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ABSTRACT
The rise of online physical education in higher education has improved accessibility
but presents challenges in recognizing complex movements and delivering
individualized feedback. Existing action recognition models are often
computationally intensive and struggle to generalize across diverse skeletal patterns.
To address this, we propose a lightweight graph convolutional network (GCN) that
integrates an improved Ghost module with multi-attention mechanisms, including a
global attention mechanism (GAM) and a channel attention mechanism (CAM), to
enhance spatial and temporal feature extraction. The model is trained end-to-end on
3D skeleton sequences and optimized for real-time efficiency. The computational
cost is evaluated in terms of giga floating-point operations (GFLOPs), with the
proposed model requiring only 6.2 GFLOPs per inference, over 60% less than the
baseline ST-GCN. Experimental results on the NTU60RGB+D dataset demonstrate
that the model achieves 90.8% accuracy in cross-subject and 96.8% in cross-view
settings. These findings highlight the model’s effectiveness in balancing accuracy and
efficiency, with promising applications in online physical education, rehabilitation
monitoring, elderly movement analysis, and VR-based interfaces.

Subjects Algorithms and Analysis of Algorithms, Data Science, Software Engineering, Neural
Networks
Keywords Lightweight ghost model, Mental health education, Human skeleton action recognition,
Graph attention mechanism

INTRODUCTION
The continuous advancement of modern technology, particularly artificial intelligence
(AI), has brought transformative changes to various fields, including education. Physical
education (PE), as an essential component of holistic education, traditionally relies on
face-to-face teaching and real-time guidance provided by professional instructors. This is
especially critical for anaerobic strength training, which requires accurate demonstrations,
precise feedback, and personalized adjustments (Syaukani, Hashim & Subekti, 2023).
However, current fitness management practices in educational institutions often fail to
adequately address these requirements. For instance, many schools rely on running-based
management software to record students’ physical activity. While effective in managing
attendance and promoting aerobic exercises, such systems are limited to basic fitness
tracking and fail to incorporate anaerobic training due to its inherent complexity and the
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need for professional supervision (Jiang, 2024). This lack of comprehensive guidance in
fitness education underscores the need for innovative and intelligent solutions to bridge
this gap and enhance the effectiveness of physical education programs.

Skeleton-based human action recognition has emerged as a promising approach to
address these challenges (Wang & Yan, 2023; Shi, 2023). Compared to traditional red-
green-blue (RGB)-based methods, skeleton-based AR provides a compact and robust
representation of human movements using 3D skeleton data. By capturing the positions
and motions of key skeletal joints, this method avoids the high computational costs and
environmental sensitivity associated with RGB-based approaches. Additionally,
skeleton-based AR demonstrates strong robustness and accuracy, making it suitable for
real-world applications in education, intelligent healthcare, video understanding, and
human-computer interaction (Liu et al., 2025; Li et al., 2024; Leus et al., 2023). These
advantages have led to the widespread adoption of skeleton sequences in intelligent
systems, where human action can be effectively represented and analyzed. In previous
studies, skeleton-based AR methods typically relied on handcrafted feature extraction
techniques. Joint points of the human body were often treated as independent features,
with spatial-temporal correlations modeled through manual design (Wang et al., 2024).
For example, Sun et al. (2022) proposed Eigen Joints, which encode static poses, motion
trajectories, and offsets for action recognition using a naive Bayes nearest neighbor
(NBNN) classifier. While effective in some scenarios, such methods tend to neglect the
interdependencies between skeletal joints, resulting in limited accuracy and scalability.
Moreover, the complexity of handcrafted features makes these approaches less practical for
large-scale applications, prompting researchers to turn to deep learning methods.

Recent advances in deep learning have revolutionized skeleton-based augmented reality
(AR) by enabling the automatic extraction and modeling of complex joint relationships.
Three main frameworks have been widely adopted in this domain: convolutional neural
networks (CNNs) (Ali et al., 2023), recurrent neural networks (RNNs) (Usmani, Siddiqui
& Islam, 2023), and graph convolutional networks (GCNs) (Cui, Ding & Chen, 2024).
CNN-based approaches, such as the method by Huang et al. (2025), map joint points into
3D coordinate spaces and separately encode spatial and temporal information to extract
deep features using 3D CNNs. While this approach achieves high recognition accuracy, it
suffers from excessive computational complexity due to the large number of parameters
involved. RNN-based methods, such as the cascaded RNN proposed by Du, Wang &
Wang (2015), segment the skeleton into five body parts based on human anatomy, feed
them into independent sub-networks, and fuse their outputs layer by layer to classify
actions. Although effective in capturing temporal dependencies, this method also faces
optimization challenges due to its computational demands.

