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ABSTRACT

The classification of clinical notes into specific diagnostic categories is critical in
healthcare, especially for mental health conditions like anxiety and adjustment
disorder. In this study, we compare the performance of various artificial intelligence
models, including both traditional machine learning approaches (random forest,
support vector machine, K-nearest neighbors, decision tree, and eXtreme Gradient
Boost) and deep learning models (DistilBERT and SciBERT), to classify clinical notes
into these two diagnoses. Additionally, we implemented three oversampling
strategies: No Oversampling, Random Oversampling, and Synthetic Minority
Over-sampling Technique (SMOTE), to assess their impact on model performance.
Hyperparameter tuning was also applied to optimize model accuracy. Our results
indicate that oversampling techniques had minimal impact on model performance
overall. The only exception was SMOTE, which showed a positive effect specifically
with Bidirectional Encoder Representations from Transformers (BERT)-based
models. However, hyperparameter optimization significantly improved accuracy
across the models, enhancing their ability to generalize and perform on the dataset.
The decision tree and eXtreme Gradient Boost models achieved the highest accuracy
among machine learning approaches, both reaching 96%, while the DistilBERT and
SciBERT models also attained 96% accuracy in the deep learning category. These
findings underscore the importance of hyperparameter tuning in maximizing model
performance. This study contributes to the ongoing research on Al-assisted
diagnostic tools in mental health by providing insights into the efficacy of different
model architectures and data balancing methods.

Subjects Artificial Intelligence, Data Mining and Machine Learning, Data Science, Natural
Language and Speech

Keywords Artificial intelligence, Clinical notes, Psychiatry, Electronic health records, Adjustment
disorder, Anxiety

INTRODUCTION

The field of medicine has advanced rapidly in recent decades due to technological

innovations that have transformed both the diagnostic and treatment phases. In the mental
health sector, particularly in psychiatry, there has been a paradigm shift, with a growing
focus on understanding the brain and the underlying mechanisms that regulate behavior,
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emotions, and responses to external or internal changes. Despite these advances,
psychiatric diagnosis still faces significant challenges due to the subjective and complex
nature of the symptoms presented by patients, as well as the frequent overlap between
different mental disorders. Moreover, despite the progress made in the field of medicine,
the number of patients suffering from mental disorders has not decreased but has instead
increased since 2019, when 970 million people were living with a mental disorder (World
Health Organization, 2022a). The World Health Organization (WHO) is concerned not
only about these numbers but also about the increase in mental disorders diagnosed during
the COVID-19 pandemic, with cases of anxiety disorder rising by an estimated 26%
(World Health Organization, 2022b).

In the field of mental healthcare, two major disciplines coexist: psychology and
psychiatry. Although they share the common goal of improving mental well-being, they
differ significantly in their training, methods, and approaches to treatment. Psychology is
the scientific study of mental processes and behavior, including both internal mental
activities, such as thoughts and emotions, and externally observable behaviors (Henriques
¢ Michalski, 2020). Psychological practice primarily involves therapeutic methods based
on dialogue and behavioral interventions, such as cognitive-behavioral therapy,
humanistic therapy, or psychodynamic approaches. These treatments focus on modifying
dysfunctional behaviors, emotions, and thoughts, typically following a non-medical model.

Psychiatry, by contrast, is a branch of medicine concerned with the diagnosis,
treatment, and prevention of mental, emotional, and behavioral disorders. Psychiatrists, as
medical doctors, are trained to assess both psychological symptoms and their biological
underpinnings. They can prescribe pharmacological treatments and often manage
complex cases involving severe mental illnesses, such as schizophrenia, bipolar disorder,
major depression, or severe anxiety disorders (Kendler, Zachar ¢» Craver, 2011).

While psychology and psychiatry approach mental health from different perspectives—
psychology focusing more on psychological and social aspects, psychiatry integrating
biological, psychological, and pharmacological considerations—the two disciplines are
complementary and increasingly collaborate in interdisciplinary mental health teams to
provide holistic patient care.

While psychological conditions often involve significant distress, psychiatric disorders
may pose more serious risks to patients’ lives, including an increased risk of suicide.
Moreover, it has been extensively documented that individuals suffering from severe
mental disorders frequently experience reduced life expectancy. For example, people
diagnosed with schizophrenia have an estimated life expectancy that is 10 to 20 years
shorter than that of the general population (Nimavat et al., 2023). In addition, many
individuals with mental illnesses face a substantial treatment gap, with only 29% of those
with psychosis and 33% of those with depression receiving formal mental health care
(World Health Organization, 2021; Moitra et al., 2022). These challenges highlight the
pressing need for innovative approaches to support mental healthcare systems and
improve access and quality of care.

One of the biggest problems for people suffering from a mental illness when seeking
help from a public psychologist or psychiatrist is the long waiting time to get an
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appointment. Timely access to professionals would help patients receive a diagnosis and
appropriate treatment for their condition. However, due to the lack of human and
economic resources, as well as the time required to get an appointment, we propose a
solution aimed at reducing the workload in the classification of clinical notes, also known
as electronic health records (EHR).

It has been shown that artificial intelligence (AI) models have helped in various medical
fields. For example, in oncology, AI has become a valuable tool for predicting cancer (Liu,
Rong & Peng, 2020; Alanazi, 2023; Briganti ¢» Le Moine, 2020). Additionally, AI continues
to be useful in predicting cancer recurrence (Zhang et al., 2023). Some Al models based on
images have been used to detect different types of cancer, such as skin, breast, and lung
cancer (Midasala et al., 2024; Kaka et al., 2022; Quanyang et al., 2024). In other medical
fields, AT has contributed significantly to improving outcomes, such as in the detection of
diabetes in patients (Wu, 2024).

However, AI models are not limited to using a single type of input, such as images; they
can also process text as a source of information. Natural language processing (NLP)
techniques help extract meaningful information from different types of texts. Among the
goals of NLP is predicting whether a person suffers from a particular illness. This approach
has been applied, for example, in using Al to predict whether a patient has autism
spectrum disorder (ASD), achieving nearly 90% accuracy (Rubio-Martin et al., 2024).
Another study related to Al and psychiatry involved the classification of texts about eating
disorders (ED) into four categories—texts written by someone with ED, texts that promote
ED, informative texts, and scientific texts—achieving nearly 87% accuracy in one of the
categories (Benitez-Andrades et al., 2022).

Delving specifically into the convergence between psychiatry and Al several studies
have attempted to assist in the diagnosis or classification of complex mental disorders,
such as schizophrenia, depression, or anxiety disorders, using AI (Kodipalli ¢» Devi, 2023;
Cortes-Briones et al., 2022; Alsagri & Ykhlef, 2020; Nemesure et al., 2021). As shown,
applying NLP techniques can help extract relevant information from unstructured data,
such as EHRs. The use of EHRs as input for Al has led to the development of models
capable of predicting depression crises in patients (Msosa et al., 2023).

