Submitted 4 December 2024
Accepted 30 June 2025
Published 24 July 2025

Corresponding author
Emre Yalcin,
eyalcin@cumhuriyet.edu.tr

Academic editor
Gabriella Pasi

Additional Information and
Declarations can be found on
page 38

DOI 10.7717/peerj-cs.3055

© Copyright
2025 Gulsoy et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

EquiRate: balanced rating injection
approach for popularity bias mitigation in
recommender systems

Mert Gulsoy"?, Emre Yalcin® and Alper Bilge”

! Distance Education Research Center, Alaaddin Keykubat University, Antalya, Turkey
% Computer Engineering Department, Akdeniz University, Antalya, Turkey
* Computer Engineering Department, Sivas Cumhuriyet University, Sivas, Turkey

ABSTRACT

Recommender systems often suffer from popularity bias problem, favoring popular
items and overshadowing less known or niche content, which limits
recommendation diversity and content exposure. The root reason for this issue is the
imbalances in the rating distribution; a few popular items receive a
disproportionately large share of interactions, while the vast majority garner
relatively few. In this study, we propose the EquiRate method as a pre-processing
approach, addressing this problem by injecting synthetic ratings into less popular
items to make the dataset regarding rating distribution more balanced. More
specifically, this method utilizes several synthetic rating injection and synthetic rating
generation strategies: (i) the first ones focus on determining which items to inject
synthetic ratings into and calculating the total number of these ratings, while (ii) the
second ones concentrate on computing the concrete values of the ratings to be
included. We also introduce a holistic and highly efficient evaluation metric, i.e., the
FusionIndex, concurrently measuring accuracy and several beyond-accuracy aspects
of recommendations. The experiments realized on three benchmark datasets
conclude that several EquiRate’s variants, with proper parameter-tuning, effectively
reduce popularity bias and enhance recommendation diversity. We also observe that
some prominent popularity-debiasing methods, when assessed using the
FusionIndex, often fail to balance the referrals’ accuracy and beyond-accuracy
factors. On the other hand, our best-performing EquiRate variants significantly
outperform the existing methods regarding the FusionIndex, and their superiority is
more apparent for the high-dimension data collections, which are more realistic for
real-world scenarios.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Data Mining and Machine
Learning, Data Science

Keywords Recommender systems, Popularity-debiasing, Pre-processing, Synthetic rating injection,
Fairness

INTRODUCTION

Recommender systems have significantly reshaped how users interact with digital content
and services by providing personalized recommendations (Bobadilla et al., 2013; Zhang, Lu
¢ Jin, 2021). These systems, at their core, are designed to predict and suggest items, such as
movies, books, or products, that are likely to be of interest to the user, based on various
data inputs (Wang et al., 2023). Their application spans across numerous domains,

How to cite this article Gulsoy M, Yalcin E, Bilge A. 2025. EquiRate: balanced rating injection approach for popularity bias mitigation in
recommender systems. Peer] Comput. Sci. 11:e3055 DOI 10.7717/peerj-cs.3055


http://dx.doi.org/10.7717/peerj-cs.3055
mailto:eyalcin@�cumhuriyet.�edu.�tr
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.3055
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

PeerJ Computer Science

including e-commerce, entertainment, and social networking, fundamentally enhancing
user experience and engagement (Koren, 2009; Li, Chen ¢ Raghunathan, 2018). By
analyzing large datasets, including user preferences, behavior, and item characteristics,
recommender systems personalize content delivery, making them indispensable in today’s
information-rich digital landscape. This technology not only drives user satisfaction but
also boosts business metrics by facilitating better-targeted content and advertising. The
burgeoning field of recommender systems is continuously evolving, employing
sophisticated algorithms ranging from collaborative filtering to deep learning, showcasing
the relentless pursuit of more accurate, context-aware, and user-centric recommendation
strategies.

Despite their widespread adoption and success, these systems face several significant
challenges that can impede their effectiveness (Ricci, Rokach ¢ Shapira, 2015). One of the
primary issues is data sparsity; even with large datasets, the user-item interactions are often
too few, leading to challenges in generating accurate recommendations. Another critical
hurdle is the cold-start problem, where new users or items in the system lack sufficient
interaction data to make reliable recommendations. Robustness is also a concern, as these
systems must be resilient to manipulations or anomalies in the data to maintain the
integrity of their suggestions. Furthermore, general bias issues, such as user or item biases,
can skew the recommendations towards certain products or users, thereby limiting the
diversity of recommendations (Chen et al., 2023).

Among these challenges, the issue of popularity bias is particularly detrimental
(Abdollahpouri, Burke ¢ Mobasher, 2019; Yalcin ¢ Bilge, 2021; Elahi et al., 2021). This bias
causes recommender systems to disproportionately favor popular items, resulting in a
narrow concentration of recommendations. Such a trend not only undermines the
visibility of less popular or new items but also stifles diversity and novelty in the
recommendations. The negative impact of popularity bias extends beyond just reduced
item exposure can lead to a homogenization of user experience, where the rich and varied
tastes of users are not adequately catered to. This homogeneity can also perpetuate a
feedback loop, where popular items become even more dominant, further marginalizing
niche content. The result is a diminished overall user experience, with limited
opportunities for content discovery and personalization. Addressing this popularity bias is,
therefore, a key objective in the advancement of recommender systems, aiming to create a
more balanced, diverse, and genuinely user-centric recommendation landscape
(Abdollahpouri et al., 2021; Boratto, Fenu & Marras, 2021; Yalcin & Bilge, 2022).

The root cause of the popularity bias problem in recommender systems can be traced
back to the imbalanced distribution of user ratings. Typically, a small subset of items
receives a disproportionately large share of interactions and ratings from users, while the
vast majority of items garner relatively few. This imbalance is often reflective of real-world
user behavior, where popular items naturally attract more attention and feedback.
However, when such skewed data is fed into recommender systems, it leads to an
amplification of the popularity effect. The algorithms, aiming to maximize accuracy and
relevance, tend to favor items with a higher volume of interactions, assuming they are
more likely to be relevant to a broader user base. Figure 1 illustrates the imbalances in
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Figure 1 The rating distribution across items in (A) the MovieLens-1M (movie reviews), (B) Douban
Book (book reviews), and (C) Yelp (business reviews) datasets (Gulsoy, Yalcin ¢ Bilge, 2023). Details
of these datasets are also given in Table 4. Full-size K&l DOT: 10.7717/peerj-cs.3055/fig-1

rating distribution across three distinct datasets, each collected from different real-world
application areas (Gulsoy, Yalcin ¢ Bilge, 2023).

This disproportionate focus on popular items creates a self-reinforcing cycle: the more a
popular item is reccommended and interacted with, the more likely it is to be recommended
in the future. Consequently, less popular or new items, which might be highly relevant to
certain user segments, remain obscured due to their lower initial interaction levels. This
skewed distribution of user ratings leads to a narrow recommendation scope, heavily
biased towards already popular items (Abdollahpouri ¢ Burke, 2019). The challenge,
therefore, lies in designing recommender systems that can recognize and correct for this
imbalance, ensuring that the long tail of less popular items receives adequate attention
(Celma & Cano, 2008). By addressing the core issue of imbalanced user rating
distributions, recommender systems can move towards offering more diverse, inclusive,
and personalized recommendations, breaking free from the constraints of popularity bias
(Abdollahpouri, Burke ¢ Mobasher, 2019, 2017; Borges ¢ Stefanidis, 2021).

The realm of popularity-debiasing methods in recommender systems can be broadly
categorized into three distinct approaches: post-processing, in-processing, and
pre-processing, each with its unique advantages and disadvantages (Yalcin ¢ Bilge, 2021;
Boratto, Fenu & Marras, 2021). Post-processing techniques are applied to the output of the
recommendation algorithm. They typically involve re-ranking the recommended items to
ensure a more balanced representation (Abdollahpouri, Burke ¢ Mobasher, 2019;
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Gupta, Kaur & Jain, 2024). However, this approach can sometimes be superficial, as it does
not address the underlying bias in the model but merely adjusts its outputs. In-processing
methods, on the other hand, integrate debiasing directly into the recommendation
algorithm (Kamishima et al., 2014; Hou, Pan ¢ Liu, 2018). This could involve modifying
the algorithm to penalize the over-recommendation of popular items or explicitly boost
diversity. While this approach can be more nuanced and directly tackle bias during the
model training phase, it often requires significant alterations to existing algorithms and can
be computationally intensive.

Pre-processing methods, which are central to the methodology proposed in this article,
involve modifying the input data before it is fed into the recommendation algorithm
(Jannach et al., 2015; Chen et al., 2018). The primary advantage of this approach is that it
addresses the root cause of the bias—the skewed distribution of user interactions—by
re-balancing or augmenting the data. This can lead to a more equitable representation of
items, both popular and niche, within the system.

In this article, we introduce a novel pre-process popularity-debiasing method, namely
the EquiRate, that focuses on strategically including synthetic ratings for less popular, or
tail, items in the catalog. Our approach addresses two critical issues: firstly, determining
which tail items to inject synthetic ratings into and calculating the optimal number of these
ratings, and secondly, devising appropriate strategies for calculating the concrete value of
these ratings in a way that does not disrupt the existing rating vectors of items.

To address the first issue, our method employs a data-driven strategy to assess the extent
of imbalance in the user-item interaction data. Based on this assessment, we calculate an
appropriate number of synthetic ratings needed to adequately represent the tail items,
ensuring that their visibility in the recommender system is enhanced without
overwhelming the dataset. For the second issue, the calculation of synthetic ratings is done
with utmost care to maintain the authenticity and integrity of the original rating vectors.
Our algorithm meticulously generates ratings that align with the underlying patterns and
preferences reflected in the real user data. This ensures that the synthetic ratings blend
seamlessly with the genuine ratings, thus preserving the natural dynamics of user-item
interactions. By addressing these two issues, our proposed EquiRate method aims to strike
a delicate balance between enhancing the representation of less popular items and
maintaining the natural structure of the dataset. This approach not only mitigates
popularity bias but also enriches the diversity and quality of recommendations, ultimately
leading to a more balanced and user-centric recommender system.

The research questions (RQs) and main contributions of our article are presented
below.

RQI: How can an innovative pre-processing debiasing method be designed to effectively
balance training datasets by adjusting rating distributions among items, thereby
mitigating the adverse effects of popularity bias in final recommendations? We
introduce a novel pre-processing technique, i.e., the EquiRate, that adds synthetic
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ratings to less popular (tail) items in the dataset. This method tackles the issue of
popularity bias, enhancing the representation of these items for a balanced
recommendation process.

RQ2: How can a systematic approach be developed to determine the optimal allocation and
quantity of synthetic ratings for tail items, ensuring the preservation of original rating
vectors and natural user-item interaction patterns? We present a systematic
approach to determining the allocation of tail items to be injected into, and the
optimal number and calculation of synthetic ratings. This ensures the integrity of the
original rating vectors is maintained and the natural user-item interaction patterns
are preserved.

RQ3: How can rebalancing rating distributions between popular and less popular items
improve diversity and fairness in recommendations, thereby enhancing user
experience by increasing visibility for a broader range of items, including niche
options? By rebalancing the rating distribution between popular and less popular
items, the proposed EquiRate method substantially improves the diversity and
fairness of the recommendations. This enriches the user experience by increasing the
visibility of a broader range of items, including niche but relevant options.

