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ABSTRACT
In smart environments, autonomous systems often adapt their behavior to the
context, and although such adaptations are generally beneficial, they may cause users
to struggle to understand or trust them. To address this, we propose an explanation
generation system that produces natural language descriptions (explanations) to
clarify the adaptive behavior of smart home systems in runtime. These explanations
are customized based on user characteristics and the contextual information derived
from the user interactions with the system. Our approach leverages a prompt-based
strategy using a fine-tuned large language model, guided by a modular template that
integrates key data such as the type of explanation to be generated, user profile,
runtime system information, interaction history, and the specific nature of the system
adaptation. As a preliminary step, we also present a conceptual model that
characterize explanations in the domain of autonomous systems by defining their
core concepts. Finally, we evaluate the user experience of the generated explanations
through an experiment involving 118 participants. Results show that generated
explanations are perceived positive and with high level of acceptance.

Subjects Human-Computer Interaction, Adaptive and Self-Organizing Systems, Artificial
Intelligence, Autonomous Systems, Optimization Theory and Computation
Keywords Automatic explanations, Autonomous systems, User-centered explanations, Smart
home, Home automation, Interactive systems, Human-centric design, Large Language Model,
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INTRODUCTION
The emergence of autonomous systems (ASs) has significantly impacted various aspects of
daily life, including healthcare, smart home technology, vehicles, and more (Maggino,
2014). Although autonomous systems operate with a high level of automation, their
effectiveness both now and in the foreseeable future is based on a collaborative framework
where humans and machines work together, as full autonomy remains unattainable. This
collaboration enables the optimal fusion of human expertise and machine capabilities to
tackle complex challenges, ensuring reliable performance. For seamless human-system
collaboration, individuals must perceive autonomous systems as both comprehensible and
trustworthy (Li, Zhang & Chen, 2020). System explanations serve as vital tools to foster
trust and enhance collaboration between humans and machines. In this work, an
“explanation” refers to a natural language clarification provided by the system, either to
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inform the user about an action the system has performed or to communicate what the
system expects from the user. For example, the system may explain that it has activated
irrigation due to a detected moisture deficit, or notify the user that it is awaiting
confirmation to proceed with an automatic purchase. These explanations elucidate the
actions and expectations of the system, empowering users to understand and engage with
the system effectively.

Our vision is to enable the development of autonomous systems that can–at run-time–
answer questions about their behavior, e.g., why a certain action was taken, why the user
has to collaborate with the system, how the user can collaborate, etc.

Achieving this vision requires explanations that are dynamic, adapting to changing
circumstances and user contexts. Moreover, balancing the depth of information with
simplicity is crucial, as much information on explanations can overwhelm users, while
overly simplistic ones may fail to convey the system’s intricacies adequately. Additionally,
ensuring that explanations are timely and contextually relevant adds another layer of
complexity to the development of autonomous systems that provide these types of
explanations.

To address these challenges, autonomous systems can leverage artificial intelligence to
infer the most appropriate characteristics of explanations based on the specific situation of
the user and the system, and dynamically generate explanations accordingly. In this article,
we first present a conceptual model to characterize explanations in the context of
autonomous systems, and then we propose enhancing smart home systems by integrating
a component designed to generate explanations that help users understand the adaptive
behavior of the system. This component is developed using advanced techniques that
fine-tune large language models (LLMs) with domain-specific data and prompts. By using
this component, the system produces explanations that directly address and clarify its
adaptive actions. These explanations, sensitive to contextual nuances, bridge the gap
between the complexities of system operation and user understanding, thereby promoting
transparency and trust. While the proposal is designed for a smart home system, the
solution can be applied across a wide range of domains.

We validated the proposal by applying the short version of the user experience
evaluation questionnaire (UEQ-S). This questionnaire was administered to a diverse group
of users, including individuals with varying levels of technological experience and a
balanced mix of genders and ages, to ensure a comprehensive evaluation of the
explanations generated by our approach.

In this way, the main contribution of the article is a technique for generating
explanation content based on LLMs for the smart home domain whose effectiveness has
been validated through an experiment.

The rest of the article is structured as follows. ‘Related Work’ discusses recent advances
and major contributions to the field of explanation generation. ‘A Conceptual Model for
Explanation Specification’ introduces a conceptual model for defining explanations within
this work. This section clarifies our vision of what explanations entail in the context of this
article. ‘Proposal Overview’ introduces the proposal for explanation generation. In ‘Smart
Home LLM-Based Explanation Generator’, we apply our proposal to build a generator for

Peña-Cáceres et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3041 2/34

http://dx.doi.org/10.7717/peerj-cs.3041
https://peerj.com/computer-science/


explanations in the context of a smart home system. ‘Generation of Explanations for the
Smart Home’ shows the result of applying our proposal in the case of the smart home
system. The proposal is validated in ‘Validation of the Proposal’, and the user experience is
evaluated in the “Evaluation of the User Experience”. Some limitations of the current work
are presented in ‘Limitations’. Finally, ‘Conclusions’ presents conclusions and future work.

RELATED WORK
Explanation generation in autonomous systems has garnered significant attention from
researchers in various domains with the aim of enhancing user understanding, trust, and
acceptance of these systems. In this section, we review recent advances and key
contributions in the field of explanation generation. We begin by examining the domain of
smart home environments focusing on approaches that base on LLMs. Then, we explore
other domains that use LLMs and other techniques, evidencing traditional methods for
explanation generation. We also identify previous work that addresses the integration of
explanatory modules within system architectures.

Explanation generation in the smart home domain
In smart home environments, where systems must often make sense of user activities and
communicate their actions meaningfully, the generation of explanations remains a key
challenge. In recent years, the rapid advancement of LLMs has led to the emergence of
numerous approaches to generate explanations based on these models. LLMs have gained
traction for their versatility in all domains, including tasks such as synthetic data
generation and domain-specific fine-tuning, as highlighted in the survey by Zhao et al.
(2025). The adaptability of these models, such as GPT-4, allows them to tackle a wide range
of tasks across domains, from summarization to interactive smart systems, offering a
significant advantage in creating personalized and dynamic user experiences. Using vast
amounts of data, LLMs can generate highly coherent and contextually relevant
explanations, making them invaluable in areas such as smart home management.

Furthermore, Yang et al. (2024) investigate the broader application of LLMs in various
domains, particularly focusing on synthetic data generation. They emphasize that
fine-tuned models, adapted to specific domains, outperform general-purpose models for
traditional tasks. While this reinforces the importance of domain-specific tuning
(something we leverage in our own approach) their study does not address the challenge of
providing real-time, context-aware explanations in an interactive setting.

A recent study by Sadeghi et al. (2024) emphasizes user-centered explanations,
proposing a framework that integrates LLMs with context-aware techniques to generate
explanations tailored to individual user needs. This approach is a step forward in creating
personalized user interactions, using context to provide explanations that align with the
user’s immediate situation and preferences. However, their focus remains on static
contexts rather than dynamically adapting explanations in real time as conditions change.

Similarly, Duan, Li & Li (2024) introduced ContextualHomeLLM, a sophisticated
language model designed to enhance user interactions in smart homes by optimizing
management tasks. This model offers personalized recommendations and real-time
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responses, integrating environmental factors and historical data to accurately interpret
user behavior and intentions. While ContextualHomeLLM demonstrates impressive
advances in smart home management, the primary focus is on optimizing system actions
and user recommendations rather than generating adaptive explanations that evolve based
on continuous interaction and feedback from the user.

By the same token, Rivkin et al. (2025) propose a framework of autonomous LLM agents
capable of executing and explaining smart home actions via natural reasoning.Hulayyil, Li
& Saxena (2025) apply natural language justifications to home intrusion detection,
improving user comprehension. Das et al. (2023) introduce an explainable activity
recognition system leveraging SHapley Additive exPlanations (SHAP) and Local
Interpretable Model-agnostic Explanations (LIME) to produce intelligible explanations.
Unlike these works, our approach emphasizes behavioral regularity and tailors
explanations to the context of the user, rather than focusing on isolated actions or single
device contexts.