In recent years, these efforts have been further expanded in multiple directions. For
instance, the prediction of anxiety symptoms in social anxiety disorder has been achieved
using multimodal data collected during virtual reality sessions (Park et al., 2025). In
another line of work, deep learning models have been developed that outperform clinicians
in identifying violence risk from emergency department notes (Dobbins et al., 2024).
Transformer-based models have also been employed to detect personal and family history
of suicidal ideation in EHRs, yielding F1-scores above 0.90 (Adekkanattu et al., 2024).
Furthermore, suicide risk has been phenotyped using multi-label classification strategies
based on psychiatric clinical notes (Li et al., 2024).

One of the most challenging scenarios in Al-driven classification involves EHRs, where
patients are diagnosed with various mental disorders that share overlapping symptoms.
The differentiation between anxiety disorders (ICD-10 F41) and adjustment disorders
(ICD-10 F43) is key in the clinical diagnosis and appropriate treatment of patients. Both
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disorders can present anxious symptoms, but these play a different role in each case. In
anxiety disorders (F41), anxious symptoms are central and form part of the core clinical
picture. Examples of these disorders include generalized anxiety disorder and social
anxiety disorder. Anxiety in these cases does not require a specific external triggering
event; that is, the person may experience excessive and ongoing worries about various
aspects of life without a clear precipitating factor (World Health Organization, 2019).

On the other hand, adjustment disorders (F43) are characterized by the presence of an
identifiable life event or stressor that triggers the symptoms, which may include anxiety,
depression, or behavioral changes. These symptoms are a disproportionate psychological
response to a stressful situation, such as the loss of a loved one, divorce, or work-related
difficulties, and they are time-limited. Unlike anxiety disorders, symptoms in adjustment
disorders tend to resolve when the individual adjusts to the new situation or the stressful
event is resolved.

While anxiety disorders present anxious symptoms as a central element and do not rely
on a clear external trigger, adjustment disorders always have an identifiable stressful event
that precipitates the symptoms. This differentiation is fundamental to guide both diagnosis
and therapeutic decisions. The importance of distinguishing between these two types of
disorders is crucial to avoid misdiagnosis, as clinical interventions for each may differ
significantly. A misdiagnosis or confusion between the two could lead to inappropriate
treatments, negatively affecting the patient’s prognosis (Casey ¢ Bailey, 2011).

For classification purposes, we grouped all ICD-10 codes under the F41 category (Other
anxiety disorders) into a single “anxiety disorder” class. This includes panic disorder or
episodic paroxysmal anxiety (F41.0), generalized anxiety disorder (F41.1), mixed anxiety
disorders (F41.3), other specified anxiety disorders (F41.8), and unspecified anxiety
disorder (F41.9). Although our approach focuses on analyzing and classifying existing
clinical notes rather than intervening during the initial diagnostic process, structuring and
interpreting this information has substantial value. Enhanced documentation quality,
retrospective clinical audits, improved training datasets for future models, and support for
research activities are some of the ways in which structured clinical information can
meaningfully contribute to the mental healthcare system without altering the core
diagnostic workflows.

Due to the challenges involved in classifying these two mental disorders, this research
demonstrates how Al can achieve highly accurate classification of EHRs, specifically
aiming to identify patients diagnosed with adjustment disorder or anxiety disorder.
Additionally, this manuscript presents several substantial advancements. The key
contributions of this research include:

» Machine learning models: We trained several machine learning models in pursuit of the
best results. To optimize the performance of each model, a hyperparameter tuning
process was carried out. The implementation of this tuning process helped to improve
the initial results.
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o BERT-based models: We explored BERT models, testing two separate pretrained
versions, each with distinct training datasets and features that influenced their
effectiveness in our tasks.

 Data balancing process: Although the dataset is sufficiently large to evaluate the metrics
of each model, we applied two data balancing techniques, known as Random
Oversampling and Synthetic Minority Oversampling Technique (SMOTE). These
techniques were used to assess whether increasing the number of samples in the dataset
would allow the models to leverage additional characteristics that could improve the
classification task.

» Real medical dataset: For this research, clinical notes were provided by the ‘Complejo
Asistencial Universitario de Ledn’ (CAULE). This dataset contains electronic health
records of patients diagnosed with adjustment and anxiety disorders. The dataset is
entirely self-created, giving it unique value and relevance. From its initial design and data
collection to its cleaning, preprocessing, and transformation, every step was meticulously
handled to align with the goals of this research. By controlling the entire data treatment
process, we gained a deep understanding of the dataset’s structure, limitations, and
potential insights. This level of control allows for highly tailored analyses and more
reliable results. Due to the challenges and restrictions in obtaining clinical notes or other
patient information, this dataset holds significant scientific value.

The article is organized as follows: “Material and Methods”, provides a detailed
description of the methodology applied, including the collection and preprocessing of the
dataset. “Experiments and Results”, outlines the experiments conducted and presents the
findings, along with a comparison of the various models used. Lastly, “Discussion and
Conclusions”, brings together the discussion and conclusion to create a unified narrative.

MATERIALS AND METHODS

This section provides a detailed explanation of the methodology implemented throughout
the research. Firstly, “Dataset Collection and Classification” describes the process followed
to obtain the dataset and how it was transformed from unstructured to structured data.
Next, “Machine Learning and Deep Learning Models Implemented” presents the models
implemented for this research. Additionally, “Hardware and Software Specifications”
outlines the hardware and software specifications of the computer used for the research.

Dataset collection and classification

All research involving patient information requires time and the ability to overcome
several challenges that arise throughout the process. To begin with, patients’ EHRs contain
highly sensitive information, which must be protected under strict privacy regulations, as
mandated by the European Union’s General Data Protection Regulation (GDPR)
(European Parliament, 2016). Since patient identification is not required for this research,
the clinical notes were anonymized to allow the use of EHRs as a valuable information
source, not only in the medical field but also in the field of artificial intelligence (Rao et al.,
2023).
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An ethics committee was convened and granted us permission to use Spanish EHRs as a
dataset for research purposes, ensuring that no patient could be identified. This approval
was issued by the Research Ethics Committee for Medicinal Products of the Health Areas
of Ledn and Bierzo under the identifier 2303. The EHRs consist of clinical notes from the
psychiatry unit of CAULE, written entirely in plain text without any structured data. The
dataset comprises 12,921 clinical notes, collected between January 11, 2017, and December
31, 2022. All clinical notes were collected from the Psychiatry Emergency Service of the
hospital. Each note documents an urgent psychiatric assessment performed during an
emergency department visit. These notes are not part of scheduled outpatient
consultations or longitudinal inpatient records, but rather correspond to acute episodes
requiring immediate attention. Depending on the evaluation, the patient is either
discharged (often with referral for outpatient follow-up) or admitted to inpatient care.
Therefore, each note is self-contained and not part of a progressive sequence of visits.

