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ABSTRACT
Background: Accurate prediction of the remaining useful life (RUL) of assets is
fundamental to the development of effective maintenance strategies and overall asset
management. Despite significant advancements, there remains a notable gap in
integrating fault detection and diagnostics (FDD) with RUL prediction models to
create more comprehensive and accurate maintenance systems. One of the key
challenges in this field is the limited ability of current models to generalize effectively
across different types of equipment and varying operating conditions. This gap
emphasizes the need for further research and innovation in developing robust and
adaptable RUL prediction methodologies that can be applied broadly across diverse
industrial scenarios.
Methodology: This review systematically evaluates the machine learning (ML) and
deep learning (DL) techniques used for anomaly detection and RUL prediction,
focusing on their efficacy and practical application. By adhering to the Preferred
Reporting Items for Systematic Review and Meta-Analyses (PRISMA) criteria, the
review identifies and addresses the deficiencies in existing models. It explores a range
of machine learning and deep learning methods, including probabilistic approaches,
hybrid models that combine multiple machine learning techniques, and neural
networks designed to handle large-scale time-series data. The review also examines
the potential for synergy between machine learning models and FDD, aiming to
enhance the precision of equipment monitoring and the early detection of defects.
The challenges of data variability, the irregularity in equipment deterioration, and the
interpretability of complex models are highlighted.
Results: The analysis reveals that while current machine learning and deep learning
models have made considerable strides in predicting the RUL of assets, significant
challenges remain, particularly in their ability to generalize across various equipment
types and operational contexts. Hybrid models and neural networks have shown
promise in improving the accuracy of RUL predictions, especially when managing
large, complex datasets. However, the irregular nature of equipment wears and tear,
coupled with data variability, continues to pose significant challenges. The review
highlights the need for more robust and adaptable models that can not only predict
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RUL more accurately but also integrate seamlessly with FDD systems to provide a
more holistic approach to maintenance.
Conclusion: This comprehensive review focusses on the need for continued research
in developing more integrated, generalizable, and efficient predictive maintenance
systems. By exploring the application of AI in virtual assistants, the review suggests
promising avenues for extending asset longevity and optimizing maintenance
schedules. While current models offer valuable insights, they must evolve to address
the identified gaps in generalizability and model interpretability.

Subjects Artificial Intelligence, Data Mining and Machine Learning, Data Science, Neural
Networks
Keywords Remaining useful life, Fault detection, Anomaly detection, Health management,
Predictive maintenance, Prognostic health management, Maintenance strategy, Health index,
Machine learning, Deep learning

INTRODUCTION
Remaining useful life (RUL) is an estimate of the amount of time a machinery or system is
likely to operate before it requires repair or replacement. It is a critical component in
predictive maintenance strategies, allowing for timely decision-making to prevent failures
and optimize operational efficiency (Seman et al., 2023; Wang et al., 2022). RUL
predictions can be derived from various approaches, including physics-based, statistical-
based, data-driven or hybrid which combine two or more method together to forecast the
lifespan of equipment (Wang et al., 2022). When the RUL reaches zero, it signifies that the
system or equipment has attained its failure point, indicating the end of its operational life.
At this stage, it can no longer fulfill its intended function effectively or safely
(Arunthavanathan et al., 2023; Zhang et al., 2021).

In machine learning (ML), supervised learning methods and neural networks are
commonly employed because of their capacity to manage extensive time-series data and
extract pertinent features automatically for precise RUL prediction (Wu, Ding & Huang,
2020). Martins, Vale & Maitelli (2015) use conventional neural network (CNN) with an
adaptive shrinkage processing mechanism to predict the operational lifespan of machinery
before it requires maintenance or to be replaced. Long short-term memory (LSTM) been
used to detect early failures in rotating machinery by analyzing vibration data and learning
to identify fault patterns (Lee & Chang, 2020). These deep learning models are very
effective at identifying complicated patterns in time-series data. In addition, fault detection
and diagnosis (FDD) were used in engineering to identify, localize and often diagnose
faults or abnormalities in systems. The FDD bases can be categorized in four different
types; Model, data-driven, knowledge and statistic and hybrid based approaches (Ozkat
et al., 2023; Zhao et al., 2019). Martins, Vale & Maitelli (2015) use model-based together
with ML-based approaches, developed for fault detection and isolation (FDI), with studies
exploring the combination of both to enhance FDI performance. A hybrid-based method
combining multivariate empirical mode decomposition, fuzzy entropy and an optimized
support vector machine (SVM) for wind energy converter fault diagnosis, achieving high
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diagnostic accuracy under varying conditions (Zhang et al., 2023c). Soualhi et al. (2022)
and Fong et al. (2023) use fault detection sensor in chiller plants, employing a hybrid
algorithm that integrates ML with pattern recognition for effective fault diagnosis.

Despite notable progress in the estimation of RUL and FDD, there exist various research
insufficiencies that hinder the optimal integration of these methodologies into holistic
maintenance plans (Liao & Tian, 2012). While deep learning models generally produce
very accurate findings, their complexity and lack of interpretability might make it difficult
to acquire trust and approval from maintenance personnel. Similarly, classic machine
learning approaches can have interpretability issues, making it more difficult to
understand the reasoning behind forecasts (Hu et al., 2023). There remains an
insufficiency of research to concentrate integration with all four main topics identified
earlier to address the knowledge gap. Such interest like factor contributes the extending of
RUL from anomaly detection with artificial intelligence was far from complete. The
potential to considerably extend the lifespan of equipment through strategies that go
beyond traditional maintenance, such as Artificial Intelligence (AI) and FDD, is still a
subject of ongoing exploration and development. This discipline has not yet reached
maturity, as there are still a multitude of challenges and uncertainties that must be
resolved.

A foundation for future research and innovation in this critical domain is established by
systematic reviews, which are instrumental in identifying these knowledge gaps and
advancing our understanding. While existing review articles on anomaly detection and
RUL prediction offer valuable insights, they present specific limitations that our article
addresses. For example, the published review by Zhang et al. (2023a) concentrates
exclusively on methodologies that are utilized in mechanical systems, without investigating
broader industrial applications or integration with FDD. In the same aspect, Kumar et al.
(2024) investigates rotating machinery techniques, but it does not provide any coverage of
advanced AI-based methods or their generalizability beyond this field. In a different
review, the practical integration of these techniques with FDD systems is not addressed,
despite the fact that it emphasizes deep learning approaches (Serradilla et al., 2022).
Moreover, Ferreira & Gonçalves (2022) emphasizes the practical applications of machine
learning, but it fails to address the hybrid approaches and real-world obstacles associated
with integrating these methods into FDD applications. Conversely, our article addresses
these deficiencies by integrating RUL prediction with FDD, thereby encompassing a
diverse array of industries and advocating for the practical application of hybrid and
AI-driven strategies. Our research addresses real-world operational challenges and offers
actionable insights for both academia and industry by emphasizing the synergy between
physical and data-driven models. Our review is positioned as a substantial contribution
that complements and expands the existing corpus of literature as a result of this
comprehensive perspective.

In light of the challenges and opportunities discussed, this review explores the latest
technologies revolutionizing predictive maintenance, with a focus on the critical concept of
RUL. By exploring with these methodologies, the review seeks to bridges the gap between
foundational principles of RUL estimation and the innovative, data-driven strategies that
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are transforming the field. This exploration not only highlights the technical advancements
but also emphasizes their practical implications, aiming to provide actionable insights for
industry professional, educators and policymakers. Finally, our effort aims to influence
current maintenance practices, set new standards for industrial operations, and drive the
creation of curricula that include the most recent advances in ML and predictive
maintenance. In addition, it promotes a better knowledge of RUL and its critical role in
improving efficiency, sustainability, and competitiveness across sectors.

MOTIVATION AND SIGNIFICANCE OF STUDY
This study is addressing several key gaps identified from the existing literature. Inadequate
study on integration between anomaly detection and RUL estimation. However, as we
looked through the current research, we noticed a few important things missing as
summarized in Table 1. One of the biggest gaps is that most studies look at anomaly
detection and RUL prediction as separate problems. The review conducted by Zhang et al.
(2023a) offers a robust methodological framework for RUL estimation in mechanical
systems, yet confines its analysis to particular sectors, such as rotating machinery. It
neglects to consider broader industrial applicability or the practical integration with FDD
systems, which are paramount for effective real-world implementation. Similarly, Kumar
et al. (2024) stresses the value of signal centric and statistical techniques for rotating
elements; however, it overlooks the integration of modern artificial intelligence
frameworks, such as deep learning, transfer learning, or hybrid designs, that are
progressively significant in current industrial applications. Very few try to bring them
together into a single, connected approach yet doing so could lead to much more accurate
and responsive maintenance strategies. Without addressing their synergistic potential
when integrated. The absence of comparative evaluation across several industrial fields,
there is limited literature evaluating cross industry for generalizability and adaptability of
ML models for asset health monitoring. There is also a lot of potential in hybrid models
that combine physical understanding of how machines fail with powerful data-driven AI
methods. These can offer the best of both worlds: they are grounded in science, but flexible
enough to handle real-world noise and complexity. But despite this promise, we found that
these approaches haven’t been explored as much as they should be.

The review conducted by Rana (2025) concentrates on the predictive maintenance and
fault detection in electrical power systems that are driven by AI. Although it exhibits
promising developments, its purview is limited to smart grids and does not account for the
integration with RUL estimation or cross-sector adaptability, which are both critical for
generalizable asset health monitoring. Similarly, Han et al. (2024) do not discuss unified
frameworks that combine AD with RUL in dynamic industrial contexts, despite their
comprehensive survey of fault diagnosis under varying operational conditions. Neupane
et al. (2025) provide a thorough examination of machine learning for the detection of
machinery faults. Nevertheless, they devote insufficient attention to hybrid modelling
methods and the difficulties associated with the implementation of integrated systems
across multiple domains.
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Furthermore, there is a lack of comparative evaluations across various industries. There
is still a lack of research on the adaptability and generalizability of machine learning
models for asset health surveillance. Hybrid models that integrate the adaptability of
data-driven AI methods with the physical principles of machine degradation demonstrate
significant potential. These models maintain the adaptability necessary to manage chaotic,
imbalanced, or limited failure data, while also providing the scientific rigour of traditional
methods. However, these hybrid strategies are rarely investigated in a unified and
cross-industry context, despite their potential.

In addition, the review by Serradilla et al. (2022) accentuates deep learning models,
particularly in the realm of prognostics for manufacturing systems. Nevertheless, it does
not critically evaluate the limitations associated with deep learning concerning data
dependency, interpretability, or integration with fault detection frameworks.
Concurrently, Ferreira & Gonçalves (2022) provide a practical overview of machine
learning applications across diverse sectors; however, they lack a comprehensive analysis of
hybrid models that amalgamate physical and data-driven methodologies, and they do not
confront the challenges posed by imbalanced, noisy, or scarce failure data.

