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ABSTRACT

In the field of robotics, object grasping is a complex and challenging task. Although
state-of-the-art computer vision-based models have made significant progress in
predicting grasps, the lack of semantic information from textual data makes them
susceptible to ambiguities in object recognition. For example, when asked to grasp a
specific object on a table with many objects, robots relying only on visual data can
easily get confused and grasp the wrong object. To address this limitation, we
propose a multimodal approach that seamlessly integrates 3D data (shape) and red-
green-blue (RGB) images (color, texture) into a unified representation called red-
green-blue and point cloud (RGB-P), while also incorporating semantic information
from textual descriptions processed by a large language model (LLM) to enhance
object disambiguation. This combination of data allows our model to accurately infer
and capture target objects based on natural language descriptions, overcoming the
limitations of vision-only approaches. Our approach achieves superior performance,
with an average precision (AP) of 53.2% on the GraspNet-1Billion dataset,
significantly outperforming state-of-the-art methods. Additionally, we introduce an
automated dataset creation pipeline that addresses the challenges of data collection
and annotation. This pipeline leverages cutting-edge models: LLMs for text
generation, Stable Diffusion for image synthesis, Depth Anything for depth
estimation, using standard intrinsic parameters from the Kinect depth sensor to
ensure geometric consistency, and GraspNet for grasp estimation. This automated
process generates high-quality datasets with paired RGB-P, images, textual
descriptions and potential grasp poses, significantly reducing the manual effort and
enabling large-scale data collection.

Subjects Artificial Intelligence, Computer Vision, Robotics, Neural Networks
Keywords Grasp generation, Large language models, Computer vision, Multi-modal, Robotics

INTRODUCTION

Human-robot communication in grasp detection acts as a supplementary source of
information, helping robots better understand task requirements and perform precise
grasping actions (Mees et al., 2022). This is particularly useful in cluttered environments,
where the ability to communicate and learn from humans aids in creating focused
grasps on target objects. For example, consider a scenario with two apples and various
other objects on a table; determining how to grasp the two apples involves addressing two
main challenges: (1) identifying suitable grasping points and (2) recognizing the object to
be grasped. Grasp detection research can be categorized into two main approaches,
including planar grasping and six-degrees-of-freedom (6-DoF) grasping. Planar grasping
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(Jiang, Moseson & Saxena, 2011; Lenz, Lee & Saxena, 2015; Chu, Xu & Vela, 2018; Guo
et al., 2017) based on simpler grasp representations. In contrast, 6-DoF grasping is more
adept and suitable for handling complex situations. Notable studies (Chen et al., 2023;
Mousavian, Eppner & Fox, 2019; Sundermeyer et al., 2021; Hoang, Stork & Stoyanov, 2022),
although they achieved good grasping performance, heavily depend on dense 3D
information, making them vulnerable when input sensors are unstable. To address this
issue, Zhai et al. (2023) and their previous studies (Xuan Tan et al., 2024) reduced the
reliance on dense 3D input by using the red-green-blue (RGB) input. These studies, which
only used visual data, achieved good results but only addressed the first challenge due to
the ambiguity of grasping without object recognition. However, to deal with the second
challenge, understanding objects is necessary, potentially through learning from humans
via text data.

In this study, our method seamlessly integrates 3D point cloud data (shape), RGB
images (color and texture), and textual descriptions of objects for better grasp detection
performance. The novelty of our approach lies in the synergistic integration of these
modalities into a unified “RGB-P” representation, with textual descriptions processed by a
large language model (LLM) to provide semantic context, enabling precise object
identification and grasp generation in cluttered environments. The proposed method
processes text input through a text encoder to exploit language interpretability for a deeper
understanding of the object, while visual data, which is a concatenation of two types of
input: RGB image and Pointcloud are processed by a backbone (Qi et al., 2017) network to
extract multi level features and maintain invariance to spatial transformations. These
information streams are then combined using cosine similarity and passed through the
model to generate the grasp.

Beyond the core grasping module, we introduce an automated dataset creation pipeline
to address data collection and annotation challenges. In fact, creating datasets for robotic
grasping is notoriously difficult, requiring the capture of various objects in complex
real-world environments and accurate annotation with detailed grasp information.
Additionally, these tasks are also time consuming, requiring specialized expertise, and can
be expensive to scale. Our pipeline tackles these challenges by leveraging advanced
technologies like LLMs and image generation models to create realistic and diverse data
with reduced human effort. Specifically, LLMs (Brown et al., 2020) are used for text
generation, Stable Diffusion (Hu et al., 2021) for image synthesis, Depth Anything (Yang
et al., 2024a) for depth estimation and GraspNet (Fang et al., 2020) for grasp estimation,
providing labeled data for potential grasp poses. This integrated approach allows us to
efficiently create a large dataset tailored for training robust grasping systems. By leveraging
standard intrinsic parameters from the Microsoft Kinect depth sensor, we ensure
geometric consistency in the generated 3D point clouds. This automated process efficiently
generates high-quality datasets with paired RGB-P, images, textual descriptions, and
potential grasp poses. This significantly reduces manual effort and enables large-scale data
collection, paving the way for more robust and versatile grasping systems.
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In summary, our main contributions are as follows:

1. A novel text-guided grasp detection approach that integrates RGB images, 3D point
clouds, and textual descriptions processed by an LLM, achieving state-of-the-art
performance with an AP of 53.2% on the GraspNet-1Billion dataset.

2. An automated dataset creation pipeline that leverages advanced technologies (LLMs,
Stable Diffusion, Depth Anything, GraspNet) to generate diverse, geometrically
consistent grasping data with minimal human intervention.