In contrast, GCNs have gained popularity for their ability to model both spatial and
temporal relationships in skeletal data. By leveraging the structural information of key
joints and integrating temporal sequences, GCNs achieve superior performance in action
recognition tasks (Ahmad et al., 2021). In addition to modeling capabilities, computational
cost is a critical factor in skeleton-based AR, especially for real-time applications.
CNN-based methods, while accurate, often exceed 50–100 giga floating point operations

You (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3050 2/17

http://dx.doi.org/10.7717/peerj-cs.3050
https://peerj.com/computer-science/


(GFLOPs) due to the use of dense 3D convolutions and high parameter counts (Huang
et al., 2025). RNN-based models typically require fewer FLOPs than 3D CNNs but still
incur significant computational overhead during sequential processing, often reaching 20–
30 GFLOPs depending on the network depth (Du, Wang & Wang, 2015).

In contrast, GCNs strike a better balance between recognition accuracy and efficiency.
For instance, the baseline ST-GCN model operates at 16.2 GFLOPs, with most costs
concentrated in temporal graph convolutions. These comparisons highlight GCNs as a
more computationally efficient foundation for designing lightweight and scalable
frameworks for action recognition.

Despite these advances, existing skeleton-based ARmethods still face several challenges.
First, the computational cost of these models remains high, making them difficult to
deploy in resource-constrained environments. Second, the accuracy of action recognition
is often limited by the inability to capture subtle joint relationships and contextual
information fully. To address these issues, this study proposes a lightweight Ghost GCN
model designed to improve the efficiency and accuracy of skeleton-based AR. The
proposed model incorporates two key innovations: (1) the integration of an improved
Ghost module (Han et al., 2020), which reduces computational complexity and creates a
lightweight GCN architecture, and (2) the design of two attention mechanisms, a global
attention mechanism (GAM) and a channel attention mechanism (CAM), to enhance the
model’s ability to capture critical spatial and temporal features.

The remainder of this article is organized as follows: “Related Works” reviews recent
literature on skeleton-based action recognition and lightweight network architectures.
“Implementation of Online P.E. Classes Based on Lightweight GCN” details the proposed
lightweight graph convolutional neural network (GCN) model, including its architectural
components, such as the Ghost module, graph attention mechanisms, and channel
attention modules. “Experiment and Analysis” presents experimental settings, quantitative
evaluations, and ablation studies based on the NTU60RGB+D dataset. “Conclusion”
concludes the article by summarizing key contributions and outlining future research
directions.

RELATED WORKS
Human body joint point features can be accurately captured using human pose estimation
algorithms or high-precision depth cameras. By connecting these key points, the human
skeleton can be represented as a graph structure, which is particularly effective for action
recognition tasks. Yan, Xiong & Lin (2018) proposed a spatio-temporal graph
convolutional network (ST-GCN), which extends traditional graph convolutional
networks to the spatiotemporal domain. The core innovation of ST-GCN lies in
constructing a spatiotemporal graph structure from input skeletal key points. This graph
not only preserves the spatial relationships among the joints but also incorporates the
temporal trajectories of key points by modeling them as time-series edges. This
spatiotemporal representation significantly enhances the network’s ability to capture
dynamic action features, improving robustness and feature performance in human action
recognition tasks.
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Building upon ST-GCN, Liu et al. (2023) introduced the two-stream adaptive graph
convolutional network (2s-AGCN). This model employs a self-learning adjacency matrix
strategy, enabling it to adapt the graph structure during training dynamically. This
self-adaptive mechanism enhances the extraction of spatial features, allowing the network
to capture complex joint dependencies in human motion more effectively. Similarly, Zhu
& Ren (2021) developed the action-structural graph convolutional network (AS-GCN),
which introduces an innovative mechanism to extract two distinct types of graph links:
action links and structural links. These links are derived from the original joint coordinates
and provide a more comprehensive representation of human actions by simultaneously
modeling motion-related and structural features.