The exhaustive and integrative focus on the convergence of three critical components in
predictive maintenance anomaly detection (AD), RUL estimation, and FDD distinguishes
this study from previous reviews. In contrast to previous research, which has tended to
investigate these components in isolation or with minimal overlap, this review
systematically addresses their synergistic integration, which is crucial for the development
of practicable and reliable predictive maintenance frameworks. This study not only
categorizes advanced AI approaches including deep learning, ensemble methods, and
hybrid models but also critically analyzes how these can be effectively integrated with FDD

Table 1 Overview of key review articles highlighting gaps in anomaly detection, fault diagnosis, and RUL estimation.

References Focus area Methodologies Industrial
domain

Key limitations/Gaps

Zhang et al.
(2023a)

RUL estimation frameworks Traditional ML
methods

Rotating
machinery

Lacks integration with FDD systems; sector-specific
analysis

Kumar et al.
(2024)

Signal-based and statistical
techniques for diagnostics

Classical
statistical
methods

Rotating elements Ignores modern AI (deep learning, transfer learning);
lacks hybrid integration

Rana (2025) Predictive maintenance and fault
detection

AI for smart grid
diagnostics

Electrical power
systems

Limited to smart grids; does not integrate with RUL
or generalize across sectors

Han et al. (2024) Fault diagnosis under dynamic
conditions

Fault diagnosis
survey

General industrial
systems

No discussion of unified AD-RUL frameworks

Neupane et al.
(2025)

ML for machinery fault detection Machine learning Multiple sectors
(generalized)

Limited coverage of hybrid modeling; lacks
implementation strategies

Serradilla et al.
(2022)

Deep learning for prognostics Deep learning
models

Manufacturing
systems

Overlooks DL limitations (interpretability, data
dependency); lacks FDD integration

Ferreira &
Gonçalves
(2022)

ML applications in various sectors General ML
approaches

Cross-sectoral Superficial coverage of hybrid models; ignores
imbalanced/scarce data challenges

Gazali et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3056 5/43

http://dx.doi.org/10.7717/peerj-cs.3056
https://peerj.com/computer-science/


systems and applied in real-world industrial contexts, in contrast to earlier reviews that
primarily concentrate on specific methodologies (e.g., deep learning or signal-based
analysis) or narrow industrial sectors (such as rotating machinery or smart grids).
Additionally, this review broadens the scope by assessing the cross-sector adaptability of
these integrated approaches across a variety of domains, such as aerospace, energy,
manufacturing, and medical equipment. This comprehensive applicability directly
addresses a critical limitation in the existing literature, which frequently lacks
generalizability and overlooks the complexities inherent in diverse operational contexts. By
offering a holistic perspective that bridges methodological advancements with authentic
deployment scenarios, this research fills a significant gap and lays the groundwork for the
next generation of intelligent, industry agnostic maintenance systems capable of adapting
across heterogeneous implementation ecosystems.

METHODOLOGY
Search terms identification
The concept of asset life cycle encompasses a broad spectrum of keywords that are crucial
for understanding its behavior throughout its expected lifespan. Selecting the right
keyword is essential to find appropriate academic articles, as keywords serve as the primary
tools for indexing and retrieving research articles in databases. To reflect the main
objectives of this review, the keywords were chosen based on four main topics: Equipment
Lifespan Prediction, FDD, Prognostics and Maintenance Management, and Machine
Learning (Table 2). The selected keywords collectively embody the essence of a article,
allowing for the targeted identification of relevant studies without the need to filter through
irrelevant material. This includes a wide range of approaches and perspectives, allowing for
a thorough examination of the junction of FDD, RUL prediction, maintenance
management, and AI.

Research questions
In this study, we created a table of research questions to address significant topics and gaps
discovered in the field of RUL, FDD and predictive maintenance (Table 3). By addressing
these research questions, the study aims to contribute and improve understanding the
concepts and applicable models for equipment reliability and maintenance.

Identification for reporting guideline
Selecting an appropriate research framework before screening research article is a first step
in the systematic literature review process, thereby ensuring only the most relevant and
high-quality studies are selected. The Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) technique was selected because of its suitability to the
method applied in these studies and also widely adopted by high-impact journals and
institutions (Oumaima, Benabdellah & Zellou, 2023). Thus, it facilitating the peer-review
and publication processes (Sewell, Schellinger & Bloss, 2023). PRISMA employs a
structured methodology that includes the following steps: first, the identification of
pertinent studies through the use of predefined keywords, followed by the screening of
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articles to eliminate duplicates and irrelevant research, the assessment of the eligibility of
studies based on specific criteria, the systematic collection and organization of data, and
the final visualization of the findings through research maps and summaries (Zamzam
et al., 2021). This process, which is facilitated by a 27-item checklist and 16 sub-items,
ensures that only the most relevant and reliable studies are included, thereby facilitating
reproducibility and peer review (Page et al., 2021) and. It also helps maintain high quality
and transparency in the review.

Search strategy and data collection
The selection process prioritizes studies that employ machine learning techniques for
prognostic anomaly detection and predictive maintenance. Using only the most relevant
studies to enhances the quality data and focusing on each research findings (PRISMA 2020
Checklist, 2020). The inclusion and exclusion criteria as tabulated in studies were
meticulously selected to ensure that the review concentrates on pertinent, high-quality
studies that are consistent with its objectives (Table 4). In order to guarantee current,
accessible, and original contributions, only research articles published in English between
2010 and 2024 were considered. Non-peer-reviewed sources, including conference articles,
case studies, book chapters, and guidelines, were excluded due to their infrequent use of
comprehensive data analysis, standardized peer-review processes, or detailed
methodologies. To prevent the potential for language barriers that could influence the

Table 2 Research main category and its common keyword.

Topic Keywords

Equipment life span prediction Remaining useful life, life cycle analysis, life span, survival analysis, weibull distribution, reliability engineering,
circular economy, life data analysis and time-to-failure analysis

Fault detection and diagnosis
(FDD)

Fault detection, anomaly detection, sensor data analysis, pattern recognition, performance degradation analysis,
condition monitoring, root cause analysis and fault tolerance system

Prognostic and maintenance
management

Health management, preventive maintenance, corrective maintenance, prognostic/predictive maintenance, work
order management, asset management, maintenance strategy, health index, reliability-centered maintenance, total
productive maintenance, prognostic health management,

Artificial intelligence (AI) Machine learning, deep learning, neural networks, natural language processing, cognitive computing and artificial
intelligence

Table 3 Table of research questions.

No. Research questions

RQ1 What are the range of studies associated with predicting the RUL of equipment?

RQ2 How can hybrid models combining physical and data-driven methods improve RUL prediction for complex systems?

RQ3 What are the comparative accuracies between Artificial Intelligence approaches in RUL prediction?

RQ4 How effective are FDD approaches in detecting early indicators of equipment failure?

RQ5 What challenges are associated with the implementation of sensor technology for fault detection?

RQ6 What are the most effective methods use for monitoring condition in the predictive maintenance and how can root cause analysis be effectively
determined in fault tolerance systems?

RQ7 How do life cycle analysis and survival analysis frameworks influence the selection of maintenance strategies and health indices in reliability
driven maintenance?
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interpretation of technical content, non-English studies were excluded. Additionally,
publications prior to 2010 were omitted in order to emphasize more recent developments
in the field. In order to maintain relevance and assure alignment with the review’s scope,
articles that were unrelated to predictive maintenance, FDD, machine learning in
prognostics, or RUL were excluded. These criteria establish a precise framework for the
identification of studies that contribute to the advancement of knowledge in this critical
field while simultaneously preserving rigor and focus. The keywords were then strategically
combined into a single search string using Boolean operators (e.g., AND, OR) to ensure a
comprehensive yet targeted search across multiple databases (Table 4). This approach
enhances the search process by including all relevant studies while minimizing irrelevant
results, providing a robust foundation for the systematic review. Data was subtracted from
eight major databases; ScienceDirect, Scopus, IEEE Xplore, Web of Science, Emerald,
MEDLINE Complete, Dimensions, and Springer Link from year 2010 until 2024. Google
Scholar was excluded to avoid duplicate articles. Articles are initially selected based on
relevance keywords and then screened for quality.

Quality assessment
A total 27 checklist item is divided into five main categories; preparation data, methods to
cover RUL criteria for study selection, data collection, bias assessment, and results findings
(Oumaima, Benabdellah & Zellou, 2023; Page et al., 2021). Figure 1 and Table 5 provide an
overview of the search results at different stages of the screening process. A total of 27,507
journal articles were retrieved from eight major databases. After removing 652 duplicate
records and 10,410 records under exclusion criteria, 16,445 records were screened. From
these, 10,678 records were excluded, leaving 5,767 articles for further screening.
Subsequently, 786 reports were sought for retrieval, with 522 reports not retrieved. This left
220 reports for eligibility assessment. During this assessment, 85 reports were excluded for
not being related to engineering (50), asset management (23), or prediction of asset
behavior (12). Ultimately, 22 studies were included in the review, emphasizing the
importance of evaluating the quality of each study to mitigate the risk of bias.

Table 4 Inclusion and exclusion studies.

Inclusion and exclusion criterion

Criterion Inclusion Exclusion

Sources Research article Review article, conference article, proceedings article, case study,
chapter in book, book section, encyclopedia, early access, guideline
and other sources

Language English Non-English

Period Between 2010 to 2024 Before 2010

Selection
journal

(1) Focus on the using of method to find remaining useful life for all
kind of equipment at various ages and condition or (2) Focus on
the use of machine learning algorithm in prognosis either for faulty
detection or predictive maintenance

Other than related equipment remaining useful life, prognosis,
predictive maintenance and machine learning algorithm
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Figure 1 PRISMA reporting guideline identification, screening, and inclusion process from 27,507
to 22 selected articles. The diagram is a PRISMA flowchart. It describes the process from identification,
screening, and final selection studies in a systematic review from an initial pool of records.

Full-size DOI: 10.7717/peerj-cs.3056/fig-1

Table 5 RUL Boolean keyword search result across eight major databases.

