Yu, Tan & Tan (2006) for gait recognition and to promote
research. CASIA-B is a large multi-view gait database, which was created in January 2005.
It has 124 subjects, and the gait data was captured from 11 views. Three variations, namely
view angle, clothing and carrying condition changes, are separately considered. In this
article, we use the human silhouettes extracted from video files as benchmarks. The format
of the filenames in CASIA-B is ‘xxx-mm-nn-ttt.png’, where ‘xxx’ is subject id, ‘mm’ stands
for walking status, including ‘nm’ (normal), ‘cl’ (in a coat) or ‘bg’ (with a bag), ‘nn’ is
sequence number for each walking status, normal walking has six sequences, wearing coat
and carrying bag have two sequences each; ‘ttt’ is view angle can be ‘000’, ‘018’, …, ‘180’ .
Examples of CASIA-B are shown in Fig. 8.

Each subject has a maximum of 110 sequences. We use subjects with ID from 1 to 74 as
the training set, and subjects with ID from 75 to 124 as the test set. During the testing
phase, we use the first four sequences from ‘nm’ (nm-1, nm-2, nm-3, nm-4) as the gallery
set, and the remaining six sequences are divided into three query sets based on their
respective situations: ‘nm’ query includes ‘nm-5’ and ‘nm-6’, ‘bg’ query includes ‘bg-1’ and
‘bg-2’, and ‘cl’ query includes ‘cl- 1’ and ‘cl-2’ (Chao et al., 2018; Fan et al., 2020; Lin et al.,
2022; Yu, Tan & Tan, 2006).

OUMVLP is part of the OU-ISIR Gait Database, which stands for Multi-View Large
Population Dataset, provided by Takemura et al. (2018). OUMVLP is meant to aid
research efforts in the general area of developing, testing and evaluating algorithms for
cross-view gait recognition. The Institute of Scientific and Industrial Research (ISIR),
Osaka University (OU) has copyright in the collection of gait video and associated data
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and serves as a distributor of the OU-ISIR Gait Database. The data was collected in
conjunction with an experience-based long-run exhibition of video-based gait analysis at a
science museum. The dataset consists of 10,307 subjects (5,114 males and 5,193 females
with various ages, ranging from 2 to 87 years) from 14 view angles, ranging 0�–90�,
180�–270�. Gait images of 1,280 × 980 pixels at 25 fps are captured by seven network
cameras (Cam1–7) placed at intervals of 15-degree azimuth angles along a quarter of a
circle whose center coincides with the center of the walking course. The illustration is
shown in Fig. 9. Each subject has two sequences, 00 for probe and 01 for gallery. We select
5,153 subjects with odd-numbered IDs as the training set, and the remaining 5,154 subjects
as the test set (Chao et al., 2018; Fan et al., 2020; Lin et al., 2022; Takemura et al., 2018).

Implementation details
The project is implemented on both Windows 11 and Debian, but mainly on Windows 11.
The Python IDE chosen is PyCharm 2021.1.3.0 and Python version is 3.9.0. The
framework chosen is PyTorch 1.13.0. The project is trained and evaluated on one NVIDIA
GeForce RTX 3080 Ti GPU with CUDA version 11.8.

Figure 8 The illustration of silhouettes from different camera angles and walking status in the
CASIA-B dataset. The CASIA-B dataset has 124 subjects. The silhouettes are shot from 11 camera
angles and three different walking status. ‘BG’, ‘CL’ and ‘NM’ stand for three different walking status:
Bring Bag, In a Coat and Normal Walking. Full-size DOI: 10.7717/peerj-cs.3061/fig-8
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We follow the common way by Fan et al. (2022) to pre-process the silhouette data from
CASIA-B and OUMVLP datasets, then choose the hyperparameters taking hardware
limitations and efficiency into consideration. This pre-processing involved removing
invalid data not having whole body in frame, arranging frames in structure of ID-
condition-angle, aligning and cropping silhouette images to ensure the subject’s body is in
the center of the image, and has a proper size, more details can refer to original works by
Fan et al. (2022). After pre-processing, each frame image’s size is 64� 44. For GaitTriViT
specifically, since we don’t have the computational resource to train a well performed
image model from scratch, we initialized the Vision Transformer backbone with
parameters pre-trained on ImageNet-21K (Deng et al., 2009;Wightman, 2019), the input of
ViT requires RGB-like images with three channels and a size of 256� 128 . But our
silhouettes are single-channel binary images. Therefore, we inserted a fully connected layer
in the head of backbone with an input dimension of 1 and an output dimension of 3 to
map the silhouette from Sil 2 RH�W�1 to bSil 2 RH�W�3 pseudo-RGB images. And in data
augmentation phase, we resized the images to the required size.