This research was supported by professional psychiatrists who assisted in creating
structures to organize the information found in the EHRs. Additionally, these experts
provided several guidelines for processing the data. The first step in dataset preprocessing
was to remove samples or records where the clinical note was either empty or not properly
completed.

To avoid including clinical notes that lacked sufficient or valuable information due to
their short length, the experts decided not to consider clinical notes shorter than 600
characters. This threshold was not arbitrary but carefully determined, as it was found that
many samples under 600 characters lacked the necessary information to begin structuring
the data. Moreover, it was calculated that applying this threshold retained almost 95% of
the dataset while ensuring that no clinical notes with insufficient information were
included, as shown in Fig. 1.

Continuing with the preprocessing phase, the first data extracted from the EHRs were
the patient’s age and gender. To achieve this, regular expressions were used. A preview of
the dataset revealed various patterns that allowed for the extraction of most patients’ ages.
All phrases structured like 20 years old man’ and ‘30 years old woman’ among other
possibilities, were captured using a complex regular expression.

Moreover, the regular expressions were designed to account for common human
writing errors, such as missing or extra spaces between words, as well as misspelled words,
ensuring the correct extraction of the patient’s age. The task of extracting the patient’s
gender was partially accomplished using the same regular expression, as ‘Man’ and
‘Woman’ directly refer to male and female, respectively.

However, in some cases, extracting gender is more challenging, such as in clinical notes
where the term ‘Patient’ is used instead of gender-specific terms like ‘Man’ or ‘Woman’. In
these instances, past participle verb forms in Spanish were used to infer the patient’s
gender. Additionally, when these verbs were absent, marital status indicators like ‘single’ or
‘married’, which have gender-specific forms in Spanish, were leveraged to help determine
the patient’s gender.

The new dataset now consists of several columns. The first column contains the original
clinical note. The second column contains the patient’s gender, represented as “V’ for male
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Figure 1 Representation of the the mean length of the clinical notes for each patient. The y-axis
indicates the mean length of the clinical notes, while the x-axis corresponds to patient IDs. The
green-shaded region highlights the 95% of clinical notes that are above the applied threshold, whereas the
red-shaded area represents the lower 5% Full-size k&l DOI: 10.7717/peerj-cs.3045/fig-1

and ‘M’ for female. The third column records the patient’s age. Since the psychiatric
clinical notes are plain texts written by professionals summarizing the interview with the
patient, the EHRs try to follow the Subjective-Objective- Assessment-Progress (SOAP)
standard. However, in this dataset, the information for each section is not clearly
delineated, and the majority of notes are composed as unstructured narratives rather than
strictly segmented reports.

As a result, identifying the actual diagnosis from these notes is not straightforward.
Diagnostic terms such as “anxiety” or “adjustment disorder” may appear in different parts
of the note—for instance, in the personal or family history, in symptom descriptions, or as
part of comorbidities—without necessarily representing the primary diagnosis.
Additionally, anxiety is frequently recorded as a symptom within broader diagnostic
categories, adding semantic ambiguity. For these reasons, we did not remove diagnostic
terms from the clinical notes during preprocessing. This choice was deliberate, as our aim
was to evaluate whether the model could correctly infer the diagnosis based on context,
even in the presence of potentially misleading or overlapping terms.

The initial goal of this approach was to extract diagnoses from each clinical note. To
achieve this, a large language model (LLM), specifically ChatGPT 4.0, was utilized, as it has
proven to be a powerful tool for information extraction in various research studies (Wang
et al., 2023). For this research, the ChatGPT API, accessed through Microsoft Azure
services, was employed to process 1,000 clinical notes. Prompt engineering techniques,
including the use of different roles in API requests (Garcia-Barragain et al., 2024), were
applied to enhance the model’s performance.
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Figure 2 Representation of the prompt structure. The ‘System’ role defines the model’s function,
ensuring it adopts an expert perspective in psychiatry and entity recognition. Also it provides step-by-
step guidance on how the model should process clinical notes, including handling special cases. The
‘User’ role supplies clinical notes as plain text, while the ‘Assistant’ role generates structured responses. A
correct answer example is provided after the first clinical note to guide the model’s output format,
ensuring consistency and accuracy in entity extraction.  Full-size K&l DOT: 10.7717/peerj-cs.3045/fig-2

One such technique was Few-Shot learning, which involves assigning the model a
specific role, explaining the task objective, breaking the task into multiple steps, and
providing correct examples of how the task should be performed. This approach ensures
that the model understands how to execute the task effectively. Several scientific
publications emphasize the value of this Few-Shot prompt engineering technique when
working with ChatGPT. In this case, the ChatGPT 4.0 model, which can handle up to
32,000 tokens of conversational context, was used. Since the clinical notes are written in
Spanish, the prompt was constructed in Spanish; however, for ease of understanding in this
article, the prompt will be presented in English. The API request format is shown in Fig. 2.
The prompt structure is explained below:

e ROLE: The role assigned to the model. This instruction helps the model adopt an
appropriate perspective, focusing on knowledge relevant to the designated role. In this
case, the role given was: “You are an assistant and a linguist specialized in identifying
entities within text. You are a leading expert in psychiatry, and I need your help with a
very important task in medicine’.

e TASK and INSTRUCTIONS: The objective of the task is explained to the model,
outlining how it should proceed and detailing how special situations should be handled.
Furthermore, the process is broken down into a list of instructions that can be easily
followed by the model, as the main problem is split into smaller, manageable tasks.
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Figure 3 Demographic data from the patients found in the clinical notes. The pie chart shows the gender distribution of patients: women
(orange), men (blue), and unknown (gray). The histogram represents the age distribution, with the x-axis indicating age and the y-axis showing the
number of clinical notes. Full-size K&l DOT: 10.7717/peerj-cs.3045/fig-3

e CLINICAL NOTE 1: Corresponds to the first clinical note provided as plain text.

o CORRECT ANSWER GIVEN: A sample of a correct answer is provided to the model
for the first clinical note. This example helps the model understand how to proceed. In
this case, it was specified that the model should label the diagnosis as ‘DX’ during entity
extraction, using ‘@@’ to indicate the start of the extraction and ‘##’ to indicate the end of
the diagnosis extraction. One example of a correct answer given would be ‘DX @@
Ansiedad reactiva, Sindrome ansioso-depresivo ##.

o CLINICAL NOTE 2: The next clinical note provided to the model to continue the task.