RQ4: How can a holistic evaluation metric be developed to assess recommendation quality
by harmonizing accuracy with beyond-accuracy dimensions, such as novelty,
diversity, catalog coverage, and fairness? We present the FusionIndex, an innovative
metric for assessing the quality of recommendation lists that concurrently
harmonizes accuracy with beyond-accuracy aspects, such as novelty, diversity,
catalog coverage, and fairness, through a unique combination of multiple evaluation
metrics.

The remaining sections of this study are organized as follows, respectively: (i) the
section “Related Works” presents a detailed literature review regarding the existing
popularity-debiasing strategies, (ii) the section “EquiRate: The Proposed Balanced Rating-
Injection Strategy for the Popularity Bias Problem” introduces our proposed solution, the
EquiRate, detailing its mechanism and effectiveness in mitigating popularity bias, (iii) the
section “Experimental Studies” delves into the experimental setup, covering the datasets
used, relevant parameters, and existing debiasing methods considered in the experiments
and this section also elaborates on our evaluation metrics, focusing on the newly proposed
the FusionIndex metric and presents the results of the performed experiments, comparing
the performance of the EquiRate with other debiasing methods and highlighting its
advantages, (iv) the section “Insights and Discussion” thoroughly discusses these findings
and gives the most critical insights, and (v) the section “Conclusion and Future Work”
concludes the article and suggests potential avenues for future research. Note that the
source code accompanying this study is also made publicly available to enable the
reproducibility of the experiment (https://github.com/SiriusFoundation/EquiRate, https://
doi.org/10.5281/zenodo0.12515959).
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RELATED WORKS

Recommender systems have become pervasive tools in individuals’ everyday lives, offering
personalized suggestions for commodities, amenities, and content. These systems heavily
rely on data-driven algorithms to forecast user inclinations and generate
recommendations. Nevertheless, there is a mounting apprehension regarding the
susceptibility of these algorithms to popularity bias, whereby prevalent items are
recommended more frequently compared to niche or less renowned alternatives (Ahanger
et al., 2022). This bias has the potential to homogenize user preferences and restrict
diversity in recommendations. In recent times, scholars have been concentrating their
efforts on devising techniques to alleviate the popularity bias predicament in
recommendation algorithms (Chen et al., 2023; Yalcin, 2022). This segment scrutinizes the
extant literature pertaining to the issue of popularity bias and its corresponding remedies
in recommender systems.

The preliminary investigations on this matter primarily examine the formulation and
extent induced by recommendation algorithms in different fields, such as online education
(Boratto, Fenu ¢ Marras, 2019), movies (Boratto, Fenu & Marras, 2021; Borges &
Stefanidis, 2021), books (Naghiaei, Rahmani & Dehghan, 2022), music (Celma & Cano,
2008; Jannach, Kamehkhosh ¢ Bonnin, 2016; Kowald, Schedl ¢ Lex, 2020), tourism
(Sanchez, 2019), and social media (Siino, La Cascia ¢ Tinnirello, 2020). One
ground-breaking study comprehensively analyzes several prominent recommendation
methods, particularly collaborative filtering algorithms, and reveals that their
recommendations heavily favor a minuscule popular portion of the item spectrum
(Jannach et al., 2015). This study also examines the impact of algorithmic design and
parameterization on popularity bias and suggests hyperparameter tuning to enhance
recommendation diversity. Another related work evaluates a set of representative
algorithms against various biases associated with the popularity of course categories,
catalog coverage, and course popularity in massive open online courses (Boratto, Fenu ¢
Marras, 2019). It is concluded that the employed algorithms can differ significantly in the
courses they recommend and may exhibit undesirable biases with corresponding
educational implications. Moreover, another correlated investigation effectively evaluates
the identical representative algorithms and illustrates the impact of the popularity bias
issue on various entities, including individuals and item suppliers (Abdollahpouri, 2020).

Numerous recent investigations delve into the examination of the potential
discrimination arising from the problem of popularity bias. In other words, these studies
aim to explore how the bias perpetuated by recommendation algorithms towards popular
items unjustly impacts various users with diverse characteristics or different stakeholders
within the system, such as users or service providers (Abdollahpouri, 2020), or user classes
based on age, race, or gender (Lesota et al., 2021). The initial study addressing the inequity
of this matter observes that individuals who possess a primary interest in unpopular
(i.e., niche) items are more adversely affected by the popularity bias in movie
recommendations (Abdollahpouri et al., 2019). This issue of unfairness among individuals
has also been identified in the realms of books (Naghiaei, Rahmani ¢ Dehghan, 2022) and

Gulsoy et al. (2025), Peerd Comput. Sci., DOI 10.7717/peerj-cs.3055 6/42


http://dx.doi.org/10.7717/peerj-cs.3055
https://peerj.com/computer-science/

PeerJ Computer Science

music recommendations (Kowald, Schedl ¢ Lex, 2020). Moreover, this issue has been
subjected to analysis with regards to five crucial attributes associated with users’ rating
behavior. The results indicate that individuals who are exacting, highly interactive, and
difficult to predict face exceedingly unjust recommendations compared to others, despite
their significant contributions to the system (Yalcin ¢» Bilge, 2022). Furthermore, a recent
study examines this issue of unfairness in relation to five fundamental personality traits of
the big-five factor model. The study concludes that users who exhibit lower levels of
extroversion or exhibit avoidance towards trying new experiences are subjected to more
unjust referrals concerning item popularity (Yalcin & Bilge, 2023).

In the field of literature, numerous practical solutions have been devised to address the
issue of bias propagation in recommender systems. These solutions are commonly
classified into three categories: post-processing, in-processing, and pre-processing, based
on their integration strategy during the recommendation generation phase.

Post-processing debiasing methods aim to re-order a ranked list generated by a
conventional recommender or produce a new one by penalizing popular items while
highlighting unpopular ones. These methods are widely used as they can be applied to the
outputs of any recommender, making them more universally applicable than other
methods. For instance, a study suggests the utilization of pre-defined user-specific weights
to mitigate the issue of popularity bias (Jannach et al., 2015). These weights also enable the
achievement of satisfactory accuracy performance. Another approach developed for this
purpose involves calculating synthetic ranking scores by assigning weights to predictions
inversely proportional to the popularity level of items (Abdollahpouri, Burke & Mobasher,
2018). Subsequently, items are arranged based on the ranking scores rather than the pure
prediction values, resulting in the generation of final recommendation lists. In line with the
strategy of penalizing popular items, we have previously proposed two enhanced
re-ranking strategies, namely Augmentative and Multiplicative, to address the adverse
effects of this issue in the domain of group recommendations (Yalcin ¢ Bilge, 2021).
Specifically, during the re-ranking process, the Augmentative approach places greater
emphasis on ranking accuracy, while the Multiplicative approach prioritizes the inclusion
of unpopular items in the recommendations. Lastly, a recent debiasing approach has been
proposed to promote fairness in item exposure within recommendation systems by
imposing constraints on the volume of stocks for items (Dong, Xie ¢ Li, 2021). This
approach restricts the maximum number of times an item can be recommended in
proportion to its historical interaction frequency. Empirical validation has shown that this
constraint outperforms conventional recommenders by effectively mitigating the Matthew
Effect that influences item popularity. This heuristic approach relies on normalized scores
and a minimum-cost maximum-flow strategy, utilizing both the existing recommendation
length of users and our item stock volumes. As a result, both the problem of user-item
matching and the issue of popularity bias in the final recommendations are effectively
addressed.

Additionally, an influential research study presents a highly efficient long-tail
promotional technique inspired by the xQuad algorithm in order to enhance the quality of
diversity in recommendations (Abdollahpouri, Burke ¢» Mobasher, 2019). In another
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recent approach to mitigate popularity bias, discrepancy minimization aims to amplify
aggregate diversity in recommendations through a minimum-cost network flow strategy,
thereby exploring recommendation sub-graphs that optimize diversity (Antikacioglu ¢
Ravi, 2017). Conversely, an alternative technique for debiasing popularity, known as
FA*IR, concentrates on achieving a balance between popular and unpopular items by
establishing queues for these two categories and subsequently merging them (Zehlike et al.,
2017). Lastly, to the best of our knowledge, in the existing literature, Calibrated Popularity
stands as the sole method that takes into account users’ original preferences towards item
popularity during debiasing (Abdollahpouri et al., 2021). This method initially determines
users’ genuine interests across three categories of items, namely head, middle, and tail,
which are constructed based on the number of received ratings. Subsequently, this
information is integrated into the Jensen-Shannon divergence when generating new
recommendation lists based on rankings. However, the primary limitation of this approach
lies in the fact that it considers all ratings in users’ profiles without considering their values
when determining users’ interests in popularity. It should be noted that users have the
capability of providing numerous highly negative votes for popular items, and assigning a
rating to an item by a user does not necessarily imply their enjoyment of said item.

In-processing popularity-debiasing methods, on the other hand, have the objective of
modifying the internal mechanism of a recommendation algorithm in order to counteract
the bias it may have towards item popularity. These methods are commonly known as
non-generalizable solutions, as they only provide assistance to specific recommenders and
cannot be applied universally. One instance of such methods involves evaluating the
likelihood of individuals disliking certain items and utilizing this information to penalize
popular items during the estimation of recommendations (Kamishima et al., 2014).
Furthermore, a recent study introduces an optimized variation of the well-known
RankALS recommender that aims to achieve recommendation lists with improved
intra-list diversity and ranking accuracy (Abdollahpouri, Burke ¢» Mobasher, 2017). In
addition, another related work presents a recommendation framework that initially
estimates the common neighbors of two items based on their initial popularity and
subsequently removes the most popular ones to attain a more balanced co-neighbor
similarity index (Hou, Pan ¢ Liu, 2018). Moreover, another approach focuses on debiasing
popularity by minimizing the correlation between the relevance of user-item pairs and
item popularity, resulting in a more equitable treatment of items in the long tail (Boratto,
Fenu & Marras, 2021). The final method in this category is founded on variational
autoencoders, which penalizes the scores assigned to items based on their historical
popularity to mitigate bias and enhance diversity in the recommended results (Borges ¢
Stefanidis, 2021). Finally, a novel paradigm named Popularity-bias Deconfounding and
Adjusting (PDA) is proposed in Zhang et al. (2021), aiming to remove confounding
popularity bias in model training and adjust recommendation scores with desired
popularity bias during inference.

The prevalence of bias in recommendations is often attributed to the unequal
distribution of ratings provided by users. Therefore, pre-processing methods aim to
mitigate this imbalance by modifying the data on which the recommender systems are
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trained. For instance, one pre-processing approach involves categorizing items in the
catalog as either “head” or “tail” based on their received ratings. Predictions are then
generated using all ratings for head items, while ratings from the corresponding class are
used for tail items (Park ¢» Tuzhilin, 2008). This ensures that the predictions for tail items
are not influenced by the dominance of popular items. Another approach in this category
involves constructing user-item tuples, where popular items are excluded. The
recommendation algorithms are subsequently trained on these tuples instead of the
original user-item rating matrix (Jannach et al., 2015). Lastly, another approach involves
utilizing a probability distribution function that considers the popularity level of items.
This allows for a higher likelihood of tail items being included in the ranking-based
recommendations (Chen et al., 2018).

Zhou et al. (2023) introduce an efficient method that dynamically down-weights graph
neighbours according to item-level popularity, thereby attenuating bias within the
embedding propagation itself. Complementing this, Lopes et al. (2024) propose a
post-processing framework that enforces minimum exposure guarantees: each item is
assigned a lower-bound on display frequency, and a constrained optimisation routine
re-ranks the baseline list so that these guarantees are satisfied while relevance loss is
minimised. At the re-ranking layer, Naghiaei, Rahmani ¢ Deldjoo (2022) present CPFair,
which jointly personalises fairness for both consumers and producers by balancing
individual user utility with long-tail exposure. Collectively, these studies underscore the
community’s shift toward joint accuracy-fairness objectives and sit orthogonally to our
pre-processing paradigm: EquiRate can be coupled with such in-or post-processing
schemes to furnish a multi-stage defence against popularity bias throughout the
recommendation pipeline.