Search strings Science
Direct

Scopus IEEE
Explore

WoS Emerald Medline
complete

Dimensions Springer
Link

(“Remaining useful life”) AND (“Fault detection” OR “Anomaly
detection”) AND (“Machine Learning”)

731 31 44 31 25 327 6,344 268

(“Remaining Useful life”) AND (“prognostic health management”
OR “Predictive Maintenance”) AND (“Machine learning”)

717 99 53 95 37 169 3,796 216

(“Machine Learning”) AND (“health management” OR “asset
management” OR “maintenance strategy”) AND (“Remaining
Useful Life”)

1,099 126 231 113 45 245 6,549 300

(“Machine Learning”) AND (“Health Index” OR “Predictive
Maintenance”) AND (“Remaining useful life”)

814 101 69 100 39 192 4,253 247

Total including duplicate 3,361 357 397 340 146 933 20,942 1,031

Subtotal including duplicate 27,507

Total selected area after quality assessment 22
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RESULT
Main findings
Table 6 presents a summary of 22 research articles on RUL, selected using the PRISMA
framework. These studies span various industries and systematically categorized into
condition based, asset specific, risk-based, and maintenance-based approaches. Among
these, condition-based maintenance combined with predictive analytics emerged as the
most prominent approach in the reviewed literature, with over 60% of the studies focusing
on this topic. For example, Aydemir & Acar (2020) introduced anomaly-triggered RUL
estimation method to improve detection during health operation anomalies in aerospace
and manufacturing. However, the model’s generalizability across a variety of operating
environments is restricted by its dependence on a singular anomaly detection method, the
Cumulative Sum Control Chart (CUSUM), which is a statistical tool used for monitoring
changes in processes over time.

Wang et al. (2018) use nonlinear model with first-time hitting detection approach to
predict degradation levels under imperfect maintenance in heavy industries. Although this
method offers higher accuracy, it heavily depends on stochastic process assumptions,
making it unsuitable for broader applications. Similarly Zhang et al. (2020) proposed a
novel iterative standby system lifetime (SSL) estimation method that integrates both
operational and storage degradation processes, offering comprehensive lifetime prediction
for manufacturing and aerospace sectors. Although innovative, its iterative approach is not
suitable for non-linear degradation models.

Another major topic involves deep learning applications for predictive maintenance.
Zheng, Liao & Zhu (2023) developed a two-stage model using Robust-ResNet for fault
detection and RUL prediction, providing improved classification accuracy across four
degradation stages. However, accelerated life testing data used in their study may not fully
represent natural degradation patterns. Similarly, Cheng et al. (2021) implemented a
transferable convolutional neural network (TCNN) for RUL prediction in bearings,
showcasing advancements in feature extraction and transfer learning across multiple
failure behaviors In aerospace engineering. Ture et al. (2024) introduced a stacking
ensemble learning method for deep learning-based anomaly detection, leveraging multiple
regression algorithms to enhance predictive robustness.

In the context of data-driven approaches, several studies highlighted innovations in
health monitoring and feature extraction. de Pater & Mitici (2023) expand health indicator
functions with similarity based matching methods to predict unhealthy stages of aircraft
engines with minimal failure data. Rosero, Silva & Ribeiro (2022) presented a novel
classification methodology using HI to segregate health degradation into two stages,
improving failure detection in aerospace systems. Similarly, Duan et al. (2023) applied
principal component analysis (PCA) for dimensionality reduction while integrating
similarity metrics to construct health indicators and monitor degradation trends
effectively. However, the limited exploration of similarity metrics suggests room for further
improvement. Arunthavanathan et al. (2023) established a self-learning fault detection
framework using one-class support vector machines (OC-SVM) and neural network-based
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permutation algorithms, offering automated detection for fault progression. Wang &
Mamo (2019) combined support vector regression and random forest models to introduce
confidence intervals using the jackknife method, strengthening anomaly detection in
machinery. While innovative, the reliance on controlled environment data limits
real-world applicability. Similarly, Wang & Zhao (2023) presented a three-stage feature
selection method with k-medoids clustering, uncovering operational patterns for complex
machinery systems, yet their framework remains complex for large-scale applications.
Sayyad et al. (2021) applied multi-sensor fusion techniques integrated with denoising and
signal transformation to provide robust real-time predictive models for manufacturing
applications. However, their framework requires further exploration for effective noise
reduction and data integration.

Statistical and optimization models were also explored across multiple studies. Liao &
Tian (2012) applied Bayesian approaches in combination with accelerated degradation
testing (ADT) to handle time-varying conditions and improve adaptability in
manufacturing and transportation sectors. Meanwhile, Carroll et al. (2019) integrate
SCADA data with high-frequency vibration signals for predictive analysis of renewable
energy systems, enhancing fault detection in wind turbines. Biondi, Sand & Harjunkoski
(2017) introduced mixed-integer linear programming (MILP) and state task network
(STN) models, offering a structured approach to handling noisy and complex datasets in
renewable energy. Ma, Xu & Yang (2023) designed the Fine Life Cycle Prediction System
for Failure of Medical Equipment to predict failures in medical devices in a structured way.
The system comprises the Life Cycle Management Module, Status Detection, Fault
Diagnosis and Fault Prediction Module. The module is distinguished by its integration
with AI method to facilitate proactive maintenance approaches in healthcare.

Solís-Martín, Galán-Páez & Borrego-Díaz (2023) explores the predictive maintenance
(PdM) application, predominantly on the Explanation AI (XAI) for prognostics and health
management (PHM). The algorithm was applied to Grad-CAM for time-series regression
by introducing time and feature dependencies addresses regression, which is inherently
harder to explain than classification tasks. Fan, Nowaczyk & Rögnvaldsson (2020) and
Wang & Zhao (2023) has enhanced PdM frameworks for complex machinery by
introducing advanced methodologies, the former utilizes a feature representation-based
transfer learning (TL) approach with consensus self-organizing models (COSMO) to
address maintenance planning and operational issues in turbofan systems, while the latter
proposes a three-stage feature selection framework combined with DL models to improve
accuracy prediction under variable operating conditions. Meanwhile, Liao & Tian (2012)
address prediction of single units under time-varying operating conditions using an
advanced Bayesian updating methodology for RUL, which accommodates both linear and
nonlinear degradation-stress dynamics, providing solutions for stochastic operational
scenarios to facilitate real-time assessments while mitigate uncertainties in varying
conditions.

The reviewed literature highlighted several challenges, with a major issue being the
scarcity of failure data due to preventive maintenance practices, as noted by de Pater &
Mitici (2023) and Ma, Xu & Yang (2023) has discover training models difficulty and
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requires better techniques to generate or augment data. Liu et al. (2020) and Ture et al.
(2024) show that absence of environmental factors in models such as extreme conditions
and operational variability are often ignored limits model accuracy in actual scenarios.
Scaling models to new industries or unseen data remains difficult. Fan, Nowaczyk &
Rögnvaldsson (2020) and Cheng et al. (2021) highlighted transfer learning methods struggle
to adapt to different operating conditions or large datasets, reducing their effectiveness.
Many models still rely on linear degradation assumptions, which oversimplify real-world
trends. Pei et al. (2019), Zhang et al. (2020) and Arunthavanathan et al. (2023) argue for
adaptive approaches that can handle non-linear and multi-phase degradation more
effectively. Imbalanced and noisy datasets impact model performance. Studies such as
Biondi, Sand & Harjunkoski (2017), Wang & Mamo (2019) and Lee, Kim & Lee (2023)
show that biased predictions occur when data is incomplete or unbalanced.

Overview of frequently used datasets in RUL and fault diagnosis
studies
In this review, the datasets analyzed are classified as publicly available, which are accessible
for academic and research purposes, or private and proprietary datasets, which are
typically collected in-house and often specific to industrial settings. The quality and
characteristics of these datasets play a critical role in influencing model training, validation,
and performance evaluation.

Table 7 presents an exhaustive summary of publicly accessible datasets that are
frequently employed in research pertinent to condition-based RUL forecasting. These
datasets serve as the cornerstone for the development, training, and benchmarking of
data-driven prognostic models across a multitude of engineering domains. The table
encompasses datasets from various sectors, including aerospace, battery systems, and
rotating machinery. For example, the NASA C-MAPSS dataset, which simulates the
degradation of turbofan engines, is often utilized in aerospace RUL investigations and
comprises measurements such as pressure, temperature, fan speed, and fuel-air ratio across
an array of fault scenarios. The N-CMAPSS dataset enhances this with more intricate
degradation trajectories and multivariate conditions, rendering it particularly suitable for
deep learning and transfer learning frameworks. Likewise, the NASA Battery Usage dataset
and the MIT Battery Degradation dataset (Severson et al., 2019) are employed to examine
battery cycle longevity by documenting charge/discharge patterns, voltage, current,
temperature, and internal resistance. Within the domain of rotating machinery, datasets
such as the IMS Bearing Dataset, FEMTO-ST, and PRONOSTIA provide high-resolution
vibration data amassed under controlled experimental conditions and are extensively
utilized for bearing fault detection and degradation analysis. Similarly with Gearbox
Dataset provided from PHM on year 2009 provides vibration and temperature data for
analyzing degradation on rotating gearbox.

Each dataset delineated in table is accompanied by its respective access link, thereby
facilitating other researchers in replicating or extending previous experiments.
Nonetheless, certain limitations are acknowledged. A considerable number of the datasets
are generated through accelerated life testing or controlled laboratory conditions, which
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may not entirely capture the intricacies of real-world operational environments. Studies
such as those by Ma, Xu & Yang (2023) and de Pater & Mitici (2023) acknowledge the
limitations imposed by insufficient failure data particularly due to widespread preventive
maintenance practices that prevent systems from running to failure. Additionally, they
frequently lack contextual features such as ambient temperature variations, user
variability, or unstructured anomalies. Furthermore, naturally degraded datasets those
acquired from actual equipment over extended periods are notably scarce. This limitation
undermines the external validity of models trained exclusively on synthetic or
laboratory-derived data. Consequently, while these datasets are indispensable for
methodological progress, there is a growing exigency for more comprehensive and diverse
datasets that more accurately reflect operational uncertainties and realistic degradation
behaviors.

Distribution of publication by component and years of study
This VOSviewer map illustrates the interconnected themes and concepts in the field RUL
prediction, maintenance strategies, and related technologies (Fig. 2). An analysis using
bibliometric mapping for review article enhances the quality of analysis by providing clear
visual maps of keyword occurrences, temporal trend, cluster analysis and evolution in

Table 7 Publicly available physical dataset for condition base RUL.