3. We contribute a text prompt dataset describing 52 object categories from the GraspNet
1-Billion dataset.

The remainder of this article is organized as follows: Related Work and Background,
provides an overview of existing research in grasp detection, including planar and 6-DoF
grasping, as well as relevant studies on language models, image generation, and depth
estimation. In Methodology, we introduce our proposed grasp generation pipeline (“Grasp
generation pipeline”), detailing the steps involved in automated dataset creation and
language-driven RGB-P grasp detection (“Language-driven RGB-P grasp detection”). This
includes a description of the attention mechanism used to fuse text and visual features.
Evaluation, presents the evaluation metrics (“Evaluation metrics”), comparing our
approach to the state-of-the-art methods in the GraspNet-1 Billion dataset (“Evaluation on
GraspNet-1Billion dataset”) and the experimental results (“Grasping robot simulation
experiment”). Implementation Details provides information on the practical aspects of the
system, including hardware and software requirements, training parameters, and
optimization techniques. Limitations discusses the constraints and challenges of our
approach. Finally, Conclusions summarizes the key contributions of our work, discusses its
limitations and outlines potential avenues for future research. The detailed abbreviations
and definitions used in the article are listed in Table 1.

RELATED WORK AND BACKGROUND

Grasp detection

In this section, we will focus on the analysis of grasping methods, including 2D planar
grasping and 6-DoF grasping, along with recent prominent research in this area. 2D planar
grasping simplifies the task by restricting the gripper to move perpendicular to the camera
plane. The oriented rectangle becomes a powerful tool to present the grasp in this plane,
conveying essential information about the grasp position, orientation, and gripper
opening. Jiang, Moseson ¢ Saxena (2011), combining the “grasping rectangle”
representation with a two-step learning algorithm, offer a significant advancement in robot
grasping capabilities for novel objects. Lenz, Lee ¢ Saxena (2015) demonstrate that deep
learning, coupled with a novel multimodal regularization technique, provides a powerful
and effective approach for robotic grasp detection in real-world scenarios. Chu, Xu ¢» Vela
(2018) proposed combining grasp region proposals with classification-based orientation
estimation, leading to robust and efficient grasp detection. Guo et al. (2017) propose a
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Table 1 List of abbreviation and acronyms.

Abbreviation Definition

RGB Red-Green-Blue

RGB-D Red-Green-Blue and depth
RGB-P Red-Green-Blue and point cloud
2D Two-dimensional

3D Three-dimensional

DoF Degrees of freedom

VAE Variational autoencode
LLMs Large language models

NLP Natural language processing
RelLU Rectified linear unit

Concat Concatnate

CoS Cosine similarity

Mul Multiply matrix

AEM Attention elementwise mask
AM Attention mask

novel hybrid deep learning architecture for robotic grasp detection that integrates visual
and tactile sensing data. Some other notable studies include (Watson, Hughes ¢ Iida, 2017,
Wang et al., 2016; Morrison, Corke ¢ Leitner, 2018). However, grasp generation is limited
to the 2D plane due to the limited degrees of freedom in grasping poses, causing important
grasping poses to be overlooked.

On the other hand, Six-Degrees of Freedom (6-DoF) grasping capability demonstrates
the robot’s finesse and flexibility in manipulating and grasping objects, similar to the
human hand. It allows grasping objects from a variety of angles and directions, providing
maximum flexibility in complex situations (Chen et al., 2023; Zhai et al., 2023; Mousavian,
Eppner & Fox, 2019; Sundermeyer et al., 2021; Hoang, Stork & Stoyanov, 2022). Chen et al.
(2023) present a highly efficient and accurate solution for 6-DoF grasp pose detection. By
leveraging heatmaps for guidance and incorporating semantic information, it effectively
addresses the challenges of grasping in cluttered scenes. Mousavian, Eppner ¢ Fox (2019)
proposed a new method called 6-DoF GraspNet to generate diverse and successful grasps
for unknown objects. This method consists of two approaches including using a variational
autoencoder (VAE) to generate diverse grasp poses from the object’s point cloud, and
using a neural network to evaluate the grasp ability, assigning a probability of success to
each pose. Contact-GraspNet (Sundermeyer et al., 2021) is an end-to-end neural network
to generate 6-DoF grasp poses for unknown objects in cluttered scenes, directly from a
depth image. Hoang, Stork ¢ Stoyanov (2022) took advantage of a voting mechanism and
contextual information to directly generate grasp configurations from 3D point clouds,
solving common occlusion challenges in manipulation.

Although the above studies have achieved good results, there are still some problems.
The accurate generation of 6-DoF grasps often requires geometric information, making
many existing methods dependent on 3D point cloud data. In addition, RGB information
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can provide additional contextual information about the texture, color, and shape of the
object, which can improve the robustness and reliability of grasp detection algorithms.
Contributing to the solution of the 6-DoF problem, our previous work (Xuan Tan et al.,
2024) proposes a novel deep learning framework named Attention-based Grasp Detection
with Monocular Depth Estimation for 6-DoF grasp generation using only an RGB image as
input. Zhai et al. (2023) propose MonoGraspNet, the first deep learning pipeline for 6-DoF
robotic grasping using only a single RGB image. This is in contrast to previous methods
that heavily rely on depth sensors, which perform poorly on objects with challenging
photometric properties such as transparency or reflectivity. However, some limitations,
such as relying solely on visual data, lead to overlooking an important aspect of
human-robot interaction. New dataset such as Vuong et al. (2024), which combine visual
and textual data, show that combining text can help to create better grasps. Our method
seamlessly integrates 3D point cloud data (shape), RGB images (color and texture), and
text descriptions of objects into a unified “RGB-P”. Specifically, we use a state-of-the-art
LLM to capture and model the grasp generation process, enhancing human-robot
interactions. This method enables the generation of object-specific, object-centered grasps
based on text descriptions, providing greater accuracy and flexibility in real-world
scenarios.