A recent study addresses the problems of unfairness and popularity bias in
recommendation systems by considering users’ interactions with popular items. The
proposed algorithm reduces popularity bias and unfairness while slightly increasing
recommendation accuracy by eliminating these so-called “unreliable interactions”

(Ma & Dong, 2021). The model proposed in another related work aims to reduce
recommendation bias and ensure recommendation utility in recommendation systems by
addressing how users’ ratings are influenced by herd mentality (Su, Li ¢ Zhu, 2023). Also,
a recent work presents an algorithm to reduce the popularity bias in recommender systems
(Gangwar & Jain, 2021). This bias tends to over-recommend popular items while ignoring
non-popular ones. The proposed algorithm adjusts the weights of non-popular items,
improving their representation. Extensive testing demonstrates that this method effectively
reduces popularity bias while maintaining recommendation accuracy. Finally, the recently
introduced TASTE model uses text representations to match items and users, enhancing
recommendation accuracy (Liu et al., 2023). The TASTE effectively reduces popularity bias
and addresses the cold start problem by leveraging full-text modeling and pre-trained
language models. This method results in more relevant and appropriate recommendations.

As can be inferred from the aforementioned literature review, numerous efforts have
been made to address the concern of popularity bias. For instance, post-processing
techniques, which intervene after the recommender system has made its predictions, can
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lead to decreased accuracy and increased system complexity. Moreover, these methods can
sometimes be superficial, as they do not address the underlying bias in the model but
merely adjust its outputs. In contrast, in-processing methods, which are integrated during
the model’s training phase, can increase the complexity and training duration of the model,
and may alter the data structure. However, pre-processing approaches can avoid these
issues by rectifying biases in the dataset before the training process of the recommender
system begins. These methods work on the data prior to the training phase, thereby
reducing bias without increasing model complexity and maintaining the system’s accuracy.
Hence, pre-processing methods can offer a more effective and efficient solution to address
popularity bias in recommendation systems compared to post-processing and
in-processing methods.

Furthermore, existing pre-processing solutions for the popularity bias problem are often
evaluated based on a limited set of criteria, typically focusing on accuracy or the level of
popularity bias. However, there are numerous aspects beyond accuracy that influence the
quality of recommendations, including novelty, diversity, entropy, and long-tail coverage,
all of which can be impacted by popularity bias. Consequently, more robust approaches are
needed to simultaneously address these criteria. Our proposed method, the EquiRate,
meets this need by not only balancing the rating distribution across items through the
injection of ratings that align with patterns and preferences in real user data, but also by
generating recommendation lists that meet various criteria, such as accuracy and other
beyond-accuracy aspects, concurrently.

EQUIRATE: THE PROPOSED BALANCED RATING
INJECTION STRATEGY FOR THE POPULARITY BIAS
PROBLEM

Popularity bias in recommender systems is a pervasive issue that stems from inherent
imbalances in data distribution. Typically, a small fraction of items, often the most
popular or ‘head’ items, receive a disproportionately large amount of user interactions
and ratings. This leaves a long tail of less popular, or ‘tail’, items that are seldom
recommended. Such an imbalanced distribution leads to a feedback loop, where
popular items gain more visibility and become even more dominant, while tail items
remain obscured. This not only limits the diversity of recommendations provided to
users but also hinders the discovery of new or niche content, ultimately affecting the
user experience and the system’s effectiveness (Boratto, Fenu ¢» Marras, 2021;

Gulsoy, Yalcin & Bilge, 2023).

The root cause of this bias lies in the way recommender systems are traditionally
designed. Most algorithms are geared towards optimizing accuracy based on existing
user-item interactions, inadvertently favoring items with higher numbers of interactions.
This leads to a situation where the rich get richer—popular items get more
recommendations and hence more ratings, further reinforcing their popularity. This
skewed emphasis on popular items can be detrimental, as it narrows the breadth of content
surfaced to users, often overlooking potentially relevant but less popular items.
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To tackle this challenge, our proposed method, the EquiRate, introduces a novel
approach to recalibrate the recommendation landscape. The EquiRate is specifically
designed to mitigate the effects of popularity bias by injecting synthetic ratings into tail
items. This method aims to balance the scales, giving these less popular items a fair chance
to be recommended and noticed by users.

The EquiRate operates on the principle of identifying and enhancing the visibility of tail
items in a dataset. While some clustering-based methods exist for classifying items into
head and tail categories (Park ¢ Tuzhilin, 2008), we adopt the Pareto principle (Sanders,
1987), as it is more widely recognized and frequently used in the literature on popularity
bias (Abdollahpouri, Burke & Mobasher, 2019; Yalcin & Bilge, 2023; Gulsoy, Yalcin ¢ Bilge,
2023). The method then involves the strategic addition of synthetic ratings to these tail
items, calculated through a series of carefully devised algorithms and formulas. These
synthetic ratings are not arbitrary but are thoughtfully computed to reflect realistic user
preferences, thereby maintaining the authenticity of the recommender system. By injecting
synthetic ratings in a controlled and measured way, the EquiRate disrupts the feedback
loop that perpetuates the dominance of popular items. This intervention allows for a more
diverse and representative item selection in recommendation lists. As a result, users can get
a chance to interact with a broader range of products, services, or content, which they
might not have encountered otherwise due to the overshadowing presence of popular
items.

In summary, the EquiRate presents a strategic solution to address the skewness in the
data distribution that underpins popularity bias in recommender systems. It does this by
enhancing the visibility and likelihood of recommendation for less popular items, thereby
creating a more balanced, diverse, and representative recommendation ecosystem. This
approach not only enriches the user experience by broadening the range of
recommendations but also ensures a more equitable platform for all items, regardless of
their initial popularity. The ultimate goal of the EquiRate is to foster a recommendation
environment where items are judged and recommended based on their relevance and
quality, rather than solely on their existing popularity metrics.

More concretely, the first step in the EquiRate involves classifying items into different
popularity classes using the Pareto principle. Let I denote the set of all items, and let R; be
the number of ratings received by item i. The items are then sorted in descending order
based on R;. The first M items receiving 20% of all ratings in the system are categorized as
‘popular’ or head items, denoted by H, while the remaining ones received the remaining
80% of the ratings are classified as tail items, denoted by T. The EquiRate employs three
distinct strategies, Synthetic Rating Injection (SRI) strategies, for calculating the number
of synthetic ratings to inject into each tail item. These strategies are explained in detail in
the following:

Overall Popularity Adjustment (OPA): this strategy first calculates the popularity score
(Pop;) for each item i based on the number of ratings it has received and the average
popularity score (Popg,,) for all items. Then, the OPA strategy determines the number of
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synthetic ratings to allocate to each tail item (#;), as in Eq. (1), where o is a scaling factor in
the range [0, 1], adjusting the total number of ratings to be injected.

nj = o X (Popaye — Pop;). (1)

Head Item-Focused Adjustment (HIFA): similar to the OPA, this strategy first computes
Pop; for each item i, but differing from the OPA, the HIFA strategy calculates the average
popularity score (Pophead_avg) for only head items. Then, it determines the number of
synthetic ratings to allocate to each tail item (n;), as in Eq. (2), where o is again the scaling
factor in the range [0, 1].

np = o X (Pophead_avg - POP:’)- (2)

Threshold-based Popularity Adjustment (TPA): similar to other strategies, it first
calculates Pop; for each item i in the catalog; however, the TPA strategy sets a popularity
threshold 0 based on the lowest popularity among head items, and then it determines the
number of synthetic ratings to allocate to each tail item (n;), as in Eq. (3), where o is again
the scaling factor in the range [0, 1].

n; = o X (0 — POp,’). (3)

After determining the quantity of fake ratings to be injected, the next crucial step is to
decide how to assign rating values to the empty cells within the profiles of tail items. To
address this, we employ various Synthetic Rating Generation (SRG) strategies outlined
below. These strategies ensure that the synthetic ratings are introduced in a manner that
maintains the integrity of item profiles while reducing popularity bias. To complete the
EquiRate pipeline, once the number of synthetic ratings to be injected into each tail item is
determined via a selected SRI strategy, and their values are computed using an SRG
strategy, the next critical component is identifying which users should be assigned these
synthetic interactions. In our framework, user selection is conducted through random
sampling from the pool of users who have not previously interacted with the given tail
item. This design choice serves two primary purposes: (i) it preserves the statistical
independence of synthetic ratings by avoiding systemic user-item correlations, and (if) it
enables broad coverage across the user base, which improves exposure of tail items in the
overall matrix without biasing toward specific users. While more complex user-targeting
schemes could be employed (e.g., based on user similarity or predictive matching), our
experiments showed that random user selection offers sufficient fairness and diversity
while maintaining simplicity and computational efficiency. This mechanism ensures that
each synthetic rating maintains the intended effect of breaking popularity feedback loops
without introducing new bias into the dataset.

Generalized Rating Value (GRV): in this strategy, we calculate the values of fake ratings
based on general statistics derived from both item and user profiles. These statistics may
include the average rating of all items, the average rating provided by the respective user, or
the average rating received by the item itself.
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Predictive Rating Value (PRV): here, we opt for a more personalized approach by
generating synthetic ratings for tail items using recommendation algorithms, such as
collaborative filtering ones. These algorithms are initially trained on the original
user-item matrix and are then applied to create synthetic ratings that are specific to each
user and item.

Randomized Value Generation (RVG): it is inspired by privacy-preserving collaborative
filtering techniques (Polat ¢» Du, 2005; Bilge ¢ Polat, 2013), which aim to safeguard user
privacy in recommender systems. In doing so, we adopt randomized perturbation
(Gulsoy, Yalcin & Bilge, 2023), one of the most utilized approaches to perturb each genuine
rating randomly. Accordingly, randomly generated rating vectors will be added to the
empty cells of the actual rating vectors of tail items. Similar to the original randomized
perturbation approach, these vectors will be generated using either a uniform or normal
distribution. In the uniform distribution, random number values are generated within the
range of [— \/56, \/ga], while in the normal distribution, random number values follow the
N(u, ?) distribution. Notably, the average of the random number values generated in
both distributions is zero.

In summary, the procedures of the EquiRate popularity-debiasing method are outlined
in Algorithm 1. This method can be implemented in nine distinct variants by choosing one
of three different approaches from both the SRI and SRG categories. In the subsequent
experiments of our study, we aim to identify which combination most effectively achieves
popularity-debiasing. Once the optimal EquiRate variant is determined, it can be used to
preprocess a dataset for any recommendation algorithm, such as those based on
collaborative filtering. This preprocessing results in a balanced rating dataset (denoted as
R). Utilizing this balanced dataset, rather than the original, for recommendation
algorithms, is likely to improve the representation of less popular (i.e., tail) items in the
final recommendations. Consequently, this enhances beyond-accuracy qualities such as
diversity, novelty, and fairness in the item recommendations. We also present an overview
of the general structure of the proposed EquiRate popularity-debiasing method in Fig. 2.