Further advancements in this field include the work of researchers who have explored
hybrid architectures combining GCNs with other deep-learning techniques. For instance,
Zhang et al. (2024) proposed the AGC-LSTM model, which integrates an
attention-enhanced GCN with a LSTM network. This hybrid architecture utilizes an
attention mechanism to emphasize the features of key skeletal points while leveraging the
LSTM to enhance the modeling of high-level spatiotemporal semantic features. The
combination of these two components enables the AGC-LSTM to effectively capture both
spatial dependencies and temporal dynamics, resulting in improved action recognition
performance. In another approach, He et al. (2024) introduced the directed graph neural
network (DGNN), which employs a directed acyclic graph (DAG) to represent the human
skeletal structure. Unlike traditional undirected graph models, the DGNN dynamically
adjusts its topology during the training process to better adapt to the requirements of
action recognition tasks. By incorporating motion information and spatial information
from skeleton sequences, this model further improves the performance of two-stream
frameworks. The directed nature of the graph enables a more accurate representation of
joint relationships, enhancing the overall effectiveness of the model.

In recent years, lightweight network architectures have gained considerable attention in
the field of action recognition. These networks aim to reduce the overall size and
computational complexity of models while maintaining strong feature extraction
capabilities (Cao et al., 2024). Lightweight networks can be categorized into three primary
strategies: model lightening, network slimming, and direct design of lightweight
architectures. The lightning strategy focuses on reducing the number of parameters in the
network. For instance, Hong et al. (2024) proposed an 8-bit integer fixed-point
representation to eliminate redundant parameters, thereby reducing the overall model size
without compromising accuracy. Similarly, Cui, Li & Zhang (2021) introduced a
quantization method for dense weight matrices to achieve significant compression of
network parameters. Compared to conventional networks, lightweight architectures
require fewer parameters and achieve lower Floating-point Operations Per Second
(FLOPs), making them more efficient. This efficiency makes lightweight networks
particularly suitable for deployment in embedded devices and mobile terminals. For
example, lightweight network designs enable real-time applications in environments with
limited computational resources, such as wearable devices or smartphones, without
compromising recognition accuracy (Qiu, 2024; Ren et al., 2024). By maintaining a balance
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between computational efficiency and feature extraction performance, lightweight
networks are becoming an increasingly popular choice for practical applications in human
action recognition.

IMPLEMENTATION OF ONLINE P.E. CLASSES BASED ON
LIGHTWEIGHT GCN
To effectively recognize human skeletal actions in online physical education scenarios, the
proposed model introduces a lightweight spatiotemporal GCN enhanced with
multi-attention mechanisms. The architecture is built upon the ST-GCN backbone, with
the spatial graph convolution replaced by an improved Ghost module to reduce
computational costs. A ResNet block and dropout are incorporated to stabilize training
and mitigate overfitting. To enhance the model’s feature representation capabilities, a
data-driven graph attention mechanism (DDGM) and a GAM are integrated into the
spatial graph convolution layer, allowing for adaptive learning of skeletal topology.
Additionally, a CAM is embedded to refine the extracted features in the channel
dimension.

The network structure is designed based on the ST-GCN structure (Yan, Xiong & Lin,
2018). The ST-GCN network comprises a total of 10 layers, with each layer consisting of a
spatial GCN (S-GCN) and a temporal GCN (T-GCN). The S-GCN is the core part of the
designed structure. The structure of each layer in ST-GCN is illustrated in Fig. 1.

Based on the ST-GCN structure, this article uses the ghost convolution model in Ghost
Net to reduce the amounts of parameters. In detail, the spatial graph convolution is
replaced by the Ghost convolution, and a batch normalization (BN) and rectified linear
unit (ReLU) are added to speed up the training process; therefore, the improved
lightweight graph convolution model (LGCM) includes a ghost model, dropout, batch
normalization (BN), and a rectified linear unit (ReLU) activation function. Among them,
the dropout probability is 0.5. Additionally, the Resnet model is added to maintain a stable
training process.

To enhance the feature extraction capability, we incorporate a graph attention module
into the spatial graph convolutional layer, building upon the lightweight GCN module. It
mainly consists of two parts: the DDGM and the GAM.

To enhance the recognition effectiveness and accuracy of motion recognition, a CAM is
added to the network. In summary, the model of the lightweight spatiotemporal graph
convolutional network, based on multi-attention, designed here is illustrated in Fig. 2.