Public data Description Category Dataset Measurement
parameter

Accessible link

NASA jet engine
simulated data

Commercial modular
aero-propulsion
system simulation
(C-MAPSS)

Turbofan engine
degradation
simulation

Simulated data
combination
operation and
fault mode

Temperature,
pressure, fan
speed, coolant
bleed, fuel-air
ratio

https://data.nasa.gov/dataset/c-
mapss-aircraft-engine-simulator-
data

NASA jet engine
simulated data

Commercial modular
aero-propulsion
system simulation
(C-MAPSS)

Turbofan engine
degradation
simulation

Run to failure
trajectories

Fuel flow, fan
speed,
temperature,
pressure, fan flow

https://www.nasa.gov/content/
prognostics-center-of-excellence-
data-set-repository

PHM gearbox dataset Generic industrial
gearbox (Year 2009)

Rotating machinery Gearbox
degradation
under realistic
operating
conditions

Vibration,
temperature,
speed, torque

https://phmsociety.org/public-
data-sets/

NASA randomized
battery usage

Battery usage Battery systems State of health
(SOH)

Voltage, current,
temperature over
charge/discharge
cycles

https://www.nasa.gov/content/
prognostics-center-of-excellence-
data-set-repository

MIT battery degradation
dataset

Fast-charging battery
dataset (Severson
et al.)

Batteries systems Fast charge
durability

SOC, internal
resistance,
temperature,
charge profile

https://data.matr.io/1/projects/
5c48dd2bc625d700019f3204

FEMTO bearing PRONOSTIA Rotating machine—
bearings

Run to failure
bearings

Vibration,
accelerometer,
bearing
degradation

https://www.nasa.gov/intelligent-
systems-division/discovery-and-
systems-health/pcoe/pcoe-data-
set-repository/
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research interest (Nobanee et al., 2021). This allows authors to identify knowledge gaps,
emerging themes, and research trajectories effectively. The frequency and quantity of
publications associated with each concept are indicated by the size of the nodes, which
represent key terms (van Eck & Waltman, 2010). The larger the node, the more
publications are available online. The intensity of the relationships between nodes is
reflected in the links between them, with closer distances indicating stronger connections
(Nees Jan & Waltman, 2014). To emphasize the publication year and the intensity of their
association, the links’ thickness and colors are used.

The map has revealed significant trends over the past decade. The frequency of
publications on RUL experienced a significant increase between 2019 and 2022, which is
indicative of the increasing interest in predictive maintenance applications. From 2021,
there was a significant increase in the study of machine learning, with a particular
emphasis on its application in maintenance optimization. In the same vein, defect
diagnosis gained prominence in 2020. Nevertheless, the map suggests that there is limited
connectivity between these critical areas, despite the growth in these individual domains.
This suggests an opportunity to further investigate their integration, such as the use of
machine learning for fault diagnosis in RUL prediction. This emphasizes the necessity of

Figure 2 Development of RUL key concepts since 2014. Nodes: represent the key features of the map. Lines: lines between nodes represent the
strength of relationships. Color: the development and prominence of concepts over time (2014–2024).

Full-size DOI: 10.7717/peerj-cs.3056/fig-2
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conducting research that connects these categories in order to improve the comprehensive
solutions for predictive maintenance.

This Streamgraph depicts the progression of research interests in RUL prediction and
related disciplines over the past 10 years. It indicates a consistent andmoderate level of interest
between 2014 and 2018, with research covering a wide range of subjects, including mechanical
engineering, condition monitoring, and prognostics (Fig. 3). However, a substantial decline
was observed after 2020, which is likely attributable to the COVID-19 pandemic, which
disrupted research activities on a global scale. Research interest in this particular field resumed
in 2022, concurrently with the increasing emphasis on AI architectures, particularly LSTM

Figure 3 Evolution numbers of RUL studies based on keywords over time. X-axis: year of studies. Y-axis: number of documents.
Full-size DOI: 10.7717/peerj-cs.3056/fig-3
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networks. This surge is indicative of the growing incorporation of AI into RUL prediction,
which demonstrates its capacity to improve prediction accuracy and offer valuable insights for
maintenance strategies. The emergence of LSTM and its applications emphasizes the
transition to data-driven approaches in the field, indicating a resurgence in research activity
following the pandemic (Open Knowledge Maps, 2024).

Synthesis and analysis based on research questions
RQ1 What are the range of studies associated with predicting the RUL of
equipment?
Table 8 measures studies interest distributed based on stage in life span where the bathtub
curve model was used to identify the range of study because it defines components failure

Table 8 Distribution of RUL studies.

Life stage Sub-stage Failure rate Failure Article

Early stage
Infant mortality

Design
manufacturing,
licensing,
establishment

High Decrease over time as
defective units are identified
and repaired or replaced

Zhang et al. (2023b)

Middle stage
Normal life

Warranty period Low and constant Randomly due to external
factors

Arunthavanathan et al. (2023), Aydemir & Acar (2020)
to Zheng, Liao & Zhu (2023), Pei et al. (2019) toWang
& Zhao (2023)

Normal use

Heavy utilization

Upgrade/
modification

Late stage
Wear-out

Aging asset High Predictable, often due to
aging process

Arunthavanathan et al. (2023), de Pater & Mitici (2023),
Zheng, Liao & Zhu (2023), Pei et al. (2019), Rosero,
Silva & Ribeiro (2022), Biondi, Sand & Harjunkoski
(2017),Ma, Xu & Yang (2023) to Solís-Martín, Galán-
Páez & Borrego-Díaz (2023)

Approaching end
of life

Figure 4 The bathtub curve for equipment life cycle and failure rate. X-axis: age of equipment; Y-axis:
equipment failure rate over three phase of life; stage I, stage II and stage III.

Full-size DOI: 10.7717/peerj-cs.3056/fig-4
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rate over time (Titu-Marius, 2021). In Fig. 4, The bathtub curve typically comprises of
three stages: an initial diminishing failure rate (infant mortality), a consistent failure rate
(useful life), and a rising failure rate (wear-out) (Ikonen, Corona & Harjunkoski, 2023).
Numerous models and methodologies have been devised to precisely elucidate and
conform to this curve to empirical data. For example, the adjusted exponential-Weibull
(MEW) model, which merges the exponential and Weibull distributions, presents a
versatile approach to accommodating failure time data with a bathtub-shaped hazard rate,
delivering superior outcomes in comparison to other models (Al-Essa et al., 2023).

The early stage is supported by one study Zheng, Liao & Zhu (2023), indicating
relatively less research focus on the high initial failure rates caused by manufacturing
defects or early use issues. The absence of operational data is identified as a significant
challenge, as RUL predictions heavily depend on this data, which is not available during
the design and production stage since the equipment has not yet been put into use. In
contrast, The operation stage has the most extensive research, with 19 studies. This
extensive coverage indicates a well-established understanding of the low and normal
constant failure rates during this phase, supporting effective maintenance strategies and
reliability planning based on a broad consensus regarding random failures often due to
external factors. The wear-out stage, which has been covered in eight studies, is mentioned
divided into main two subphases: early wear out and late wear out stage. The transition
phase marks the onset of increasing Major failure rates, accumulation of fatigue and
outdated components. The late wear-out stage is defined by a sharp increase in failure
frequency, signifies the approaching End of Life. Maintenance costs escalate, and decisions
must be made regarding asset replacement, decommissioning, or life extension
investments. This stage is particularly relevant for economic analysis comparing continued
operation vs. replacement costs. Overall, the distribution of studies highlights
well-researched middle and late stages, while the early stage presents an opportunity for
further investigation to enhance early failure mitigation.

RQ2 How can hybrid models combining physical and data-driven methods
improve RUL prediction for complex systems?
Accurately predicting the RUL is crucial for ensuring equipment achieves its expected life
span. Hybrid models, which integrate two or more methods, offer a promising approach to
enhance prediction accuracy by combining both physical principles with data-centric
techniques particularly in a complex system. A common hybrid approaches, integrates
physical-based with data-driven model. Physical-based models rely on mathematical
representations of failure mechanisms, providing a fundamental understanding of system
behavior (Wang & Zhao, 2023). Combining support vector regression (SVR) and random
forest regression (RFR) alongside an exponential weighted moving average (EWMA)
control chart for anomaly detection (Arunthavanathan et al., 2023;Wang &Mamo, 2019).

Meanwhile data-driven models, utilized historical data to identify patterns and predict
future states, offering flexibility and adaptability to varying conditions (Wang & Zhao,
2023). In time frequency data transformations, Short-time Fourier Transform (STFT) and
Wigner Ville Distribution (WVD), used to analyze non-stationary signals, which are
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common in complex systems (Rosero, Silva & Ribeiro, 2022). While in DL, CNN and RNN
utilize in extracting multilevel features from data. PdM is a common example application
of data-driven models. The integration with sensor and AI data processing technique
enhanced the prediction and allow for faster decision making (Sayyad et al., 2021). Plus, a
combine method will increase computational requirement and the accuracy of data-driven
models hinges on the quality of their input data. Noisy data, often stemming from
environmental influences, can significantly impact prediction accuracy (Biondi, Sand &
Harjunkoski, 2017; Fan, Nowaczyk & Rögnvaldsson, 2020;Ma, Xu & Yang, 2023). Effective
data pre-processing techniques are crucial to mitigate these issues and enhance model
reliability. Furthermore, data-driven models must exhibit adaptability to varying operating
conditions prevalent in industrial settings. Robust feature extraction methods and domain
adaptation techniques are crucial to maintain prediction accuracy across diverse scenarios
(Wang & Zhao, 2023).

RQ3 What are the comparative accuracies between Artificial Intelligence
approaches in RUL prediction?
Among the most effective machine learning methods for predicting equipment’s RUL,
deep learning techniques such as LSTM networks have demonstrated remarkable results
(Table 9). LSTM combine with Autoencoders (LSTM-AE) produce high accuracy,
provides monotonicity (0.38), trend ability (0.95), and prognosability (0.94). This
highlights its ability to provide consistent health indicators outperforming other
autoencoders such as gated recurrent unit autoencoder (GRU-AE) and bidirectional long
short-term memory autoencoder (BiLSTM-AE) (de Pater & Mitici, 2023;Wu et al., 2022).
On fault detection, the use of Robust-ResNet combined with LSTM and CNN
architectures, achieves up to 99.53% accuracy (Zheng, Liao & Zhu, 2023). LSTM with
COSMO features reduce mean absolute percentage error (MAPE) between 13–15%,
compared to 25% with traditional methods (Duan et al., 2023). This approach capable in
managing large amounts of temporal data and detecting subtle changes indicative of
degradation or failure (de Pater & Mitici, 2023; Fan, Nowaczyk & Rögnvaldsson, 2020;
Wang & Zhao, 2023; Zheng, Liao & Zhu, 2023).

In a situation of understanding data patterns in sequence, recursive neural network
(RNN) is used. These in combination with the extended Kalman filter (EKF) reduces mean
absolute error (MAE) by 15–25% andMAPE by 10–20% compared to standalone RNNs or
traditional models, improving prediction accuracy for nonlinear, noisy datasets. While
differentiating abnormality, OC-SVM used to distinguish abnormalities by separating
them from normal operating conditions. The fault margin was dynamically adjusted from
data patterns by considering the highest anomaly count in a window and incorporating a
noise margin for accurate anomaly detection (Arunthavanathan et al., 2023).