To reassure practitioners that EquiRate can be integrated into existing pipelines with
negligible overhead, we analyse its worst-case time and space requirements. Let | T| be the
number of tail items, k; the number of synthetic ratings injected into item i, and |U| the
total number of users. The SRI step costs only O(|T|) to compute {k;}, because it involves
simple arithmetic over pre-computed popularity counts. Selecting user—item pairs to
receive injections is O(D_, .y ki), as each pair is sampled exactly once. Rating-value
generation is likewise lightweight: GRV requires an O(1) table look-up per pair; PRV adds
a single forward pass of a pre-trained recommender, leaving overall complexity unchanged
relative to baseline training; RVG merely draws one normal (or uniform) random variate
per pair, also O(1). Consequently, the entire pre-processing pipeline is linear in the
number of injected ratings and does not alter the asymptotic cost of subsequent model
training. Memory overhead follows the same bound, O(}_,_; ki), because synthetic entries
are stored in the same sparse format as genuine ratings.
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Algorithm 1 EquiRate: balanced rating injection strategy.
Input: User-Item Rating Matrix R,
SRI Strategy <sp; (OPA, HIFA, or TPA),
SRG Strategy <srg (GRV, PRV, or RVG),
Scaling factor o
Output: Augmented Matrix R’
Step 1: Popularity Classification using Pareto principle
Compute rating counts R; for all items i € I
Sort items in descending order of R;
Determine head items H covering top 20% of all ratings
Define tail item set T =1\ H
Step 2: Compute Synthetic Rating Counts
foreach tail item i € T do
Compute popularity score Pop; based on R;
if # s is OPA then
Compute Pop,,, for all items
nj < o X (Popay, — Pop;) > using Eq. (1)
else if S is HIFA then
Compute Poppead_avg for items in H
1; < 0 X (POPhead_avg — Popi) > using Eq. (2)
else if Fqp1 is TPA then
Determine threshold 0 = minjcy (Pop;)
n; < o x (0 — Pop;) > using Eq. (3)
Step 3: Inject Synthetic Ratings via Random User Assignment
foreach tail item i € T do
Randomly sample #; users from U who have not rated item i
foreach user u in sampled users do
if ¥ src is GRV then
Compute r,; using global/user/item mean
else if S gp; is PRV then
Predict r,; using any trained CF recommendation model
else if Fgp; is RVG then
Generate r,; via random noise (uniform or normal)
Inject synthetic rating r,; into R’
return R’

A toy example illustrating all EquiRate variants

To clearly demonstrate the inner workings of the proposed EquiRate framework, this
subsection presents a toy example that operationalizes all six possible variants resulting
from the combination of three Synthetic Rating Injection (SRI) strategies and three
Synthetic Rating Generation (SRG) strategies. This example simulates a simplified
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Figure 2 General structure of the proposed EquiRate approach.
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Table 1 Initial user-item rating matrix.

User A B C D E
U, 4 - - -
U, 5 - 3 - 2
Us 4 1 5 1 -
Us 3 - 4 5 -
Us 2 - - 3 -
Us 5 - - - -
U; 4 - - - -

user-item rating matrix and walks through the entire pipeline of the EquiRate algorithm,
from identifying tail items to injecting synthetic ratings.

Step 1: Initial Matrix and Popularity Classification: Table 1 shows a simplified user-item
rating matrix with seven users (U; to U;) and five items (A to E). Each rating is on a scale
from 1 to 5. The matrix is sparse and reflects the typical long-tail distribution, where a
small number of items receive a large portion of ratings. Specifically, item A receives seven
ratings, C and D receive three each, B receives two, and E receives only one.

Using the Pareto principle, we identify head and tail items. In this case, the total number of
ratings is 16. The first 20% of ratings (i.e., 3.2 ratings) fall entirely on item A, which is
therefore classified as the sole head item. The remaining items B, C, D, and E are
categorized as tail items.

Step 2: Calculating Number of Synthetic Ratings (SRI): we now apply each of the three
SRI strategies to determine the number of synthetic ratings to inject into each tail item.
Assume a scaling factor of o = 1 for simplicity.
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O Overall Popularity Adjustment (OPA): the average popularity across all items is
16/5 = 3.2. For each tail item i, the number of synthetic ratings n; = 3.2—Pop; where
Pop; is the number ratings item i has received, as formulated in Eq. (1). Accordingly,
the number of synthetic ratings to be injected for Bis 3.2 — 2 = 1.2, for C is
32—3=0.2,forDis3.2—3=0.2,and for Eis 3.2 — 1 = 2.2.

O Head Item-Focused Adjustment (HIFA): the average popularity of head items is 7
(only item A). Then, for each item in the tail set, the number of synthetic ratings n;
can be computed as 7-Pop; where Pop; is the number of ratings item i has received
(see Eq. (2)). Accordingly, the number of ratings to be included with HIFA for B is
7—2=5"forCis7—3=4,forDis7—3=4,andforEis7 — 1 =6.

O Threshold-based Popularity Adjustment (TPA): in the given toy example, the head
item set contains only one item (A), which received seven ratings. Since the
popularity threshold (0) in the TPA strategy is defined as the lowest popularity score
among head items, and there is only a single head item in this case, the threshold
becomes equal to the popularity of item A. As a result, the TPA strategy essentially
mirrors the HIFA strategy in this specific setting, as both rely on the same reference
value to compute synthetic ratings for tail items.

In summary, the number of synthetic ratings to be injected into each tail item using the
three SRI strategies is presented in Table 2. It is noteworthy that in this toy example, both
TPA and HIFA produce identical results because the head item set consists of only a single
item. However, in real-world datasets with multiple head items, the threshold used in TPA
—defined as the minimum popularity among head items, which is typically lower than the
HIFA average. Consequently, TPA usually results in fewer injected ratings than HIFA,
rendering it a more conservative adjustment strategy. Furthermore, fractional values
produced during the computation (e.g., 1.2 or 0.2) are rounded to the nearest integer to
facilitate practical implementation. The values reported in Table 2 reflect this rounding.

Step 3: Generating Synthetic Values (SRG): once the number of synthetic ratings is
determined, the next step is to assign rating values to user-item pairs. Three SRG strategies
are employed for this:

O Generalized Rating Value (GRV): in the GRV strategy, synthetic rating values are
derived from aggregate statistics, such as the global average rating, the average rating
provided by a user, or the average rating received by an item. The user-item pairs
selected for injection are randomly chosen from the set of unrated tail items. For
instance, based on Table 2, if the HIFA strategy is selected for the SRI component,
item E would receive six synthetic ratings. Suppose user Uy is randomly assigned to
one of these six injections and their average rating is 4.0. Then, the injected rating
value would also be 4.0.

O Predictive Rating Value (PRV): in the PRV strategy, synthetic rating values are
predicted using a trained recommender algorithm (e.g., matrix factorization or
user-based collaborative filtering). After determining the number of synthetic ratings
to be added to each tail item—e.g., six for item E under HIFA—the system randomly
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Table 2 Number of synthetic ratings to be injected per tail item (SRI Strategies).

Item OPA HIFA TPA # Of actual ratings
B 1 5 5 2
C 0 4 4 3
D 0 4 4 3
E 2 6 6 1

Table 3 An example of final user-item matrix after applying the OPA (SRI) and GRV-Users’ Mean
(SRG) variant.

User

B C D E

Uy
U,
Us
U,
Us
Us
Uy

55

NS N N N S
—_
B W
—
<,

Note:

Italic entries with superscript S denote injected synthetic ratings.

selects users who have not rated that item. For each selected user-item pair, the
recommender model is used to predict the rating, which is then injected into the
user-item matrix.

Randomized Value Generation (RVG): this strategy generates synthetic ratings by
adding noise drawn from a normal distribution, following the number of injections
computed by the chosen SRI strategy (e.g., Six ratings for item E under HIFA,
see Table 2). For each selected user-item pair (chosen randomly from unrated
2 ) and added to the user’s average
rating. Here, we adopt three noise levels: Low (0. = 2), Mid (0max = 3), and High

(0max = 4), following Gulsoy, Yalcin ¢ Bilge (2023). The computed values are clipped

entries), a noise value ¢ is derived from N(0, o

to fit the rating scale if necessary.

Table 3 illustrates an example of matrix densification achieved by the EquiRate pipeline

when the OPA rule is coupled with GRV based on users’ mean ratings. Consistent with
Table 2, exactly one synthetic rating was injected into item B (U, = 4) and two into item E
(U, =5, Us = 3); no other cells were altered. These values equal the rounded averages of the

respective users’ existing ratings, thereby preserving user-level preference profiles while

selectively boosting feedback for under-represented items. The result is a modest yet
targeted reduction of popularity imbalance that subsequent recommendation models can
exploit without distorting the overall rating distribution.

This example illustrates the complete execution of the EquiRate framework: tail items

are first identified, synthetic-rating quantities are computed via the three SRI rules, and the
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resulting blanks are then filled with values generated by the SRG strategies. Because each
SRI rule can be paired with each SRG rule, nine distinct variants arise, offering
practitioners ample flexibility to match the variant to a specific dataset and fairness
objective. In the empirical study that follows, all nine combinations are exhaustively
evaluated on three benchmark datasets; the analysis then focuses on the variants that
deliver the best trade-off between accuracy and beyond-accuracy metrics. This

concrete, numerical walk-through therefore not only clarifies the mechanics of EquiRate
but also underpins the transparency and replicability of the subsequent experimental
findings.

EXPERIMENTAL STUDIES

This section provides detailed information about the datasets used, the parameter setup for
the proposed EquiRate method, and prominent popularity-debiasing methods for
comparison. Additionally, it introduces an advanced evaluation metric that considers both
accuracy and beyond-accuracy aspects of the recommendations concurrently. The section
also presents the results obtained from the experiments conducted.

Datasets

Our study incorporates three distinct public benchmark datasets from various application
realms, as employed by highly related recent studies (Yalcin ¢ Bilge, 2022; Gulsoy, Yalcin
¢ Bilge, 2023). These include the MovieLens-1M (https://grouplens.org/datasets/
movielens/1m/) (ML) dataset for movies (Harper ¢ Konstan, 2015), the Douban Book
(https://www.douban.com/) (DB) dataset for books (Shi et al., 2018), and the Yelp (https://
www.yelp.com/) dataset for local business reviews (Shi et al., 2018). In each dataset, user
preferences are represented as discrete values on a five-star scale. Table 4 offers an in-depth
view of the ML, DB, and Yelp datasets. Their varying dimensions and sparsity levels, as
shown in Table 4.

Parameter setup

As discussed previously, two critical points related to the experiments are determining how
many synthetic ratings to add to which items using any SRI method and then calculating
the value of ratings to be added via any SRG method.

However, the number of scenarios in the experiments will be more efficient in exploring
the parameter options where the proposed method can perform best. Therefore, nine main
scenarios to be run with a combination of three SRI methods (i.e., OPA, HIFA, and TPA)
and three SRG methods (i.e., GRV, PRV, and RVG) are diversified to 156 different
scenarios with different parameter values. Accordingly, the o parameter controlling the
rating density to be injected with the SRI methods is planned with eight values varying
from 0 to 1 (i.e., 0.1, 0.25, 0.33, 0.50, 0.66, 0.75, 0.90, and 1.00). Also, synthetic rating
calculation options with SRG methods are planned using three different methods.
However, GRV methods are tested with three sub-approaches (the average ratings of a
corresponding user (i.e., tg,g), the average rating of a corresponding item (i.e., i4,¢), and the
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Table 4 Detailed overview of the MovieLens-1M (ML), Douban book (DB), and yelp datasets.