The final results provided by the LLM were reviewed by experts. After completing the
entire preprocessing process, we focused on those clinical notes where patients were
diagnosed with adjustment disorder or any form of anxiety disorder. For this line of
research, which centers on these two mental disorders, a total of 228 clinical notes were
considered: 82 corresponding to adjustment disorder and 146 to anxiety disorder.

As shown in the left part of Fig. 3, of these 228 EHRs, it was found that 61% and 34.2%
correspond to clinical notes where the patient is a woman and a man, respectively. Only
4.8% of the notes correspond to cases where the patient’s sex is not identified. Additionally,
the figure presents the age distribution of patients across the clinical notes, categorized in
5-year intervals. This histogram reveals that the majority of patients fall within the 30 to
50-year age range, with a notable peak around the age of 40. Specifically, the highest
number of clinical notes corresponds to patients aged between 35 and 45 years. The
distribution also shows that there are fewer clinical notes for patients below 20 years of age
and above 70 years, indicating that the majority of the patient population receiving
treatment for adjustment disorder and anxiety disorder tends to be middle-aged. This age
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Table 1 Percentage distribution by gender and complete age statistics by diagnosis.

DX Man (%) Unknown (%) Woman (%) Mean (Years) Std (Years)
Adjustment D. 329 6.2 60.9 444 18.3
Anxiety D. 36.6 24 61.0 42.7 16.4

Note:

Std, Standard Deviation.

trend is consistent with research that shows a high prevalence of these disorders among
adults in their working years, likely due to life stressors and social factors often faced
during this period (Lotzin et al., 2021).

To complement this general overview, Table 1 presents a detailed demographic
breakdown by diagnosis, including gender distribution and descriptive age statistics. In
both diagnostic categories, female patients represent the majority: 60.9% in adjustment
disorder and 61.0% in anxiety disorder. Male representation is slightly higher in the
anxiety group (36.6%) compared to adjustment disorder (32.9%), while the proportion of
patients with unknown gender is relatively low in both groups. Regarding age, the average
for patients diagnosed with adjustment disorder is 44.4 years (SD = 18.3), and for anxiety
disorder it is 42.7 years, with a median of 42 years in both cases. These findings confirm
that the dataset is predominantly composed of middle-aged individuals, consistent across
diagnostic categories, and reinforce the relevance of tailoring classification approaches to
this demographic profile.

The age distribution provides valuable demographic insights and helps to contextualize
the clinical data being analyzed, especially in terms of tailoring interventions for specific
age groups. The relatively lower number of patients in the younger and older age ranges
also raises important questions about the underrepresentation of these populations,
possibly indicating a need for further exploration of psychiatric care in these
demographics.

Machine learning and deep learning models implemented

An intriguing research avenue was explored, focusing on the evaluation of ML and DL
models to identify the most accurate approach for addressing the problem. Both linear and
non-linear approaches were selected to determine which best suited textual data, given its
high dimensionality and potential semantic noise. Below, we describe the theoretical
foundation and mathematical formulation of each model, along with the motivation for its
selection.

e Random forest: A versatile and widely used machine learning model that operates by
constructing multiple decision trees during training and outputting the mode of the
classes or the mean prediction of the individual trees. One key virtue of random forest in
the context of clinical note classification, is its ability to handle high-dimensional and
noisy data effectively, which is common in clinical settings (Al-Showarah et al., 2023).
This robustness ensures reliable classification even when dealing with complex medical
information as could be the Psychiatry EHRs, improving the model’s accuracy and
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generalization on diverse clinical notes (Gongora Alonso et al., 2022). Mathematically,
random forest combines multiple decision trees h;(x), where h;(x) represents the output
of each individual tree i, and N is the total number of trees in the forest and the final
prediction is obtained through majority voting for classification:

y = mode{h;(x), hy(x),...,hn(x)} (1)
Support vector classifier (SVC): a supervised machine learning model based on the
Support vector machine (SVM) algorithm. It works by finding the optimal hyperplane
that best separates the data into different classes. In this task, SVC tries to maximize the
margin between the data points of different classes, which helps in achieving better
generalization. SVC can capture complex relationships in the clinical notes, such as the
nuanced patterns in clinical language (Elshewey et al., 2023; Lyu et al., 2023). It is also
robust to overfitting. The mathematical equation of the decision boundary is:

flx)=wix+b )
where w is the weight vector, x represents the input, and b is the bias term. The

optimization process maximizes the margin H_‘VZVH subject to the following constraint where
yi represents the class label:

yi(wlx; +b) > 1, Vi (3)

Decision trees: A type of supervised learning algorithm that makes classifications based
on a series of decision rules derived from the input features. The model works by
recursively splitting the data into subsets based on feature values, creating branches that
represent decision points. Each branch ultimately leads to a leaf node, which represents
the predicted class or outcome. This model can help in classifying clinical notes because
they are interpretable and can handle both numerical and categorical data. This
interpretability is valuable in clinical settings, where understanding the reasoning behind
a classification is important for trust and compliance (Vallée et al., 2023).
Mathematically, node splitting is based on information gain or Gini index, defined
below, where p; is the proportion of instances of class i in dataset D.

C
Gini(D) =1-Y p}. (4)
i=1

XGBoost (eXtreme Gradient Boosting): is a powerful machine learning algorithm that is
based on gradient boosting techniques. It works by creating an ensemble of decision
trees, where each new tree corrects the errors made by the previous trees. The trees are
added sequentially, with each one being optimized to reduce the total error. XGBoost
uses gradient descent to minimize a loss function, which allows it to handle complex data
patterns effectively (Mir ¢» Sunanda, 2023). It can handle large datasets with
high-dimensional features, such as the variety of terms and medical concepts found in
clinical text. It also supports regularization, which helps prevent overfitting—a common
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issue when working with detailed clinical data. Additionally, XGBoost can efficiently
process missing data and is relatively fast, making it well-suited for real-time or
large-scale applications in clinical settings (Ulhaq et al., 2023). Each tree in XGBoost is
built by minimizing the following regularized loss function, where [(y;, y;) represents the
error function, and Q(f;) penalizes model complexity to prevent overfitting:

L0) = 103 + 0%, )
i=1 k

e SciBERT (Beltagy, Lo ¢ Cohan, 2019): An adapted version of Bidirectional Encoder
Representations from Transformers (BERT) that is specifically trained on scientific
literature, including biomedical and computer science articles, which makes it
well-suited for handling the specialized language in medical contexts. Its
transformer-based architecture allows it to understand words in their full context,
making it effective for processing clinical notes. When fine-tuned for diagnostic
classification, SciBERT can accurately identify patterns in clinical text, recognizing
terminology related to various medical conditions (Tang et al., 2023). This makes it
particularly valuable for automatically categorizing clinical notes into diagnostic labels,
improving the efficiency and accuracy of diagnosis classification tasks in healthcare
settings. The transformation function of each layer in BERT-based models is given by the
following formula where Q, K, V are the query, key, and value matrices, respectively, and
dy is the key dimension:

T
z; = softmax <Q—\/I;_k> V. (6)

o DistilBERT (Sanh et al., 2019): is a distilled, or compressed, version of BERT that retains
much of BERT’s effectiveness while being smaller, faster, and more efficient. It achieves
this through a process called ‘knowledge distillation’, where a smaller model
(DistilBERT) is trained to mimic the behavior of a larger model (BERT). DistilBERT has
about 40% fewer parameters and is around 60% faster than BERT, but it retains around
97% of BERT’s language understanding capabilities. DistilBERT is useful for classifying
clinical notes because it provides a good balance between performance and
computational efficiency (Abdelhalim, Abdelhalim & Batista-Navarro, 2023). In clinical
environments, where there may be constraints on processing power or the need for quick
responses, DistilBERT can handle complex language and terminology effectively without
requiring the resources that full-sized BERT models do. This makes it suitable large-scale
processing of clinical text, where quick and accurate classifications are necessary (Oh
et al., 2023; Le, Jouvet & Noumeir, 2023).

The selection of models in this study was driven by the need to evaluate both traditional
machine learning and deep learning approaches for classifying psychiatric clinical notes.
random forest and XGBoost were chosen for their strong generalization capabilities, while
SVC was included to assess the effectiveness of a linear decision boundary. Decision tree
was selected for its interpretability, which is critical in clinical decision-making. In deep
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learning, SciBERT was used due to its training on biomedical texts, making it well-suited
for clinical language, while DistilBERT was included as a computationally efficient
alternative. This diverse set of models ensures a comprehensive evaluation of classification
techniques and performance.

Hardware and software specifications

For the execution of all experiments, Jupyter Notebooks were used. These notebooks were
run using Python 3.9 and executed with the following hardware specifications: Intel(R)
Core(TM) i7-9700K CPU @ 3.60 GHz, 32.0 GB RAM, and an NVIDIA GeForce RTX 2080
graphics card. The code used to perform the experiments described in this study is publicly
available at the following repository: https://doi.org/10.5281/zenodo.14872650.

EXPERIMENTS AND RESULTS

Data preprocessing

Preprocessing clinical notes written in Spanish is a crucial step in preparing data for
classification tasks using NLP techniques. Since clinical notes contain unstructured
medical information, multiple cleaning and transformation techniques must be applied to
enhance data quality and optimize the performance of machine learning models. The
following preprocessing steps were performed in detail:

1. Detection and handling of outliers: During exploratory analysis, it was detected that
clinical notes with fewer than 600 characters rarely contained relevant or substantial
information. In many cases, they were administrative records without significant
clinical data, and most of them lacked an actual diagnosis. To avoid including
non-representative records, a minimum threshold of 600 characters was established in
consultation with psychiatrists. By applying this criterion, only notes with sufficient
clinical content were processed, ensuring more effective classification.

2. Handling missing values: Missing values in patient age and gender were addressed by
extracting information from context using regular expressions. This process was
carefully designed to improve the statistical reliability of the dataset and ensure a more
accurate representation of the patient population.

3. Lowercasing: All text was converted to lowercase to reduce unnecessary variability and
prevent the model from interpreting words with different casing as distinct entities. In
medical language, some words may be capitalized due to writing conventions, but they
are semantically equivalent to their lowercase counterparts. This normalization ensured
a more homogeneous analysis and reduced the number of unique tokens in the model’s
vocabulary (Chai, 2022).

4. Removal of special characters: Accents were removed to ensure that a single word is
not represented in multiple ways in the model and preserving only spaces and Spanish
language characters (Rajesh ¢ Hiwarkar, 2023).

5. Stopword removal: Frequent words in Spanish that do not contribute meaningful

» o« » o«

information for classification, such as “el”, “de”, “que”, “en”, “un” and “una” were
removed using a Spanish stop-word list adapted to the clinical context. Words like
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“patient,” “symptom,” or “treatment” were retained, as they are crucial in medical text
analysis (Sarica ¢ Luo, 2021).

6. Lemmatization: Lemmatization was applied using the spaCy library to reduce words to
their canonical form, decreasing vocabulary dimensionality without losing meaning and
maintaining the semantic integrity of clinical notes, which is crucial for understanding
the context in medical text (Babanejad et al., 2024).

7. Removal of extra whitespaces: Removing redundant whitespaces ensures text
cleanliness and prevents models from misinterpreting the data as separate entities,
improving tokenization accuracy (Chai, 2022).

This preprocessing pipeline optimized the representation of clinical notes, reducing data
noise and improving the model’s ability to capture key semantic patterns in medical texts.

Experimental design

To evaluate the performance of various classification models in distinguishing between
diagnoses of adjustment disorder and anxiety disorder, three different approaches were
adopted for handling the training data. These approaches were: (1) without applying any
oversampling techniques, (2) using Random Oversampling, and (3) employing the
Synthetic Minority Over-sampling Technique (SMOTE).

Oversampling techniques, such as Random Oversampling and SMOTE, are commonly
used in machine learning when dealing with imbalanced datasets, where one class is
significantly underrepresented compared to the other. In this study, these techniques were
explored to see how they could improve the model’s ability to correctly classify both
disorders, particularly the less common diagnosis, without overfitting to the majority class.

Additionally, to ensure that the distribution of classes (adjustment disorder and anxiety
disorder) remained consistent in both the training and test sets, stratification was applied.
Stratification is a method that ensures the class proportions are maintained when splitting
the dataset, which is particularly important in imbalanced datasets like this one. Without
stratification, there is a risk that one of the sets (training or test) could have a
disproportionate number of cases from one class, leading to unreliable performance
metrics. By using stratified sampling, both the training (70%) and testing (30%) sets
maintain the same distribution of adjustment disorder and anxiety disorder cases,
providing a fair and consistent evaluation during model training and testing.

This step was essential for obtaining reliable performance measurements, as class
imbalance can otherwise skew model performance toward the majority class, resulting in
misleadingly high accuracy that does not reflect true generalization. Stratification helps
prevent this by ensuring that both the minority and majority classes are well-represented
in each dataset split, allowing the model to learn from a balanced representation of both
diagnoses.

The classification models selected for this task were chosen for their varied approaches
and capabilities in handling different types of data. These models included traditional
machine learning models such as random forest, SVM, and decision tree, as well as more
advanced models like XGBoost. In addition, two pre-trained transformer-based models,
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Table 2 Models performance across experiments.