Other contributions also address smart home environments from a broader,
system-level perspective. Chen, Chen & Jin (2024) employ LLMs to generate interpretable
models of smart device behavior based on textual requirements, while Sarhaddi et al.
(2025) provide a comprehensive survey on explainable artificial intelligence (AI) for
Internet of Thing (IoT) systems, including smart homes, emphasizing adaptive and
context-aware explanations. Unlike approaches that simply generate generic answers, our
system adjusts its explanatory behavior based on historical patterns learned from data in
the home environment. In this way, the explanations reflect the operational logic of the
smart home by aligning with user expectations and actual system dynamics.

Another relevant contribution comes from Civitarese et al. (2025), who explore the use
of LLMs for developing a sensor-based recognition system for activities of daily living
(ADLs) in smart homes. Their system, ADL-LLM, transforms raw sensor data into textual
representations processed by an LLM to recognize ADLs efficiently. While this study
underscores the potential of LLMs for improving functionality and user experience in
smart homes, it focuses primarily on sensor-based recognition and does not address how
explanations of system behavior are communicated to users in real time or how those
explanations adapt dynamically to user feedback and changing contexts.

Explanation generation in other domains
Beyond the smart home domain, explanation generation has been explored in various
fields using interpretable models such as decision trees and rule-based systems, as well as
post-hoc techniques like LIME and SHAP (as discussed in Camilli, Mirandola & Scandurra
(2022)). These methods offer transparency, but struggle to adapt explanations in real time.
MAPE-K loops, used in self-adaptive systems, allow users to query historical data and
understand system behavior based on environmental changes. However, they lack the
flexibility of dynamically generating context-specific explanations as user interactions
evolve.

Recent work on human-in-the-loop systems adds another important layer to the
discussion of dynamic and adaptive explanations. Ullauri et al. (2022) propose a
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history-aware explanation approach for self-adaptive systems, where users can retrieve
historical data about system behaviors and interact with the decision-making process in
real time. This method extends the traditional MAPE-K loop by allowing users to query
historical data and steer system decisions based on past interactions. This mechanism
emphasizes transparency and trust, since users are actively involved in decision making, a
crucial aspect that we also address in our approach. However, this work focuses more on
giving users access to system histories than providing explanations tailored to the real-time
interaction between the user and the system.

Similarly, Magister et al. (2021) explore concept-based explanations in graph neural
networks (GNNs) using their GCExplainer tool. This tool allows users to understand
complex model predictions by breaking them down into higher-level concepts, improving
explainability and user trust. Although their focus is on GNNs, their approach shares
similarities with ours in its goal of making explanations more comprehensible and
user-friendly by leveraging abstract concepts. However, unlike our focus on dynamically
adapting explanations in real-time to the evolving context of users, GCExplainer primarily
deals with post-hoc explanations based on fixed concept representations.

Architectural integration of explanation generation
While a significant portion of the literature focuses on the content and form of
explanations generated by LLMs, less attention has been paid to how explanatory modules
are architecturally integrated into adaptive systems. Understanding this integration is
crucial for enabling runtime explanation generation that aligns with system behavior and
contextual dynamics. Houze et al. (2022) proposes a modular architecture for
self-explanatory smart homes. Bencomo et al. (2010) provides foundational insights on
how reasoning modules, including those used for generating explanations, can be
integrated and maintained at runtime. Kim et al. (2024), meanwhile, address the
integration of LLMs into intelligent robotic architectures, exploring their role in
perception, reasoning, and control processes. Complementarily, Shajalal et al. (2024)
emphasize the importance of incorporating explainability from the initial stages of
user-centered design in smart home contexts. However, a gap persists around approaches
that articulate explanatory generation with real-time system operational logic. In response
to this challenge, the present work incorporates an automatic adaptive explanatory
generation module as a functional component within the system architecture, enabling
seamless operational integration tailored to the contextual dynamics of the smart
environment.

Collectively, these studies highlight the increasing role of LLMs in improving
functionality, personalization, and real-time responses within smart home environments.
Each of these approaches demonstrates notable improvements in user interaction and system
optimization by integrating various factors such as context-awareness, sensor data, and user
history. However, they focus predominantly on optimizing system actions or providing static
explanations, lacking mechanisms for real-time, adaptive explanation generation that
respond dynamically to the specific needs, contexts, and interactions of users.
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In contrast, our work distinguishes itself by focusing on the dynamic generation of
personalized explanations at runtime. Unlike the approaches mentioned above, we address
the challenge of continuous adaptation, where explanations evolve as the user’s context,
system behavior, and interaction history change. By using an advanced LLM fine-tuned
with domain-specific data from the smart home environment, we enable the system to
provide explanations that are not only contextually relevant but also adaptive in real time,
adjusting to ongoing interactions between the system and the user.

A CONCEPTUAL MODEL FOR EXPLANATION
SPECIFICATION
This section introduces a conceptual model that identifies the main concepts that
characterize explanations in autonomous systems and their relationships. The model
focuses on explanations provided by the system to the user, offering customized
clarifications about what the system is doing or what it expects from the user. These
explanations are adapted to the user profile, the system context, and the user’s historical
behavior. This conceptual model underpins the proposal described in the next section. In
particular, the explanations generated by our approach are constructed based on the
concepts and relationships of the model. The initial version of the conceptual model was
introduced in the work of Mestre et al. (2022). Building upon that initial version, the
present work refines the model to adapt it to autonomous systems. To this end, we have
reviewed existing literature focusing on research in explainable systems in the context of
smart environments. We reviewed well-established taxonomies of explanations, such as
the work of Chari et al. (2020) which define an ontology of explanation primitives for
user-centered AI, the work of Lim, Dey & Avrahami (2009) which defines a taxonomy for
intelligibility in context-aware applications, and the work of Nunes & Jannach (2017)
which summarizes several purposes for explanations in the context of AI systems.

Figure 1 shows the model, where orange boxes define essential elements of the
explanations, blue boxes denote explanation features, and green boxes specify the
system and user situation, as well as the user’s historical behavior. The green elements
collectively facilitate the identification of the precise situation in which the explanation will
be given.

The orange boxes in Fig. 1 define conceptual elements that are basic for the specification
of an explanation. The explanation goal represents the purpose or reason why a user needs
an explanation (Miller, Howe & Sonenberg, 2017). Two main explanatory objectives are
distinguished (Gil et al., 2019): “feedback,” which explains actions performed by the system
to inform or justify, and “feedforward,” which involves user participation and explains
actions to be taken by the user. For instance, in a virtual assistant system, a feedback
explanation might notify the user about an automatic calendar update, while a feedforward
explanation could entail soliciting the user’s preference for scheduling a reminder. An
explanation goal is targeted at a user (human) (Chari et al., 2020). The intention is to
manage to get him/her to understand the system in order to collaborate with it. Achieving
the explanation goal can be of great importance (or not) to the system. To specify this, the
conceptual framework proposes the criticality concept associated with the explanation
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goal. Criticality determines the extent to which the information provided in the
explanation is essential for the user to achieve their goal (Lim, Dey & Avrahami, 2009). In
addition, the explanation content is associated with an explanation goal. This concept
encompasses the actual substance or information provided within the explanation to fulfill
its goal. All these concepts constitute the foundation for the explanations.

The blue concepts in Fig. 1 characterize the features of the content of the explanations.
According to the work of Lim, Dey & Avrahami (2009), the explanation content can have
different content parts depending on the question they answer:

. “What”: what has the system done?

. “Why”: why did the system do X?

. “Why not”: why didn’t the system do Y?

. “What if”: what would the system do if W happened?

. “How to”: how can I get the system to do Z, given the current context?

It is important to note that feedback explanations typically focus on retrospective
clarification—they address “what” the system did and “why” it did it, based on past or
ongoing actions. In contrast, feedforward explanations are prospective in nature—they
guide the user toward future actions, often emphasizing “how to” proceed or “what if”
alternatives. However, feedforward explanations still require some degree of feedback
content, as users need to understand the current system state or the triggering condition in
order to contextualize the suggested next step. For example, advising a user to reset a
device requires first informing them of the malfunction that occurred. Therefore, while the

Figure 1 Reference conceptual model to characterize explanations. Full-size DOI: 10.7717/peerj-cs.3041/fig-1
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core function of feedback is justification and the core function of feedforward is
instruction, effective feedforward explanations integrate feedback components to remain
coherent and actionable. This interdependence reinforces the need for well-structured,
hybrid explanatory messages in adaptive systems.