Dataset Ratings Sparsity (%) Average rating value Users Items Ratings per user Ratings per item
ML 1,000,209 95.8 3.58 6,040 3,952 165.6 253.1
DB 792,062 99.7 4.05 13,024 22,347 60.8 354
Yelp 198,397 99.9 3.77 16,239 14,284 12.2 13.9

average of all ratings in the dataset (i.e., all,,)). On the other hand, when applying the PRV
method, the VAECF algorithm is used as it is one of the best-performing and up-to-date
collaborative filtering approaches in terms of accuracy in the literature (Liang et al., 2018).
Finally, the RVG method is considered with three scenarios where the number of ratings
injected varies by adjusting privacy parameters: Low, Middle (Mid), and High. In doing so,
when applying the RPT method, ¢ values are uniformly randomly selected from (0, 64y]
interval where 0, is set 2, 3, and 4 for Low, Mid, and High scenarios, respectively. Note
that these parameters are selected as in Gulsoy, Yalcin ¢ Bilge (2023) and we do not
observe significant differences between uniform and normal distribution in the
experiments performed for the RVG method, therefore, we only present the outcomes that
are obtained via normal distribution.

In summary, combining three SRI approaches, eight different o parameters, and seven
SRG approaches resulted in 156 experimental scenarios. However, even if all scenarios are
tested in the experiments, for clarity, we only present outcomes of the best-performing
variants of the EquiRate in the following section. Here, we present the results where o is
selected as 0.1, 0.5, and 0.9 to analyze better its effect on the quality of final
recommendations. These variants are repeated five times to obtain reliable outcomes.
Then, we take the average of these repetitions to make the randomness more reliable and
the values more stable. Figure 3 also sketches all tested parameter-tuning for the proposed
EquiRate method. In the final stage of our study, we utilize the VAECF algorithm on the
dataset, which has been balanced by applying our EquiRate variants. This process aims to
generate top-N recommendation lists for each individual, where we have chosen N to be
10. It should also be noted that the implementations of the VAECEF algorithm are carried
out using the recently developed Python-based framework known as Cornac (https://
cornac.preferred.ai/) (Salah, Truong & Lauw, 2020).

During the experiments, we adopt a user-based leave-one-out cross-validation scheme,
a common protocol for top-N recommendation studies. For each fold, one user u is held
out as the test (i.e., active) user while all remaining users constitute the training set. The
recommendation model (VAECEF in all experiments) is trained on this set and then used to
predict scores for every item in the catalogue for u. Then, the top-10 items with the highest
predicted scores form the recommendation list. We repeat this procedure for every user, so
that each user acts exactly once as a test, and |U| folds are produced. Except for Entropy
and LTGC, all evaluation metrics are computed per user and averaged. Since these two
metrics are system-level, we first merged the top-10 recommended items to obtain a list
that includes all recommended items in the system to compute Entropy and LTC.
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Figure 3 All tested parameter-tuning for the EquiRate. Green dots representatively show each variant
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Benchmark popularity-debiasing methods

In our study, we compare our method with four prominent strategies to mitigate
popularity bias: eXplicit Query Aspect Diversification (xQuad) (Abdollahpouri, Burke ¢
Mobasher, 2019), Augmentative (AUG) (Yalcin ¢ Bilge, 2021), Popularity-aware Weighting
(PAW) (Abdollahpouri, Burke ¢ Mobasher, 2018), Multiplicative (MUL) (Yalcin ¢ Bilge,
2021), Largest-Normalized-Score-First (LNSF) (Dong, Xie ¢ Li, 2021), CP (Abdollahpouri
et al., 2021), DM (Antikacioglu ¢» Ravi, 2017), FA*IR (Zehlike et al., 2017), and EqBal-RS
(Gupta, Kaur ¢ Jain, 2024). The following explains these methods in detail:

1.

EXplicit Query Aspect Diversification (xQuad) (Abdollahpouri, Burke ¢» Mobasher,
2019): this approach, a well-known method for reducing popularity bias, re-ranks items
into two categories: popular (i.e., head) and less popular (i.e., tail). It aims to diversify
final recommendations by balancing these categories, based on user preferences. A
controlling parameter, 4, set at 0.5, helps balance accuracy and diversity.

. Augmentative (AUG) (Yalcin ¢ Bilge, 2021): the AUG combines pure prediction scores
with inverse weights of item popularity to create synthetic ranking scores. Prediction
scores are the primary factor, while item weights serve as an additive element,
emphasizing ranking accuracy over popularity bias mitigation.

. Popularity-aware Weighting (PAW) (Abdollahpouri, Burke ¢ Mobasher, 2018): this
method calculates logarithmic inverse weights for items based on popularity, giving
more weight to less popular items and less to more popular ones. It then integrates these
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weights with prediction scores to derive ranking scores for final recommendations. A
parameter, 4, set at 0.5, balances these two recommendation aspects.

4. Multiplicative (MUL) (Yalcin ¢ Bilge, 2021): similar to the AUG in using a re-ranking
strategy that penalizes popular items, the MUL’s approach is distinct. It applies item
weights as a multiplicative factor in calculating final ranking scores, aiming to favor less
popular items in recommendation lists significantly.

5. Largest-Normalized-Score-First (LNSF) (Dong, Xie ¢» Li, 2021): this debiasing strategy
seeks to achieve exposure fairness while reducing popularity bias. It uses stock volume
constraints based on historical interaction frequencies to limit recommendations,
thereby reducing the Matthew Effect on item popularity. It employs a minimum-cost
maximum-flow model to match users and items within these constraints optimally.

6. FA*IR (Zehlike et al., 2017): this method seeks to ensure a balanced representation
between two groups of items in recommendations: protected and unprotected. Here,
protected items correspond to long-tail items (M U T), while unprotected items
represent head items (H). The algorithm works by maintaining separate queues for each
group and merging them according to normalized scores. This approach increases the
visibility of protected items, thereby mitigating the underrepresentation of long-tail
items in the recommendation process.

7. Discrepancy Minimization (DM) (Antikacioglu ¢» Ravi, 2017): this method focuses on
increasing the aggregate diversity of recommendations, aiming to maximize the total
number of unique items recommended. It leverages a minimum-cost network flow
approach to identify sub-graphs that optimize diversity. The method sets a target
distribution for item exposure, representing the desired frequency of each item’s
appearance in recommendations. The objective is to minimize the discrepancy between
the actual frequency of item recommendations and this target distribution.

8. Calibrated Popularity (CP) (Abdollahpouri et al., 2021): this method addresses
popularity bias by tailoring recommendations to a user’s past interactions with items of
varying popularity levels. Drawing inspiration from Steck’s calibrated recommendation
framework (Steck, 2018), CP re-ranks the initial recommendation list to align with the
user’s historical engagement with popular, moderately popular, and less popular items.
The algorithm employs Jensen-Shannon divergence to quantify the difference between
the popularity distribution in the user’s profile and the recommended list, aiming to
minimize this divergence for better personalization. As a user-centric approach, it
uniquely focuses on adapting recommendations to individual preferences rather than
applying a universal optimization. The parameter A regulates the trade-off between
relevance and popularity calibration, ensuring that recommendations reflect user
preferences across different popularity tiers. In the experiments, the candidate set size
was fixed at 100, and 4 was set to 0.9, providing an optimal balance between relevance
and diversity for CP.

9. EqBal-RS (Gupta, Kaur & Jain, 2024): this method aims to address the popularity bias
prevalent in recommender systems, where popular items are disproportionately favored
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over less popular ones. This approach uses a re-weighting mechanism that balances the
training loss between popular and non-popular items, guided by a new metric called
Popularity Parity, which measures the bias as the difference in losses. Unlike existing
techniques, EqBal-RS eliminates the need for heavy pre-training by learning item
weights dynamically during training.

Evaluation metrics

To thoroughly assess the effectiveness of the EquiRate approach we introduced, we utilize a
variety of standards related to the quality of recommendations in our experiments. In this
process, we measure recommendation accuracy via FI-score and nDCG which are
well-known and most prominent accuracy metrics. In addition, we employ four additional
metrics measuring the beyond-accuracy quality of the produced recommendations. These
metrics are Average Percentage of Long Tail Items (APLT) (Abdollahpouri et al., 2021;
Abdollahpouri, 2020), Entropy (Elahi et al., 2021), Novelty (Yalcin ¢ Bilge, 2022), and
Long-Tail Coverage (LTC) (Abdollahpouri, 2020).

More importantly, these metrics evaluate recommendation lists from different
perspectives. Therefore, popularity-debiasing methods can show different performances in
terms of such metrics. That is, any debiasing method might show satisfactory performance
for one metric, while it might not show the same performance for the other perspective of
recommendation quality. Unfortunately, this makes it challenging to infer which
popularity-debiasing method is the best when such different aspects of recommendation
quality are concurrently considered. Therefore, as one of the main contributions of this
study, we propose a novel evaluation metric, namely the FusionIndex, which combines
these metrics in harmony. This section introduces the existing metrics and explains the
proposed FusionIndex metric in detail.

Existing accuracy and beyond-accuracy metrics
This section explains in detail existing accuracy (i.e., F1-score and nDCG) and
beyond-accuracy (i.e., APLT, Entropy, Novelty, and LTC) evaluation metrics.

Fl1-score: the Fl-score is a widely used metric to evaluate the quality of recommendations
by balancing precision and recall. Specifically, it is calculated as the harmonic mean of
Precision (P@N,,) and Recall (R@N,,) for a given top-N recommendation list for user u.
This metric provides a single value that reflects both the accuracy of the recommended
items and the coverage of relevant items, ensuring a trade-off between precision and recall.
The formula for the FI-score is given in Eq. (4), emphasizing its role in offering a
comprehensive measure of recommendation performance.

P@N, x R@N,
P@N, + R@N,,’

Normalized Discounted Cumulative Gain (nDCG): the nDCG metric plays a significant

F1@N, =2 x (4)

role as a statistical measure of accuracy in our studies. It accounts for the authentic ratings
given to items and their respective rankings in the top-N recommendations. The actual
rating a user u gives to an item i is denoted as r, ;. Utilizing this, we compute the DCGY,
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and nDCGY, for user u’s top-N list by following the formulas outlined in Eqs. (5) and (6).

Nu
r‘ .
DCGK],A = 7",“'1 + Zlogl;% (5)
n=2
DCGY,
nDCGY, = ., (6)
« IDCGY,

In this context, the IDCGY, represents the highest potential gain for user u, achieved by
arranging N items in the most optimal sequence.

Average Percentage of Long Tail Items (APLT): beyond the accuracy metrics previously
detailed, we additionally apply the Average Percentage of Long Tail Items (APLT) to assess
our ranking-based recommendations. This APLT index measures the representation of
long-tail items within the recommended list, thus reflecting the algorithm’s capacity to
recommend more specialized and less common items. Consequently, this index is
invaluable for evaluating the extent to which a debiasing method effectively promotes less
popular (i.e., tail) items in its recommendations. The identification of tail items within the
entire catalog is informed by the Pareto principle (Sanders, 1987). With T denoting the
designated set of tail items, the APLT score for a top-N list tailored to a user u is
determined according to the formula stated in Eq. (7).

It is important to recognize that while the APLT,, score demonstrates the degree of variety
in recommendations for an individual user, the aggregate APLT score is essentially an
average of these diversification levels across users. Consequently, a higher APLT does not
always mean that the algorithm consistently delivers diverse recommendations of high
quality. On the contrary, a lower APLT score clearly suggests a pervasive shortfall in
diversity within the recommendation lists. For this reason, we also utilize Entropy as a
supplementary measure to gauge the diversification across all recommended lists, which
will be elaborated on further below.