CASIA-B and OUMVLP datasets differ in camera angles and walking scenarios.
CASIA-B has 11 camera angles and a total of 10 walking sequences. Therefore, in Eq. (3),
Eangle has the shape of a� D½ �, where a ¼ 11, and Ecase is in shape of c� D½ �, where c ¼ 10.

D is the embedding dimension set to 768. In contrast, OUMVLP has 14 camera angles and
no distinction in walking scenarios, so only E0

angle 2 Ra0�D, where a0 ¼ 14.
In this work, excluding the ViT in backbone of GaitTriViT, most parameters are

initialized using the Kaiming initialization (He et al., 2015) following the VID-Trans-ReID
method. For GaitTriViT, the number of frames T in a frame bundle is set to 4. The

Figure 9 Illustration of silhouettes from different camera angles and how they are shot in OUMVLP
dataset. OUMVLP has 10,307 subjects. Silhouettes are shot from 14 different angles, which don’t have
different walking status between sequences. Full-size DOI: 10.7717/peerj-cs.3061/fig-9
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selection strategy of frames in every bundle when training is dividing the whole sequence
into T parts and randomly selecting one frame from each part, creating a frame bundle
where each frame can be selected again. During testing, T frames are sequentially selected
from the whole sequence. The batch size is set to 52, the optimizer is stochastic gradient
descent (SGD), and the scheduler is using cosine learning rate decay with warming up
(Loshchilov & Hutter, 2017). For GaitVViT, during the training phase, the number of
frames T in each batch is set to 30, the selection strategy is randomly choosing 30 frames in
order among the sequence. During the test phase, the model uses all frames within one
sequence to generate the final feature. The batch size is set to 36, the optimizer is Adam,
and the scheduler is multi step learning rate.

OUMVLP has 10,307 subjects, silhouettes are shot from 14 different angles, which don’t
have different walking status between sequences.

Summary
In this section, the choices of datasets and implementation details are explained. Two
popular datasets are chosen in this work: CASIA-B and OUMVLP. CASIA-B is a classic
dataset for gait recognition research specifically. It has 124 subjects; each subject has
multiple sequences varied in 11 camera angles and three walking statuses. OUMVLP is a
new dataset compared to CASIA-B, it has the most subjects among the gait datasets so far,
which consists of 5,114 males and 5,193 females captured from 14 camera angles, each
subject has two sequences. Furthermore, several implementation details are explained
including pre-processing, different settings on each benchmark and details in hyper-
parameters.

EVALUATION
State-of-the-art comparison
In gait recognition tasks, many researchers have made a lot of contributions. The GEINet
by Shiraga et al. (2016) leverages the gait energy images (GEI) as the representations of gait
features, open the research towards gait recognition. The GaitSet by Chao et al. (2018) led
the new era of appearance-based Gait Recognition, then plenty of novel models came out
e.g., GaitPart by Fan et al. (2020), GaitGL by Lin, Zhang & Yu (2020), GaitBase by Fan et al.
(2022), SRN by Hou et al. (2021), GLN by Hou et al. (2020) and DeepGait-3D by Fan et al.
(2023). They are all regarded as state-of-the-art models by now, in which GaitSet, GaitPart
and GaitGL are considered most iconic and are chosen mostly as milestones.

The evaluation metric of single-view-gallery-evaluation is used in almost all
silhouette-based gait recognition methods. First, the test set needs to split all the sequences
into two subsets named probe and gallery, where each subject in probe has a sequence
consist of M camera views and N for gallery, where M is equal to N in most cases. Each
probe-gallery view pair is denoted as Vp

i ;V
g
j

� �
, where i 2 1; 2; . . . ;M½ �, j 2 1; 2; . . . ;N½ �.

Second, for each probe-gallery view pair Vp
i ;V

g
j

� �
, after model inference J , every probe

sequence under the view Vp
i is compared to all gallery sequences under different view Vg

j to
calculate the Euclidean distance, the label of the closest gallery sequence will be assigned to
the probe. The rank-1 accuracy ACCij is then computed for each probe-gallery pair by
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checking the percentage of the predicted label matching the ground-truth label. In the end,
an accuracy matrix ACC in the shape of M � N is obtained.

Third, the identical-view cases, where Vp
i ¼ Vg

j , are always excluded. So, in the ACC
matrix, the corresponding elements (mostly the diagonal elements) are abandoned while
the rest are averaged as the evaluation metric. At last, the accuracy for each probe view

ACCp
i is acquired by averaging the elements of ACC in row excluding identical-view cases.