Exp Metric Rand.Forest SvC Dec.Tree XGB DistilBERT SciBERT

WO Accuracy 0.81 0.70 0.93 0.96 0.91 0.91
F1-score 0.87 0.81 0.94 0.97 0.93 0.93

RO Accuracy 0.81 0.70 0.87 0.96 0.55 0.91
F1-score 0.87 0.81 0.90 0.97 0.55 0.93

SMOTE Accuracy 0.87 0.70 0.88 0.96 0.91 0.91
F1-score 0.90 0.81 0.90 0.97 0.93 0.93

Note:

Exp, Experiment; XGB, XGBoost; WO, Without Oversampling; RO, Random Oversampling; SMOTE, Synthetic
Minority Over-sampling Technique. The best results are highlighted in bold.

DistilBERT and SciBERT, were employed to leverage their capacity for understanding
complex text patterns, particularly in the context of clinical notes.

Each model was evaluated based on two primary metrics: accuracy and F1-score.
Accuracy provides a general measure of how often the model makes correct predictions
and F1-score gives a more balanced view of model performance in this context.

Results

This subsection describes the results of the experiments conducted on all models, both
with and without the use of oversampling techniques. Table 2 presents the performance
metrics for each model, highlighting their classification capabilities. The evaluation focuses
on key metrics, particularly accuracy and F1-score, to assess the effectiveness of the models
under these conditions.

Models without oversampling techniques

The classification models were first evaluated without applying any oversampling
techniques. The models demonstrated good performance, though there was significant
variability among them.

The XGBoost model achieved the best results, with an accuracy of 96% and an F1-score
of 0.97, indicating excellent classification ability. The decision tree model followed, with an
accuracy of 93% and an F1-score of 0.94. These results suggest that tree-based models,
particularly XGBoost, are highly effective for the task of classifying clinical notes in this
dataset. The random forest model also showed satisfactory performance with an accuracy
of 81% and an F1-score of 0.87. However, the SVC model performed worse, with an
accuracy of 70% and an F1-score of 0.81, indicating that it struggled to effectively capture
the relationships between features and classes in the data. The pre-trained transformer
models (DistilBERT and SciBERT) performed similarly, both achieving an accuracy of
91% and an F1-score of 0.93. This suggests that these language models, specialized in
scientific and clinical text, are particularly useful for this task, outperforming simpler
models like SVC and random forest. The results obtained without the application of
oversampling techniques highlight the strong performance of the XGBoost and decision
tree models, as well as the effectiveness of pre-trained transformer models. However, the
SVC model showed limitations in its classification capability in this context.
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Models with random oversampling

This subsection presents the performance of the models after applying random
oversampling to balance the dataset. The introduction of random oversampling had mixed
effects on model performance.

The XGBoost model continued to achieve the highest performance, maintaining an
accuracy of 96% and an F1-score of 0.97, consistent with the results without oversampling.
This suggests that the XGBoost model is robust to class imbalance, and the oversampling
did not significantly alter its ability to classify the clinical notes. The decision tree model
saw a slight decrease in performance compared to the results without oversampling. Its
accuracy dropped from 93% to 87%, and the F1-score decreased to 0.90. This may suggest
that random oversampling introduced some noise, reducing the model’s ability to
generalize well to the test data. The random forest model showed no change in
performance, with accuracy and F1-score remaining at 81% and 0.87, respectively.
Similarly, the SVC model’s performance remained largely unchanged, with an accuracy of
70% and an F1-score of 0.81. These results indicate that random oversampling did not
provide a substantial improvement for these models in this classification task.

Notably, the DistilBERT model experienced a significant drop in performance when
random oversampling was applied. Its accuracy fell to 55%, and its F1-score dropped to
0.55, suggesting that this transformer-based model was negatively affected by the
oversampling technique. On the other hand, SciBERT maintained its strong performance,
with an accuracy of 91% and an F1-score of 0.93, indicating that it was more resilient to the
oversampling method. Random oversampling had varying effects on model performance.
While it did not lead to improvements in most models, XGBoost maintained its high level
of accuracy, and SciBERT remained effective. However, the significant drop in
performance for DistilBERT suggests that careful consideration is needed when applying
oversampling techniques, especially with transformer-based models.

Models with SMOTE

This subsection outlines the performance of the models after applying SMOTE to address
class imbalance. Compared to random oversampling, SMOTE generally had a more
positive impact on model performance. Once again, the XGBoost model achieved the
highest accuracy of 96% and an F1-score of 0.97, demonstrating consistency across
different data balancing techniques. This reinforces XGBoost’s robustness and adaptability
to imbalanced datasets, as SMOTE did not significantly alter its performance. The decision
tree model showed a slight improvement with SMOTE compared to random
oversampling, reaching an accuracy of 88% and an F1-score of 0.90. This marginal increase
indicates that SMOTE helped the model better generalize, although the performance is still
lower than without any oversampling technique. The random forest model also saw an
improvement, with accuracy rising from 81% to 87% and the F1-score improving to 0.90.
This suggests that SMOTE was more effective than random oversampling in improving the
models ability to classify the minority class without overfitting to the majority class. SVC,
however, did not show any noticeable improvement, with its accuracy remaining at 70%
and an F1-score of 0.81, similar to its performance without any oversampling technique.
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This indicates that SVC’s ability to capture relationships in the dataset was not enhanced
by SMOTE.

For the transformer-based models, both DistilBERT and SciBERT maintained strong
and consistent performance, each achieving an accuracy of 91% and an F1-score of 0.93.
Unlike with random oversampling, DistilBERT’s performance remained stable with
SMOTE, indicating that the synthetic examples generated by this method may have been
better aligned with the underlying data distribution, thereby avoiding the performance
degradation observed earlier.

SMOTE had a generally positive impact on model performance, especially for random
forest and decision tree, improving their ability to handle imbalanced data. XGBoost
maintained its exceptional performance, and the transformer models continued to show
resilience, with DistilBERT recovering from its previous drop in performance with random
oversampling.

Hyperparameter tuning

This subsection presents the results of hyperparameter tuning performed on all models,
with and without oversampling techniques, to optimize their performance. The complete
hyperparameter search space for each model is summarized in Table 3. This information
provides a clearer view of the experimental setup and supports the reproducibility of the
results. A 3-fold cross-validation was applied during hyperparameter search to ensure
robust evaluation of each configuration. The results for each model after tuning are shown
in Table 4. The goal of hyperparameter tuning was to improve the classification metrics,
primarily focusing on accuracy and F1-score.