CNN architecture was developed that incorporates domain adaptation techniques to
minimize distribution discrepancies across different failure modes. Notable studies, such
as those by Cheng et al. (2021), Rosero, Silva & Ribeiro (2022), Solís-Martín, Galán-Páez &
Borrego-Díaz (2023) and Ture et al. (2024), have highlighted the utility of CNNs in this
domain. In TCNN, metrics assess higher accuracy and robustness RUL of bearings under
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Table 9 AI application and performance for health monitoring.

Method Advantages Applications Prediction Article Significant result

Performances Error measurement

Long
short-term
memory
networks

Handle time-series
data, capture
temporal
dependencies

Health indicators RUL prediction de Pater & Mitici
(2023),

Accuracy:
LSTM-AE
81–85%

RMSE 19%

Fan, Nowaczyk &
Rögnvaldsson
(2020)

Accuracy:
PHM Score 0.85–0.92

RMSE 15% to 25%
MAPE <10%

Aydemir & Acar
(2020)

Accuracy:
LSTM (One Fault): 392
LSTM (Two Fault): 424

RMSE (One Fault) 17.15
RMSE (Two Fault)
17.63

Wang & Zhao
(2023)

Accuracy:
R-Square (R2): 0.82

Attention-GRU
RMSE 24.90
MAE 16.4 cycles
Attention-LSTM
RMSE 22.40
R2 0.91
MAE 15.7 cycles

Sayyad et al.
(2021)

Accuracy:
LSTM model 92.54%

MAE 2.75 cycles
RMSE 3.20 cycles

Convolutional
neural
network

Effective for
processing visual
data, extracting
degradation features

Enhanced feature
extraction

RUL prediction Cheng et al.
(2021),

Accuracy:
R-square (R2) 0.82

MAE: 0.10
RMSE: 0.12

Ture et al. (2024), Accuracy: 93.93% RMSE: 33.93

Solís-Martín,
Galán-Páez &
Borrego-Díaz
(2023)

NASA scoring function
0.015
Nil
NASA scoring functions
2.13

Bearing
RMSE: 0.24
MAE: 0.17
Fast charging battery
RMSE: 84.78
MAE: 51.98
Turbo engine
RMSE: 10.46
MAE: 7.69

Zheng, Liao & Zhu
(2023)

Accuracy:
Multi-channel: 81.74%
Single-channel: 52.41%

–

Sayyad et al.
(2021)

Accuracy: 89.56% RMSE: 4.50
MAE: 3.10

Stacking based
ensemble
learning

Enhances prediction
accuracy by
leveraging different
base models

Improves prediction
accuracy

RUL Prediction Ture et al. (2024) Accuracy:
K-fold: 95.72%
Leave one out: 95.69%

RMSE (K-fold): 33.25
RMSE (Leave one out):
31.30

Dynamic
Bayesian
networks

Models’ temporal
processes with
time-dependent
variables

Predicting RUL of
underwater
self-enhanced structures
with probability crack
growth (PCG)

Anomaly detection Liu et al. (2020) Accuracy:
1st year: PCG 45.2%
Crack value 0.4418
7th year: PCG 37%
Crack value 4.7072

1st four years <8.5%
5th to10th years 10–
20.4%
After 10 years <11.3%

Wiener
process
models

Models’ random
phenomena with
independent,
normally distributed
increments

Characterizes degradation
trajectories, includes
negative jumps

RUL prediction Wang et al. (2018) Accuracy: 80.51% Model with Weiner
process
MAPE: 19.49%
RMSE: 49.03 days
MAE: 41.62 days

Zhang et al. (2020) Accuracy:
SSL estimation with spare
part storage degradation:
Final failure time: 170

–

(Continued)
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multiple failure behaviors with a lowMAE of 0.10, root mean square error (RMSE) of 0.12,
and a high R-squared (R2) of 0.82 (Cheng et al., 2021). CNN has achieved an accuracy of
93.93% performed well among DL models but slightly lower than stacking based ensemble
learning (95.72%) (Ture et al., 2024).

Dynamic Bayesian networks (DBN), and Wiener process models offer robust
frameworks for modeling temporal and degradation processes in corrective maintenance.
DBN incorporates time-dependent variables and their probabilistic dependencies,
enabling effective representation of dynamic systems and their evolution over time.
However, Wiener process models characterize degradation trajectories by accounting for
both gradual wear and negative jumps caused by imperfect maintenance. These
approaches as discussed in studies Wang et al. (2018), Liu et al. (2020) and Zhang et al.
(2020) provide robust tools for understanding and predicting equipment performance

Table 9 (continued)

Method Advantages Applications Prediction Article Significant result

Performances Error measurement

Maximum
likelihood
estimation

Provides robust
parameter estimates
in nonlinear,
non-Gaussian noise
scenarios

Measures model’s
explanation of observed
predictive maintenance
data

RUL prediction Pei et al. (2019) Accuracy:
Monitoring time scale
96.43% reduction then on
natural time scale

MSE (Natural time
scale): 22.99
MSE (Monitoring time
scale): 0.82

Least squares
support
vector
machine

Constructs failure
prediction models

Medical equipment failure
prediction

Anomaly detection Ma, Xu & Yang
(2023)

– AFS-ABC with SVM:
error rate 2.5% in 0.85 s
FMEA: error rate 5.3%
in 1.23 s

Recursive
neural
network

Enhances prediction
accuracy, reduces
overfitting

Prediction tasks under
complex conditions

RUL prediction Duan et al. (2023) – MAE 11.83
MAPE 18.2%
with Euclidean
Distance:
MAE 15.48 cycles
MAPE 24.3%

Multi-layer
Perceptron

Predicts failures based
on historical data

Scheduling maintenance,
reducing downtime+

RUL prediction Rosero, Silva &
Ribeiro (2022)

Accuracy:
Elbow Point (with HI):
72 h: 18%
48 h: 38%
36 h: 31%

RMSE (Without HI):
14.01
RMSE (with HI): 8.62

Robust-ResNet Fault detection,
predicting RUL

Internal gear pumps
analysis

RUL prediction Zheng, Liao & Zhu
(2023)

Accuracy: 99.53% Error reduction: 17.79%

One-class
support
vector
machine
(OCSR)

Detects deviations
from normal
operating conditions

Identifying potential
faults

Anomaly detection Arunthavanathan
et al. (2023)

Accuracy:
Ordinary least squares:
98.55%
Bayesian linear regression:
99.51%

Reactor cooling tower
result:
OLSR predicted RUL:
12,345 samples
(compared to the actual
18,909 samples)
Condenser cooling
water valve stiction
result:
OLSR predicted RUL:
7,123 samples
(compared to the actual
9,451 samples).
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under varying operational conditions. Through a comparison with experimental data,
DBN shows an error margin lower than 8.5% in the first 4 years, lower than 20.4% between
5–10 years and lower than 11.3% after 10 years (Liu et al., 2020).

Moreover, the use of Kalman filtering not only made an average improvement 18% in
prediction results, but also reduce 10–15% compared to static methods like maximum
likelihood estimation (MLE) (Pei et al., 2019). The least squares support vector machine
(LS-SVM) algorithm with the artificial fish swarm—artificial bee colony algorithm (AFS-
ABC) increase prediction in potential failures and assess equipment health. This model has
accomplished lower error forecast compared to other methods (Ma, Xu & Yang, 2023).
Bayesian methods, which involve developing exponential degradation models and
updating parameters using real-time condition monitoring data, offer another effective
approach (Liao & Tian, 2012).

Bar chart review methods in grouped categories based on functions (Fig. 5). For
time-series analysis, methods like LSTM and RNN help track changes over time (four
methods). Feature extraction, like CNN and ResNet, pulls useful patterns from data (two
methods). Statistical modeling, such as Kalman filtering and Wiener process, uses
mathematical approaches to predict outcomes (two methods). Anomaly detection, like
OC-SVM and LS-SVM, identifies unusual patterns (two methods). Ensemble methods, like
stacking, combine multiple models for better accuracy (one method) and general models,
such as MLP and ResNet, are flexible tools for general predictions (two methods). These
visualizations offer a well-rounded understanding of how different machine learning
techniques, with components ranging from 1 to 4, utilize varying levels of complexity in
their approaches to RUL prediction.

The high dependency on AI algorithms raises the risk of algorithmic biases, impact the
fairness and reliability of these systems. Despite their prevalence, none of this research
mentioned on the influence of these biases or proposed mitigation strategies. Algorithmic
models may also reinforce historical inequalities by assuming that past trends predict
future outcomes, as seen in recommender systems that limit diversity by continuously
suggesting similar products.

RQ4 How effective are FDD approaches in detecting early indicators of
equipment failure?

Figure 6 shows an overall schematic flow of FDD integration to anomaly detection. The
integration of advanced technique such as FDD has significantly enhanced the ability to
detect early indicators of equipment failure (Rosero, Silva & Ribeiro, 2022). Over the years,
the technique has evolved and categorize into mathematical, analytical, data-driven,
statistical, computational, and hybrid approaches (Zhao et al., 2019). To establish into one
of these methods, variables associated with the fault need to be identified in advance.
Abnormal values are detected by manually setting a threshold for these variables. These
thresholds vary across different system components and must be adjusted for each specific
application (Arunthavanathan et al., 2023; Nelson & Culp, 2023).

Table 10 encapsulates classification for fault detection studies in FDD strategy. In
data-driven methods Carroll et al. (2019) and Wang & Mamo (2019) demonstrates the
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Figure 5 Number of components involve in AI. Grouping of methods by functional categories. X-axis:
number of methods. Y-axis: categories. Full-size DOI: 10.7717/peerj-cs.3056/fig-5

Figure 6 FDD integration with anomaly detection flowchart. Full-size DOI: 10.7717/peerj-cs.3056/fig-6

Table 10 Method in FDD.