The processes are as follows:

ACCij ¼ R1 euc J Vp
i

� �
; J Vg

j

� �� �
; label

� �
(16)

ACCp
i ¼

1
N � 1

XN
j¼1

ACCij � ACCii

 !
(17)

where R1 stands for rank-1 calculation and euc is short of Euclidean Distance.
In this article, the ‘Single’ and ‘Cross’marks in the following tables indicate the different

evaluation protocols. The ‘Single’ stands for the single-view-gallery evaluation which is the
regular evaluation method explained above. For example, the CASIA-B dataset has 3
walking status and 11 camera angles (Yu, Tan & Tan, 2006), so, for probe sequences whose
walking status is ‘NM’ and view angle is ‘090’, they needed to compare with 10 galleries
with different view angle excluding the gallery having the same view, the average of 10
results become the final result of this specific probe. The ‘Cross’ stands for cross-view-
gallery evaluation. Particularly, for each probe view, the sequences of all gallery views are
adopted for the comparison with the identical-view cases excluded. The accuracy under
cross-view-gallery evaluation is quite higher than single-view-gallery, because subjects in
some views may experience significant silhouette changes, bringing difficulty and less
discriminativeness for recognition (Hou et al., 2023).

The evaluation results of two proposed methods GaitTriViT and GaitVViT are
presented below, as shown in Tables 1 and 2. The data of the state-of-the-art methods are
collected from their own articles.

The experiments show that GaitTriViT faces huge difficulties with the two popular
benchmarks. The regular single-view-gallery accuracy can only surpass the GEINet,
indicating the bad generalization of GaitTriViT. Even the cross-view- gallery performances
are dropped when the walking status is bringing a bag, or especially, wearing a coat. The
GaitTriViT has bad robustness towards appearance noises.

GaitVViT performs better, on CASIA-B, when the walking status is normal walking, the
performance of GaitVViT can slightly surpass GaitGL at probe views of 0�, 18�, 36�, 54�

and 126�, making the average accuracy slightly better too. But it doesn’t perform well
enough for a proposed transformer-enhanced method when the walking status is bag bring
or wearing a coat. Maybe due to the sensitivity of transformer-based structure for
appearance information, i.e., the method is less robust to appearance noises.

Comparison shows that GaitTriViT focus more on spatial feature extraction by
employing three individual vision transformer in each extraction phase (one for
frame-level features in the backbone, one for set-level local features in a local branch, and
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one for frame-level extraction in the global branch before the attention module), while the
specific temporal modeling task is assigned to a spatio-temporal attention module; in
contrast, GaitVViT adopted the Video ViT to replace the common TP module and
enhance its functionality, which focus more in temporal aspect apparently. Given the
situation that current Transformer-based methods have not achieved astonishing
outcomes in the field of gait recognition, the current ViT structure may not be a good
upstream backbone for inputs like gait silhouette. According to the argument by Fan et al.
(2023), many patches on a gait silhouette are all-white (all 1) or all-black (all 0), where
neither posture nor appearance information are provided. They call them dumb patches.
Since all values from a dumb patch are all 0 or all 1, These all-1 or all-0 dumb patches can
make backward gradients significantly ineffective or even computationally invalid for the
parameter optimization of downstream ViT layers. For GaitVViT, it meets the basic line of
current state-of-the-art methods. A traditional CNN backbone makes sure the
performance away from too bad, despite the augmentation on temporal pooling module
gains no astonishing improvement. Also, these two methods lack in-wild testing. Gait
recognition methods on pre-processed datasets, to some extent, have already saturated
their performance, application performance in the real world will be more important in
future research (Cosma, Catruna & Radoi, 2023; Cosma & Radoi, 2021).

Ablation study
In this work, multiple technologies are employed in two methods. For GaitTriViT, there
are TCSS and angle embedding (also case embedding on the CASIA-B dataset). But it
achieves not a promising performance on two popular benchmarks. Several ablation
experiments were carried to deep dive into the contribution of each technology and try to
improve performance by introducing extra mechanisms, e.g., excluding specific modules,
changing the selection method, rearranging the order of strip segmentation, and
introducing part embeddings. For GaitVViT, there is also an ablation study excluding

Table 1 State-of-the-art comparison on OUMVLP. Rank-1 accuracy in 14 probe view angle, excluding identical-view cases.

Evaluation Method Probe view Mean

0� 15� 30� 45� 60� 75� 90� 180� 195� 210� 225� 240� 255� 270�

GaitSet 79.30 87.90 90.00 90.10 88.00 88.70 87.70 81.80 86.50 89.00 89.20 87.20 87.60 86.20 87.10

GaitPart 82.60 88.90 90.80 91.00 89.70 89.90 89.50 85.20 88.10 90.00 90.10 89.00 89.10 88.20 88.70

GLN 83.81 90.00 91.02 91.21 90.25 89.99 89.43 85.28 89.09 90.47 90.59 89.60 89.31 88.47 89.18

Single GaitGL 84.90 90.20 91.10 91.50 91.10 90.80 90.30 88.50 88.60 90.30 90.40 89.60 89.50 88.80 89.70

GaitBase – – – – – – – – – – – – – – 90.80

DeepGait-3D – – – – – – – – – – – – – – 92.00

GaitTriViT 58.32 72.90 80.30 82.15 76.27 75.85 73.36 59.53 73.45 79.62 81.32 75.70 75.37 72.16 74.02