Hyperparameter tuning without oversampling

After tuning the hyperparameters, most models showed improved performance when no
oversampling techniques were applied. Notably, the decision tree model experienced a
significant boost, with accuracy rising from 93% to 96% and the F1-score reaching 0.97.
This suggests that fine-tuning the model parameters helped improve its capacity to better
distinguish between the classes. The SVC model also demonstrated substantial
improvements, with its accuracy increasing from 70% to 88% and its F1-score reaching
0.91. These improvements reflect the positive impact of hyperparameter optimization on
SVC’s ability to better handle the complex relationships in the dataset. The random forest
model improved slightly, with accuracy reaching 86% and an F1-score of 0.90. Meanwhile,
the XGBoost model saw a small decline in accuracy (from 96% to 93%) after
hyperparameter tuning, though it still maintained exceptional performance. The slight
decrease in performance might indicate that the default parameters were already close to
optimal for this model. For the transformer models, both DistilBERT and SciBERT
improved their accuracy to 96% and their F1-scores to 0.97. These gains suggest that
tuning transformer-specific parameters, such as learning rate and number of epochs,
helped these models better capture the nuances in the clinical text, further boosting their
effectiveness.
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Table 3 Hyperparameter search space for each model.
Model Hyperparameters
Random Forest n_estimators: [30, 97, 165, 232, 300];
max_features: [‘sqrt’, log2’];
max_depth: [10, 20, 30, 40, 50, None];

min_samples_split: [2, 5, 10];
min_samples_leaf: [1, 2, 4];
bootstrap: [True, False]

SVM C: [0.01, 0.1, 1, 2, 3, 4, 5, 10, 15, 50, 100, 1000];
gamma: [1, 0.1, 0.01, 0.001];
kernel: [‘rbf, ‘linear’, ‘sigmoid’, ‘poly’]

Decision Tree criterion: [‘gini’, ‘entropy’, log_loss’];
splitter: [‘best’, ‘random’];
max_depth: 1-29;
min_samples_split: 1-19;
min_samples_leaf: 1-19;
max_features: [‘sqrt’, ‘log2’, None];
min_weight_fraction_leaf: [0.0];
random_state: [100]

XGBoost objective: [‘binary:logistic’, ‘binary:logitraw’, ‘binary:hinge’];
learning_rate: [0.1, 0.3, 0.5];
n_estimators: [100, 200, 300, 400];
min_child_weight: [1, 5, 10];
gamma: [1, 2, 5];
subsample: [0.6, 0.8, 1.0];
colsample_bytree: [0.6, 0.8, 1.0];
max_depth: [2, 3, 4, 5]

DistilBERT learning rate: [le-5, 3e-5, 5e-5];
batch_size: [8, 16, 32];
epochs: [3, 5, 10]

SciBERT learning_ rate: [le-5, 3e-5, 5e-5];
batch_size: (8, 16];
epochs: [3, 5, 10]

Hyperparameter tuning with random oversampling

In the models trained with random oversampling, hyperparameter tuning led to notable
improvements for the SVC model, which saw its accuracy rise to 88% and its F1-score
improve to 0.91, making it much more competitive compared to its previous performance.
The decision tree model also benefited from tuning, achieving a significant boost in
accuracy (96%) and F1-score (0.97), indicating that the optimized parameters helped
counterbalance the challenges posed by the oversampled data. The random forest model
experienced a slight increase in performance after tuning, with accuracy reaching to 84%
and the F1-score to 0.89. XGBoost maintained its top performance, with both accuracy and
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Table 4 Models performance across experiments using hyperparameter tuning.

Exp Metric Rand.Forest SvC Dec.Tree XGB DistilBERT SciBERT

WO Accuracy 0.86 0.88 0.96 0.93 0.96 0.96
F1-score 0.90 0.91 0.97 0.94 0.97 0.97

RO Accuracy 0.84 0.88 0.96 0.96 0.94 0.94
F1-score 0.89 0.91 0.97 0.97 0.95 0.95

SMOTE Accuracy 0.83 0.88 0.91 0.96 0.96 0.96
F1-score 0.87 0.91 0.94 0.97 0.97 0.97

Note:

Exp, Experiment; XGB, XGBoost; WO, Without Oversampling; RO, Random Oversampling; SMOTE, Synthetic
Minority Over-sampling Technique. The best results are highlighted in bold.

F1-score remaining at 96% and 97%, respectively, further emphasizing its robustness to
both data imbalance and parameter adjustments.

The transformer models, DistilBERT and SciBERT, both showed improvements with
accuracy and F1-scores rising to 94% and 0.95, respectively, indicating that the
combination of random oversampling and tuning positively impacted their ability to
classify the clinical notes accurately.

Hyperparameter tuning with SMOTE

When SMOTE was used in conjunction with hyperparameter tuning, the results were
similarly positive. The SVC model achieved an accuracy of 88% and an F1-score of 0.91,
consistent with its performance under other oversampling techniques. The decision tree
model experienced a performance increase, with accuracy rising to 91% and an F1-score of
0.94. Random forest, however, showed a slight decrease in performance after tuning, with
accuracy dropping to 83% and an F1-score of 0.87, suggesting that tuning in combination
with synthetic data did not favor this model. XGBoost continued to achieve excellent
results, maintaining an accuracy of 96% and an F1-score of 0.97. The transformer models,
DistilBERT and SciBERT, also improved after tuning, with both achieving an accuracy of
96% and a F1-score of 0.97. Hyperparameter tuning was generally effective in enhancing
model performance across various techniques. The decision tree and SVC models saw the
most significant improvements, while XGBoost remained highly consistent. Transformer
models also benefited notably from the optimization process.

Computational performance

The computational time required for hyperparameter tuning varied significantly across the
models, as summarized in Table 5. Traditional machine learning models such as random
forest, SVM, decision tree, and XGB exhibited relatively low computational costs, with
average times of 0.912 s (random forest), 0.091 s (SVM), 0.003 s (decision tree), and 0.103 s
(XGB) per configuration.

In contrast, transformer-based models such as DistilBERT and SciBERT required
substantially higher computational resources, with average tuning times of 75.70 and 65.52
s per configuration, respectively. These results highlight a clear computational trade-oft:
while traditional models are significantly more efficient in hyperparameter tuning,
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Table 5 Computational performance of each model used.

Model Combinations Time (s) Time/Combination
Random Forest 1,080 985.267 0.912

SVM 192 17.482 0.091

Decision Tree 188,442 651.747 0.003

XGB 11,664 1,204.597 0.103

DistilBERT 27 2,043.965 75.70

SciBERT 18 1,179.506 65.52

transformer-based models demand considerably more processing time. However, prior
studies suggest that this increased computational cost often translates into superior
performance in terms of accuracy and generalization (Benitez-Andrades et al., 2022;
Meléndez, Ptaszynski & Masui, 2024).

CONCLUSION AND DISCUSSION

This research has contributed to the field of clinical text classification by examining the
effectiveness of different machine learning models in distinguishing between patients
diagnosed with adjustment disorder and anxiety disorder based on clinical notes. Several
important findings emerged from this study, highlighting the strengths and limitations of
the models employed, as well as the impact of applying oversampling techniques to address
class imbalance in the dataset.