Classification Total Article

Statistical and
mathematical method

13 Arunthavanathan et al. (2023), Aydemir & Acar (2020), Wang et al. (2018), Zhang et al. (2020), Pei et al. (2019),
Carroll et al. (2019), Biondi, Sand & Harjunkoski (2017), Wang & Mamo (2019) to Solís-Martín, Galán-Páez &
Borrego-Díaz (2023) and Liao & Tian (2012)

Data-driven and analytical
method

19 Arunthavanathan et al. (2023), Aydemir & Acar (2020) to Solís-Martín, Galán-Páez & Borrego-Díaz (2023) and
Liao & Tian (2012)

Model based method 18 Arunthavanathan et al. (2023), Aydemir & Acar (2020) to Zheng, Liao & Zhu (2023), Pei et al. (2019) to Ture et al.
(2024), Carroll et al. (2019) to Sayyad et al. (2021), Lee, Kim & Lee (2023) to Solís-Martín, Galán-Páez & Borrego-
Díaz (2023), Wang & Zhao (2023) and Liao & Tian (2012)
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real-time sensor to reflect the dynamic behavior of systems efficiency, combine with
artificial neural networks (ANNs) in predicting gearbox failures using SCADA and
vibration data to achieved higher accuracy particularly when using high-frequency
vibration data (Carroll et al., 2019). de Pater & Mitici (2023) focus on LSTM autoencoders,
showing that the reconstruction error, which increases with system degradation, can
effectively identify early faults. Statistical methods are highlighted by Aydemir & Acar
(2020) discuss the use of the CUSUM control chart for anomaly detection, which helps
identify the degradation onset point and subsequently improves the performance of RUL
estimators by focusing on active degradation periods. Wang & Mamo (2019) employ the
EWMA control chart for anomaly detection, which is crucial in their hybrid approach,
where detected anomalies trigger RUL prediction models, thereby enhancing early fault
detection. Model-based methods such as those described byMa, Xu & Yang (2023) utilize
deterministic reasoning and fuzzy inference for precise and uncertain data respectively,
achieving effective fault detection. Hybrid methods, including the approaches by
Arunthavanathan et al. (2023), Lee, Kim & Lee (2023), combine techniques like OC-SVM
for fault detection with neural network permutation algorithms for classification, and use
alarm rules alongside contextual diagnosis to enhance fault detection accuracy.

System performance monitoring further model known faults (as supervised learning),
while unsupervised learning detects to unknown anomalies or unusual patterns in the data.
This real-time monitoring ensures that even early signs of failure are noticed. Finally, the
models are tested during validation to ensure they work accurately, and the insights are
stored in a knowledge base for future use. Once validated, the system is deployed in the
implementation stage, where it operates as part of real-time monitoring to predict and
prevent equipment failure effectively. Unlike existing reviews, this assesses the FDD
efficiency, systematically evaluates their performance across various contexts, accentuating
pragmatic applications. Whereas the most of the reviews concentrate on singular
methodologies or particular domains, highlighting the integration of hybrid and
data-driven techniques, which are often overlooked in similar studies, the review
underscores the amalgamation of data-centric and hybrid strategies, offering an
all-encompassing view of their real-world ramifications.

RQ5 What challenges are associated with the implementation of sensor
technology for fault detection?
One of the methods in early detection equipment malfunction is implementing sensors as
a primary data in FDD. This proactive approach minimizes downtime, reduces costs, and
improves safety across various applications. Table 11 summarizes the integration of
multiple sensors for continuous monitoring.

Deterioration measurement

At the stage period, the focus is essential on capturing wear and tear through
deterioration measurements (Sayyad et al., 2021; Solís-Martín, Galán-Páez & Borrego-
Díaz, 2023). Accelerated degradation testing (ADT) is often employed, subjecting
equipment to harsher-than-normal operating conditions to model degradation behaviors
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(Liao & Tian, 2012). Additionally, emphasis is placed on linking degradation during
operation, storage, and the recovery state after replacement (Zhang et al., 2020). Advanced
techniques such LSTM networks and CNN are utilized to process from sensor data and
identify patterns of degradation. This beneficial and performance can be significantly
impacted accuracy of the predictive models (Fan, Nowaczyk & Rögnvaldsson, 2020; Wang
& Zhao, 2023).

Vibration monitoring

Vibration sensors are highly effective in diagnosing health machine, by detecting
vibrations caused by friction, tool wear, or fractured inserts between the tool and
workpiece during operation (Aydemir & Acar, 2020; Sayyad et al., 2021). High-frequency
accelerometers are used to measure vibration signals, capturing horizontal and vertical
movements (Cheng et al., 2021). Metrics such as vibration amplitude, frequency

Table 11 Sensor integration of data driven method for data collection.

Sensor
parameter

Article Measurement Benefits Limitations

Deterioration Liao & Tian (2012), Zhang et al. (2020),
Sayyad et al. (2021), Solís-Martín, Galán-
Páez & Borrego-Díaz (2023), Fan,
Nowaczyk & Rögnvaldsson (2020),Wang &
Zhao (2023)

Wear and tear Predictive maintenance,
monitoring

Performance effect and
increasing noise factor

Vibration Aydemir & Acar (2020), Zheng, Liao & Zhu
(2023), Cheng et al. (2021), Wang & Mamo
(2019), Lee, Kim & Lee (2023)

Detect imbalance and
alignment

Effective measures changes
in mechanical condition,
can detect wide range of
faulty condition

Require proper mounting to
ensure accurate reading and
sensitive to environmental
noise

Temperature Aydemir & Acar (2020), Cheng et al. (2021),
Rosero, Silva & Ribeiro (2022), Carroll et al.
(2019)

Overheating level and
thermal stress

Cost effective, provide early
warnings of thermal issue

Limited to surface temperature
measurement, can’t capture
internal component
temperature accurately

Corrosion Liu et al. (2020), Ture et al. (2024) Integration physical
models alongside
stress mechanics to
define rate of metal
loss

Prevent catastrophic failure
and reduce safety hazards

Environmental factor could
lead to accelerated noise

Pressure Aydemir & Acar (2020), Zheng, Liao & Zhu
(2023), Ture et al. (2024)

Hydraulic pressure level Essential for monitoring
fluid system

Requires calibration, result
effected by environmental
condition

Weight distribution

Abnormality
trigger

de Pater & Mitici (2023) Health indicator Early detection of unhealthy
stage

Generalization leads to
unknown types of failure

Acoustic Solís-Martín, Galán-Páez & Borrego-Díaz
(2023)

Soundwave from
abnormalities

Less sensitive to
environmental, easy to
deploy

Sensitive to environmental
noise, need signal processing

Operating
time

Pei et al. (2019) Nonlinear degradation Equipment schedule
maintenance, asset
utilization

Time consuming

Crack Liu et al. (2020) Stress distribution and
fatigue growth

Prevent catastrophic failure
and reduce safety hazards

Limited detection sensitivity
and require combination
with other measurement
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components, and acceleration are extracted to create indicators (Zheng, Liao & Zhu, 2023).
Vibration data serves to detect imbalance and misalignment in mechanical systems
(Lee, Kim & Lee, 2023; Wang & Mamo, 2019). This method is highly effective in
capturing changes in mechanical conditions and diagnosing a range of faulty conditions.
However, proper sensor mounting is crucial to avoid errors, and the sensors are often
susceptible to environmental noise, requiring additional filtering and processing for
accurate readings.

Temperature sensors

Temperature sensors can detect overheating and thermal stress, providing cost-effective
and early warnings of potential thermal issues. ML approaches, particularly deep learning
algorithms like LSTM networks, been utilized for time-based inputs and predict RUL by
learning from sensor data, including temperature measurements (Aydemir & Acar, 2020).
As cited in articles (Carroll et al., 2019; Cheng et al., 2021; Rosero, Silva & Ribeiro, 2022)
temperature monitoring is employed to assess overheating levels and thermal stress in
equipment. This cost-effective method provides early warnings of thermal issues.
However, it is limited to surface temperature measurements and may fail to capture
internal temperature variations, leading to incomplete diagnostics.

Corrosion assessment

Corrosion data integrates physical models alongside stress mechanics to determine the rate
of metal loss. Corrosion together with vibration sensor collect primary data, such as stress
related degradation or material thickness reduction due to rust (Ture et al., 2024). This
measurement helps prevent catastrophic failures and enhances safety by reducing hazards
(Liu et al., 2020). However, external environmental factors can introduce noise,
accelerating the degradation rate and complicating accurate assessments.

Pressure monitoring

Aydemir & Acar (2020), Zheng, Liao & Zhu (2023) and Ture et al. (2024) highlight the
importance of pressure data for evaluating hydraulic pressure levels and weight
distribution in fluid systems. Critical parameters such as outlet pressure, internal system
pressure, and operational load in machinery are used to monitor. CUSUM is a statistical
tool employed with pressure sensor data to detect significant deviations, marking the onset
of degradation. It is highly effective in identifying gradual changes that might not be
apparent in raw sensor data (Aydemir & Acar, 2020). Pressure sensors measure pulsation
signals, directly reflect non-uniform fluctuations within the pump and are essential for
early fault detection (Zheng, Liao & Zhu, 2023). This parameter is crucial for maintaining
fluid system health but requires regular calibration. Furthermore, environmental
conditions can significantly affect the accuracy of pressure readings.

Abnormality triggers

As discussed in de Pater & Mitici (2023) anomaly triggers (AT-AE) planted for detecting
the early stages of equipment failure. They are effective in signaling unhealthy operational
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conditions but may generalize across fault types, leading to unidentified or
unaccounted-for failures.

Acoustic sensors

Pressure and acoustic sensors can detect abnormal sound waves that indicate potential
faults, offering a less environmentally sensitive option that is easy to deploy. For instance,
feature extraction from hydraulic pressure signals using techniques like complementary
ensemble empirical mode decomposition (CEEMD) and singular value decomposition
(SVD) has been employed to construct feature vectors for fault diagnosis in hydraulic
pumps (Nelson & Culp, 2023). Examines the role of soundwave detection in identifying
abnormalities. Acoustic sensors are less affected by environmental conditions, but they are
highly sensitive to external noise, requiring sophisticated signal processing for reliable
interpretation.

Operating time

Operating time data monitors non-linear degradation trends. It is useful for scheduling
maintenance and optimizing asset utilization (Pei et al., 2019). However, the process is
time-intensive and requires significant computational resources.

Crack detection

Stress distribution and fatigue growth are monitored to prevent catastrophic failures.
Crack detection enhances safety and reliability but has limited sensitivity and often
requires integration with other measurement methods for comprehensive diagnostics
(Liu et al., 2020).

Moreover, humidity sensors are critical for monitoring moisture levels,
preventing corrosion, and maintaining the integrity of materials, though they require
regular calibration and are sensitive to dust. Optical sensors, which measure light intensity,
are effective for detecting changes in lighting conditions and are non-intrusive, though
they require regular cleaning to maintain accuracy (Solís-Martín, Galán-Páez &
Borrego-Díaz, 2023).