Graph convolutional networks
GAN methods mainly consist of spectral-based methods and spatial-based methods. The
data flow in GCN, specifically at the spectrum-based graph convolution network, can be
divided into three parts. First, the input data is transformed from the spatial domain into
the frequency domain. Second, it is filtered. Third, it is restored to the spatial domain
where the original graph signal is located. In this way, the features can be extracted entirely.
However, the disadvantages of them are low flexibility, poor universality, and low
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operating efficiency. Therefore, spatial-based methods can reduce complexity, enhance
generalization ability, and improve operational efficiency.

The spatial domain graph convolution method is the mainstream method in the field of
skeleton motion recognition. The skeleton data is described as N nodes, and the
spatiotemporal graph of the T frame is G ¼ V; Eð Þ. The skeleton data coordinates of
human actions can be expressed as X 2 RN�T�d, however, d, here in the formula, is
marked as the joint points size.

The model based on the GCN includes two convolution operations: SGC and TGC. As
for SGC, the neighborhood of a node is bounded as an adjacency matrix A 2 f0; 1gN�N.
To better illustrate the SGC, the adjacency matrix is divided into three parts: centripetal
points, eigen points, and centrifugal points. For each frame, F ∈ RN×C represents the input
feature and F0 2 RN�C0

depicts the output feature; C and C′ represent the dimensions of
the input and output features, respectively. Formula (1) is the corresponding relationship
between calculations in GCN.

F0 ¼
X
p2P

�ApFWp: (1)

Among them, p = {eigen point, centripetal point, centrifugal point} represents a space
partition; �Ap is the normalized adjacency matrix, defined as Formula (2).

�Ap ¼ �
�1

2
p Ap�

�1
2

p 2 RN�N (2)

where �ii
p ¼

P
j Aij

p

� �
þ a, to avoid empty lines, a is set to 0.001. The weights of the 1 × 1

convolutions for each partition areWp 2 R1�1�C�C0
. For example, ST-GCN (Yan, Xiong &

Lin, 2018) requires 16.2 GFLOPs to recognize an action example, with the spatial graph
convolution consuming 4.0 GFLOPs and the temporal graph convolution consuming
12.2 GFLOPs. Some algorithms related to ST-GCN even require the consumption of

Conv2D Core

Residual

GCN TCN

BN ReLU Conv2D
(9*1) BN Dropout

Figure 1 Layer structure of ST-GCN. Full-size DOI: 10.7717/peerj-cs.3050/fig-1
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100 GFLOPs (Shi et al., 2019; Li et al., 2019; Wang et al., 2022). Both the temporal graph
structure and the spatial graph structure are predefined, although Liu et al. (2023) use a
learnable adjacency matrix; however, it is still limited by the conventional graph
convolution architecture.

Improved ghost model
Limited by memory and computing power, it is challenging and literally impossible to
construct neural networks on some embedded devices. For example, given input data,
when the input size is two dimensions, h and w, the label c represents the channel numbers
of the human skeleton data. Moreover, the output data is explicitly represented by a matrix
of size h′ and w′. Among all the labels in the formula, f is used here to represent the
abstraction of a filter. Furthermore, the kernel size of the convolution operation can be
denoted by k. Considering the size of filters and kernels, which are often extremely large,
such as 256 filters and channels, whose number is twice that of filters. Therefore, we can
conclude that the FLOPs options can be in the hundreds of thousands or more. The
conventional convolution operation is shown in Fig. 3.

A trained DNN often contains a considerable number of redundant feature maps. The
high similarity among these maps is detrimental to the training process, as it leads to
unnecessary computational overhead. Some feature maps are nearly identical, making it
redundant to maintain such a large number of parameters and FLOPs. It is therefore
hypothesized that there exists an intrinsic set of feature maps Y, which are generated by the
initial convolution. The corresponding formulation is given in Eq. (3):

Y 0 ¼ X � f 0 (3)

Figure 2 Lightweight graph neural network model based on attention mechanism.
Full-size DOI: 10.7717/peerj-cs.3050/fig-2
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f 0 2 Rc�k�k�m is still the name of a filter, and the limitation of the formula is that m is
less than n. Where c is the number of input channels, k × k is the kernel size, and m is the
number of intrinsic feature maps generated by the initial convolution layer. Others, such as
the convolution kernel, stride, and spatial size, maintain similarities to regular convolution.
Y ¼ ½y11; y12; . . . ; yms� will be the output data of the ghost model, as shown in Fig. 4.