LLMs-large language models

Natural language processing (NLP) was born as an ambitious human effort to bridge the
gap between two seemingly separate worlds, the world of natural language and the digital
world. Currently, its application in everyday life is increasing due to its practical benefits in
life thanks to its large language model. Studies that have had a major impact on
development, such as Vaswani et al. (2017) introduced the Transformer architecture,
which has become the backbone of numerous state-of-the-art models in NLP and beyond,
including BERT and GPT-3. Peters et al. (2018) proposed ELMo (Embeddings from
Language Models), an innovative method to generate deep, contextualized word
representations. ELMo employs a bidirectional long short-term memory language model
(biLSTM), pre-trained on an extensive text corpus, to capture intricate word characteristics
(syntax and semantics) and their variations across different contexts (polysemy). Radford
¢ Narasimhan (2018) developed a semi-supervised approach to language understanding
tasks, focus on the use of a generative pre-trained language model for various downstream
applications. Devlin et al. (2019b) introduced Bidirectional Encoder Representations from
Transformers (BERT), a groundbreaking technique for pre-training language
representations that addresses the limitations of earlier models like ELMo and OpenAl
GPT by enabling deep bidirectional training. The emergence of LLMs such as Gemini
(Team et al., 2024) developed by Google DeepMind represents a new era in natural
language processing. As a next-generation multimodal LLM, Gemini stands out with its
capability to process ultra-long contexts of up to 10 million tokens and retrieve
information with exceptional accuracy (>99%) across diverse data modalities, including
text, video, and audio. Alongside other cutting-edge LLMs (Brown et al., 2020; Touvron
et al., 2023; Chowdhery et al., 2022; Achiam et al., 2023), these advances have marked a
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major leap forward in the field, allowing the generation of creative and high-quality
content across a wide range of genres, from poetry, short stories, and screenplays to
articles, emails, and social media post, with a level of fluency and coherence that closely
mirrors human writing.

LLM-based robotic grasping

Recent advancements in LLMs have significantly influenced robotic grasping by enabling
semantic understanding and task-oriented manipulation. In which Jin et al. (2024)
proposed a new task called reasoning grasping, where a robot performs reasoning to
determine grasping poses based on implicit instructions. To accomplish this task, they
developed a system that integrates a multimodal large language model—specifically
LLaVA—that enables simultaneous processing of text and RGB image data to extract
information for object recognition and manipulation. However, using only RGB and text
data as model inputs have certain limitations. Specifically, in scenarios with multiple
overlapping objects, RGB images may not provide sufficient information because the target
object is occluded. This leads to conflicts between the image and text description, causing
the linguistic information to no longer accurately reflect the characteristics of the object to
be manipulated. Wang et al. (2024) proposed the Polaris framework, using the power of
GPT-4 to analyze natural language instructions and extract target queries. These queries
are then integrated with the RGB-D image data through a vision module, enabling the
system to perform robot control tasks, such as object grasping, effectively. Meanwhile,
Tang et al. (2023) introduced an innovative modular architecture for task-oriented
grasping (TOG). This framework uses a LLM to generate open-ended semantic
descriptions, allowing the model to generalize in a zero-shot manner to objects and tasks
not present in the training set. GraspGPT serves as a grasp pose evaluator, receiving grasp
candidates from Contact-GraspNet, a pre-trained sampling module. However, a notable
limitation of both approaches is their complete reliance on linguistic input without using
visual information during the query semantics determination phase. This leads to
difficulties in handling referentially ambiguous instructions. For example, in a scenario
with two cups of different colors (one blue and one white) on a table, a simple instruction
like “pick up the cup” may prevent the model from identifying the target object. This
ambiguity reduces the accuracy and automation level of the system, particularly in
real-world environments with multiple similar objects. Xu et al. (2023) presented a method
integrating vision, language, and action to perform target object grasping in cluttered
environments, using deep reinforcement learning with the Soft Actor-Ciritic algorithm and
pre-trained models like CLIP and GraspNet. However, this method has limitations in
handling complex linguistic instructions. The system relies on fixed language templates
such as “Give me the {keyword}” or “Grasp a {keyword} object,” reducing flexibility when
processing diverse sentence structures or free-form language in real-world settings. Our
work addresses these limitations by using Gemini 2.0 to generate detailed 3D object
descriptions and the BERT encoder to extract robust features from the object descriptions.

Vu et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3060 6/25


http://dx.doi.org/10.7717/peerj-cs.3060
https://peerj.com/computer-science/

PeerJ Computer Science

Stable diffusion

Stable Diffusion is a powerful text-to-image generation model (Rombach et al., 2022) that
forms the core component of our automated dataset generation process. We leverage the
SDXL model (Rombach et al., 2022) as the foundation, enhancing it with low-rank
adaptation (LoRA) (Hu et al., 2021) to fine-tune its performance for our specific
application. This adaptation process allows us to tailor the model’s capabilities to generate
images that are particularly relevant and useful for training our grasp generation model.
The text prompts generated by Gemini (Gemini 2.0) (Team et al., 2024) serve as the input
to Stable Diftusion, guiding the model in creating high-quality, realistic images that depict
the specified scene. These images capture a wide range of variations in object
arrangements, lighting conditions, and perspectives, ensuring that our training dataset is
rich and diverse. This diversity is essential for our grasp generation model to learn to
handle real-world scenarios where objects may be positioned in various ways, under
different lighting conditions, and from different viewpoints. The emergence of text-to-
image generation models has revolutionized computer vision and artificial intelligence.
Models like DALL-E2 (Ramesh et al., 2022) and Imagen (Saharia et al., 2022) have also
demonstrated remarkable abilities in creating photorealistic images from textual
descriptions. However, Stable Diffusion stands out for its open-source nature and
flexibility, making it particularly suitable for our application. The open-source nature of
Stable Diffusion allows researchers and developers to freely experiment with the model
and adapt it to their specific needs. Its flexibility enables us to customize the generation
process by controlling various parameters, including the image resolution, the number of
steps in the diffusion process, and the specific prompt engineering techniques employed.
In contrast to other text-to-image models that rely on proprietary systems, Stable Diffusion
allows us to fine-tune and control the dataset generation process to ensure that it aligns
perfectly with our requirements for training a robust grasp generation model. This control
over the dataset is crucial for enabling our robot to learn to perform grasping tasks with
high accuracy and reliability in diverse real-world scenarios.