RQ6 What are the most effective methods use for monitoring condition in the
predictive maintenance and how can root cause analysis be effectively
determined in fault tolerance systems?
Table 12 highlight method currently practice in monitoring asset and system. One of the
most common effective methods is predictive maintenance (PdM), which utilizes sensor
data and advanced analytics to predict equipment failures before they occur. Wang et al.
(2018) emphasized the importance of predictive maintenance of degrading systems,
thereby improving overall reliability and maintenance scheduling. Aydemir & Acar (2020)
demonstrated that anomaly monitoring significantly improves RUL predictions, ensuring
timely and effective maintenance interventions. Condition-based monitoring (CBM) is
another effective method that involves continuous or periodic monitoring of equipment
condition using sensors to detect deviations from normal operation. Zheng, Liao & Zhu
(2023) developed a fault detection model for internal gear pumps, which enhances the

Gazali et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3056 28/43

http://dx.doi.org/10.7717/peerj-cs.3056
https://peerj.com/computer-science/


effectiveness of CBM by accurately detecting faults and predicting RUL. These advanced
monitoring techniques, combined with the use of machine learning and AI, such as the
work by Cheng et al. (2021) using transferable convolutional neural networks, provide
robust solutions for fault detection and RUL predictions. Root cause analysis (RCA) is a
systematic method that involves collecting data, analyzing failure modes, and identifying
the underlying reasons for faults. This approach ensures that the real cause of the problem
is addressed rather than just treating the symptoms. Arunthavanathan et al. (2023)
highlighted the significance of RCA in estimating RUL and transforming fault-to-failure
processes in process systems. Fault tree analysis (FTA) and failure mode and effects
analysis (FMEA) are additional methods that support RCA by providing structured
frameworks for identifying and prioritizing potential causes of failures.

RQ7 How do life cycle analysis and survival analysis frameworks influence

the selection of maintenance strategies and health indices in reliability driven
maintenance?
Life cycle analysis (LCA) and survival analysis frameworks significantly influence the
selection in reliability-driven maintenance by providing a structured proactive and reactive
approach to evaluate and optimize maintenance decisions. Preventive maintenance (PM)
is characterized by its proactive approach, involving regular inspections, servicing, and
timely interventions to prevent equipment failures. While corrective maintenance (CM) is
reactive approach, initiated only after equipment has failed. This approach solves the issues
in the short term but leads to higher overall costs and reduced equipment lifespan.

Table 12 Maintenance management and fault tolerance monitoring method.

Method Article Focus area Application in monitoring

Machine learning
techniques

Cheng et al. (2021) Integration with statistical degradation models Predictive maintenance, risk
management

Robust health
indicators

Rosero, Silva & Ribeiro
(2022)

Development of robust health indicators that can predict RUL
accurately under varying conditions and limited failure data.

Maintenance planning and
decision

Enhanced RUL
predictions

Aydemir & Acar (2020) Triggering estimation post-degradation detection Maintenance planning,
system reliability

Imperfect maintenance
consideration

Wang & Zhao (2023) Accounting for imperfect maintenance Maintenance planning and
decisions

Anomaly detection
integration

Aydemir & Acar (2020) Combining anomaly detection with machine learning Preventing unexpected
failures

Pressure
self-enhancement
effects

Fan, Nowaczyk &
Rögnvaldsson (2020)

Study of pressure effects Maintenance planning and
decision, system reliability

Proactive maintenance
strategies

Aydemir & Acar (2020) Supported by accurate RUL predictions System reliability

Feature selection
process

Duan et al. (2023) Improving feature selection for RUL prediction Maintenance planning and
decision

Transfer learning and
domain adaptation

Solís-Martín, Galán-Páez
& Borrego-Díaz (2023)

Adapting to varying conditions Maintenance planning and
decisions

Bayesian approach for
real-time applications

Ma, Xu & Yang (2023) Continuous prediction updates Real-time applications
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According to Wang et al. (2018), continuous PM can substantially extend the lifespan of
equipment, prolong RUL and predict failures before it occurs (Pei et al., 2019). Effective
maintenance scheduling and consequently, a longer equipment lifespan (Aydemir & Acar,
2020). CM is reactive, initiated only after equipment has failed. While this strategy might
seem cost-effective in the short term due to lower initial maintenance expenditures, leads
to higher overall costs and reduced equipment lifespan. de Pater &Mitici (2023) assert that
PM’s focus on timely and planned interventions not only improves reliability but also
optimizes maintenance resources. Cheng et al. (2021) illustrate how integrating AI with
PM protocols enhances RUL predictions and fault detection accuracy.

CM results in extended downtimes and higher repair costs because failures are
addressed only after they have occurred, often leading to significant damage (Sayyad et al.,
2021). Carroll et al. (2019) mentioned the unpredictable nature of failures under CM
necessitates expensive emergency repairs and replacements, further diminishing the
equipment’s operational life. Ture et al. (2024), demonstrated that the implementation of
predictive maintenance algorithms within PM frameworks significantly reduces
unexpected failures and maintenance costs, thereby extending the operational life of assets.

In the context of equipment reliability, life cycle analysis helps identify potential failure
points and maintenance needs at different stages of the equipment’s life. de Pater & Mitici
(2023) demonstrated by understanding the degradation effect of wear and tear item, the
implementation of predictive maintenance strategies will help preventing unexpected
failures and enhancing overall reliability. Integrating LCA with cost analysis allows for the
identification of the most cost-effective maintenance interventions. Aydemir & Acar (2020)
use CUSUM in anomaly detection techniques, an integration LCA with cost analysis to
enhances the accuracy of RUL estimation.

In survival analysis, reliability measured in statistical approach, focusing on predicting
the time until a system fails based on its current condition and operational history
(Arunthavanathan et al., 2023). The analytical approach places emphasis on survival
function analysis, time to failure analysis and hazard function analysis.

Time to failure analysis

According to Wang et al. (2018), analysis models can incorporate various factors
influencing equipment degradation. By utilizing historical failure data, survival analysis
helps in forecasting future failures, enabling proactive maintenance actions. Liu et al.
(2020) through the analysis of degradation patterns, it becomes feasible to accurately
forecast the RUL. Cheng et al. (2021) indicate that the utilization of TCNN can adjust to
diverse failure patterns, rendering the models highly efficient across various machinery
types. de Pater & Mitici (2023) demonstrate that LSTM autoencoders, capable of learning
from limited failure data and adjusting to diverse circumstances, offer dependable RUL
predictions for systems with scarce failure records.

Survival function analysis

The process begins with collecting data from various sensors, including vibration and
pressure pulsation signals, during the initial performance tests and throughout the pump’s
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operational life (Zheng, Liao & Zhu, 2023). These advanced models help in identifying
subtle signs of wear and tear that might be overlooked by traditional methods, thereby
enhancing the reliability of equipment.

Hazard function analysis

Aydemir & Acar (2020) emphasizes the advantages of anomaly detection in enhancing
RUL estimation. By identifying deviations from normal operations at an early stage,
maintenance activities can be strategically scheduled, averting breakdowns and
guaranteeing equipment dependability. However, in this analysis, identifying defect in
time-varying conditions and nonlinear conditions is not sufficient due to its complexity.
Therefore, the needs for secondary and tertiary analysis needed before any decision is
made. Health indices can act as a critical bridge between life cycle analysis and survival
analysis in maintenance decision-making processes.

Condition monitoring

These indices provide actionable insights for implementing condition-based maintenance
strategies. The health indicators are evaluated using metrics such as monotonicity,
trend-ability and prognostic-ability, measure the consistency, correlation with time and
consistency across different units, respectively, providing clear signals of system
degradation (de Pater & Mitici, 2023). One common approach is using root mean square
(RMS) values of vibrations as health indicators, as demonstrated in the study where the
RMS of horizontal vibration was selected for further analysis due to its significant
correlation with the health state of bearings (Wang & Mamo, 2019). Another method
involves PCA to simplify computations while retaining maximum original information.
PCA standardizes sensor data, calculates covariance matrices, and projects data onto
principal components to derive preliminary health indicators (Duan et al., 2023). LSTM
autoencoders, employed to learn normal system behavior from unlabeled data and detect
deviations indicative of degradation. Reconstruction errors from these models serve as
health indicators, with variations including linear regression and Gaussian distribution
models (de Pater & Mitici, 2023). Empirical mode decomposition (EMD) is another
technique where the first intrinsic mode function (IMF) derived from time series data
represents the HI, capturing the evolution of health conditions over time (Rosero, Silva &
Ribeiro, 2022). Deep convolutional neural networks and recurrent neural networks, are
used to map sensor inputs to HIs, which are then mapped to RUL. Techniques like
stochastic modeling and distance-based approaches also contribute to HI calculation, with
some methods simulating degradation paths using PCA space or employing exponential
models for data-level fusion (Fan, Nowaczyk & Rögnvaldsson, 2020).

Real time reliability metrics

In maintenance management, particularly those incorporating PHM, continuous tracking
and evaluate equipment status through data collection, real-time monitoring, and fault
diagnosis, which allows for early detection of potential risks and effective maintenance
planning (Duan et al., 2023). The system itself designed to collect and analyze data from
various sensors and monitoring devices installed on equipment. Parts of its objectives to

Gazali et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3056 31/43

http://dx.doi.org/10.7717/peerj-cs.3056
https://peerj.com/computer-science/


estimate equipment failure, reduce downtime thus allows for more effective maintenance
planning and lower maintenance costs significantly. These systems utilize PHM to detect
anomalies that trigger RUL estimation (Aydemir & Acar, 2020). By continuously
monitoring, Systems can identify early signs of wear and tear, degradation effect and
allow for maintenance teams to address issues early before major failures happen
(Ture et al., 2024).

Failure threshold

Incorporating insights from both frameworks. PdM strategies, which are a subset of PHM,
use RUL concepts to estimate the remaining time an equipment can function without
failing, thus preventing unexpected downtimes and reducing maintenance costs (Rosero,
Silva & Ribeiro, 2022; Solís-Martín, Galán-Páez & Borrego-Díaz, 2023). Integrating health
indices into maintenance management systems enhances the safety and reliability of
operations by providing continuous oversight and timely alerts for maintenance needs
(Ture et al., 2024). Overall, maintenance management systems and health indices are
integral to reliability-driven maintenance as they enable proactive maintenance strategies,
extend the lifespan of components, and ensure the smooth operation of systems by
providing timely and accurate predictions of equipment health and performance
(Duan et al., 2023; Ture et al., 2024; Wang & Zhao, 2023).

DISCUSSION
RUL prediction is a crucial aspect in preventing equipment malfunctions and
reducing maintenance costs, with AI algorithms being a popular choice due to their
flexibility and convenience (Heng et al., 2009; Lei, 2016). However, these algorithms
often require large datasets and feature selection of hyper-parameters for optimal
performance. Classical machine learning is not adequate to learn from these data, a task
that presents unique challenges (Calabrese et al., 2022; He et al., 2023). The prediction
techniques for estimating the lifespan of equipment vary significantly depending on the
stage and equipment’s condition; methods use for newly developed equipment may differ
from those applied to equipment in active use or aging equipment (Zhang et al., 2023b).