Furthermore, the conceptual model addresses two additional features related to when
and how to present the explanation. It takes into account the timing attribute (Glomsrud
et al., 2019) to determine whether the explanation occurs in real-time or during
post-processing and considers the level of attention attribute to categorize the extent of
attention required from users. Previous works (Gil, Giner & Pelechano, 2012;Horvitz et al.,
2003) have investigated how attention management affects the ability of a user to cooperate
with the system, and the need to control the level of attention required by an explanation.
We have defined three levels: invisible, slightly-noticeable or fully-aware.

Finally, the green squares in Fig. 1 identify concepts to characterize the user context, as
well as to provide the system context within an explanation (Chari et al., 2020). The aspects
we consider are the user’s profile, the human and environmental context, and historical
human behavior. The human profile encompasses significant aspects to define the user
such as “age”, “technological capability”, and “experience.” The context of the user
indicates any information relevant to characterize the situation of the user, such as
location, activity, and device used. Environmental context encompasses external factors of
the system’s environment such as “date”, “time”, and “environmental conditions.” Lastly,
historical human behavior records previous human-system interactions, indicating errors
and relevant user behaviors.

We apply the conceptual model to characterize an explanation within the smart home
domain. This domain illustrates the types of explanations discussed in the article,
demonstrating how these explanations are decomposed according to the proposed
conceptual model.

Consider the following adaptive behaviour. The smart home has an irrigation service
that has identified a malfunction in one of the sprinklers. As a precaution, the irrigation
system will remain inactive until the user manually adjusts the sprinkler. Therefore, the
system requires human intervention for the manual adjustment. This adaptive behavior
may require an explanation. This would be an example of a feedforward explanation since
the system explains actions to be taken by the user.

Suppose that the scenario in the smart home is the following: James, a 23-year-old man
with advanced technological expertise is finishing a peaceful breakfast, enjoying a leisurely
holiday morning. He is in a relaxed and receptive state of mind. In this situation, Table 1
shows an instance of the conceptual model for the feedforward explanation for the manual
adjustment of the sprinkler. Based on this contextual information, in this article we address
the generation of the explanation content. In this example, a suitable explanation content
manually built ad-hoc for this scenario may be: “Please make a manual adjustment to the
sprinkler system’s ‘main’ to restore it to proper operation, as it has exceeded 50 pounds per
square inch (PSI), which is beyond the water pressure limit. Until this adjustment is made,
the watering system will not restart.”. In next sections, we define how this contextual
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information is used as an input to automatically generate the explanation content at
runtime.

This framework establishes the basis for understanding explanations within
autonomous systems. Building on this foundation, the article addresses the challenge of
generating automated content that is both comprehensible and engaging for users. The
primary objective is to produce explanations, grounded in this conceptualization, that
enhance users’ understanding of the system’s adaptive behavior.

PROPOSAL OVERVIEW
The proposal presented in this article aims to automatically generate explanations to help
users understand when a system autonomously adapts its actions in response to changes.
Such adaptation can often lead to user confusion, resulting in misunderstandings about the
system’s behavior, potentially causing incorrect responses and decreased user cooperation.
Therefore, providing users with explanations in these circumstances is essential. Our
solution generates natural language descriptions that are tailored to the user and their
specific situation, taking into account their interaction history with the system.

The overall explanation process involves three steps: (1) detecting the need for an
explanation, (2) generating a context-aware explanation, and (3) delivering it to the user
through an appropriate interface. Steps 1 and 3 are addressed in previous work (Mestre
et al., 2022) and ongoing research efforts, respectively. Although they are not the main
contribution of this article, they are described to provide the necessary context. The
contribution of this article focuses exclusively on step 2: generating a context-aware
explanation based on user characteristics and situational context. In Fig. 2, step 2 is
delimited with orange dashed lines to visually distinguish the scope of our contribution.

Table 1 Instance of the conceptual model for the introduced scenario.

Explanation goal Wait for manual adjustment of sprinkler

Type of explanation Feedforward

Criticality Medium

Human James

Explanation content:

Timing Real-time

Attention level Low

Content part What, why

Human profile Age = 23 technological expertise = advanced

Context:

Human context Activity = breakfast; state = relaxed

Environmental context Day = saturday; time = 9:15 a.m.

Historical human behavior Interaction history = 0
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Figure 2 illustrates the architecture of the whole solution, showing all the components
used for automatic explanation generation. The solution leverages a sensor-monitored
system to collect data. Then, the solution operates as follows:

1. Characterization of the explanation: when the system performs an adaptation, it
queries a predictive model to determine whether an explanation is necessary and, if so,
what characteristics the explanation should have. This predictive model is designed to
assess the need for an explanation based on information from the system, the user, and
the history of interactions between the user and the system. If an explanation is
required, the predictive model further infers the specific characteristics the
explanation should exhibit. These characteristics define the necessary values for
properties such as the level of attention required, the appropriate timing to provide
the explanation, and the content elements that the explanation should include
(these properties stem from the conceptual model—see Fig. 1). This predictive
model has been built using supervised machine learning. Hosted remotely and
accessible via application programming interface (API), the model receives contextual
input and returns predictions in JavaScript Object Notation (JSON) format (see step 1
of Fig. 2). This step has been implemented in previous work (Mestre et al., 2022).

Figure 2 Key components of the proposal. Full-size DOI: 10.7717/peerj-cs.3041/fig-2
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2. Generation of the explanation content: when the predictive model identifies the need
for an explanation due to a system adaptation action, the system generates a request for
explanatory content (a natural language description). This process involves:

• automatically constructing a prompt using a predefined template. The template is
filled with data from the predictive model’s output (explanation characteristics) and
the system’s log (which includes the executed adaptive action and the triggering
event). This construction is managed by the component known as the Prompt
Constructor, as shown in step 2 of Fig. 2.

• Processing the resulting prompt by the LLM-based Explanation Generator to produce
the required explanatory content.

For the construction of this LLM-based Explanation Generator, we outline two key steps:

• Creating a domain-specific dataset: to facilitate the fine-tuning of the LLM, a
domain-specific dataset must be created. This dataset should be tailored to the
particular domain in question, ensuring that it contains relevant and accurate records
that the model can use for training. In the following section, we detail the creation of
such a dataset for the smart home domain.

• Fine-tuning the LLM: once the domain-specific dataset is prepared, the LLM
undergoes a fine-tuning process. This involves re-training the model using the curated
dataset to adjust its parameters and improve its performance in generating
contextually appropriate explanations. The fine-tuning process ensures that the LLM
is well-adapted to the specific needs of the domain, enabling it to produce more
accurate and relevant explanations. In the following section, we illustrate this
fine-tuning process with an example from the smart home domain.

The resulting LLM-based Explanation Generator is capable of producing explanations that
align with the system’s actions and the specific explanation characteristics determined by
the predictive model of step 1. This enhances the overall quality and relevance of the
generated explanations, making them more useful and understandable for users across
various domains.

3. Execution of the explanation: once the explanation content is generated, the
Explanation Builder selects the appropriate interaction mechanism for delivering the
explanation, and the explanation is provided to the user (step 3 of Fig. 2). For this
purpose, we propose using AdaptIO (Gil & Pelechano, 2017), a software infrastructure
designed to adapt notification interactions based on the user’s context. AdaptIO
monitors the context and adjusts the interaction mechanisms of notifications (in our
case, explanations) according to the level of attention. This step falls outside the scope of
the present work and is proposed as future work.

It is important to note that our solution works for autonomous systems that use
adaptation rules to define adaptive behavior. Specifically, an adaptation rule defines
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the actions to be taken in response to an event if a condition is met. An adaptation
rule is defined as follows: Event [Condition] Action. For example, in a smart home
system, if a rise in temperature is detected, leading to an increase of more than five
degrees, the air conditioning would be activated. The adaptation rule, which we call
“SignificantTemperatureIncrease,” would be defined as follows:

TemperatureIncrease [Increase >5] ActivateAC.

Integration within a smart environment
The proposed explanation generation system is designed to operate as an integral part of a
broader smart environment architecture. Figure 3 illustrates the global architecture in
which the explanation module is embedded.

This ecosystem includes four main components:

1. Sensor layer: this layer collects real-time contextual data about the environment and the
user. It includes motion sensors, ambient sensors (temperature, light, noise), and
user-device interaction logs (e.g., smart TVs, thermostats, lighting systems).