Improved ghost models include identity maps and linear operations. By that,
calculations of the designed effective ghost model are shown in Eq. (4). Replacing the
ordinary convolution operation with the ghost module can reduce the number of
parameters through s.

rc ¼ n � c � k � k
n
s
� c � k � kþ s� 1ð Þ � n

s
� d � d

� s � c
sþ c� 1

� s: (4)

Attention mechanism design
To enhance the model’s accuracy in recognizing human skeleton data and its feature
extraction capabilities, attention modules are added to the spatial graph convolution
operation and the channel, respectively.

Graph attention mechanism model
The introduction of the graph attention mechanism in the spatial graph convolutional
(SGC) layer enables the model to optimize the connectivity graph while learning network
parameters, thereby enhancing its action recognition ability. With the addition of the
graph attention (GA) mechanism, the SGC formula is shown as follows:

fout ¼
XKv

k

wk fin Ak
0 þ Bkð Þð Þ: (5)

Rc×k×k×n

Convolution

Rc×h×w Rh'×w'×n

Input Output
Figure 3 Conventional convolution operation. Full-size DOI: 10.7717/peerj-cs.3050/fig-3
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Matrix A′ denotes a data-driven graph (DDG), which is initially unparameterized in the
GNN and subsequently updated during the training process. A′ leverages the original
physical connections as a foundation while optimizing the topology of the connection
graph and adaptively updating the edge weights. As A′ is entirely derived from training
data, the resulting structure can be flexibly adapted to various types of skeleton-based
action data.

In addition, the graph attention matrix B serves to capture fine-grained motion
characteristics for each sample, thereby enhancing both the expressiveness and robustness
of the network. The formulation of B is provided in Eq. (6).

S ¼ sigmoid W2ReLU W1Zð Þð Þ: (6)

For an input f ntið Þ (feature of a node), two convolutional layers firstly map f ntið Þ to K
vectors and Q vectors. W represents the weight matrix, and the inner product is obtained
for the above Q and K vectors. The results of the inner product are referred to as the
similarity between nodes. Since the inner product ranges from 0 to 1, the vector values are
normalized by using the softmax function.

Matrix B, which is the graph attention matrix, is obtained through various motions. It
can fittingly study the weights between body joints in distinguishable motions. This DDG
enhances the versatility and robustness of the net structure, enabling it to identify
anaerobic motions more effectively.

Both the data-driven graph matrix A′ and the attention matrix B are learned in an end-
to-end manner during training. Specifically, A′ is initialized based on physical skeletal
connectivity but is not fixed—it is updated dynamically at each training epoch through
backpropagation. This allows the graph topology to adapt progressively to diverse motion
patterns in the training data. Meanwhile, the attention matrix B, computed via learned
query-key mappings, is recalculated for each input sample and frame, ensuring that
joint-level dependencies are adaptively weighted across different actions.

Resnet Block

Ghost BN ReLU

Ghost BN ReLU

Figure 4 Improved Ghost model. Full-size DOI: 10.7717/peerj-cs.3050/fig-4
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Channel attention mechanism
In each layer of the SGC network, the spatial features are preliminarily extracted via the
graph attention module. The formulations of matrices Z and S are provided in Eqs. (7) and
(8), respectively.

Z ¼ 1
H �W

XH
i¼1

XW
j¼1

mc i; jð Þ (7)

S ¼ sigmoid W2ReLU W1Zð Þð Þ: (8)

The CAM is appended after the spatial graph convolution to refine feature weighting.
Specifically, its operation involves three steps: First, the output of each layer is compressed
to obtain matrix Z; second, Z is passed through a fully connected layer to yield matrix S;
finally, S is element-wise multiplied with the original input feature map and combined with
a residual connection to produce the final output f.

EXPERIMENT AND ANALYSIS
The experimental environment in this article is set up as follows: 64-bit Ubuntu 18.04
operating system, Intel Xeon CPUE5-2678v3 @ 2.50 GHz, 12 GB memory, graphics card
RTX 2080 Ti, CUDA 10.0.130, cuDNN 7.5, PyTorch 1.4, and Python 3.6 software
platforms.