Research prospect
Predicting RUL multiple asset under different stage of life span

Predicting the life span in the early stages of a component’s life is crucial for newly
develop product, this to preventing unexpected failures in the early design stages (Haobin,
Zhang & Sinha, 2024). Table 13 display predictable test used in different stages of the
equipment’s life (Qian, Yan & Gao, 2017; Kim et al., 2004). Accelerated life testing (ALT) is
a critical methodology used in manufacturing with its primary goal to accelerate the aging
process of components, thereby obtaining significant life span data in a shorter period (Qiu
& Li, 2024). In the middle stage, multiple factors involve in life prediction from utilization
of usage, corrective maintenance, replacement parts and upgrading is a multifaceted
challenge that requires integrating various advanced methodologies (Noot, Martin &
Birmele, 2025). A multi-stage maintenance-impact degradation model based on the
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Wiener process can account for dynamic maintenance and failure thresholds, thereby
improving the precision of RUL predictions (Li et al., 2024). Addressing uncertainties in
RUL estimation is essential for improving the reliability and accuracy of predictive
methods. These uncertainties fall into two main categories: epistemic and aleatory.
Epistemic uncertainty comes from limited knowledge or incomplete information about
the system, while aleatory uncertainty is due to the inherent randomness and
variability in the system’s behavior. Various strategies have been proposed to tackle these
uncertainties (Cao & Peng, 2023). Model-based strategies frequently encounter
difficulties with complicated connections and uncertainties, whereas data-driven
approaches sometimes neglect previous knowledge and struggle with restricted data
(Liang, Liu & Xiao, 2024).

Integration of FDD and RUL estimation for the early detection of system faults and the
prediction of the system’s future operational life, facilitating timely maintenance actions
and reducing unexpected downtimes. A novel tree network framework can address fault
classification and RUL prediction in parallel, improving model selection accuracy and
prediction efficiency (Chai et al., 2024). Similarly, a joint learning model that
simultaneously performs failure mode recognition and RUL prediction by leveraging
multiple sensor signals has shown promising results (Wang, Xian & Song, 2023).
Combining system modeling methods with regression-based approaches and genetic
programming algorithms to predict fault occurrences and estimate RUL, even in the
presence of measurement noise (Bahareh & Jørn, 2023). A range of studies have explored
the use of probabilistic, highlight the importance of considering uncertainties in input
variables. Zamzam et al. (2021) established a ranking assessment, prioritizing and
predictive systems both for medical equipment maintenance, using machine learning
algorithms for medical equipment. These studies collectively underscore the potential of
probabilistic models in improving the accuracy and effectiveness of life cycle cost analysis
in the medical equipment domain.

Table 13 Equipment prediction test under different stage of life span.

Objective Stage of equipment Prediction test Dataset required

Life span prediction Early stage Accelerated life test Simulation test Environment factor

Component test data

Quality test data

Middle stage Operational and utilization Utilization data

Maintenance Corrective maintenance data

Downtime action Historical part replacement

Upgrading Hardware and software upgrade

Late stage End of life Aging data

Salvage value

Disposal data

Remaining useful life Equipment/Component Degradation method Wear and tear data

Life span prediction (stage of equipment)
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Uncertainty in equipment deterioration
There is often an incomplete information about all the factors influencing equipment
deterioration. Models used to predict deterioration often rely on assumptions and
historical data, which may not account for all possible future scenarios, leading to
uncertainty in predictions (Zhu et al., 2024). State of degradation on equipment may
consist of multiple types, including natural degradation, static degradation, and
force-induced degradation, each contributing differently to the equipment’s end-of-life
(Fig. 7). Natural degradation refers to the gradual wear and tear that occurs over time due
to regular usage and environmental factors (Li et al., 2023).

Performance degradation assessment (PDA) methods, which utilize statistical and
intrinsic energy features, are crucial for evaluating such static degradation states by
constructing high-dimensional feature sets and reducing them to sensitive health indices
(Lv, Hu & Wang, 2023). Zhang et al. (2020) emphasize the role of health indicators in
maintenance strategies by enabling more effective scheduling of maintenance activities.
Zheng, Liao & Zhu (2023) develops health indicators based on the fault types classification
and RUL stages, thus allowing for timely intervention. Further models and methods
enhancement have been developed to enhance the predictions to support maintenance
planning. For example, Pei et al. (2019) and Duan et al. (2023) highlight the importance of
accurate RUL estimation for maintenance management, remarking that reliable
predictions enable better scheduling of maintenance activities and improve the overall
reliability of systems. The integration of ML and Internet of Things (IoT) has transformed

Figure 7 State of degradation on equipment physical surface. X-axis (Time): progression of time.
Y-axis (Degradation level): the degree of degradation. Line chart: green line: force (accelerated) degra-
dation level. Blue line: natural degradation level. Yellow line: static degradation level red dots (EOL
point): mark the point where equipment can no longer maintain its intended function due to excessive
degradation. Full-size DOI: 10.7717/peerj-cs.3056/fig-7
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maintenance management systems into a comprehensive solution, allowing for real-time
data processing and more sophisticated analysis of health indices (Cheng et al., 2021; Lee,
Kim & Lee, 2023).

Digital twin and virtual assistance
The integration of digital twin (DT) and virtual assistance (VA) technologies ML is
revolutionizing fault identification, monitoring prediction in asset management. This is
crucial in assisting decision making related to RUL identification. DT technology involves
creating a digital replica of physical assets, capturing real-time data to mirror their
operational behavior (Abdullahi, Longo & Samie, 2024). This process includes data
acquisition from sensors and IoT devices, data integration to form a cohesive dataset,
model development using simulation tools and ML algorithms, continuous monitoring,
and fault identification and prediction through ML analysis (Alam & El Saddik, 2017;
Solari, Lysova & Montanari, 2023).

While, virtual assistants provide interactive support and decision-making capabilities,
aiding maintenance teams in managing RUL and detecting anomalies. VA technology uses
AI to process data, interact with users through conversational interfaces and implement
automated actions based on predictive analytics thus to predict RUL estimation. VA tools
are categorized into chatbots, virtual advisors, and autonomous agents, each providing
varying degrees of interaction and decision-making capabilities. Research indicates
significant benefits of integrating DT and VA with ML for predictive maintenance. Lu & Li
(2023) show that for rolling element bearings, a hybrid DT and LSTM model significantly
improved RUL prediction accuracy by integrating simulation data with experimental data,
achieving over 97.5% accuracy.

Challenges
Determining the RUL of equipment is a complex issue, without a standardized approach,
numerous published works from various perspectives, each offering new insights and
findings on maintenance strategies and performance monitoring, highlighting different
strengths and weaknesses (Mehta, Prabhu Bam & Prabu Gaonkar, 2024). While
integration with ML to model a prediction task requires comprehensive historical
machine defect, sequences of reactive action and different kind of failure data to
build a robust dataset. This often results in generation of a huge amount of processing
data which requires a special infrastructure and expert knowledge (Rozhkovskaya &
Sychev, 2020).

In addition, most institution are reluctant to share their data publicly due to concerns
over privacy and competition issue. Despite various methods implemented in predicting
RUL, there remains significant potential for improvement and optimization, particularly
in healthcare and emerging markets (Arunan et al., 2023). The application of these
advanced algorithms to predict RUL in upgraded equipment could significantly enhance
the reliability and performance of such systems, yet this remains underexplored.

The concept of midlife upgrades, which extending the life of equipment through
component upgrades, has not been explored extensively. Existing studies primarily from a
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theoretical perspective, with limited empirical evidence on its effectiveness (Khan, West &
Wuest, 2020; Wang & Zhao, 2022).

The significance of accurate RUL prediction in healthcare is heightened by the essential
role of medical devices in healthcare. Equipment malfunctions can have severe
repercussions, affecting patient outcomes and operational efficacy. However, maintenance
procedures for medical equipment have not completely utilized the capabilities of RUL
prediction models. Most existing methods depend on reactive or preventative
maintenance, which are less effective than predictive approaches driven by RUL
predictions. Integrating RUL prediction models into healthcare systems enables hospitals
and clinics to adopt a proactive maintenance strategy, thereby decreasing downtime,
lowering expenses, and maintaining continuous patient care. Medical devices, including
imaging machines, ventilators, and surgical instruments, frequently function in complex
environments characterized by extremely varied usage patterns. This unpredictability adds
complications to the development of precise RUL models. The substantial expense of
medical equipment and its essential function in diagnosis and treatment highlight the
necessity for accurate and dependable RUL projections. Khan, West & Wuest (2020),
empirical research regarding the efficacy of midlife enhancements in healthcare is limited,
highlighting an essential want for studies that integrate RUL prediction models with
upgrade plans to maximize the usage of medical equipment (Wang & Zhao, 2022). The
hesitance of healthcare organizations to disclose operational data, stemming from privacy
and competitive apprehensions, exacerbates the implementation of RUL prediction
models. Collaborative initiatives and anonymised data-sharing frameworks may facilitate
the resolution of these obstacles, allowing researchers to create more robust and
generalizable models. Moreover, integrating IoT devices and sensor data may yield
real-time insights into equipment performance, hence improving the precision of RUL
projections.

CONCLUSIONS
This review establishes a critical foundation for future research aimed at improving the
integration of RUL, FDD, and anomaly detection within predictive maintenance
frameworks. While significant progress has been made, continuous challenges such as
limited model generalizability, low interpretability, and lack of integration across
heterogeneous datasets in industrial environments continue to hinder practical
deployment. The analysis underscores that most current approaches treat RUL prediction
and anomaly detection in isolation, missing the synergistic potential of a unified
framework. Furthermore, despite the promise shown by hybrid and ensemble AI models,
these methods remain underutilized in operational environments where real-time
accuracy, reliability, and explainability are crucial. To address these gaps, this review
advocates for a new research direction centered on the development of integrated,
explainable, and adaptive AI frameworks capable of handling noisy, incomplete, or
imbalanced sensor data while maintaining predictive accuracy across diverse use cases.
Thus, by leveraging the strengths of deep learning, hybrid modeling, and transfer learning,
and embedding them within a fault-aware decision-support system, future research can
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significantly enhance the accuracy of actual lifespan predictions for equipment in complex
settings. This study identifies the current limitations in AI approaches and proposes a
roadmap for advancing predictive maintenance through intelligent systems that are more
aligned with operational realities. The findings are expected to contribute to smarter, data
driven maintenance strategies, reduced downtimes and extended asset life span.
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