GaitVViT 81.20 88.95 90.26 90.54 89.02 89.27 88.40 85.34 87.42 88.98 89.26 87.54 87.86 86.51 87.90

Cross GaitTriViT 84.52 97.71 98.73 98.67 98.43 99.50 99.52 88.84 98.09 98.68 98.83 98.65 99.32 99.45 97.07

Note:
‘Single’ and ‘Cross’ are two different evaluation protocols. GaitVViT reaches the level of GaitSet, whereas GaitTriViT experiences significant performance decline when
probe view is 0� and 180� in Single View protocol.
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Table 2 Rank-1 accuracy comparison on CASIA-B in three walking status and 11 view angle, excluding identical-view cases.

Evaluation Status Model Probe view Mean

0� 18� 36� 54� 72� 90� 108� 126� 144� 162� 180�

Single NM GEINet 56.10 69.10 76.20 74.80 68.50 65.60 70.80 78.00 75.60 68.40 57.50 69.15

GaitSet 90.80 97.90 99.40 96.90 93.60 91.70 95.00 97.80 98.90 96.80 85.80 95.00

GaitPart 94.10 98.60 99.30 98.50 94.00 92.30 95.90 98.40 99.20 97.80 90.40 96.20

GLN 93.20 99.30 99.50 98.70 96.10 95.60 97.20 98.10 99.30 98.60 90.10 96.88

GaitGL 96.00 98.30 99.00 97.90 96.90 95.40 97.00 98.90 99.30 98.80 94.00 97.40

GaitBase 97.60

GaitTriViT 78.40 84.20 91.10 86.70 78.30 77.80 81.50 87.00 91.00 85.50 76.50 83.45

GaitVViT 96.50 99.20 99.40 98.20 96.90 94.00 96.70 99.40 99.30 98.30 93.60 97.41

BG GEINet 44.80 53.64 54.55 51.73 49.40 46.60 47.30 56.50 58.20 49.90 45.10 50.70

GaitSet 83.80 91.20 91.80 88.80 83.30 81.00 84.10 90.00 92.20 94.40 79.00 87.20

GaitPart 89.10 94.80 96.70 95.10 88.30 84.90 89.00 93.50 96.10 93.80 85.80 91.50

GLN 91.10 97.68 97.78 95.20 92.50 91.20 92.40 96.00 97.50 94.95 88.10 94.04

GaitGL 92.60 96.60 96.80 95.50 93.50 89.30 92.20 96.50 98.20 96.90 91.50 94.50

GaitBase 94.00

GaitTriViT 71.00 74.50 78.80 76.26 67.70 65.20 68.80 77.20 79.90 77.07 66.70 73.01

GaitVViT 90.50 95.60 95.90 93.64 89.30 82.40 88.20 94.30 96.30 94.04 90.80 91.91

CL GEINet 21.80 30.90 36.30 34.40 35.90 30.20 31.10 32.10 28.90 23.80 25.90 30.12

GaitSet 61.40 75.40 80.70 77.30 72.10 70.10 71.50 73.50 73.50 68.40 50.00 70.40

GaitPart 70.70 85.50 86.90 83.30 77.10 72.50 76.90 82.20 83.80 80.20 66.50 78.70

GLN 70.60 82.40 85.20 82.70 79.20 76.40 76.20 78.90 77.90 78.70 64.30 77.50

GaitGL 76.60 90.00 90.30 87.10 84.50 79.00 84.10 87.00 87.30 84.40 69.50 83.60

GaitBase 77.40

GaitTriViT 27.10 32.20 40.50 46.50 45.60 40.90 42.20 42.50 40.60 28.60 25.50 37.47

GaitVViT 67.20 81.70 86.20 82.30 76.90 70.50 75.30 80.50 84.30 80.20 62.50 77.05

Cross NM GEINet 92.00 94.00 96.00 90.00 100.0 98.00 100.0 93.88 89.80 83.67 81.63 92.63

GaitSet
SRN

100.0
100.0

100.0
100.0

100.0
100.0

100.0
100.0

100.0
100.0

100.0
100.0

100.0
100.0

100.0
100.0

100.0
100.0

100.0
100.0

100.0
100.0

100.0
100.0

GaitTriViT 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.00 99.91

BG GEINet 80.00 94.00 90.00 87.76 94.00 94.00 92.00 94.00 90.00 84.00 82.00 89.25

GaitSet 100.0 98.00 98.00 97.96 98.00 98.00 98.00 100.0 100.0 100.0 100.0 98.91

SRN 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

GaitTriViT 95.00 89.00 94.00 93.94 97.00 93.00 93.00 97.00 94.00 89.90 86.00 92.89

CL GEINet 84.00 94.00 94.00 88.00 94.00 96.00 98.00 100.0 92.00 88.00 86.00 92.18

GaitSet 98.00 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.82

SRN 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

GaitTriViT 37.00 41.00 49.00 60.00 69.00 67.00 60.00 59.00 49.00 30.00 32.00 50.27

Note:
‘Single’ and ‘Cross’ are two evaluation protocols. GaitVViT reaches the same level of SOTA, while GaitTriViT experiences significant performance decline when subjects
walking status is ‘CL’, either in ‘Single’ or ‘Cross’ protocol.
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certain modules or modifications, to explore the individual contribution of each
mechanism and potential of the model.