Entropy: the Entropy metric, as explored in Elahi et al. (2021), evaluates the frequency with
which different items are recommended by an algorithm across the entire catalog.
Essentially, it measures the variation in how often each item is suggested. An algorithm
with a higher Entropy score indicates a more uniform distribution of item
recommendations, contributing to diversity. This uniformity is crucial for maintaining a
competitive and fair market environment. To determine the Entropy score, we first
amalgamate the top-N recommendation lists from all individuals, including repetitions of
items. Let N, be this collective set, and consider 7, i, ..., ix as the complete set of catalog
items, where K represents the total item count. The method to calculate the Entropy value
for a recommendation algorithm is outlined in Eq. (8).
Entropy = — Z (Pr(i))log, (Pr(i)). (8)
ieK

Here, Pr(i) represents the relative frequency of item i appearing in the N,y set.
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Novelty: in our research, we use the Novelty metric as an additional measure that goes
beyond mere accuracy. This metric assesses the capability of recommendation algorithms
to suggest items that a user has not rated before. Specifically, Novelty quantifies the
proportion of items in the top-N list that are new to the user, reflecting the algorithm’s
capacity to introduce fresh choices. To determine the Novelty score for a user u, we initially
identify I, as the collection of items that user u has already rated. Subsequently, the Novelty
score for the top-N recommendations made to user u, symbolized as Novelty,, is calculated
according to the method detailed in Eq. (9).

[N\
N

In this context, N, denotes the collection of the top-N items that have been recommended

Novelty, = (9)

to the user u.

Long-Tail Coverage (LTC): beyond the other metrics discussed for accuracy, our
experiments also incorporate the Long-Tail Coverage (LTC) metric to evaluate how well
recommendation algorithms represent the less popular items in the catalog, as described in
Abdollahpouri (2020). The LTC is calculated by first creating a unique aggregation of the
top-N recommendation lists for each user, referred to as N. In this aggregation, any
repeated items in the individual top-N lists are removed. We then identify the shared
items, InnT, which are present in both N and the tail item set T as defined by the Pareto
principle. The LTC score of a reccommendation algorithm is determined by the proportion
of Innr relative to the total size of T, as detailed in Eq. (10). A higher LTC value suggests
that the algorithm is more effective in including a broader range of less popular, or tail,
items in its recommendations.

| Inn|

LTC =
T

(10)

The Fusionindex: a highly useful holistic evaluation metric

In the realm of recommender systems, accurately assessing the performance of various
algorithms is crucial. Traditional metrics often focus solely on accuracy or
beyond-accuracy measures, failing to encapsulate the holistic performance of the system.
To address this gap, we introduce the FusionIndex, a novel metric that harmonizes
accuracy with beyond-accuracy considerations.

The FusionIndex is computed in two stages. First, for a given top-N list we form four
pairwise harmonic means, each coupling the accuracy metric nDCG with one
beyond-accuracy metric: H(nDCG, APLT), H(nDCG, Novelty), H(nDCG, LTC), and
H(nDCG, Entropy). The harmonic mean is preferred because it moderates the influence of
outliers and prevents either dimension (accuracy or diversity) from dominating the joint
score. Although our experiments report both FI-score and nDCG for completeness, the
latter is used inside the FusionIndex because it is the prevailing accuracy yardstick in recent
recommender system research. Second, we take the simple arithmetic mean of these four
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harmonic means to obtain a single, holistic quality indicator for the recommendation list,
as formalised in Eq. (11).

H(nDCG, APLT) + H(nDCG, Novelty) + H(nDCG, LTC) + H(nDCG, Entropy)
1 :

This approach ensures a balanced consideration of both accuracy and beyond-accuracy

(11)

FusionIndex =

aspects. By using the harmonic mean, the FusionIndex mitigates the risk of one aspect
disproportionately influencing the overall evaluation, thereby providing a more nuanced
and comprehensive assessment of recommender systems. In summary, the FusionIndex
offers a novel and balanced methodology for evaluating recommender systems,
acknowledging the importance of both accuracy and diversity in recommendations. This
metric facilitates a more comprehensive understanding of the effectiveness of
recommendation algorithms, paving the way for more refined and user-centric
recommender systems.

Experiment results

This section presents the findings of the experiments performed for comprehensively
evaluating the proposed the EquiRate method and comparing it with the benchmark
popularity-debiasing methods.

In-depth analysis of the proposed EquiRate method

This section presents the improvement rates in the FusionIndex metric when several of the
EquiRate variants are applied to investigate which options are the best-performing and
analyze how SRI, SRG, and o values affect the EquiRate method. We employ several of the
EquiRate variants in these experiments by considering varying SRI, SRG, and o values.
Figures 4, 5, 6 present the best FusionIndex improvements by the EquiRate variants for the
MLM, DB, and Yelp datasets, respectively. In the presented Figures, the EquiRate variants
are labeled with the considered SRI, « value, and SRG methods, respectively. Note that we
only employ the FusionIndex metric in these experiments, rather than nDCG, LTC,
Entropy, or APLT solely, as it evaluates the final recommendations by considering both
accuracy and beyond-accuracy aspects appropriately and concurrently, as discussed
previously.

As can be followed by Fig. 4, in the MLM dataset, the HIFA (0.9)_GRV-i,,, variant of
the EquiRate achieved the most effective result with a 31.29% improvement in the
FusionIndex metric. This outcome demonstrates the effectiveness of the HIFA strategy and
the high « value in reducing the popularity bias. This strategy has particularly balanced the
overrepresentation of popular products, thereby increasing the visibility of lesser-known
content. The TPA (0.9)_GRV-is, variant, with its 26.20% improvement, ranks second,
indicating the efficacy of the threshold-based approach in minimizing the gap between
popular and less popular items. The high o value proves to be an effective tool in correcting
popularity imbalance. The HIFA (0.5)_GRV-ig,, variant, with a 21.65% improvement,
offers a more balanced enhancement with a lower « value, playing a significant role in
improving both the accuracy and diversity of recommender systems.
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Figure 4 The improvement rate in the FusionIndex (%) with several variants of the EquiRate method
in the MLM dataset. Here, the EquiRate variants are labeled with the considered SRI, a value, and SRG
methods, respectively. Full-size K&l DOT: 10.7717/peerj-cs.3055/fig-4
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Figure 5 The improvement rate in the FusionIndex (%) with several variants of the EquiRate method
in the DB dataset. Here, the EquiRate variants are labeled with the considered SRI, o value, and SRG
methods, respectively. Full-size K&l DOT: 10.7717/peerj-cs.3055/fig-5
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Figure 6 The improvement rate in the FusionIndex (%) with several variants of the EquiRate method
in the Yelp dataset. Here, the EquiRate variants are labeled with the considered SRI, « value, and SRG
methods, respectively. Full-size &l DOI: 10.7717/peerj-cs.3055/fig-6

On the other hand, for the DB dataset, the HIFA (0.9)_GRV-i,,, variant’s success is
particularly notable, as can be followed by Fig. 5. In environments with sparse data
structures, this strategy shows how high o value can produce effective results. It enhances
the visibility of less popular content in recommendation lists by injecting synthetic ratings.
The HIFA (0.5)_GRV-ig,, and TPA (0.9)_GRV-i,,, variants also yield effective outcomes
with medium and high o values, successfully reducing the popularity bias in the DB
dataset. Note also that these results are highly parallel with those observed for the MLM
dataset.

Finally, according to the presented results for the Yelp dataset in Fig. 6, the TPA (0.9)
_PRV variant achieving the highest improvement at 58.28% underscores the strategy’s
effectiveness in large and sparse data structures. The integration of the PRV method with a
personalized recommender system provides an effective solution in such complex data
structures. The HIFA (0.5)_PRV and TPA (0.5)_PRV variants also demonstrate significant
improvements with medium o values, showing their efficacy in reducing popularity bias
and enhancing the diversity of recommendations in the Yelp dataset. Also, we observe that
the best-performing the EquiRate variants in Yelp are slightly different from those in both
MLM and DB, indicating that the EquiRate variants can show different performances
depending on the utilized dataset. Nevertheless, we can conclude that significant
improvements in the FusionIndex metric can be achieved with a proper parameter-tuning
of the EquiRate in any dataset.

The performance analysis of the EquiRate method in the MLM, DB, and Yelp datasets
illustrates its ability to reduce popularity bias in recommender systems and to enhance the
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diversity of recommendation lists. The results observed in each dataset highlight the
application of the EquiRate’s SRI and SRG strategies and particularly the role of the o
scaling factor. More specifically, in the MLM dataset, the combination of high « values with
HIFA and TPA strategies offers an aggressive approach to correcting popularity
imbalance. This significantly increased the visibility of lesser-known or less-evaluated
items in recommendation lists, enhancing user satisfaction and system effectiveness. In the
DB dataset, the high o value combined with the HIFA strategy proved to be effective in
correcting popularity imbalance in sparse data structures. In the Yelp dataset, the
combination of the TPA strategy and the PRV method in large and complex data
structures significantly enhanced both the accuracy and diversity of the recommendation
system.

These outcomes demonstrate how the EquiRate’s SRI methods (OPA, HIFA, and TPA)
and SRG methods (GRV, PRV, and RVG) produce different results at various o values. In
particular, high « values provide a more aggressive approach to correcting popularity
imbalance, while medium o values offer more balanced outcomes. Personalization
methods like PRV enhance the accuracy of recommendation systems by reflecting user
preferences more effectively, whereas methods like GRV and RVG increase the visibility of
diversity and undiscovered content.

Also, the reliability of the experimental results is strengthened by conducting multiple
iterations and taking the average of these repetitions. This approach ensures the stability
and reliability of the outcomes, providing a more accurate reflection of the method’s
effectiveness. In a nutshell, the improvements achieved by the various variants of the
EquiRate method in reducing popularity bias and enhancing the diversity and accuracy of
recommender systems across different datasets are significant. The method’s adaptability
to the unique characteristics of each dataset and the importance of the a scaling factor in
achieving these improvements are evident. This highlights the potential of the EquiRate in

enhancing recommender systems and enriching the user experience.

Comparison of the EquiRate with existing popularity-debiasing methods

In this section, we present the findings of additional experiments where we compared
best-performing the EquiRate variants with several benchmark popularity-debiasing
methods. These benchmarks are AUG, xQuad, PAW, MUL, LNSF, CP, DM, FA*IR, and
EqBal-RS, whose details are explained previously. In these experiments, we consider the
best ten variants of the EquiRate according to each dataset, which are discovered in the
experiments in the previous section.

Although the proposed FusionlIndex is an advanced metric considering accuracy and
beyond-accuracy concurrently, unlike the previous experiments, we present both the
FusionIndex and each accuracy (i.e., F1-score and nDCG) and beyond-accuracy (i.e.,
APLT, Novelty, LTC, and Entropy) outcomes in these experiments to provide a better
picture. Accordingly, we first present the accuracy and beyond-accuracy results of the
recommendation lists produced via our EquiRate variants and other existing benchmarks
for the MLM, DB, and Yelp datasets in Tables 5, 6, 7, respectively. Note that we also
present the results of the original recommendation algorithm in these tables before any
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Table 5 Comparison of EquiRate variants with other popularity-debiasing methods on the MLM dataset for F1-score, n DCG, APLT, Novelty,

LTC, and Entropy.