2. Context and adaptation engine: this module is responsible for analyzing sensor data to
detect user activity patterns, emotional states (when possible), and triggering events that
may require system adaptation. It also logs user preferences and system responses to
maintain a history of interactions. This module can follow the architecture of MAPE-K
loops for self-adaptive systems (Rutten, Marchand & Simon, 2017).

3. Explanation generator (our proposal): once a system adaptation is triggered, the
predictive model determines whether an explanation is needed and what type of
explanation is most appropriate. Our module then generates the explanation using the
constructed prompt, guided by several input variables (explained above).

Figure 3 Architecture of the solution. Full-size DOI: 10.7717/peerj-cs.3041/fig-3
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4. User interface layer: the generated explanation is delivered through a multimodal
interface (e.g., screen, voice assistant, mobile notification), adapted to the user’s
preferences and current activity.

To produce meaningful and context-sensitive explanations, the explanation generator
relies on a set of key input variables that capture the user’s profile, the real-time state of the
smart environment, and the explanation characterization from the predictive model. These
variables are derived from sensors, automation systems, and user-provided configuration
data. Table 2 summarizes the main categories of input variables used by the system, along
with representative values and the methods through which they are collected.

These variables are collected and processed by the context engine and passed to the
predictive model when an adaptation is triggered by the adaptation engine. The predictive
model determines the need of the explanation and the explanation characteristics
(attention, timing, and parts) and pass this data to the explanation generator through the
prompt constructor, which formats the information into structured inputs for the LLM to
generate natural language explanations. By operationalizing the explanation process
within a complete system architecture and grounding the inputs in real-time contextual
data, the proposed approach becomes feasible for real-world deployment. This modular
and interoperable design ensures the explanation system can be integrated into existing
smart environments with minimal additional infrastructure.

Table 2 Key input variables used to generate context-sensitive explanations, including example values and data collection methods.

Category Example value Collection method Description

User profile Age: 55 Provided during system setup Demographic data and familiarity level with smart
devices.

Experience: Low

Device and appliance
states

Refrigerator: ON Smart home sensors and device status
logs

Real-time status of connected appliances.

Air conditioner: OFF

Environmental
conditions

Temperature: 35 �C Internal environmental sensors and
weather services

Information about both indoor and outdoor conditions.

Rain: 3 mm

Home activity
indicators

Users at home: 1 Presence sensors, pressure sensors, and
door/window sensors

Indicators of movement, occupancy, and user activity in
various home zones.

Main-door: Closed

Security and
automation systems

Camera: ON Security sensors and automation logs Data on surveillance, access, and automated home
systems.

Intruder detection: 0

Historical user
behavior

Interaction history: 0 System logs Number of times the user has not participated correctly
in the service.

Attention level Attention level: low Output of the predictive model Required attention level for the explanation.

Timing Timing: real-time Output of the predictive model Appropriate timing to provide the explanation.

Content parts Content: what, why Output of the predictive model Content parts that should contain the explanation.

Criticality Criticality: medium Output of the predictive model Extent to which the information provided in the
explanation is essential for the user.
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SMART HOME LLM-BASED EXPLANATION GENERATOR
This section details the implementation of the LLM-based Explanation Generator for a
smart home system. This component generates natural language descriptions tailored to
specific scenarios in a smart home environment, enabling users to understand the adaptive
actions taken by the system. The generator is one of the components that enables step 2 in
Fig. 2, which illustrates the key elements of our approach. Its development, as mentioned
in the Proposal Overview section, involves two main steps: (1) creating a domain-specific
dataset for smart homes, and (2) fine-tuning a LLM to produce contextually appropriate
explanations. These steps ensure that explanations are accurate, personalized, and
responsive to the real-time context of the user and the system. Next subsections introduce
the implementation of these two steps for the smart home system.

Creation of a domain-specific dataset for smart homes
The development of the explanation generator begins with creating a dataset based on
typical smart home scenarios. This dataset is used to train the LLM to generate relevant
and precise explanations across various contexts. It consists of pairs of scenario-based
prompts and their corresponding explanations. We have applied a structured methodology
to create the dataset, as illustrated in Fig. 4 (Zhuang et al., 2024).

First, as depicted in part (a) of Fig. 4, we conducted a thorough identification of smart
home scenarios where the system’s adaptive behavior would need user explanations. These
scenarios encompass a wide range of smart home functionalities, such as managing
lighting systems, controlling climate settings, handling security protocols, and operating
appliances. The focus of this identification process was to pinpoint situations where users
might require clarification regarding the system’s actions or guidance on what steps to take
next.

Each scenario is designed to address one of two explanation types: feedback (explaining
why the system performed a particular action) and feedforward (explaining what the user
should do next). For example, in a feedback scenario, the system might explain why it
turned off the heating due to an open window, whereas in a feedforward scenario, the
system might instruct the user to close the window in order to resume heating.

(a) Scenario Identification

Identify Scenarios

(b) Prompt Design and Instantiation

Design a prompt template

Instantiated
Prompts

List of Scenarios

(c) LLM Preliminary Answer Generation and Human Validation

Validated
Answers

Query the LLM

List of 
Scenarios

Instantiated
Prompts Preliminary

Answers

Prompt
Template

I

Validate answers

Figure 4 Key steps of the dataset creation process. Full-size DOI: 10.7717/peerj-cs.3041/fig-4
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To ensure the dataset’s diversity and comprehensiveness, we included scenarios that
span routine actions (e.g., automatically adjusting lighting based on time of day) as well as
exceptional cases (e.g., responding to device malfunctions or security breaches). This
variety ensures that the system can generate explanations that are not only accurate but
also contextually tailored to the user’s specific situation, whether it’s a standard operational
adjustment or an urgent issue requiring immediate attention.

After this identification process, we compiled a total of 228 distinct scenarios. This
scenario set forms the foundation of the dataset used for training the explanation
generation model, ensuring that it can handle diverse and real-world user interactions
effectively.

Next (part (b) of Fig. 4), we designed a structured prompt to query the LLM, specifically
GPT-3.5-turbo-1106, and generate detailed explanations. The prompt template ensures
that each explanation is contextually appropriate and detailed. The structure of the prompt
template is the following:

Produce an explanation for {Action} triggered by {Event} [Condition:

{Condition}] of type {Type} with an attention level {Level},

containing {Explanation Content} (What, Why, etc.), using {Log Data}

and {User Profile}.

Each element in the prompt serves a specific purpose:

. Action: specifies the system’s action (e.g., “turned off the irrigation system”).

. Event: describes the event that triggered the system action (e.g., “high water pressure”).

. Condition: (optional) defines any specific conditions under which the event occurred.

. Type: indicates whether the explanation is feedback (explaining past actions) or
feedforward (explaining future steps). It represents the primary focus of the explanation,
not an exclusive category since feedforward explanations also include a minimal
feedback component.

. Level: refers to the required attention level (low or high) based on the user’s current state
or needs.

. Explanation content: specifies the content to be included in the explanation, such as
“what happened” or “why it happened.”

. Log data: includes relevant system logs and data associated with the action or event.
System logs include information about the device and appliance states, environmental
conditions, home activity indicators and security and automation systems as defined in
Table 2.

. User profile: incorporates user-specific data, such as preferences, technological
experience, or interaction history.

The prompt template is instantiated by the identified scenarios. To do this, the specific
details of the identified scenarios, including the system actions, triggering events, and
relevant conditions are incorporated to the prompt template. This process ensures that
each prompt is accurately tailored to reflect the unique context of each scenario. This set of
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instantiated prompts serves a dual role: initially, it enables the generation of preliminary
responses, and subsequently, it constitutes the input, as structured questions, for the
dataset.

Once the prompts were instantiated with scenario-specific data, they were processed by
the LLM (as shown in part (c) of Fig. 4). At this stage, the LLM generated preliminary
explanations for each scenario. Traditionally, an expert would manually generate these
outputs, carefully crafting responses to ensure clarity and relevance. However, in this
LLM-assisted methodology, the LLM provides these preliminary explanations, which are
then subjected to human validation. During this review, experts rigorously assess each
response for accuracy, clarity, and contextual relevance.