Some other implementation details may also have an influence on model performance.
While this work using Kaiming initialization and ImageNet pretraining, as well as a
combination of loss functions (e.g., triplet, cross-entropy, and attention loss), we
completely follow the steps of original articles, where more details will be demonstrated.
Exploring alternative strategies may potentially contribute to the performance of gait
recognition. For example, Palla, Parida & Sahu (2024) introduced a hybrid Harris hawks
and Arithmetic optimization algorithm (Heidari et al., 2019; Rao et al., 2023) introduced a
hybrid whale and gray wolf optimization algorithm (Mirjalili & Lewis, 2016; Mirjalili,
Mirjalili & Lewis, 2014), trying to select the most optimal gait features. They argue the
optimization problems have become increasingly complex, traditional mathematical
methods (e.g., Newton’s descent and gradient descent method) become difficult solving
them effectively. Thus, many scholars focus on meta heuristics (MAs), a class of
optimization algorithms inspired by natural phenomena (e.g., biological group behavior,
physical phenomena and evolutionary laws). MAs require no gradient information,
flexible, easily implemented, and widely used in complex situations (Jia et al., 2023). These
MAs can also improve the performance compared to the mathematic loss optimization
used now.

If not mentioned, the results below are obtained following the cross-view-gallery
evaluation, as it is closer to real-world application scenarios.

Analysis of excluding specific module

For GaitTriViT, given the utilization of multiple techniques in the proposed method and
the observed insufficient model performance, understanding the individual contributions
or potential hindrances of each technology becomes essential. Thus, there are pairs of tests
with different situations on OUMVLP and CASIA-B, e.g., no TCSS, no angle embedding or
neither (Alsehaim & Breckon, 2022). The evaluation results are shown in Tables 3 and 4.

The test results in Table 3 show that removing the Temporal Clips Shift and Shuffle
(TCSS) module during inference could slightly improve the performance when the camera
angle is not near 90� and 270�. Maybe because the TCSS module shuffles the images, which
introduces extra noises to appearance information, making the gait sequences less
discriminative. But gait sequences near 90� and 270� show the side of subjects on
silhouette, which usually contain more gait patten information than appearance
information in ratio, so the model will be more robust towards appearance noises and put
more attention on generating distinct gait features. Also in Table 3, when angle
embeddings are removed, the more probe view close to 0� and 180�, the more significantly
the test accuracy is dropped, while the accuracy drop from probe view near 90� and 270�

can be almost ignored. The results also indicate the side silhouettes contain more
discriminative information for better inference performance, while the probe sequences
away from side angle need angle embeddings to augment the feature representations.

For the test on CASIA-B, as shown in Table 4, the cross-view-gallery accuracy observes
no changes when the modules are removed individually. Only when both modules are
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removed, a significant decrease of accuracy appears. Maybe because the number of subjects
in CASIA-B is much smaller than OUMVLP, so the model faces less challenges when
modules are removed.

For GaitVViT, an ablation study is conducted excluding BNNeck or baseline backbone
(Luo et al., 2020). ‘no BN’means the original BNNeck is replaced by Layer Normalization,
‘ResNet’ means the original backbone adopted from GaitGL is replaced by a four layers
ResNet backbone (Lin et al., 2022). Results are shown in Table 5. The data are
obtained using single-view gallery evaluation. The results show that the introducing of
BNNeck will indeed increase the accuracy in normal walking status, but it appears slightly
sensitive to appearance noises as probe sequence changing to ‘BG’ or ‘CL’. Maybe the
reason is that in training, batch normalization is carried out when the batches are a mixture
of three statuses, but it is not in evaluation, so the features are shifted. The results also show
the contribution of the original backbone in generating fine-grained global and local
features.

Table 3 GaitTriViT’s Rank-1 accuracy on OUMVLP in 14 probe view angle, excluding identical-view cases.

Method Probe view Mean

0� 15� 30� 45� 60� 75� 90� 180� 195� 210� 225� 240� 255� 270�

No TCSS 84.29 97.65 98.73 98.71 98.43 99.48 99.52 88.62 98.07 98.66 98.83 98.62 99.30 99.45 97.03

No emb 41.87 79.27 89.87 86.25 88.24 98.29 98.89 49.63 77.84 89.77 87.91 93.29 98.16 98.88 84.15

Baseline 82.68 97.67 98.63 98.63 98.63 99.54 99.52 87.85 97.69 98.46 98.79 98.54 99.34 99.47 96.82

Note:
Results show in datasets with single walking status, removing TCSS can slightly improve the performance.