Fusion mechanism

The fusion of textual and visual features poses a unique challenge in multimodal learning
for different tasks. Lu et al. (2022) used different late fusion strategies for image-text
multimodal classification. However, the drawback of late fusion is that it may miss
capturing the complex relationships and dependencies between textual and visual features.
Yu et al. (2023) proposed DFM, which aims to facilitate the information exchange between
linguistic and visual features, helping the model learn richer and more discrete
representations, ultimately leading to better component-free learning. Although DFM
aims to enhance visual feature learning through guidance from language, it still relies
heavily on pre-trained linguistic features. The ability of the model to infer unseen
components may be limited by the expressiveness and scope of the language embedding
space. Liang et al. (2022) introduced cosine similarity to measure how well the generated
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text matches the input image. CLIP encodes the image and text into separate vectors, and
the cosine similarity is calculated between these vectors. A higher cosine similarity
indicates that the text is more relevant to the image, which serves as a reward signal for the
reinforcement learning algorithm to learn better alignments. In this study, we merge text
and image features using cosine similarity to focus on each relationship between text and
image.

Depth estimation

Accurate depth information is crucial for our language-driven RGB-D grasp generation
system, as it provides the necessary three-dimensional context for effective grasp planning.
Depth estimation aims to infer the distance of objects in a scene from a single or multiple
images (Yang et al., 2024a). This information is essential for robots to accurately perceive
the environment and plan their actions, especially when grasping objects. To generate
depth maps for our dataset, we leverage the Depth Anything V2 algorithm (Yang et al.,
2024b), an advanced monocular depth estimation model known for its superior accuracy
and robustness.

Depth estimation is a rapidly evolving field, with numerous methods and models being
developed. Other notable approaches include stereo vision (Scharstein e~ Szeliski, 2003),
structured light (Zhang, 2000), and time-of-flight sensors (Jihne, 2002). However,
monocular depth estimation methods like Depth Anything V2 are particularly valuable for
robotics applications, as they offer a cost-effective and flexible solution for depth
perception, with improved generalization to diverse real-world scenarios.

MATERIALS AND METHODS

Materials
This section details the dataset and codes employed in this study.

1. Code repository: The code utilized for data processing, model training, and evaluation
is publicly available on Zenodo (DOI: 10.5281/zenodo.14038077). This repository includes
the code itself, comprehensive installation instructions, and detailed documentation,
ensuring the reproducibility of our experiments. Access the code here: https://zenodo.org/
records/14038077.

2. 3rd-party dataset DOI/URL: The publicly available GraspNet dataset (https://github.
com/graspnet) provided a comprehensive collection of data for object grasping tasks.

Training data: The GraspNet training data consist of four compressed files (train_1.zip
to train_4.zip) downloadable directly from the following Zenodo link:

- https://zenodo.org/records/16006850

Testing data: The testing data encompasses three separate zipped archives: test_seen.zip,
test_similar.zip, and test_novel.zip downloadable directly from the following Zenodo link:

- https://zenodo.org/records/16006850

Additionally, separate label files (grasp_label.zip and collision_label.zip) provide the
corresponding ground-truth labels. These files are available at the following Zenodo link:

- https://zenodo.org/records/16006850
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3. Data extraction steps

To prepare the data for model training and testing, you need to carefully follow the steps
below to ensure that the data are properly organized and ready for use. First, download the
GraspNet dataset directly from the following Google Drive links above to download the
following files: train_1.zip, train_2.zip, train_3.zip, train_4.zip,
grasp_label.zip, collision_grasp.zip, test_seen.zip, test_similar.zip,
and test_novel.zip. After downloading, create a root directory named data to store all
the data. Within the data directory, create four subdirectories with the following

organization and processing:

o Directories grasp_label and collision_grasp:

Extract the files grasp_label.zip and collision_grasp.zip. After extraction, you
will have two folders named grasp_label and collision_grasp.

« Directory scenes:

Extract all the files train_1.zip, train_2.zip, train_3.zip, train_4.zip,
test_seen.zip, test_similar.zip, and test_novel.zip. From the extracted files,
take all the subdirectories and consolidate them into a single folder named scenes.

o Directory text data:

This research utilizes text data provided in Supplemental File 1. After downloading and
extracting, you will have a folder named text_data inside the data directory.

Next, you need to generate tolerance labels by using the script generate_tolerance_
label.py. This script requires the path to the data folder as input. Make sure to provide
the correct path and execute the script. Finally, you can begin the training or testing
process by running the files train.py or test.py. Before running these scripts, ensure
that all the paths within the scripts are configured correctly to point to the data directory
with the structure outlined above.

To streamline data handling and ensure efficient model training, the downloaded data
have been meticulously extracted and organized into a structured directory as follows:

root:
data

grasp_label
folder containing label data from grasp_label.zip

collision_label
folder containing label data from collision_label.zip

scenes
folder containing extracted scene data (train_1.zip to train_4.zip,
test_seen.zip, test_similar.zip, and test_novel.zip) from GraspNet

text_data
folder containing the text dataset, including data. json and vocab.
Jjson.

Vu et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3060 9/25


http://dx.doi.org/10.7717/peerj-cs.3060#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.3060
https://peerj.com/computer-science/

PeerJ Computer Science

Methods

The raw data was considered sufficiently clean and suitable for the intended analysis.
Therefore, no data pre-processing steps such as cleaning, transformation, or feature
engineering were applied.