This iterative refinement process is crucial for ensuring the quality of the generated
explanations. Explanations that do not meet the required standards are adjusted by
domain experts. This cycle of generation and review continues until the explanations are
fully validated. Through this iterative process, we generated a dataset of 228
instantiated-scenario prompt and response pairs.

Fine-tuning using ChatGPT 3.5
The fine-tuning process is a critical step in adapting a pre-trained language model to
perform efficiently in a specific domain or task. In this work, we fine-tuned ChatGPT 3.5 to
generate contextually appropriate explanations for smart home environments. The choice
of ChatGPT 3.5 was motivated by its advanced capabilities in natural language
understanding and generation, which is essential for producing high-quality, coherent
explanations that address users’ specific needs and queries. Additionally, the model’s
user-friendly API facilitated seamless integration and experimentation, further enhancing
the efficiency of the fine-tuning process. The selection of GPT-3.5-turbo as the
foundational model for our approach was guided by a balance between performance,
accessibility, and fine-tuning capabilities at the time of implementation. While the
landscape of large language models is evolving rapidly, with promising alternatives such as
Mistral, LLaMA 2/3, Claude 3, or Gemini, many of these models presented constraints in
one or more critical aspects of our study. First, GPT-3.5-turbo offered a mature and
well-documented fine-tuning API, enabling stable integration into our development
pipeline and the ability to train on domain-specific data. In contrast, open-source models
such as Mistral or LLaMA often require substantial local infrastructure for fine-tuning,
including graphics processing unit (GPU) clusters and parameter-efficient training
strategies, which can limit reproducibility and portability in constrained environments like
smart homes. Claude and Gemini, while competitive in reasoning, lacked at that time
either fine-tuning availability or offered limited integration capabilities through public
APIs. Furthermore, GPT-3.5 ensured strong performance in natural language generation
tasks and benefited from widespread community adoption and tooling support, reducing
integration overhead.

The fine-tuning procedure was carried out using the domain-specific dataset created for
the smart home domain. This dataset consists of question-answer pairs, where each
question represents a prompt instantiated with a specific scenario where each question
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represents a prompt instantiated with a specific scenario, and the corresponding answers
were validated by human experts to ensure both accuracy and relevance. The primary goal
of fine-tuning was to optimize the model’s ability to generate accurate, context-sensitive
explanations within the smart home environment.

The fine-tuning process followed a systematic methodology, illustrated in Fig. 5, which
is based on three main stages: dataset preparation, fine-tuning procedure, and evaluation.

The first stage involved preparing the dataset (part (a) of Fig. 5), a foundational step to
ensure that the model can accurately learn and respond to domain-specific interactions in
the smart home context. In the previous section, we created a dataset of 228 scenarios.
However, additional data preparation steps were essential to ensure the dataset was
optimally suited for fine-tuning.

Initially, we conducted a thorough data cleaning process to ensure consistency in
formatting across entries, checking that each scenario adhered to a standardized structure
without any unintended variations. Given that the dataset was designed to minimize
ambiguity from the outset, this cleaning focused on reinforcing uniformity across fields
like action, triggering event, condition, and explanation type, without altering the carefully
designed scenario content.

Then, to maximize the model’s learning efficiency, the dataset was split into training
and test sets with an 85:15 ratio. This approach allowed the model to train on 194
scenarios, encompassing a comprehensive range of smart home explanations, while setting
aside 33 scenarios for final testing. This split supported both robust learning and reliable
evaluation, ensuring that the model could generalize effectively across unseen scenarios.

The second stage of the process (part (b) of Fig. 5) involved fine-tuning the model with
the prepared dataset. The base model, GPT-3.5-turbo-1106, was initialized with its
pre-trained knowledge and then fine-tuned using the smart home dataset. This fine-tuning
process involved adjusting the model’s weights across multiple training iterations to enable
it to learn patterns specific to the smart home context. These iterations were critical for
optimizing the model’s performance, ensuring that it could generate accurate, context-
sensitive, and coherent explanations when responding to smart home-related queries.

For this evaluation, we used the test set of 33 scenarios that were set aside during data
preparation, allowing us to assess the model’s generalization ability on unseen examples.

Figure 5 Key steps of the fine-tuning process. Full-size DOI: 10.7717/peerj-cs.3041/fig-5
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The fine-tuning was conducted with a batch size of four and across seven epochs. The
number of epochs was selected to provide an optimal balance between learning from the
dataset without overfitting. During each epoch, the model was exposed to the full dataset,
iteratively refining its parameters based on the domain-specific data.

Finally, the model was evaluated to measure the effectiveness of the fine-tuning process
(part (c) of Fig. 5). We employed the explanation consistency metric (Zhuang et al., 2024),
a key metric used to assess the reliability and coherence of the model’s responses. This
metric quantifies the consistency of model-generated explanations across related
questions, crucial for ensuring coherent and reliable responses in practical applications.

The explanation consistency metric measures the percentage of responses that maintain
consistency with a user’s expectations across a set of related queries. Specifically, it
quantifies the proportion of answers that align with the initial explanation provided for a
given question, considering variations in follow-up questions. A score of 1 indicates perfect
consistency, where the model’s responses remain unchanged across all related examples.

For this evaluation, we used the test set of 33 scenarios that were set aside during data
preparation, allowing us to assess the model’s generalization ability on unseen examples.
The fine-tuned ChatGPT 3.5 model achieved an average consistency score of 0.92. This
result demonstrates that the model is highly proficient in maintaining coherence and
generating contextually appropriate explanations across diverse smart home scenarios.
The high consistency score highlights the model’s capability to deliver reliable and
meaningful explanations, which are essential for enhancing user interaction and
satisfaction in smart home environments.

Fine-tuning using a domain-specific dataset has proven to be an effective approach for
improving the model’s ability to generate natural language explanations. The systematic
methodology of dataset preparation, iterative training, and rigorous evaluation ensures
that the fine-tuned model can provide contextually relevant, coherent, and accurate
explanations that align with users’ needs and the operational dynamics of a smart home.
The successful application of this fine-tuning process marks a significant step toward
developing more intuitive and responsive systems in the realm of smart home automation.

GENERATION OF EXPLANATIONS FOR THE SMART HOME
In this section, we demonstrate the functionality of a smart home system developed by
implementing the solution proposed in the previous sections. As a result, the smart home
system is capable of automatically generating explanations for its adaptive behavior. That
is, the solution automatically generates explanations in response to the adaptation actions
performed by the smart home.

To demonstrate the solution in action, we present three smart home scenarios with
adaptive behavior. In each scenario, the system queries the predictive model to determine
whether an explanation is needed and what characteristics it should have. If an explanation
is required, the system generates its content. As shown in step 2 of Fig. 2, the generation of
the explanation content involves:
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Table 3 Generated explanations for five adaptive behaviour scenarios.

Scenario Explanation setup Generated explanation

A Explanation characteristics: The system turned off the heating because it detected a
problem with the thermostat. To turn it back on, you
need to manually reset the thermostat.

• High level of attention

• Providing now the explanation

• Including the “What”, “Why”, and “How to” parts.

Prompt:

Produce an explanation for wait-for-manual-reset triggered by heating-thermostat
[under the fulfillment of this condition Temperature �14 $C] of type Feedforward
with an attention level High containing the What, Why, and the How to with the
following information: LOG* + User Profile*.

B Explanation characteristics: The alarm was triggered by movement from the guest
bedroom window sensor. No suspicious activity was
detected.

• Low level of attention

• Providing later the explanation

• Including the “What” part.

Prompt:

Produce an explanation for false-alarm-trigger triggered by motion-detection-error
[under the fulfillment of this condition No-visible-treat && intruders=0] of type
Feedback with an attention level Low containing the What with the following
information: LOG* + User Profile*.

C Explanation characteristics: The main sprinkler is off due to pressure above 50 PSI.
Manually adjust the pressure valve until it drops
below 50 PSI and restart the irrigation system to
resume operation.

• Low level of attention.

• Providing later the explanation.

• Including the “What” and “How to” parts.

Prompt:

Produce an explanation for wait-for-manual-adjustment triggered by High-pression-
sprinklers [under the fulfillment of this condition Pressure-sprinkler[all] >50 PSI]
of type Feedforward with a level of attention Low containingWhat and the How to
with the following information: LOG* + User Profile*.

D Explanation characteristics: Rain is expected in the next few hours. You can skip
the scheduled watering by updating the settings in
the system.