Experiments datasets
To realize the reform and research on online teaching courses in physical education at
colleges and universities, the data used here is the human skeleton dataset, including the
NTU60RGB+D, which contains data on the human skeleton under various actions.

The NTU60RGB+D dataset was proposed by Nanyang Technological University and
captured simultaneously by three Microsoft Kinect v2 cameras, comprising 56,880 action
clips, 60 action categories, 17 camera placement combinations, and 40 actors participating
in the dataset collection. Figure 5 illustrates the specific sampling point distribution, with a
total of 25 sample joint points.

Experiments of lightweight GCN with improved Ghost model
The improved lightweight GCN with an enhanced Ghost model is tested using the
NTU60RGB-D dataset. What’s more, the proposed improved Ghost module is compared
with the most advanced skeleton-based action recognition method in terms of accuracy
and parameter quantity. The experimental results are presented in Table 1, where CS
represents Cross-Sub, CV represents Cross-View, and GFLOPs represent floating-point
operations per second.

To further validate the lightweight characteristics of the proposed Ghost-GCN model,
we compare its parameter count and model size with those of several representative
skeleton-based action recognition methods. As shown in Table 1, the proposed model
achieves state-of-the-art accuracy (90.8% CS/96.8% CV) while maintaining the lowest
parameter count (1.9M) and smallest model size (~7.6 MB). Compared with ST-GCN,
which requires 3.1 million parameters and 16.2 GFLOPs, our method reduces the
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parameter size by approximately 38.7% and the computational cost by over 60% while
improving accuracy by more than 9%. Similarly, it outperforms complex architectures like
2s-AGCN and AGC-LSTM not only in accuracy but also in compactness, making it highly
suitable for deployment in real-time, resource-constrained scenarios such as mobile
devices and online physical education platforms. These results underscore the model’s
effectiveness in striking a balance between recognition performance and computational
efficiency.
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Figure 5 Joint point labels of NTU60 RGB-D dataset. Full-size DOI: 10.7717/peerj-cs.3050/fig-5

Table 1 Comparison of experimental results on NTU60 RGB+G dataset.

Methods CS/% CV/% GFLOPs

ST-GCN (Yan, Xiong & Lin, 2018) 81.7 88.6 —

2s AS-GCN (Liu et al., 2023) 86.9 94.0 27.0

2s AGCN (Li et al., 2019) 88.3 95.0 35.8

Improved Ghost GCN 90.8 96.8 9.4
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This article employs two types of evaluation criteria in this dataset: (1) Cross-actor
(Cross-Sub), which refers to actions collected from different actors. The actions
demonstrated by actors identified 1~38 are used for training. And the actions shown by
actors whose identities are 39~40 are used for testing. The number of samples in the two
sets is 40, 320 and 16,560. (2) Cross-View, which means that actions from cameras go for
training, and the action acquired by the camera labeled one is used for testing. Thirty-seven
thousand nine hundred twenty from the whole dataset are used for training, and 18,960
actions are selected for testing. The NTU120RGB+D dataset is an extension of the
NTU60RGB+D dataset. The combination of camera placement is 32, the action
classification is increased to 120, the number of actors has reached 106, the number of
action clips is increased to 114,480, and the number of sample joint points remains 25.

The reported 96.8% CV accuracy is based on the standard NTU60RGB+D protocol,
where training and test views are entirely disjoint (training: cameras 2 and 3; testing:
camera 1). Notably, the proposed method shows marked improvements in actions with
large spatial variations or body-plane shifts, such as kicking, punching, and clapping. The
attention modules (GAM and CAM) enhance spatial adaptability and feature robustness,
enabling more accurate recognition under challenging view changes.

Compare experiments between the designed model and others
To certify the comprehensive achievement of the modules here, experiments are compared
among models, such as ST-GCN (Yan, Xiong & Lin, 2018), AS-GCN (Liu et al., 2023),
Clips+CNN+MTLN (Zhang et al., 2020), and TCN (Tian et al., 2024; Khan et al., 2024).
These models are more commonly listed among human skeleton data recognition. The
dataset used in the experiment is NTU60RGB+D, and the evaluation indicators were CS
and CV, serving as the evaluation criteria. The experimental results are drawn in Fig. 6.

The lightweight GCN designed here, based on the improved Ghost’s attention
mechanism, achieves better accuracy than other network structures on the NTU60RGB-D
dataset. At the same time, the performance of the designed network structure is
significantly more nuanced than that of other GNNs.