Table 4 GaitTriViT’s Rank-1 accuracy on CASIA-B in 11 probe view angle and 3 walking status, excluding identical-view cases.

Status Method Probe view Mean

0� 18� 36� 54� 72� 90� 108� 126� 144� 162� 180�

NM no TCSS 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 98.00 99.82

no emb 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 98.00 99.82

both neither 100.0 100.0 100.0 99.00 100.0 100.0 100.0 100.0 100.0 97.00 95.00 99.18

baseline 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.00 99.91

BG no TCSS 95.00 89.00 94.00 93.94 96.00 93.00 93.00 97.00 94.00 89.90 86.00 92.80

no emb 95.00 89.00 95.00 92.93 96.00 93.00 93.00 97.00 94.00 90.91 85.00 92.80

both neither 88.00 87.00 89.00 88.89 94.00 93.00 93.00 94.00 90.00 82.83 81.00 89.16

baseline 95.00 89.00 94.00 93.94 97.00 93.00 93.00 97.00 94.00 89.90 86.00 92.89

CL no TCSS 37.00 35.00 44.00 61.00 68.00 63.00 60.00 57.00 50.00 32.00 30.00 48.82

no emb 37.00 35.00 44.00 62.00 68.00 64.00 60.00 57.00 50.00 31.00 30.00 48.91

both neither 21.00 21.00 23.00 28.00 46.00 43.00 43.00 32.00 21.00 20.00 23.00 29.18

baseline 37.00 41.00 49.00 60.00 69.00 67.00 60.00 59.00 49.00 30.00 32.00 50.27

Note:
Results show that excluding any single module during testing changes performance only slightly, whereas excluding both modules degrades performance significantly.
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Analysis of different selection methods
In the section state-of-the-art comparison, the frame select strategy of GaitTriViT in the
test phase is picking the frames in query sequences serially, i.e., in the order in the frames
are shot. It is different from the selection strategy when training, where we pick the
required number of frames from the corresponding sub-sequences by cutting the whole
sequence. One reason is obvious, the test selection strategy used is more likely to the
real-world scenarios, we obtain the silhouettes from the subject sequentially and we can
process the task in real-time. The selection strategy in training is named ‘intelligent’ and
the other is named ‘dense’. The question is, if the selection strategy in evaluation was the

Table 5 GaitVViT’s Rank-1 accuracy on CASIA-B divided in 11 probe view angle and 3 walking status, excluding identical-view cases.

Status Method Probe view Mean

0� 18� 36� 54� 72� 90� 108� 126� 144� 162� 180�

NM no BN 95.30 99.00 99.40 97.90 94.80 93.20 96.50 99.50 99.00 98.20 93.80 96.96

ResNet 91.60 98.40 99.70 98.30 93.90 91.90 95.60 98.30 98.60 97.10 91.70 95.92

baseline 96.50 99.20 99.40 98.20 96.90 94.00 96.70 99.40 99.30 98.30 93.60 97.41

BG no BN 90.50 95.90 95.20 92.63 90.80 82.60 89.50 95.30 96.30 95.76 88.90 92.13

ResNet 89.00 95.70 95.60 93.94 88.20 82.00 87.00 94.50 95.20 94.45 85.40 91.00

baseline 90.50 95.60 95.90 93.64 89.30 82.40 88.20 94.30 96.30 94.04 90.80 91.91

CL no BN 67.10 85.40 87.40 84.10 77.50 73.80 78.10 81.70 86.10 83.30 68.40 79.35

ResNet 62.80 79.00 81.00 79.80 75.40 70.90 74.40 74.30 76.80 73.00 57.50 73.17

baseline 67.20 81.70 86.20 82.30 76.90 70.50 75.30 80.50 84.30 80.20 62.50 77.05

Note:
The data were obtained using single-view-gallery evaluation.

Table 6 GaitTriViT’s Rank-1 accuracy via different selection methods on CASIA-B in 11 probe view angle and 3 walking status, excluding
identical-view cases.