• Medium level of attention.

• Providing now the explanation.

• Including the “What” and “How to” parts.

Prompt:

Produce an explanation for irrigation-postponed triggered by weather-forecast
[under the fulfillment of this condition Rain-probability >85%] of type
Feedforward with a level of attention Medium containing What and the How to
with the following information: LOG* + User Profile*.

E Explanation characteristics: The heater has been running for a while. If the heater
keeps running, humidity may drop further, and you
would have to ventilate the room to maintain
comfort.

• Low level of attention.

• Providing now the explanation.

• Including the “What” and “What if”parts.

Prompt:

Produce an explanation for ventilation-recommendation triggered by low-humidity
[under the fulfillment of this condition Heater-on >3 h && Humidity <30%] of
type Feedforward with a level of attention Low containing What and the What if
with the following information: LOG* + User Profile*.
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. constructing a prompt by instantiating the template proposed in the previous section
based on the specific situation, and

. querying the LLM-based explanation generator, developed in the previous section, using
the constructed prompt.

The scenarios are the following:

. Scenario A: the smart home system has detected a malfunction in the heating thermostat
and has shut down, awaiting manual adjustment. It’s 7:30 p.m. in the middle of winter,
and the house is occupied by Maria, a 65-year-old woman with limited technical
knowledge. She has just arrived home after a long day at work.

. Scenario B: an alarm was triggered due to movement near the bedroom window.
However, the smart home system did not detect any other suspicious activity. At 3:45
p.m., the only person at home is a 41-year-old man with intermediate technological
knowledge. He has just finished lunch and is now cleaning the pool while listening to
relaxing music.

. Scenario C: the smart home system has detected a malfunction in one of the sprinklers,
as the pressure has exceeded maximum value. Consequently, it is shutting down the
irrigation system until the issue can be resolved. The user interacting with the system is a
23-year-old man with advanced technological expertise. It is 9:15 a.m., and he has just
finished a peaceful breakfast, enjoying a leisurely holiday morning. He is in a relaxed and
receptive state of mind.

. Scenario D: it is 7:00 a.m., and Carolina, a 45-year-old woman with intermediate
technology skills, is in the kitchen preparing her coffee. As she does every morning after
breakfast, she usually confirms the watering of the garden, which she does between 7:20
and 7:40 a.m. However, the system has detected that it will rain for the next few hours.

. Scenario E: it’s 5:30 p.m. and Andres, a 68-year-old man with basic technological skills,
has just arrived home from his routine at the gym. Fifteen minutes earlier, his wife Maria
went out and left the living room heater, which has been running since 2:00 p.m., on. The
system detects that the ambient humidity has decreased and recommends ventilating the
room.

For each scenario, Table 3 details: the characteristics of the explanation inferred by the
predictive model, the constructed prompt, and the content of the explanation generated by
our LLM-based explanation generator. The generated explanations demonstrate how our
system produces textual content to explain the system’s adaptive behavior. This content is
tailored to the user’s profile, the system’s context, and the history of interactions between
the user and the system.

VALIDATION OF THE PROPOSAL
In this section, we present a comparative experiment evaluating our proposed explanation
generation method against an alternative approach. This experiment aims to determine
whether the combination of structured prompting and domain-specific fine-tuning leads
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to objectively better explanations compared to more generic or minimally guided
generation strategies. To this end, we conducted a comparative study using different
configurations of language models and prompt types, as detailed in Table 4. Unlike the
subsequent section, which evaluates user perceptions in realistic scenarios, this experiment
isolates the explanation generation process itself and uses blinded evaluators to assess
explanation quality across clarity, usefulness, and contextual adaptation. The results serve
as a validation for justifying the design decisions adopted in our approach.

The experiment is based on ten representative smart home scenarios. For each scenario,
explanations were generated using four distinct configurations that combine different
LLMs and prompting strategies, as summarized in Table 4. Thirty independent evaluators,
who were blind to the generation method used, assessed the explanations. The evaluators
included university professors, independent professionals, and, in some cases, final-year
doctoral students. Their selection was based on their mastery of the subject and their
experience in activities directly linked to our research, with the aim of guaranteeing a
transparent and reliable evaluation. The evaluations assess three predefined dimensions:

. Clarity (1 = not clear, 5 = very clear)

. Useful (1 = not useful at all, 5 = very useful)

. Adapted to the situation (1 = not adapted at all, 5 = very well adapted).

The average scores obtained for each generation method (condition) are presented in
Table 5. The use of structured prompts significantly improves the perceived quality of the
generated explanations compared to simple prompts, independently of the underlying
language model (GPT-3.5 or Claude 3 Haiku). Moreover, fine-tuning the model with

Table 4 Configuration of models and prompting strategies used in the comparative evaluation.

Prompt type Model Description

Simple
prompt

GPT-3.5 (Generic
LLM)

Using GPT-3.5-turbo with a minimal prompt that included only the description of the adaptation action.

Simple
prompt

Claude 3 Haiku
(Generic LLM)

Using Claude 3 Haiku with the same minimalistic prompting strategy.

Structured
prompt

GPT-3.5 (Generic
LLM)

Using GPT-3.5-turbo with the structured prompt described in Section “Proposal Overview”, incorporating
user profile, system context, and explanation content specifications.

Structured
prompt

Fine-tuned LLM (our
approach)

Using the domain-specific fine-tuned model developed in Section “Smart Home LLM-based Explanation
Generator”, combined with the structured prompt.

Table 5 Comparative evaluation results across different generation configurations.

Condition Clarity Useful Adapted to the situation

Simple prompt—Generic LLM (GPT-3.5) 3.1 2.9 2.7

Simple prompt—Generic LLM (Claude 3 Haiku) 3.2 3.0 2.8

Structured prompt—Generic LLM (GPT-3.5) 3.8 3.7 3.5

Structured prompt—Fine-tuned LLM (our approach) 4.4 4.5 4.6
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domain-specific data brings additional gains, particularly in the dimension of contextual
adaptation.

Interestingly, although the simple prompts generated by Claude 3 Haiku performed
slightly better than those from GPT-3.5, the structured prompting strategy remains the
most influential factor in enhancing explanation quality. The best performance was
achieved when combining structured prompting with domain-specific fine-tuning. These
findings substantiate the design choices made in our approach, confirming that investing
effort into both prompt engineering and fine-tuning is justified when aiming to deliver
clear, useful, and context-aware explanations in adaptive smart environments.

EVALUATION OF THE USER EXPERIENCE
To complement the prior validation of our proposal, this section introduces an experiment
aimed at illustrating how users perceive the explanations generated by a system
implementing our solution. The experiment evaluate the user experience in response to
explanations provided by the system. The evaluation was conducted through a survey that
collected user feedback for a smart home system. The section describes how the survey was
carried out, including its design and execution, and presents the results. This approach
allows us to assess the effectiveness of our approach in delivering dynamic explanations
that enhance the user experience.

Questionnarie
We used a questionnaire to collect data about the user experience. The questionnaire is
based on the UEQ-S (Schrepp, Kollmorgen & Thomaschewski, 2023), which includes eight
items. UEQ-S is a short version of the User Experience Questionnaire (UEQ) designed to
allow a quick assessment of user experience (UX) (Schrepp, Thomaschewski & Hinderks,
2017). UEQ-S is available for scenarios requiring very short completion times. This kind of
questionnaires has been used by previous research to assess explanations generated by both
LLM and humans, in controlled, non-interactive contexts. For example, Krause &
Stolzenburg (2024) employed a questionnaire to evaluate ChatGPT-generated explanations
in common-sense reasoning tasks, while Omeiza et al. (2021) applied a similar
methodology based on exposure to sequences of images depicting hypothetical scenarios of
autonomous driving, accompanied by system-generated explanations, to assess how

Table 6 Evaluation instrument for generated explanations.

Negative evaluation Positive evaluation

Annoying Pleasant

Complicated Easy

Unusable Useful

Confusing Clear

Boring Lively

Not interesting Interesting

Doubtful Reliable

Out of place Adapted to the situation

Peña-Cáceres et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3041 22/34

http://dx.doi.org/10.7717/peerj-cs.3041
https://peerj.com/computer-science/


different types of explanation influence understanding of events and perceived confidence
in vehicle behavior.