Synthetic data generation details

The generated image is processed using a depth estimate model, such as Depth Anything
V2 (Yang et al., 2024D), to extract depth information. For converting these relative depth
maps into 3D point clouds suitable for GraspNet (Fang et al., 2020), we utilize standard
intrinsic parameters from the Kinect depth sensor. Our automated pipeline generates a
large volume of synthetic RGB images using Stable Diffusion XL. From this pool, we select
images where the projection of the Depth Anything V2 output, enhanced by its
teacher-student framework for improved metric accuracy, results in coherent 3D geometry
and yields high-confidence grasp proposals from the subsequent GraspNet annotation
stage. This selection ensures that the generated 3D data are well-formed and aligns closely
with real-world sensor characteristics.

Grasp generation pipeline

Our grasp generation pipeline is a multistage process that leverages a combination of
language processing, image generation, and depth estimation to create a robust dataset to
train a grasp generation model. This pipeline efficiently automates the process of creating a
diverse and realistic dataset for robust grasp generation. See Fig. 1 for a visual
representation of the pipeline.

Language-based scene description

The pipeline begins with a textual description provided by the user of a scene, acting as a
natural language instruction. For example, a user might input “Describe a bottle, an
orange, and an apple on a table to put into Stable Diffusion.” This text provides a high-level
representation of the desired scene for dataset generation (Devlin et al., 2019a).

Prompt generation with LLMs

The textual description is processed by a LLM (Radford et al., 2019; Brown et al., 2020),
such as Gemini (Team et al., 2024), to generate a detailed text prompt suitable for image
generation. The LLM analyzes the input text, comprehending the object, their attributes,
and their relationship with the scene. Based on this understanding, the LLM constructs a
comprehensive text prompt incorporating descriptions of objects, their relative positions,
potential lighting conditions, and other relevant attributes relevant to grasp generation.

Text generation on available GraspNet data

The availability of comprehensive textual descriptions is crucial for effectively utilizing
GraspNet data in language-driven grasp generation. However, for existing GraspNet
datasets lacking such descriptions, the manual process of creating them can be incredibly
time consuming and laborious. To address this challenge, we propose an efficient and
scalable solution: taking advantage of LLMs (Radford et al., 2019; Brown et al., 2020) to

Vu et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3060 10/25


http://dx.doi.org/10.7717/peerj-cs.3060
https://peerj.com/computer-science/

PeerJ Computer Science

Description 1: A table with only an orange,
a red apple and a bottle placed next to each
other.

Please create a scene

d? scrllptlon featurmtge; Description 2: A desk with only a
simple arrangement o LLMs notebook, a pen, and a mug placed next to Stable
common items. The [—> L. —>
. (Gemini 2.0) each other.

scene should include a
surface and a few objects

o . Descripti : A coffee table with onl
positioned adjacently. escription n: A coffee table with only a

remote control, a magazine, and a pair of
reading glasses placed next to each other.

Depth
Anything V2

GraspNet-

. —>
Baseline

Figure 1 Automated dataset generation pipeline. This pipeline creates dataset using language-based
scene descriptions, LLMs for prompt generation, stable diffusion for image synthesis, depth anything for
depth estimation, and GraspNet for grasp pose estimation. Full-size k&l DOT: 10.7717/peerj-cs.3060/fig-1

automatically generate text descriptions for the scene and objects depicted in the data.
LLMs are capable of analyzing the available GraspNet data, understanding the objects
present, their attributes, and their spatial relationships within the scene. This
understanding enables them to construct comprehensive text prompts that not only
describe the objects themselves but also incorporate details such as their relative positions,
potential lighting conditions, and other relevant attributes. These attributes are critical for
generating accurate and contextually relevant grasps. By automating the process of text
description generation, we significantly reduce the manual effort required to enrich
existing GraspNet datasets. This enables us to expand the scope of language-driven grasp
generation, allowing us to train more robust and versatile grasping systems using a wider
range of data (See Fig. 2 for examples of text descriptions.).

Image generation with stable diffusion

The generated text prompt is fed into Stable Diffusion (Rombach et al., 2022), a powerful
text-to-image generation model, which interprets the text prompt and produces a realistic
image depicting the scene described by the user. We utilize SDXL (Stable Diffusion XL) as
the base model and enhance it with LoRA (Hu et al., 2021) (Low-Rank Adaptation) for
improved performance in our specific application. This image serves as a visually accurate
representation of the scene, capturing the specified objects, their arrangements, and

relevant environmental details.

Depth estimation for grasp planning

The generated image is then processed by the Depth Anything V2 model (Yang et al.,
2024b), an advanced depth estimation model, to extract depth information. This
process analyzes the image and estimates the depth value for each pixel, resulting in a
depth map that represents the scene. The depth map provides critical spatial
information for the grasp generation model, enabling it to accurately understand the
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Description 1: My coffee is too
bitter! Do we have something to
sweeten it up?

Description 2: This lemonade needs
LLMs | alittle something extra. Do we have
(Gemini 2.0) anything to make it sweeter?

Description n: [ want to make a
simple syrup for cocktails. Do we
have the necessary ingredient?

Figure 2 Example text descriptions for ingredient identification.
Full-size K&l DOT: 10.7717/peerj-cs.3060/fig-2

relative positions and orientations of objects in the scene. This step is crucial for the
model to effectively understand the scene and plan grasps. Depth Anything V2 leverages
a teacher-student framework, where a teacher model trained on synthetic data

generates pseudo-labels for real-world images, enhancing metric accuracy and reducing
the domain gap, thus improving the quality of the generated depth maps for robotic
applications.