Status Method Probe view Mean

0� 18� 36� 54� 72� 90� 108� 126� 144� 162� 180�

NM intell 4 98.34 98.28 98.45 97.70 98.39 98.92 99.27 99.34 98.72 96.90 97.00 98.30

intell full 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.00 99.91

dense 28 97.74 96.67 95.81 95.48 97.94 96.98 97.30 97.59 96.21 95.31 96.24 96.66

baseline 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.00 99.91

BG intell 4 89.43 85.41 89.45 87.03 92.02 87.55 89.14 89.84 87.14 82.85 81.39 87.39

intell full 95.00 89.00 94.00 93.94 97.00 93.00 93.00 97.00 94.00 89.90 86.00 92.89

dense 28 87.43 83.21 87.37 88.49 92.20 84.88 85.87 88.89 87.72 82.62 82.74 86.49

baseline 95.00 89.00 94.00 93.94 97.00 93.00 93.00 97.00 94.00 89.90 86.00 92.89

CL intell 4 34.13 32.48 40.16 48.26 60.36 61.73 55.39 51.38 43.15 29.99 29.92 44.27

intell full 37.00 41.00 49.00 60.00 69.00 67.00 60.00 59.00 49.00 30.00 32.00 50.27

dense 28 33.07 35.31 41.69 51.36 59.72 60.08 52.67 48.16 44.88 32.04 28.78 44.34

baseline 37.00 41.00 49.00 60.00 69.00 67.00 60.00 59.00 49.00 30.00 32.00 50.27

Note:
Results show the need of enough frame amount.
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same as training, will the model perform better or not. Several tests with different frame
selection methods are conducted and the results are shown in Table 6.

In Table 6, the ‘intell 4’ means 4 frames are selected through ‘intelligent’ strategy (i.e.,
same way when training) and run the inference independently; ‘intell full’ uses all probe
sequence frames to conduct the inference; ‘dense 28’ using 28 frames for inference while
not changing the original test selection strategy. The results show that in inference, more
frames selected means higher evaluation accuracy. But when frames amount is small, using
‘intelligent’ strategy will improve the performance.

Analysis of part embeddings
Given the inspiration of position embedding in original Vision Transformer and
implementation of angle embedding and case embedding in GaitTriViT (Dosovitskiy et al.,
2020), these additional learnable embedding shows its value. Prior works also indicate the
effectiveness of the lightweight learnable embedding for learning invariant non-visual
features (He et al., 2021; Peng et al., 2023). So, it may also help non-context manual
intervention like feature map partition and improve the model performance. The
parameters are initialized with pre-trained GaitTriViT baseline checkpoint and fine-tuned
with 80 epochs. The results are shown in Table 7.

The results show that adding the part embedding slightly increases the accuracy of
GaitTriViT when subjects wear coats. Because in proposed GaitTriViT, the feature map is
divided into four strips, which may roughly correspond to head and chest, waist and
arms, crotch and thigh, as well as lower legs and feet. So, the part embedding will
learn which part to emphasize. For gait sequences wearing a coat, the top three body
parts are all self-occluded or blurred, so less discriminative representations can be
extracted from the feature maps. Thus, the model will tend to focus more attention on
the bottom part which only has lower legs and feet. For wearing coat status, this
change is beneficial, but for the normal walking probe and bag carrying probe, this change
causes less attention on their information-riches top three parts. So, they may face an
accurate drop.

Table 7 GaitTriViT’s Rank-1 accuracy with or without part embedding on CASIA-B in 11 view angle and 3 walking status, excluding
identical-view cases. Accuracy are improved in ‘CL’ status but dropped in ‘BG’.

Status Method Probe view Mean

0� 18� 36� 54� 72� 90� 108� 126� 144� 162� 180�

NM part emb 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.00 99.00 99.82

baseline 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.00 99.91

BG part emb 90.00 86.00 89.00 88.89 96.00 88.00 89.00 96.00 93.00 90.91 82.00 89.89

baseline 95.00 89.00 94.00 93.94 97.00 93.00 93.00 97.00 94.00 89.90 86.00 92.89

CL part emb 37.00 43.00 55.00 62.00 69.00 65.00 62.00 53.00 44.00 35.00 32.00 50.64

baseline 37.00 41.00 49.00 60.00 69.00 67.00 60.00 59.00 49.00 30.00 32.00 50.27

Note:
Results indicate that incorporating part embedding marginally improves GaitTriViT’s accuracy for subjects wearing coats, whereas it degrades performance when subjects
carry bags.
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Analysis of order between shuffle and partition
In the GaitTriViT baseline, the TCSS with partition operation raises a question about the
correct order of two operations. The part-dependent idea is like a manual operation to tell
the model where it belongs to an independent region that has different features from other
regions, i.e., different morphological characteristics between the limbs. Therefore, the
original order where shift and shuffle are previous than partition will first shuffle within
the whole feature map, which may make the partition meaningless. Therefore, this section
tries to move the TCSS module after the partition, wondering if the different order of TCSS
and partition operations will make some changes. The model with different modules order
is re-trained for 50 epochs. The results and comparison are shown in Table 8.

The results in Table 8 show almost no improvement with the employment of TCSS after
strategy. At every probe view of ‘BG’ status and almost every probe view of ‘CL’, the results
encounter a certain percentage of decline. Results show the order change will not increase
the feature discriminativeness but lose its robustness.