Ablation study and module contribution analysis
To evaluate the individual contributions of the proposed components, we conducted an
ablation study using the NTU60RGB+D dataset under CS and CV protocols; the results
are shown in Table 2.

As shown in Table 2, introducing the Ghost module alone reduces the computational
cost by over 60% compared to the ST-GCN baseline while improving recognition accuracy
by nearly 5% (from 81.5% to 86.4%). Adding either the GAM or the CAM further
enhances performance by 1.4–1.9%, confirming their role in improving spatial and
channel-wise feature refinement. The complete model incorporating Ghost, GAM, and
CAM achieves the highest accuracy (90.8% CS, 96.8% CV), validating the synergistic effect
of all components. These findings demonstrate that each module makes a meaningful
contribution to the model’s overall efficiency and recognition performance.
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Discussion
The findings of this study have several important implications for both research and
practice in the field of human action recognition. First, the proposed Ghost-GCN
architecture demonstrates that it is possible to achieve high-accuracy skeleton-based action
recognition while significantly reducing computational cost and parameter size. This
makes the model well-suited for deployment in real-time or resource-constrained
environments, such as mobile health applications, wearable devices, and edge AI platforms
like Raspberry Pi or NVIDIA Jetson Nano.

Second, the study highlights the effectiveness of attention mechanisms—specifically the
GAM and CAM—in enhancing the representation of spatiotemporal dependencies across
skeleton joints. These mechanisms improve generalization to challenging motion patterns,
particularly under unseen viewpoints or actor variations, and could inform future designs
of adaptive graph neural networks.

Third, by focusing on the context of online physical education, the proposed model
addresses an urgent societal need for scalable, intelligent exercise monitoring systems in
educational settings. Beyond education, the model holds promise for rehabilitation
monitoring, elderly fall detection, and gesture control in AR/VR systems, where
lightweight, interpretable, and low-latency models are essential.

0 20 40 60 80 100

TCN

Clips+CNN+MTLN

ST-GCN

GGCN with Attention

Figure 6 Compare experiments between several models on NTU60RGB+D.
Full-size DOI: 10.7717/peerj-cs.3050/fig-6

Table 2 Ablation study on NTU60RGB+D dataset.

Model variant GFLOPs Params (M) Accuracy (CS) Accuracy (CV)

(1) Baseline ST-GCN (Yan, Xiong & Lin, 2018) 16.2 3.1 81.5% 88.3%

(2) + Ghost module only 5.8 1.9 86.4% 92.7%

(3) + Ghost + GAM only 6.0 2.1 88.3% 94.6%

(4) + Ghost + CAM only 6.0 2.1 87.8% 93.9%

(5) + Ghost + GAM + CAM (Full model) 6.2 2.2 90.8% 96.8%
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Ultimately, this work lays the groundwork for future research that could integrate
multimodal sensing data—including inertial measurement units (IMUs), audio, and
electromyography (EMG)—to further enhance action understanding. Moreover, it
encourages further exploration into model compression techniques, hardware-aware neural
architecture search, and robust performance under noisy or incomplete skeleton inputs.

CONCLUSION
This study presents a lightweight graph convolutional network with multi-attention
mechanisms tailored for human skeleton-based action recognition in online physical
education. The proposed model integrates an improved Ghost module and dual attention
designs (GAM and CAM), achieving 96.8% accuracy under the cross-view setting and
90.8% under the cross-subject setting on the NTU60RGB+D dataset. Compared to the
baseline ST-GCN, our method reduces floating-point operations by over 60% (from 16.2 to
6.2 GFLOPs) and parameter size by approximately 39% (from 3.1 million to 1.9 million),
while substantially improving recognition accuracy. Beyond online physical education, the
lightweight and accurate nature of the model suggests strong potential for broader
applications, including rehabilitation monitoring, elderly movement analysis, and
gesture-based interfaces in virtual or augmented reality environments. These scenarios
similarly demand robust yet efficient skeleton-based recognition.

Future work will involve evaluating the model’s real-time inference latency and
deployment feasibility on edge devices such as Raspberry Pi or NVIDIA Jetson Nano.
Additionally, integrating multimodal signals—such as wearable inertial measurement
units (IMUs), ambient audio cues, or visual-textual annotations—could enhance
context-aware recognition and extend the system’s applicability to more complex activity
environments.
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