Specifically, the questionnaire includes four questions from the pragmatic scales
Efficiency, Perspicuity, Dependability, and four questions from the hedonic scales
Stimulation and Novelty.

Some items of the UEQ-S were not suitable for our study because we are focused in the
adaptability of the explanations to concrete situations than in being at the forefront.
Therefore, we replaced them with more precise items. Table 6 shows the issues assessed in
our questionnaire. Each issue is defined by the negative evaluation value and positive
evaluation value. The eight questions are scored from −3 (most negative evaluation) to +3
(most positive evaluation).

Participants
We collected responses from 118 people randomly selected by colleagues of the
researchers. Data collection on the subjects’ background and experience was performed
through a demographic questionnaire applied at the first stage of the survey. The
questionnaire included two questions to collect personal data (age and technological
experience). We aimed to ensure a diverse sample in terms of age and previous experience,
to maintain the heterogeneity of the group and minimize potential biases in the results of
the experiment. All participants provided informed consent before participating in the
study. Based on the responses obtained from the demographic questionnaire, Fig. 6 reveals
the following conclusions:

. the participants’ ages ranged from 16 to 69 years. There was a high participation of
adolescents and young adults, particularly men, in the 16 to 24 age groups, with 35 men
and 14 women in the 16 to 19 age group.

Figure 6 Distribution of participants and technological experience. Full-size DOI: 10.7717/peerj-cs.3041/fig-6
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. In the experiment participated 94 men and 24 women. The difference in participation is
attributed to factors such as accessibility, interest, or willingness to take part in the
experiment.

. Regarding technological experience, the majority of participants fell into the medium
category, representing 54.2% of the total. 41.5% of participants had high technological
experience, while only 4.2% were classified in the low category.

Scenarios
The questionnaire immersed participants in five scenarios within a smart home
environment. Table 7 presents the scenarios used in the questionnaire, each oriented
toward experiencing different functionalities. The services involved in the evaluated
scenarios included purchase order confirmation, irrigation control, security systems,
management of curtains and blinds, as well as thermostats and climate control. This
diversity of services allowed for a more thorough evaluation of explanations across a wide
range of conditions.

Results
Figure 7 shows the results obtained from the collaboration of 118 participants who
evaluated the explanations generated from the proposal. The values shown in Fig. 7
represent the average results from the five scenarios evaluated by the participants,
indicating whether the generated explanations met the established indicators. This allowed
us to observe the following:

. Annoying vs. Pleasant: 21.0% of users found the explanations somewhat pleasant, and
18.8% rated them as very pleasant. In contrast, 22.0% remained neutral, 25.3% of
participants found them very annoying, and 12.9% found them somewhat annoying.

Table 7 Scenarios for the execution of the experiment.

N Scenarios Generated Explanation

1 It is 10:37 a.m., and you are working in your office, connected to a video
conference. Suddenly, the system, through the house speakers, notifies
you.

An order has been generated to replenish the refrigerator, automatically
activated when minimum levels are reached.

2 You are at home, relaxing in the living room after a long day at work. It
is 6:30 p.m., and you have just sat down to watch your favourite TV
show. Suddenly, you receive a notification on your mobile phone.

The irrigation system is suspended because the backyard sprinkler is
clogged. Remove debris from the sprinkler and manually restart the
system to restore its operation.

3 It’s a quiet night, and you’re getting ready for bed. It’s 10:45 p.m., and
you’ve just finished your nightly routine. You’re about to turn off the
lights and go to bed when you hear a voice prompt through your smart
speakers.

It’s time to activate the security system. You need to do it manually before
going to bed.

4 You are hosting a dinner with friends at your house. It is 7:00 p.m., and
guests are starting to arrive. You notice that the house feels a bit colder
than usual. Suddenly, you receive a notification on your mobile phone.

The heating has turned off due to a configuration issue. To reactivate it,
turn on the thermostat, manually adjust the settings, and set an
appropriate temperature.

5 It’s a cold winter morning, and you’ve just woken up. It’s 7:00 a.m., and
as you leave your bedroom, you feel that the house is colder than usual.
You head to the kitchen to prepare breakfast, and suddenly, you hear a
voice prompt through your smart speakers.

Due to the living room window being open, the heating system will not
activate. Please close the window for it to function properly.
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. Complicated vs. Easy: 29.7% of participants evaluated the explanations as very easy to
use, and 21.0% found them somewhat easy. Conversely, 24.1% remained neutral, 13.4%
considered them very complicated, and 11.9% found them somewhat complicated.

. Unusable vs. Useful: 44.2% of users rated the explanations as very useful, and 22.2%
considered it somewhat useful. In contrast, 7.6% found it very unusable, and 8.3% found
it somewhat unusable, with 17.6% maintaining a neutral opinion.

. Confusing vs. Clear: 37.6% of participants rated the explanations as very clear, and
24.6% found it somewhat clear. However, 10.8% considered it very confusing, and 9.1%
found it somewhat confusing, while 17.8% remained neutral.

. Boring vs. Lively: 22.4% of users considered the explanations very lively, and 18.6%
found it somewhat lively. Meanwhile, 31.9% of participants remained neutral, 14.1%
rated it as very boring, and 13.1% found it somewhat boring.

Figure 7 Results of the questionnaire based on the five scenarios. Full-size DOI: 10.7717/peerj-cs.3041/fig-7
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. Not Interesting vs. Interesting: 44.7% of participants found the explanations very
interesting, and 22.2% rated them as somewhat interesting. On the other hand, 18.0%
maintained a neutral opinion, 8.1% found them somewhat uninteresting, and 6.9%
considered them very uninteresting.

. Doubtful vs. Reliable: 31.9% of users considered the explanations very reliable, and
24.2% rated it as somewhat reliable. In contrast, 23.0% of participants remained neutral,
11.2% found it very doubtful, and 9.7% found it somewhat doubtful.

. Out of Place vs. Adapted to the Situation: 37.5% of participants found the explanations
very well adapted to the situation, and 20.8% rated them as somewhat adapted.
Meanwhile, 20.5% remained neutral, 12.9% considered them very out of place, and 8.3%
found them somewhat out of place.

Complementing the above results, Fig. 8 summarizes the evaluation of the explanations
in the five smart home scenarios, using a scale from −3 (most negative evaluation) to +3
(most positive evaluation). The “Pleasant” indicator has a response distribution of 39.8%
positive, 22.0% neutral, and 38.2% negative, alluding to a moderately pleasant evaluation

Figure 8 Evaluation by indicator in negative, neutral and positive scales. Full-size DOI: 10.7717/peerj-cs.3041/fig-8
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with a balance between different responses. The “Easy” indicator shows a higher
proportion of positive responses at 50.7%, followed by 24.1% neutral and 25.3% negative
responses, indicating an overall ease in understanding the explanations. “Useful” has a
high proportion of positive responses at 66.4%, while neutral and negative responses are
lower, at 17.6% and 15.9%, respectively, indicating that the explanations are seen as useful.
In “Clear”, the majority of responses are positive at 62.2%, with 17.8% neutral and 19.9%
negative, indicating clarity in the explanations. The “Lively” indicator has a predominance
of neutral responses at 31.9%, with 41.0% positive and 27.2% negative, reflecting a less
dynamic appreciation of the explanations.

While the indicator “Interesting” stands out with a high positive rating of 66.9%, with
18.0% neutral and 15.0% negative responses, indicating considerable interest from the
participants in the explanations. “Reliable” shows a predominance of positive responses at
56.1%, with 23.0% neutral and 20.9% negative responses, meaning the explanations are
seen as reliable. The “Adapted Situation” indicator has 58.3% positive responses, 20.5%
neutral, and 21.2% negative, demonstrating that the explanations are well-adapted to the
user’s context. In general, the data reflect a positive response to the explanations generated
in all indicators. The relatively small differences between the approval rates for the
different indicators could imply that the explanations maintain a consistent level of quality
in all aspects evaluated.

In the same direction, Fig. 9 shows a consolidated summary of the results obtained,
highlighting a positive perception of the explanations generated by the proposal, with
55.2% acceptance. The 22.9% of the appraisals were neutral. However, a margin for
improvement of 21.9% is identified, which represents an opportunity to refine and enrich
the current approach.