Grasp generation and training

The generated image and its corresponding depth map are transformed into a 3D point
cloud and then fed into GraspNet (Fang et al., 2020). This model analyzes the scene, using
both visual and depth information, to identify potential grasp points for a robotic
manipulator. The model outputs a set of candidate grasp poses, providing the robot with
the information needed to safely and effectively grasp the desired objects.

Language-driven RGB-P grasp detection

The aim of our proposal is to estimate grasps for objects described in text combined with
RGB images and point clouds. The proposed method is illustrated in Fig. 3. The features
are first extracted from text, RGB image, and point cloud using the corresponding
backbone. Attention weights are then calculated between the features from different
sources using cosine similarity. Finally, the attended features are passed through a
text-guided grasp generation module, refined based on GraspNet (Fang et al., 2020), a
baseline model, to estimate grasps for the object.

RGB-P

Based on the Pointnet++ mechanism, we concatenated the point cloud with the RGB
image to form an RGB-P map. This combined map provides the model with a richer
understanding of the scene, which includes both geometric and visual information. Using
the RGB-P map, PointNet++ learns more comprehensive features for keypoint selection,
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2 A E I'm feeling a little sluggish. Are

E G e m I nl —»( there any naturally sweet and

. energy-boosting fruits on the table?

Text Encoder Cosine Similarity

Generation

Text-guided Grasp ’

PointNet++
Backbone

Input RGB Image )

| RGB-PointCloud Grasp Estimation

Figure 3 Model architecture: this diagram includes the modules of our network, a text encoder (BERT (Devlin et al., 2019a) model), 3D
backbone (PointNet++ (Qi ef al., 2017)), attention mechanism based on cosine similarity matrix (Lee et al., 2018), text-guided grasp
generation (Fang et al., 2020). Full-size K&l DOT: 10.7717/peerj-cs.3060/fig-3

leading to improved performance in tasks such as object classification, segmentation, and
registration.

Backbone

Given an input text description, an RGB image, and a point cloud. After combining the
RGB image and the point cloud into an RGB-P map, we use the corresponding models to
extract features, denoted Fy,; from a text and F,y, from an RGB-P map. The textual
features Fjo; € RE*2% are extracted from the text using the backbone module of the BERT
model (Devlin et al., 2019a), where L denotes the length of the text. In addition, spatial and
appearance features extracted from RGB-P map representation P = {p;,...,p,} € R®
combine the RGB image and the depth image transformed to the 3D pointcloud, using
Pointnet++ backbone, which denotes F,g, € RN*256,

Attention mechanism with cosine similarity

Taking as input textual features Fy.; € R3¢ and spatial, appearance features

Frgpp € RN*2%, this module implements an attention mechanism based on cosine
similarity (Lee et al., 2018), to measure the similarity between textual features and each
point in the point cloud features, is illustrated in Fig. 4.

Frgpp and Fi,y; will calculate the cosine similarity matrix € RN*L, This matrix measures
the similarity between each pair of features. The AEM (AttentionElement-wiseMask) is
generated from the cosine similarity matrix, high similarity represents high attention and
vice versa. This mask indicates which features in F;,,; should be attended to for each feature
in Fygpp, helps to focus on important features in Fey;.

Fiext is multiplied by AEM. This produces the AM (AttentionMask) representation
AM = {amy, ... ,am,} € R**®, shows the correlation between each feature in F,g, with

all features in Fi.y, helps determine which features in Fg, are important to determine the
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Text Features };l >§)
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Attention Mask Weighted
(Point - Sentence) Features

Figure 4 The architecture of the attention mechanism with cosine similarity. © denotes element-wise
multiplication. ® denotes matrix multiplication. Full-size K&] DOT: 10.7717/peerj-cs.3060/fig-4

location of the object mentioned in the text. The attention element-wise mask is computed
as follows:

(1)

5Fr : Fex !
AEM—Softmax[ (Frghp - (Fien) )]

HFrgthHFtextH

where ¢ denotes for ReLU activation function. And, the attention mask AM is computed as
follows:

S(AEM - (Fiew)")
|AEM||| Frext |

The weighted features, denoted as Fyeignred, are calculated by element-wise

AM = )

multiplication between F,g,, and AM. This produces the final attention weights, which are
used to focus the network’s attention on certain parts of Fyg,.

Fweighted = Frgbp ©AM (3)

where ® denotes element-wise multiplication.

Text-guided grasp generation

This module is refined based on GraspNet (Fang et al., 2020) modules including Approach
Network, OperationNet, ToleranceNet. Approach Network estimates the approach vectors
and possible grasping points, providing M(2 + V) values where M represents the number
of chosen grasping points, two represents the graspable binary class or not and V
represents the number of approach vectors predefined. OperationNet predicts the
operating parameters of the grasp pose, including the orientation and translation of the
gripper under the camera frame, and the gripper width. ToleranceNet predicts the grasp
robustness, indicating the maximum perturbation that the grasp pose can resist during the
grasping process.

Loss function
The loss function is refined based on the loss function of GraspNet (Fang et al., 2020):

L= /llLobjecmess + lZLviewpoint + )VSLgmsp- (4)
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The objectness 10ss Lopjectness €xpressed through cross-entropy, calculates the penalty for
incorrectly classifying the presence of an object in the point cloud, is given by:

N
l
Lohjectness = Zﬁn (5)
n=1

where [, given by:

- exp(%y,¢)
ln = - We log—.’yn,c (6)
; Z;C=1 exp(xni)”

where N represents the number of points in the point cloud, C is the number of classes. In
the text-guided grasp generation task, when the number of points in the point cloud is
large but the number of points containing the object to be grasped is limited, an
imbalanced data phenomenon occurs. This leads to the model having a tendency to classify
the entire point cloud as not containing the object during training. Therefore, the weight
(w) in Eq. (6) formula is used to balance the amount of points that contain the object and
those that do not.