Debiasing method SRI o SRG Approach F1-score nDCG APLT Novelty LTC Entropy
Original 0.161 0.620 0.295 0.296 0.150 0.636
EquiRate Variants HIFA 0.9 GRV iavg 0.116 0.556 0.417 0.367 0.744 0.747
TPA 0.9 GRV iavg 0.135 0.597 0.383 0.323 0.550 0.714
HIFA 0.5 GRV iayg 0.141 0.608 0.366 0.311 0.445 0.699
TPA 0.5 GRV iavg 0.143 0.610 0.367 0.310 0.350 0.689
TPA 0.5 PRV 0.115 0.534 0.413 0.400 0.350 0.702
HIFA 0.5 PRV 0.101 0.492 0.434 0.447 0.388 0.715
TPA 0.9 PRV 0.090 0.459 0.483 0.484 0.407 0.728
HIFA 0.9 PRV 0.074 0.401 0.536 0.548 0.443 0.743
HIFA 0.1 GRV fayg 0.138 0.597 0.364 0.327 0.246 0.671
TPA 0.1 GRV iavg 0.138 0.595 0.368 0.329 0.242 0.674
AUG 0.102 0.452 0.827 0.453 0.285 0.783
xQuad 0.145 0.568 0.630 0.338 0.171 0.691
PAW 0.161 0.620 0.302 0.296 0.158 0.639
MUL 0.056 0.309 0.994* 0.607 0.396 0.812
LNSF 0.003 0.356 0.831 0.984* 0.936* 0.916*
cp 0.106 0.434 0.179 0.537 0.165 0.369
DM 0.013 0.393 0.913 0.896 0.186 0.372
FA*IR 0.087 0.403 0.124 0.572 0.215 0.332
EqBal-RS 0.089 0.483 0.614 0.602 0.195 0.352
Note:

Bold numbers indicate the best score per metric; the symbol “* marks a result that is significantly better than the second-best at the 99% confidence level.

Table 6 Comparison of EquiRate variants with other popularity-debiasing methods on the DB dataset for FI-score, nDCG, APLT, Novelty,

LTC, and Entropy.

Debiasing Method SRI o SRG Approach Fl1-score nDCG APLT Novelty LTC Entropy
Original 0.097 0.283 0.079 0.715 0.016 0.457
EquiRate Variants HIFA 0.9 GRV iqvg 0.045 0.189 0.664 0.796 0.658* 0.808*
HIFA 0.5 GRV iavg 0.056 0.213 0.613 0.771 0.216 0.637
TPA 0.9 GRV iavg 0.056 0.216 0.588 0.769 0.190 0.612
HIFA 0.5 RVG mid 0.083 0.259 0.477 0.729 0.025 0.528
HIFA 0.1 PRV 0.092 0.271 0.344 0.730 0.026 0.545
TPA 0.5 RVG mid 0.094 0.279 0.336 0.720 0.018 0.511
TPA 0.5 PRV 0.073 0.229 0.534 0.761 0.059 0.603
TPA 0.9 RVG mid 0.082 0.255 0.476 0.734 0.023 0.523
OPA 0.5 GRV iavg 0.079 0.251 0.490 0.737 0.023 0.529
TPA 0.1 GRV iavg 0.067 0.230 0.560 0.754 0.035 0.539
xQuad 0.081 0.227 0.581 0.767 0.027 0.515
AUG 0.077 0.224 0.454 0.771 0.039 0.581
PAW 0.097 0.280 0.095 0.718 0.019 0.465
(Continued)
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Table 6 (continued)

Debiasing Method SRI o SRG Approach Fl1-score nDCG APLT Novelty LTC Entropy
MUL 0.042 0.139 0.791 0.846 0.060 0.606
LNSF 0.001 0.238 0.774 0.793 0.048 0.573
Cp 0.058 0.212 0.454 0.847 0.036 0.434
DM 0.001 0.202 1.000* 0.995 0.086 0.351
FA*IR 0.002 0.195 1.000* 0.996 0.094 0.493
EqBal-RS 0.072 0.235 0.855 0.947 0.087 0.475
Note:

Bold numbers indicate the best score per metric; the symbol “*” marks a result that is significantly better than the second-best at the 99% confidence level.

Table 7 Comparison of EquiRate variants with other popularity-debiasing methods on the Yelp dataset for FI-score, nDCG, APLT, Novelty,
LTC, and Entropy.

Debiasing Method SRI o SRG Approach F1-score nDCG APLT Novelty LTC Entropy
Original 0.0214 0.046 0.072 0.964 0.014 0.255
EquiRate Variants TPA 0.9 PRV 0.0213 0.057 0.694 0.964 0.118* 0.275
HIFA 0.5 PRV 0.0175 0.057 0.709 0.968 0.105 0.266
TPA 0.5 PRV 0.0206 0.056 0.443 0.964 0.063 0.255
TPA 0.5 RVG mid 0.0200 0.059 0.360 0.964 0.014 0.265
HIFA 0.5 RVG mid 0.0180 0.056 0.511 0.967 0.021 0.259
TPA 0.1 GRV lavg 0.0157 0.054 0.448 0.970 0.028 0.266
OPA 0.1 GRV lavg 0.0208 0.061* 0.156 0.963 0.015 0.262
HIFA 0.9 RVG mid 0.0166 0.053 0.533 0.970 0.034 0.255
OPA 0.5 GRV lavg 0.0191 0.056 0.476 0.966 0.018 0.250
TPA 0.9 RVG mid 0.0209 0.055 0.429 0.965 0.019 0.252
xQuad 0.0166 0.047 0.496 0.972 0.002 0.286
LNSF 0.0094 0.051 0.562 0.979 0.000 0.277
PAW 0.0207 0.055 0.000 0.964 0.000 0.256
AUG 0.0122 0.028 0.050 0.975 0.001 0.262
MUL 0.0042 0.010 0.797 0.990 0.001 0.261
CpP 0.0329* 0.048 0.221 0.963 0.009 0.438*
DM 0.0013 0.031 0.915* 0.997 0.002 0.290
FA*IR 0.0148 0.036 0.256 0.979 0.004 0.403
EqBal-RS 0.0160 0.049 0.876 0.987 0.008 0.251
Note:

Bold numbers indicate the best score per metric; the symbol “* marks a result that is significantly better than the second-best at the 99% confidence level.
popularity-debiasing method is applied; thus, we can conclude how much the
popularity-debiasing method can mitigate this issue in the final recommendations. In each
results table, the top-performing method for a given metric is shown in bold. Additionally,
the symbol “” appended to a bold value indicates that its improvement over the
second-best method is statistically significant at the 99% confidence level. To provide an
overall evaluation, we also present the improvement ratio in the FusionIndex via the
best-performing ten EquiRate variants and existing popularity debiasing methods for the
MLM, DB and Yelp data sets in Figs. 7, 8, 9, respectively.
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Figure 7 The improvement rates in the FusionIndex when popularity-debiasing methods are applied

for the MLM dataset.
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Figure 9 The improvement rates in the FusionIndex when popularity-debiasing methods are applied
for the Yelp dataset. Full-size Ka] DOT: 10.7717/peerj-cs.3055/fig-9

As shown in Table 5, the original algorithm achieves an nDCG of 0.620 on the MLM
dataset before applying any debiasing methods. Unfortunately, all EquiRate variants yield
slightly lower nDCG values. Similarly, the F1-scores of all EquiRate variants are also lower
than those of the original algorithm. This suggests a minor reduction in accuracy, which
aligns with expectations given the trade-off between accuracy and beyond-accuracy
objectives in mitigating popularity bias. Nonetheless, the relatively high FI-score and
nDCG indicate that the recommended items remain relevant to users. Furthermore,
compared to other debiasing methods, particularly MUL, which tend to cause greater
declines in #nDCG, the performance drop with EquiRate variants is more acceptable,
reinforcing the method’s balance between accuracy and fairness.

In APLT, with an original value of 0.295, significant increases are observed with high «
values in the EquiRate (e.g., 0.536 in case SRI is as HIFA, « = 0.9, and SRG is as PRV), as
shown in Table 5. This indicates a tendency of recommender systems, enhanced with our
EquiRate method, to suggest less popular, long-tail items, thus providing more diverse
content for users. Similarly, for Novelty, originally at 0.296, various the EquiRate variants
have increased this value. Specifically, the same EquiRate variant above, with a 0.548
Novelty score, has significantly enhanced the level of Novelty in the recommendation lists.
This reflects a trend towards recommending more innovative items. In LTC, originally at
0.150, high o value the EquiRate variants have shown significant increases (e.g., 0.744 in
case SRIis as HIFA, o = 0.9, and SRG is as GRV-im,g), indicating that more long-tail items
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are covered in recommendation lists, thereby increasing the visibility of less popular items.
Lastly, Entropy, originally at 0.636, has generally increased with the EquiRate variants.
High o value variants (e.g., 0.747 in case the variant above is used) exhibit higher Entropy
values. This demonstrates that recommendation lists have become more diverse, offering
users a broader range of items. In conclusion, various EquiRate variants, particularly those
with high o values, effectively reduce popularity bias and enhance diversity in the MLM
dataset. These results suggest a potential to improve the balance between accuracy and
diversity.

While some existing popularity-debiasing methods (e.g., MUL, LNSF, and DM) may
outperform the EquiRate variants in beyond-accuracy metrics, they come at the cost of
significantly reducing FI1-score and nDCG, as shown in Table 5. This is undesirable since
the primary goal of mitigating popularity bias is to improve beyond-accuracy performance
without sacrificing too much accuracy. Evaluating each metric separately, however, can
make it difficult to determine which debiasing method offers the best overall performance.
To address this, we present the improvement ratios in the FusionIndex in Fig. 7, offering a
more comprehensive view of the overall effectiveness of various EquiRate variants and
other debiasing methods on the MLM dataset.

As illustrated in Fig. 7, the EquiRate variants, particularly those with high o values
such as HIFA and TPA, achieve the highest FusionIndex scores. Notably, the
HIFA (0.9)_GRV-i,,, variant records the top score of 31.286%, followed closely by the
TPA (0.9)_GRV-ig, variant with 26.203%. These results highlight the effectiveness of
these variants in improving diversity and novelty in recommendation lists. Moreover, they
emphasize the crucial role of high « values in mitigating popularity bias and enhancing
diversity. While other debiasing methods, except for CP, FA*IR, and LNSF, show positive
FusionIndex outcomes, the EquiRate variants consistently outperform these benchmarks
on the MLM dataset.

As shown in Table 6, the results for the DB dataset reveal that all EquiRate variants
result in lower F1-score and nDCG values compared to the original scores of 0.097 and
0.283, respectively, similar to the findings for the MLM dataset. However, strategies with
high « values, such as TPA (e.g., nDCG of 0.279 when SRI is TPA with « = 0.5 and SRG is
RVG,,iq) and HIFA (e.g., nDCG of 0.271 when SRI is HIFA with « = 0.1 and SRG is PRV),
result in only slight decreases in #DCG, maintaining reasonable accuracy. This trend is
consistent for F1-score as well. In contrast, other popularity-debiasing methods tend to
cause more substantial declines in both nDCG (e.g., MUL) and FI-score (e.g., DM), similar
to the MLM dataset results.

In APLT, originally valued at 0.079, significant increases have been observed with high o
values in the EquiRate (e.g., 0.664 in case SRI is as HIFA, « = 0.9, and SRG is as GRV-ig,).
This implies a tendency of the recommender system to suggest less popular, long-tail items,
thus including more diverse content in the recommendations. Similarly, for Novelty,
originally at 0.715, various EquiRate variants have increased this value. Particularly, the
variant mentioned above reaches the maximum level of Novelty in the recommendation
lists, i.e., 0.796, suggesting a shift towards recommending more innovative items. Originally
at 0.016, LTC has shown significant increases with high « value EquiRate variants (e.g., 0.658
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in case the same variant). This indicates broader coverage of long-tail items in the
recommendation lists, enhancing the visibility of less popular items. Originally at 0.457,
Entropy has generally increased with the EquiRate variants. Specifically, the same variant
achieves the highest Entropy values (i.e., 0.808), indicating more diverse recommendation
lists and offering users a wider range of items. In conclusion, the EquiRate and its variants
effectively reduce popularity bias and enhance diversity in the DB dataset.