CONCLUSIONS
This article proposes two customized Transformer-based gait recognition models,
GaitTriViT and GaitVViT, to extract fine-grained features representing human walking
patterns. For GaitTriViT, this work utilizes the rapidly evolving Vision Transformer
instead of traditional convolutional neural networks to build the model, in contrast to the
gait recognition pipeline, a strategy is employed that makes the temporal pooling (TP)
module and horizontal pooling (HP) module in parallel. By incorporating Vision
Transformer and Spatio-temporal Attention mechanism, the temporal-global features are
obtained in global temporal branch. The model also utilizes part-dependent and shuffle
strategies to extract spatial-local features in the local spatial branch, resulting in
fine-grained features without down-sampling. For GaitVViT, dissatisfied with the design
of the TP module in the gait recognition common framework, the Video Vision
Transformer is introduced for enhancement. The proposed Video ViT Encoder will take
the output of GaitVViT backbone as sequence of patches. Thus, encoder extracts the
spatial feature at temporal dimension and generates the final spatio-temporal feature.

Table 8 GaitTriViT’s rank-1 accuracy with different TCSS order on CASIA-B in 11 view angle and 3 walking status, excluding identical-view
cases.

Status Method Probe view Mean

0� 18� 36� 54� 72� 90� 108� 126� 144� 162� 180�

NM TCSS after 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

baseline 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.00 99.91

BG TCSS after 87.00 82.00 88.00 90.91 95.00 85.00 82.00 92.00 85.00 84.85 80.00 86.52

baseline 95.00 89.00 94.00 93.94 97.00 93.00 93.00 97.00 94.00 89.90 86.00 92.89

CL TCSS after 33.00 34.00 44.00 48.00 65.00 65.00 62.00 52.00 43.00 32.00 28.00 46.00

baseline 37.00 41.00 49.00 60.00 69.00 67.00 60.00 59.00 49.00 30.00 32.00 50.27

Note:
Results indicate the order has minimal impact. Altering the order fails to boost feature discriminability while eroding robustness.
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Evaluation results demonstrate that the proposed method GaitTriViT meets quite a
challenge on both the popular benchmarks: CASIA-B and OUMVLP, while the other
proposed method GaitVViT reaches the line of state-of-the-art models based on traditional
convolutional neural networks. Evaluations compare between two proposed methods and
argue that current vision transformer structure may not be a good upstream backbone for
binary inputs like gait silhouette. Modification and improvement are compulsory to tackle
this challenge. The author still believes in the potential of Transformer-based structure in
gait recognition as well as other video-based recognition tasks.

Limitations
In this work, two Transformer-based methods GaitTriViT and GaitVViT are proposed to
tackle the gait recognition task. On two popular benchmarks: CASIA-B and OUMVLP,
GaitTriViT meets huge difficulties, the results only surpass the GEINet method leveraging
gait energy images (GEI) for temporal modeling. Among its own results, GaitTriViT also
has a lot of limitations. On the smaller CASIA-B dataset, based on different walking status,
there are three scenarios: normal walking, bag carrying and wearing coat. Compared to
probe status of normal walking, the evaluation in bag carrying status encounters a
reasonable drop-down relatively. However, in the case of subjects wearing coats, there was
a significant performance drop during evaluation, highlighting a lack of robustness in our
method when silhouette appearances have significant changes. For GaitVViT, although the
performance has met the acceptable level on both popular benchmarks. It’s still a little far
away from cutting-edge methods. It is not enough for a temporal augmented method. And
the sensitivity toward appearance noise also needs addressing. Furthermore, Vision
Transformer also has its inherent limitations, e.g., computation consuming and demand
for large datasets, all need extra works in future.

Future works
Given the lack of robustness in GaitTriViT when silhouette appearances have significant
changes. If given the opportunity to work on this further, work will be focused on the
robustness to minimize the noises of appearance, the influence of subjects’ walking
frequency on gait patterns needs to be addressed too. For example, inserting a module to
separate the appearance and gait features. For GaitVViT, the generalization needs no
worry, it is encouraging to combine the tricks of GaitTriViT (e.g., angel embedding) and
the structure of GaitVViT together, the fusion of two methods may help to pursue better
performance. Technologies like data augmentation and reinforcement learning may also
contribute to the task.

For the inherent limitations of Vision Transformer itself, we might introduce the idea of
latent and running the model in latent space, leveraging powerful encoders, e.g., variational
auto-encoder (VAE) and denoising diffusion implicit model (DDIM). They may help the
model to capture high-level patterns better and increase robustness toward noise as well as
efficiency.

Moreover, real-world applications are challenging, rather than popular in-door
silhouette datasets, this work needs to face the in-wild datasets captured from real-world
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scenes, integrating target detection and image segmentation modules. The target would be
to enhance the model’s robustness when facing variations in subject appearances, and
ultimately, testing a capable real-world application to evaluate the capabilities under
diverse conditions.
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