Model performance

Among the models tested, XGBoost emerged as the best-performing algorithm,
consistently demonstrating high accuracy and F1-score across all experimental setups.
Specifically, XGBoost achieved an F1-score of 0.97 with and without the use of
oversampling techniques, proving its robustness in handling the complexities of clinical
text classification. The model maintained strong performance even after hyperparameter
tuning, confirming its ability to effectively capture class distinctions while maintaining
generalization, despite class imbalance in the dataset.

In contrast, the support vector classifier (SVC) model exhibited the weakest
performance, particularly without oversampling, where it struggled with an accuracy of
70% and an F1-score of 0.81. This is likely due to the sensitivity of SVC to imbalanced
datasets, where the minority class may be overshadowed by the majority class. Although
hyperparameter tuning and oversampling techniques such as Random Oversampling and
SMOTE improved SVC’s performance (raising the F1-score to 0.91 in some cases), its
results remained below those of more advanced models like XGBoost, SciBERT, and
DistilBERT. These findings indicate that while SVC can be a reliable option in certain
domains, it may not be well-suited for imbalanced clinical text classification tasks without
significant adjustments. Figures 4 and 5 illustrate the comparative performance of the
machine learning and deep learning models, respectively.
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Figure 4 Machine learning models performance evolution. The x-axis represents different techniques: Without Oversampling (WO), Random
Oversampling (RO), SMOTE, and their combinations with hyperparameter tuning (H). The y-axis shows the performance scores, with accuracy
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The impact of oversampling techniques
A key aspect of this research was the evaluation of two oversampling techniques: Random
Oversampling and SMOTE. The results indicate that oversampling had a varying impact
on model performance, particularly for models sensitive to class imbalance.

For models like random forest and XGBoost, random oversampling did not result in
significant performance gains, and in some cases, even led to a slight drop in performance.
For instance, DistilBERT experienced a considerable decline when random oversampling
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was applied, with the F1-score dropping to 0.55. This suggests that Random Oversampling
may introduce noise, particularly in more complex models, and thus does not consistently
benefit all models.

SMOTE, on the other hand, proved to be a more effective technique for improving
performance across various models. In particular, SMOTE enhanced the performance of
models like decision tree and random forest, which achieved F1-scores of 0.90 and 0.90,
respectively, when applied. Furthermore, models such as XGBoost and transformer-based
models like DistilBERT and SciBERT maintained their strong performance with SMOTE,
both achieving F1-scores of 0.97. The results indicate that SMOTE helped these models
create more balanced decision boundaries without duplicating existing data points, leading
to more robust classification outcomes.

It was found that, while oversampling techniques generally improved performance,
SMOTE was more effective across a range of models, particularly for complex architectures
like XGBoost and transformer-based models.

Comparison between transformer models and traditional machine
learning

The transformer-based models, DistilBERT and SciBERT, demonstrated strong results
throughout the experiments, confirming their potential for natural language processing
tasks in the healthcare domain. In comparison to traditional machine learning models
such as random forest and SVC, the transformers-based models were better at capturing
the nuances of clinical language, particularly when no oversampling techniques were
applied.
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SciBERT, pretrained on scientific texts, was particularly noteworthy, achieving an F1-
score of 0.97 with SMOTE, highlighting its strength in parsing and classifying the
specialized terminology found in clinical notes. DistilBERT performed well across all
setups, reinforcing the potential of transformer-based models in healthcare text
classification tasks. Notably, these transformer models remained highly effective, even
when class imbalance was not addressed through oversampling techniques.

Impact of hyperparameter tuning

Hyperparameter tuning was a critical component in this study, as it helped optimize the
performance of all the machine learning models. The results clearly show that
hyperparameter tuning had a significant impact on improving classification metrics,
particularly for models that initially struggled with imbalanced data or suboptimal settings.

The most notable improvement was observed in the decision tree model, where
hyperparameter tuning increased its accuracy from 93% to 96% and its F1-score to 0.97
when no oversampling was applied. This demonstrates that tuning allowed the Decision
Tree model to make better splits and generalize more effectively on the data, leading to
performance that matched the top-performing models such as XGBoost.

Similarly, the SVC model benefited substantially from hyperparameter tuning. Initially,
SVC struggled with imbalanced data, but after tuning, its accuracy increased to 88% and its
F1-score improved to 0.91. These improvements indicate that carefully optimizing
parameters like the kernel and gamma allowed SVC to better distinguish between the
diagnostic categories.

The transformer models, DistilBERT and SciBERT, also saw improvements with
hyperparameter tuning. Both DistilBERT and SciBERT achieved an accuracy of 96% and
an Fl-score of 0.97 after tuning. These results suggest that while the transformers
performed well without significant tuning, the fine-tuning of parameters like learning rate
and number of epochs still provided marginal performance boosts.

For the XGBoost model, however, hyperparameter tuning led to a slight reduction in
accuracy, dropping from 96% to 93%, although its F1-score remained high at 0.94. This
suggests that XGBoost may have already been operating near its optimal settings.

Hyperparameter tuning proved to be a valuable step in improving model performance.
While simpler models like decision tree and SVC saw the most pronounced benefits, even
advanced models such as transformers and XGBoost showed gains in certain metrics,
reaffirming the importance of hyperparameter optimization in machine and deep learning
workflows.

Limitations and future directions

Despite the strong performance of the models tested, several limitations should be
acknowledged. First, the dataset, although preprocessed, might still contain noise inherent
to clinical notes, such as inconsistent terminology or incomplete information, which could
affect model performance. Future studies could focus on refining the preprocessing
pipeline to handle these nuances more effectively, potentially leading to further
improvements in classification accuracy.
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Additionally, while this study demonstrated the value of oversampling techniques, there
are alternative methods for addressing class imbalance that were not explored, such as
cost-sensitive learning or under-sampling methods, which could be examined in future
research. These techniques might offer more efficient solutions, especially in scenarios
where oversampling introduces overfitting or data redundancy. Future directions could
also consider exploring variational autoencoders (VAEs) as a generative approach for
oversampling.

Another avenue for future research involves evaluating additional classification models
beyond those tested in this study. Exploring more advanced deep learning architectures or
novel transformer-based models could further enhance classification performance,
particularly in complex diagnostic scenarios. Moreover, expanding the dataset to include
clinical notes from patients presenting similar symptomatology but ultimately receiving
different diagnoses would provide a more challenging and realistic classification setting.
This would help assess the models’ ability to capture subtle clinical distinctions, which is
critical in psychiatric evaluation.

Finally, although transformer models performed well, their computational cost and the
need for large datasets for fine-tuning present practical challenges. Future work could
explore the use of more efficient transformer architectures or hybrid models that combine
the strengths of transformers and traditional machine learning approaches.
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