The viewpoint loss function L,jeypoin: calculates the penalty for mistakes in predicting
the best viewpoint to grasp the object. It uses the Mean Squared Error loss function but
only considers predictions for foreground regions and viewpoints classified as good (score
above a threshold).

The grasp loss function L, is defined as:

Lgmsp = ;“4Lsc0re + ;LSLrot + JV6Lwidth + /17Lt0lemnce- (7)

The Lg,s, comprises losses for grasp score loss (Lcore), in-plane rotation classification loss
(Lyot), grasp width regression loss (L4m), and grasp tolerance regression 10ss (Lioferance)-
Regression losses employ L1-smooth loss, while classification losses use standard
cross-entropy loss.

EVALUATION

Evaluation metrics

To judge how well our system predicts grasp poses, especially the most promising ones, we
use a metric called Precision@k (Fang et al., 2020). This metric considers how many of the
top k grasp predictions are actually correct for grabbing a specific object. We figure this out
by checking the point cloud data within the gripper for each predicted pose and using a
force-closure analysis (considering different levels of friction coefficients p) to see if it
would work. In the context of our text-guided approach, Precision@k indirectly evaluates
vision-language grounding accuracy, as successful grasps require the model to correctly
align the textual description with the visual object before generating appropriate grasp
poses. A direct vision-language grounding metric, such as text-image cosine similarity
or CLIP-based alignment scores, could provide additional insight and is considered for
future work.
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Since good robot grasp often relies on the very first suggested options, Precision@k
focuses on the accuracy of those top predictions. We calculate it by ranking all the
predicted poses based on their confidence scores, then picking the top k ones, and finally
checking how many of those k actually work (true positives).

To get a more complete picture, we calculate AveragePrecision@u (AP,) in a range of
k values (typically 1 to 50) for different levels of friction coefficients. This AP, metric is
especially important for cluttered environments where robots need to prioritize the best
grasp options first. In our experiments, we will report AP, results under various
conditions, including different settings and friction coefficients p. This will help
demonstrate how well our system finds good 6-DoF grasps in various situations.

Evaluation on GraspNet-1Billion dataset

The main purpose in this section is to evaluate the overall performance of the model, and
we compared it with the current state-of-the-art methods. In general, these models achieve
impressive results and make significant contributions to the field. We used the
Precision@k metric to provide a comprehensive evaluation of the methods. To ensure
fairness, we reimplemented the methods using the source code provided by the authors.
The results in Table 2 present the performance on “Seen” objects using the Kinect sensor,
showing our improvement with an average precision (AP) of 53.2%, APy g, APy, and APy 4
of 63.1%, 55.6%, and 44.1%, respectively. These results demonstrate that our method
improves upon other methods. Even when compared with different thresholds (AP g,
APy, and APy 4), our method retains superior performance, demonstrating accurate and
reliable capture. This performance highlights the advantage of our multimodal approach,
which leverages semantic information from text to disambiguate objects, combined with
RGB and point cloud data for robust grasp detection. This targeted prioritization is crucial
for robots operating in cluttered environments where choosing the best grasp attempt is
critical. Additionally, the system operates with exceptional efficiency, processing each
grasp prediction in just 260 milliseconds. This rapid processing time makes it suitable for
real-time applications where time-sensitive decisions are essential.

The Table 3 aims to demonstrate two important points. First, we show that improving
the model’s input by incorporating color information in addition to point cloud data is
beneficial. Instead of only using point cloud data to extract features, we leverage the
geometric information from the point cloud and add color information. This significantly
enhances object detection performance. Specifically, from the results table, for the cosine
similarity fusion mechanism, the AP scores without color are 45.4%, 52.1%, 46.2%, and
36.3%, while with color the AP scores are 53.2%, 63.1%, 55.6%, and 44.1%. Similarly, other
fusion mechanisms also show an approximate 1% improvement when color information is
added. Second, we compare three different fusion methods. The first method is
multiplication. Although this method allows the model to learn nonlinear relationships
between variables, it encounters issues when features have very different ranges. This leads
to features with larger values dominating, reducing the influence of other features and
causing imbalance in the model. Consequently, the multiplication method may decrease
the model’s effectiveness in accurately representing object characteristics. The second
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Table 2 The results on GraspNet-1Billion test set captured by kinect sensors.

Method AP APy g APy AP 4
GG-CNN (Morrison, Corke & Leitner, 2018) 16.9% 22.5% 17.1% 11.2%
Chu, Xu & Vela (2018) 17.6% 24.7% 17.9% 12.7%
GPD (Pas et al., 2017) 24.4% 30.2% 24.8% 13.5%
PointNetGPD (Liang et al., 2019) 27.6% 34.2% 28.3% 17.8%
Fang et al. (2020) 29.9% 36.2% 30.6% 19.3%
Gou et al. (2021) 32.1% 39.5% 32.5% 20.9%
Contact-GraspNet (Sundermeyer et al., 2021) 31.4% 31.4% 31.8% 21.6%
Zheng et al. (2023) 36.1% 44.0% 36.6% 26.0%
VoteGrasp (Hoang, Stork & Stoyanov, 2022) 37.5% 45.6% 37.6% 27.6%
Xuan Tan et al. (2024) 38.5% 43.1% 38.8% 29.3%
Ours 53.2% 63.1% 55.6% 44.1%
Note:

The results for our proposed method are highlighted in bold.

method is concatenation. This method is simple and flexible, and does not require complex
operations to combine features. However, it does not handle nonlinear relationships
between features of the text encoder and visual encoder. The final method is cosine
similarity. This method measures the similarity between two vectors without being affected
by differences in scale or magnitude of the features. Experimental results indicate that
using cosine similarity for fusion between features from the text encoder and visual
encoder is the most suitable approach for our study.