Unlike the MLM dataset, the DB dataset shows that the best-performing EquiRate
variant significantly outperforms other debiasing strategies in terms of nDCG, Entropy,
and LTC, as shown in Table 6. For other metrics, such as FI-score, APLT, and Novelty, the
top EquiRate variant delivers results comparable to those of benchmark methods.

The improvement rates in the FusionIndex, illustrated in Fig. 8, show that all EquiRate
variants outperform the benchmark popularity-debiasing methods on the DB dataset.
Specifically, HIFA variants (HIFA (0.9)_GRV-i,,,, HIFA (0.5)_GRV-i,,,;) and TPA (0.9)
_GRV-ig, achieve the highest FusionIndex scores, with 31.906%, 30.085%, and 29.068%,
respectively. These results highlight the effectiveness of EquiRate in mitigating popularity
bias and enhancing diversity in recommendation lists. Interestingly, the LNSF and MUL
methods lead to a significant drop in FusionIndex scores, primarily due to their adverse
impact on overall accuracy, which negatively affects the FusionIndex. A similar trend for
LNSF is observed in the MLM dataset, as shown in Fig. 7.

When considering the accuracy and beyond-accuracy outcomes for the Yelp dataset
from Table 7, for nDCG, with an original value of 0.046, various EquiRate variants have
generally increased this metric. This observation differs from the ML and DB datasets,
where our EquiRate variants led to negligible decreases in nDCG values, as previously
discussed. However, this observation is not valid for other accuracy metrics, i.e., F1-score.
Due to the trade-off between accuracy and beyond-accuracy aspects of the
recommendations, improvements in accuracy via the EquiRate variants unfortunately do
not translate into significant improvements in Entropy and Novelty, as shown in Table 7.
Nevertheless, we can conclude that all the EquiRate variants significantly enhance the
APLT of the recommendations, and some (e.g., TPA (0.9)_PRV) provide notable
improvements in the LTC. In conclusion, our EquiRate variants remarkably enhance the
likelihood of including tail items in the final recommendations by simultaneously treating
popularity bias and providing more accurate recommendations than the original version of
the recommendation algorithm.

Table 7 demonstrates that the top-performing EquiRate variant significantly
outperforms other debiasing methods in #DCG and LTC metrics. For other metrics, it
delivers results comparable to those of the benchmark approaches. Additionally, as shown
in Fig. 9, the EquiRate methods—particularly those using the TPA strategy—achieve the
highest FusionIndex scores on the Yelp dataset. Notably, the improvement in FusionIndex
for the Yelp dataset is much greater than that observed for the MLM and DB datasets. This
highlights the practical applicability of EquiRate, as the Yelp dataset, being sparser and
larger, provides a more realistic test environment, closely resembling real-world scenarios.

As depicted in Fig. 9, all benchmark debiasing methods generally achieve lower
FusionIndex scores on the Yelp dataset compared to the EquiRate variants. Notably, most
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methods—except for EqBal-RS, CP, and xQuad—fail to improve FusionIndex scores, with
some, like MUL, even causing significant declines. While traditional popularity-debiasing
methods are designed to address specific aspects of recommendations by reducing
popularity bias, our analysis using the proposed FusionIndex metric highlights their
limitations in simultaneously balancing accuracy and multiple well-known
beyond-accuracy metrics.

INSIGHTS AND DISCUSSION

According to the performed extensive set of experiments based on three famous datasets,
we give the most critical gained insights in the following.

o The EquiRate variants that select HIFA or TPA as the SRI strategy, as opposed to OPA,
can more effectively mitigate popularity bias and achieve higher-quality
recommendations. The main reason for this observation is that both HIFA and TPA
strategies consider only head items in the catalog when calculating the average
popularity score, which is later used to determine the total number of ratings to be
injected. In contrast, the OPA strategy considers the average popularity of all items in the
catalog when calculating the number of ratings to inject. This results in more ratings
being injected into the profiles of tail items with HIFA and TPA than with OPA, thereby
more effectively addressing the issue of popularity bias with these two strategies.

e Our proposed EquiRate method can more effectively address the popularity bias
problem and achieve higher-quality recommendations, particularly in terms of
beyond-accuracy aspects, when designed with higher o values. This effectiveness stems
from the fact that higher o values entail injecting more synthetic ratings into the profiles
of selected items. This approach helps to reduce imbalances in the rating distribution
within the data, which is the primary cause of the popularity bias issue in
recommendation algorithms.

* In comparing SRG strategies, our EquiRate variants typically exhibit better performance
when the GRYV strategy is implemented. This approach, which involves averaging the
ratings of items (i.e., is,), proves more effective than the other two methods. The
advantage of the GRV strategy lies in its ability to preserve the original rating patterns of
item profiles without distorting them through the injection of average ratings.

e Our experiments demonstrate that traditional popularity-debiasing methods exhibit
varied performances across different beyond-accuracy evaluation criteria, even while
addressing the issue of popularity bias. This variation primarily stems from the fact that
these methods are tailored to enhance specific aspects of recommendations,
complicating the process of forming a comprehensive evaluation. In contrast, our
proposed FusionIndex metric offers a well-balanced and uniform criterion for evaluating
both the accuracy and beyond-accuracy aspects of recommendations. The experiments
conducted using the FusionIndex demonstrate that existing popularity-debiasing
methods can sometimes be ineffective since they fail to improve the FusionIndex scores
of the recommendations and may even result in decreases.
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o The best-performing EquiRate variants typically surpass other debiasing strategies, even
though they may occasionally show poorer performance in certain specific evaluation
criteria. Conversely, they tend to yield more significant improvements in the
FusionIndex score of the recommendations compared to existing strategies. This
observation holds across all datasets and is particularly pronounced for Yelp. It’s
important to note that the Yelp dataset, with its high dimensionality and sparsity ratio, is
more representative of real-world scenarios, demonstrating the effectiveness of our
EquiRate method in providing more diverse and fair recommendations more clearly.

The extensive research conducted on three well-known datasets reveals that the EquiRate
approach, especially through its HIFA and TPA strategies, effectively reduces popularity
bias in recommendation systems. These strategies surpass the OPA strategy by strategically
utilizing head item data to adjust recommendations. Higher « values are crucial in
enhancing the quality of recommendations, particularly for metrics beyond accuracy. The
GRYV strategy is noted for preserving genuine rating patterns, avoiding artificial distortion.
This research also exposes the shortcomings of traditional debiasing methods and
emphasizes the comprehensive evaluation capabilities of the FusionIndex. Remarkably, the
EquiRate demonstrates strong performance across all datasets, with its success most
apparent in the Yelp dataset, highlighting its potential in real-world applications and
contributing to the advancement of fair and diverse recommender systems.

In conclusion, the EquiRate method offers significant potential for real-world
application, particularly in industrial platforms such as e-commerce, streaming services,
and online marketplaces. By addressing the root cause of popularity bias through synthetic
rating injection, our method ensures a more balanced exposure of items in
recommendation lists. This balance not only promotes fairness but also creates
opportunities for smaller vendors or content creators to compete with established, popular
items. Such an approach can lead to a more diverse and equitable distribution of sales and
content consumption, fostering a healthier ecosystem for both providers and users.

From a user perspective, the reduction in popularity bias enhances the discovery of
personalized and niche content, improving the overall user experience. This increased
satisfaction can translate into longer engagement periods and greater loyalty to the
platform. Additionally, industrial platforms can benefit from higher customer retention
rates as users feel their preferences are better understood and catered to. These factors
highlight the practicality and value of adopting the EquiRate method for platforms aiming
to balance commercial success with user satisfaction and fairness.

CONCLUSION AND FUTURE WORK

Popularity bias in recommender systems predominantly favors well-known items, often at
the expense of lesser-known or niche ones. This can stifle recommendation diversity and
limit the discovery of a broader range of content, impacting the user experience.
Addressing this bias is essential to ensure a more balanced and inclusive item exposure,
which in turn can increase user satisfaction by revealing undiscovered content and creating
an equitable platform for all content creators.
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The EquiRate popularity-debiasing method, as proposed in this study, offers a
recalibrated recommendation approach that injects synthetic ratings into less popular, or
“tail,” items to ensure a balanced representation. This allows items that are typically less
visible to have a fair chance of being recommended. The proposed EquiRate first classifies
items using the famous Pareto principle and then applies three Synthetic Rating Injection
(SRI) strategies; Overall Popularity Adjustment (OPA), Head Item Focused Adjustment
(HIFA), and Threshold-Based Popularity Adjustment (TPA), for strategic allocation and
computation of synthetic ratings. Additionally, three Synthetic Rating Generation (SRG)
strategies; Generalized Rating Value (GRV), Predictive Rating Value (PRV), and
Randomized Value Generation (RVG), are used to uphold the authentic profile of items
while diminishing popularity bias. The nine variants of the EquiRate, derived from
combinations of SRI and SRG strategies, undergo experimental validation to identify the
most effective one for debiasing. The selected variant then preprocesses data for
recommendation algorithms, creating a balanced dataset that betters the representation of
less popular items and enhances the diversity, novelty, and fairness of
recommendations, promoting a more equitable environment. Additionally, the
FusionIndex is introduced as an advanced metric that evaluates recommendation lists by
concurrently measuring both accuracy and a spectrum of beyond-accuracy aspects such as
diversity, catalog coverage, novelty, and fairness. This holistic metric is particularly
valuable for assessing the efficacy of strategies designed to mitigate popularity bias in
recommender systems.

The experiment results for the well-known MovieLens-1M (MLM), DoubanBook (DB),
and Yelp datasets provide insightful evaluations of the EquiRate method compared to
benchmark popularity-debiasing methods. Across all three datasets, several EquiRate
variants significantly outperform the five prominent popularity-debiasing methods in
terms of the FusionIndex metric. More specifically, in both MLM and DB datasets, the
HIFA-GRYV variant of the EquiRate usually achieves the highest improvement, effectively
balancing the overrepresentation of popular items. On the other hand, for Yelp, the
TPA-PRV variant stood out, indicating its effectiveness in large and sparse datasets. These
results highlight the EquiRate’s efficacy in reducing popularity bias and enhancing the
diversity of recommendations. Additionally, although some existing methods for reducing
popularity bias in recommender systems show promising results in specific
beyond-accuracy metrics, they generally attain lower overall FusionIndex scores compared
to our top-performing the EquiRate variants. Notably, when evaluated using the
FusionIndex, these methods often prove significantly less effective in balancing accuracy
with beyond-accuracy factors, failing to enhance the FusionIndex scores of the
recommendations and in some cases, even causing substantial declines.

We also suggest three future research directions for this study: firstly, exploring different
algorithms for the Predictive Rating Value (PRV) within Synthetic Rating Injection
methods, where currently the VAECEF algorithm is employed. Secondly, the paragraph
proposes enriching and enhancing the FusionIndex metric by incorporating additional
metrics such as the average popularity of the recommended items. This enhancement aims
to make FusionIndex more comprehensive and inclusive, potentially leading to a more
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well-rounded evaluation metric in future research endeavors. Finally, some prominent
oversampling strategies used in traditional machine learning approaches can be used to
determine the value of the ratings injected into tail items.
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