Figure 9 Perception of the explanations generated. Full-size DOI: 10.7717/peerj-cs.3041/fig-9
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LIMITATIONS
The results obtained in the experiment have shown that the explanations produced by our
solution are relevant and adequately fit the type of explanation required. However, the
present proposal, although innovative and applicable in the field of autonomous systems
for smart homes, has certain limitations that must be recognised and addressed in future
research and development.

One important limitation of this study is the use of the UEQ-S questionnaire to evaluate
explanation quality in static, non-interactive scenarios. Although UEQ-S is a validated and
efficient instrument for assessing user experience, it was originally designed for interactive
systems and may not fully capture the nuances of explanation utility, timing, or
appropriateness when users are not actively engaging with a live system. While this choice
allowed us to collect standardized feedback from a diverse sample in an early-stage
evaluation, future studies should incorporate more immersive and dynamic methods such
as think-aloud protocols, semi-structured interviews, or interactive prototypes that
simulate real-time explanation delivery. These approaches would provide deeper insights
into user understanding, trust formation, and context-sensitive interpretation of
explanations. Also, another limitation in the validation was to validate the timing and
manner of delivery of the explanations, given that the evaluation was carried out by means
of questionnaires applied in hypothetical scenarios. Some users noted that receiving
explanations via loudspeaker could be uncomfortable in a real-world setting. Therefore, in
subsequent phases, we plan to adjust interaction mechanisms and validate the timing of
delivery, as well as incorporate more immersive evaluation methods, as mentioned before.

Another limitation is related to the level of complexity addressed in the evaluation
scenarios. In this initial phase of the study, we chose to work with simple cases,
characterized by straightforward adaptation structures and bounded conditions, in order
to test, in a controlled environment, the technical feasibility of the approach and its ability
to generate explanations in the smart home domain. However, the system does not yet
address situations involving multiple simultaneous rules, overlapping contextual
conditions, or composite explanations integrating several actions. Future studies are
expected to address these scenarios where multiple adaptations may occur concurrently,
which will be relevant to evaluate the scalability of the system and its performance in
contexts of higher complexity. Although the current proposal does not yet implement
these mechanisms, the system architecture is modular and allows for the integration of:

. a reasoning layer to identify and consolidate multiple causal factors.

. A conflict-resolution strategy to select the most informative or safest explanation.

. Techniques for generating multi-causal or summary-level explanations when
appropriate.

In the same direction, another limitation concerns the feedforward component of the
generated messages. The system does not currently perform diagnostic reasoning or error
analysis, but rather relies on general patterns learned during fine-tuning to provide action
suggestions. However, this reliance limits its ability to generate more complex
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explanations, such as recommending configuration changes or resolving system errors.
While this often results in helpful guidance, particularly in routine situations, it may lead
to generic instructions when detailed knowledge about device capabilities or failure states
is unavailable. Future work will explore integrating structured knowledge sources to
enhance the reliability and contextual relevance of such explanations.

Furthermore, the need to incorporate more sophisticated feedback mechanisms that
adjust the explanations according to the user’s response is recognized. In this line,
emotional inference by analyzing voice, facial expressions, or gestures could provide
valuable information on the understanding or acceptance of the explanations, favoring a
dynamic and non-intrusive adaptation of the interaction.

A further important consideration is the inherent risk of LLMs generating
hallucinations, i.e., explanations that are plausible but do not correspond to the actual state
of the system. Although fine tuning with domain data was applied in our proposal, this
phase of the study did not contemplate specific mechanisms to detect or mitigate this
phenomenon. In this context, where the reliability of the explanations is critical, the
incorporation of supervised fine-tuning techniques that penalize hallucinations during the
generation of explanations (Song et al., 2024), and recovery augmented generation (RAG)
strategies that allow anchoring the explanations in verifiable and system-specific sources
are proposed as a future line of research.

Similarly, the use of LLMs managed by third parties poses significant user privacy
challenges. In standalone systems, sending data to external services may pose a risk of
unwanted exposure of sensitive information. While this phase of the study was conducted
using simulated scenarios, it is recognized that future implementations need to adopt more
secure strategies, such as local processing, deployment of open-source models at the edge,
and application of anonymization techniques. Also, it is suggested to work closely with
legal and ethical specialists to ensure compliance with regulations such as GDPR and
promote more responsible interactions.

In addition, the integration of a customer effort score (CES) and customer satisfaction
score (CSAT) module would facilitate the possibility of measuring the simplicity of
processes and the reduction of effort required from users. This implementation would not
only minimize complications during interaction with the system but would also provide
valuable indicators on the level of overall satisfaction, clarity of explanations, and ease of
use. By way of example, these could be some of the questions: “Did you find the
explanations provided by the system helpful and easy to understand?”, “Were you satisfied
with the speed with which the system responded to your needs?” and “What additional
functionalities would you like the system to incorporate to enhance your user experience?”.
Collecting this data could improve the design and refine the explanations and preferences
the system presents to users.

Finally, although the proposed solution has been instantiated in the smart home
domain, it impacts not only this domain, nor just the autonomous systems domain, but
also has potential applications in several other areas, including digital health, industrial
automation, energy management, and agriculture. In the digital health domain, for
example, it would facilitate personalized explanations to patients about their treatment or
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the use of medical devices, improving adherence and understanding of healthcare. A
specific example would be the system explaining to patients how to take their medications
correctly and what side effects to observe, adjusting the explanations according to the
patient’s needs. In industrial automation, tailored explanations would optimize operator
training and process management, increasing efficiency and reducing errors. For example,
the system could provide detailed real-time instructions on how to perform maintenance
on specific machinery, explaining each step of the process clearly and concisely and
adjusting the explanations according to the operator’s experience. In energy management,
it would provide customized explanations for companies’ efficient use of resources. For
example, the system would explain in detail how to optimize the use of machinery and
lighting systems in a production plant, providing clear instructions based on the
company’s energy usage patterns and current operational demands. In agriculture, it
would provide timely information on crop management, irrigation optimization, and pest
control, resulting in increased productivity and more sustainable agricultural resource
management. The system could explain to farmers how and when to apply fertilizers based
on real-time data on soil and crop conditions. We interpret these results as a first
validation of the path we have opened in this work, in which we use language models to
generate explanations tailored to users’ preferences and needs.

CONCLUSIONS
This article has tackled the challenge of generating explanations at run-time within
autonomous systems, driven by the necessity of user comprehension and trust for effective
human-system collaboration. Our proposed solution focuses on generating the content of
these explanations dynamically. We leverage the power of large language models (LLMs),
which are fine-tuned with domain-specific data and prompts, enabling the generation of
dynamic explanations tailored to user context. We demonstrate the solution in the domain
of smart homes by using ChatGPT, a LLM to create these adapted explanations. Through
this approach, we ensure that explanations are not only comprehensible and trustworthy
but also relevant, thereby promoting a seamless interaction between humans and systems.
To validate the generated explanations, we conducted an experiment designed to assess the
user experience with the system-generated explanations within a simulated smart home
environment.

Our approach goes beyond traditional static methods by integrating contextual
awareness and the user profile into the explanation generation process, ensuring that
explanations are continuously updated and aligned with both user expectations and system
behavior. In doing so, we address a crucial gap in current research—delivering dynamic,
user-specific explanations that enhance trust, transparency, and collaboration in
autonomous systems.

Although the evaluation was conducted using predefined scenarios, it is important to
note that the explanation generation technique—comprising the construction of prompts,
integration of contextual variables (e.g., user profile, environmental data, interaction
history), and the generation of natural language responses by a fine-tuned LLM—has been
fully implemented and is operational within a simulated smart home environment. This
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setup enables real-time explanation generation in response to simulated adaptation events,
allowing the system to function end-to-end for the purposes of testing and validation.
While a full deployment in a live smart home system remains future work, the core
components required for explanation generation are functional and have been validated
through the scenario-based evaluation.

Moving forward, our work sets the stage for the development of more transparent and
trustworthy autonomous systems. Future research avenues include:

. exploring the synergies between our solution and other human-centered design
principles for autonomous systems.

. Assessing the generalizability of our approach across diverse application domains.

. Investigating user acceptance and preferences regarding explanations generated by
LLMs.

Addressing these future directions will further refine the capabilities of autonomous
systems, enabling them to effectively collaborate with humans and address complex
challenges in a myriad of contexts.
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