Grasping robot simulation experiment

To assess our method’s ability to generate diverse and effective grasps, we conducted
simulation experiments in CoppeliaSim (Rohmer, Singh ¢ Freese, 2013) using a robotic
arm with a multi-fingered gripper. For each experiment, we fed the same object point
cloud and different text prompts into the system. The generated grasps were evaluated
based on quality, stability, and feasibility before simulation. As Fig. 5 demonstrates,
varying text prompts led to distinct grasp configurations for the same object, highlighting
the system’s capacity to produce task-specific grasps. These results indicate the potential
for our approach to enable robots to perform complex manipulation tasks in real world
environments. However, extensive validation on physical robotic platforms is necessary to
confirm real-world applicability, as discussed in “Limitations”.

IMPLEMENT DETAILS

In our implementation, we utilize the BERT (Devlin et al., 2019a) model, as the encoder for
text describing objects. The output textual features comprises 256 channels. For point

cloud feature extraction, we randomly sampled 20,000 points from depth images and

employed a PointNet++ (Qi ef al., 2017)-based feature learning network, which also yields
a 256 channel output. We set 41 = 4, =1, 43 = 0.2 and wy = 0.01, w; = 0.99, where w is the
weight for class 0 (no object) and w; is the weight for class 1 (has object). Our network is
trained entirely using a batch size of 4 and optimized with Adam, employing a learning
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Table 3 Results of our network excision study. See text for details.

Method AP APgyg APy¢ APy 4

Ours (No Color + Mul) 42.3% 51.5% 44.8% 34.4%
Ours (Color + Mul) 45.7% 52.3% 46.6% 36.2%
Ours (No Color + Concat) 45.3% 52.9% 47.2% 37.3%
Ours (Color + Concat) 46.1% 54.6% 48.9% 39.0%
Ours (No Color + CoS) 45.4% 52.1% 46.2% 36.3%
Ours (Color + CoS) 53.2% 63.1% 55.6% 44.1%

Note:

The entry for our best-performing model configuration is highlighted in bold.

v
I need a quick snack

A4

This screw is loose.

to tide me over until
dinner. Do we have
any fruit that's filling

Do we have a tool
with a rotating handle
that can help me

I'm thirsty. Is there a
clean, sturdy
container I can use
for a hot drink?

and easy to eat? tighten it?

v v

Figure 5 Example of robot grasp simulation in CoppeliaSim (Rohmer, Singh ¢ Freese, 2013). With
the same input point cloud and different text prompts, the system outputs different grasps for the objects
described in the text. Full-size K&l DOT: 10.7717/peerj-cs.3060/fig-5

rate of 0.001 for 13 epochs. Training on a single Nvidia GeForce RTX 4070Ti 12GB GPU
takes approximately 46 h.

LIMITATIONS

Our approach demonstrates significant advancements, but several limitations remain that
warrant further exploration:

Depth estimation accuracy: Although Depth Anything V2 (Yang et al., 2024b) improves
metric accuracy through its teacher-student framework, the generated depth maps may
still exhibit a domain gap when applied to uncalibrated real-world scenes with diverse
sensor characteristics. Further adaptation, such as fine-tuning in real-world depth data,
could enhance robustness.

Real-world validation: Our evaluations are primarily based on simulations and the
GraspNet-1Billion dataset. Extensive testing on physical robotic platforms across varied
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objects and environments is essential to validate real-world performance and address
practical challenges such as sensor noise and dynamic lighting.

Intrinsic parameter sensitivity: The automated pipeline assumes standard intrinsic
parameters from the Kinect depth sensor. Variations in real-world camera intrinsics may
require recalibration or adaptation to maintain performance, necessitating further
investigation into robust generalization across diverse sensor setups.

Vision-language grounding metrics: The Precision@k metric indirectly evaluates
vision-language alignment, but direct metrics, such as CLIP-based text-image similarity
scores, could provide deeper insight into the model’s ability to align textual descriptions
with visual objects, particularly in ambiguous scenarios.

Computational cost: The dataset generation pipeline, involving Stable Diffusion XL and
Depth Anything V2, is computationally intensive. Although this is an upfront cost for
creating large-scale training data, optimization strategies could reduce resource demands
for greater accessibility.

Future work will focus on addressing these challenges by improving depth estimation
realism, conducting real robot experiments, improving sensor generalization, and
incorporating explicit vision-language grounding metrics.

CONCLUSION

This study introduces a novel text-guided grasp detection framework that integrates RGB
images, 3D point clouds, and textual descriptions processed by a large language model,
achieving state-of-the-art performance with an average precision of 53.2% on the
GraspNet-1Billion dataset. By combining geometric, visual, and semantic information, our
approach significantly enhances object disambiguation and grasp generation in cluttered
environments. We also contributed a text prompt dataset covering 52 object categories
from the GraspNet-1Billion dataset, enabling language-driven grasp generation for diverse
objects. Additionally, our automated dataset creation pipeline leverages advanced
technologies, including Gemini 2.0, Stable Diffusion XL, Depth Anything V2, and
GraspNet, to generate diverse and high-quality grasping data with minimal human effort.

Despite these advancements, the model’s generalization to novel objects remains limited
due to insufficient diversity in object shapes, colors, and textures in the training data. This
can lead to reduced performance in real-world scenarios with complex lighting, reflective
surfaces, or transparent objects. The reliance on relative depth maps from Depth Anything
V2, while improved through its teacher-student framework, still poses challenges in
achieving metric accuracy for uncalibrated real-world scenes. Future research will focus on
expanding dataset diversity to include a wider range of object characteristics and
environmental conditions, leveraging advanced depth estimation techniques like Depth
Anything V2 to further bridge the domain gap, and conducting extensive real-robot
experiments to validate performance in practical settings. Furthermore, integrating direct
vision-language grounding metrics, such as CLIP-based scores, could enhance the model’s
ability to handle ambiguous instructions, paving the way for more robust and versatile
robotic grasping systems.
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